181 research outputs found

    Parallel H.264/AVC Fast Rate-Distortion Optimized Motion Estimation using Graphics Processing Unit and Dedicated Hardware

    Get PDF
    Heterogeneous systems on a single chip composed of CPU, Graphical Processing Unit (GPU), and Field Programmable Gate Array (FPGA) are expected to emerge in near future. In this context, the System on Chip (SoC) can be dynamically adapted to employ different architectures for execution of data-intensive applications. Motion estimation is one such task that can be accelerated using FPGA and GPU for high performance H.264/AVC encoder implementation. In most of works on parallel implementation of motion estimation, the bit rate cost of motion vectors is generally ignored. On the contrary, this paper presents a fast rate-distortion optimized parallel motion estimation algorithm implemented on GPU using OpenCL and FPGA/ASIC using VHDL. The predicted motion vectors are estimated from temporally preceding motion vectors and used for evaluating the bit rate cost of the motion vectors simultaneously. The experimental results show that the proposed scheme achieves significant speedup on GPU and FPGA, and has comparable ratedistortion performance with respect to sequential fast motion estimation algorithm

    An Optimized Parallel IDCT on Graphics Processing Units

    Get PDF
    In this paper we present an implementation of the H.264/AVC Inverse Discrete Cosine Transform (IDCT) optimized for Graphics Processing Units (GPUs) using OpenCL. By exploiting that most of the input data of the IDCT for real videos are zero valued coefficients a new compacted data representation is created that allows for several optimizations. Experimental evaluations conducted on different GPUs show average speedups from 1.7× to 7.4× compared to an optimized single-threaded SIMD CPU version

    A Survey on Energy Consumption and Environmental Impact of Video Streaming

    Full text link
    Climate change challenges require a notable decrease in worldwide greenhouse gas (GHG) emissions across technology sectors. Digital technologies, especially video streaming, accounting for most Internet traffic, make no exception. Video streaming demand increases with remote working, multimedia communication services (e.g., WhatsApp, Skype), video streaming content (e.g., YouTube, Netflix), video resolution (4K/8K, 50 fps/60 fps), and multi-view video, making energy consumption and environmental footprint critical. This survey contributes to a better understanding of sustainable and efficient video streaming technologies by providing insights into the state-of-the-art and potential future directions for researchers, developers, and engineers, service providers, hosting platforms, and consumers. We widen this survey's focus on content provisioning and content consumption based on the observation that continuously active network equipment underneath video streaming consumes substantial energy independent of the transmitted data type. We propose a taxonomy of factors that affect the energy consumption in video streaming, such as encoding schemes, resource requirements, storage, content retrieval, decoding, and display. We identify notable weaknesses in video streaming that require further research for improved energy efficiency: (1) fixed bitrate ladders in HTTP live streaming; (2) inefficient hardware utilization of existing video players; (3) lack of comprehensive open energy measurement dataset covering various device types and coding parameters for reproducible research

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Efficient data structures for piecewise-smooth video processing

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 95-102).A number of useful image and video processing techniques, ranging from low level operations such as denoising and detail enhancement to higher level methods such as object manipulation and special effects, rely on piecewise-smooth functions computed from the input data. In this thesis, we present two computationally efficient data structures for representing piecewise-smooth visual information and demonstrate how they can dramatically simplify and accelerate a variety of video processing algorithms. We start by introducing the bilateral grid, an image representation that explicitly accounts for intensity edges. By interpreting brightness values as Euclidean coordinates, the bilateral grid enables simple expressions for edge-aware filters. Smooth functions defined on the bilateral grid are piecewise-smooth in image space. Within this framework, we derive efficient reinterpretations of a number of edge-aware filters commonly used in computational photography as operations on the bilateral grid, including the bilateral filter, edgeaware scattered data interpolation, and local histogram equalization. We also show how these techniques can be easily parallelized onto modern graphics hardware for real-time processing of high definition video. The second data structure we introduce is the video mesh, designed as a flexible central data structure for general-purpose video editing. It represents objects in a video sequence as 2.5D "paper cutouts" and allows interactive editing of moving objects and modeling of depth, which enables 3D effects and post-exposure camera control. In our representation, we assume that motion and depth are piecewise-smooth, and encode them sparsely as a set of points tracked over time. The video mesh is a triangulation over this point set and per-pixel information is obtained by interpolation. To handle occlusions and detailed object boundaries, we rely on the user to rotoscope the scene at a sparse set of frames using spline curves. We introduce an algorithm to robustly and automatically cut the mesh into local layers with proper occlusion topology, and propagate the splines to the remaining frames. Object boundaries are refined with per-pixel alpha mattes. At its core, the video mesh is a collection of texture-mapped triangles, which we can edit and render interactively using graphics hardware. We demonstrate the effectiveness of our representation with special effects such as 3D viewpoint changes, object insertion, depthof- field manipulation, and 2D to 3D video conversion.by Jiawen Chen.Ph.D

    End to end Multi-Objective Optimisation of H.264 and HEVC Codecs

    Get PDF
    All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features

    Enhancing a Neurosurgical Imaging System with a PC-based Video Processing Solution

    Get PDF
    This work presents a PC-based prototype video processing application developed to be used with a specific neurosurgical imaging device, the OPMI® PenteroTM operating microscope, in the Department of Neurosurgery of Helsinki University Central Hospital at Töölö, Helsinki. The motivation for implementing the software was the lack of some clinically important features in the imaging system provided by the microscope. The imaging system is used as an online diagnostic aid during surgery. The microscope has two internal video cameras; one for regular white light imaging and one for near-infrared fluorescence imaging, used for indocyanine green videoangiography. The footage of the microscope’s current imaging mode is accessed via the composite auxiliary output of the device. The microscope also has an external high resolution white light video camera, accessed via a composite output of a separate video hub. The PC was chosen as the video processing platform for its unparalleled combination of prototyping and high-throughput video processing capabilities. A thorough analysis of the platform and efficient video processing methods was conducted in the thesis and the results were used in the design of the imaging station. The features found feasible during the project were incorporated into a video processing application running on a GNU/Linux distribution Ubuntu. The clinical usefulness of the implemented features was ensured beforehand by consulting the neurosurgeons using the original system. The most significant shortcomings of the original imaging system were mended in this work. The key features of the developed application include: live streaming, simultaneous streaming and recording, and playing back of upto two video streams. The playback mode provides full media player controls, with a frame-by-frame precision rewinding, in an intuitive and responsive interface. A single view and a side-by-side comparison mode are provided for the streams. The former gives more detail, while the latter can be used, for example, for before-after and anatomic-angiographic comparisons.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore