133 research outputs found

    A Novel User Experience Cloud Computing Model for Examining Brand Image Through Virtual Reality

    Get PDF
    This research paper presents a novel Cloud Computing User Experience (CCUE) approach to reconstructing the brand image of traditional Shanghai cosmetic brands by leveraging virtual reality (VR) technology and user experience (UX) research. Traditional Shanghai cosmetic brands possess rich cultural heritage and unique product offerings, but often face challenges in maintaining relevance in the modern market. The proposed CCUE uses the VR technology to create immersive and interactive experiences that allow consumers to explore and engage with the brand in a virtual environment. The developed CCUE model integrates the Artificial Intelligence (AI) integrated Imperialist Competitive Algorithm (ICA) for the user-machine interaction. With the CCUE a combination of VR simulations, product showcases, and interactive storytelling, users can experience the essence and history of traditional Shanghai cosmetic brands, fostering a deep connection and emotional attachment. Additionally, UX research techniques are employed to gather user feedback and insights, enabling the refinement and optimization of the VR experience. The findings of this CCUE contribute to the field of brand reconstruction and provide practical insights for traditional brands seeking to revitalize their image in a rapidly evolving market

    An Integrated Framework for the Methodological Assurance of Security and Privacy in the Development and Operation of MultiCloud Applications

    Get PDF
    x, 169 p.This Thesis studies research questions about how to design multiCloud applications taking into account security and privacy requirements to protect the system from potential risks and about how to decide which security and privacy protections to include in the system. In addition, solutions are needed to overcome the difficulties in assuring security and privacy properties defined at design time still hold all along the system life-cycle, from development to operation.In this Thesis an innovative DevOps integrated methodology and framework are presented, which help to rationalise and systematise security and privacy analyses in multiCloud to enable an informed decision-process for risk-cost balanced selection of the protections of the system components and the protections to request from Cloud Service Providers used. The focus of the work is on the Development phase of the analysis and creation of multiCloud applications.The main contributions of this Thesis for multiCloud applications are four: i) The integrated DevOps methodology for security and privacy assurance; and its integrating parts: ii) a security and privacy requirements modelling language, iii) a continuous risk assessment methodology and its complementary risk-based optimisation of defences, and iv) a Security and Privacy Service Level AgreementComposition method.The integrated DevOps methodology and its integrating Development methods have been validated in the case study of a real multiCloud application in the eHealth domain. The validation confirmed the feasibility and benefits of the solution with regards to the rationalisation and systematisation of security and privacy assurance in multiCloud systems

    Multicloud Resource Allocation:Cooperation, Optimization and Sharing

    Get PDF
    Nowadays our daily life is not only powered by water, electricity, gas and telephony but by "cloud" as well. Big cloud vendors such as Amazon, Microsoft and Google have built large-scale centralized data centers to achieve economies of scale, on-demand resource provisioning, high resource availability and elasticity. However, those massive data centers also bring about many other problems, e.g., bandwidth bottlenecks, privacy, security, huge energy consumption, legal and physical vulnerabilities. One of the possible solutions for those problems is to employ multicloud architectures. In this thesis, our work provides research contributions to multicloud resource allocation from three perspectives of cooperation, optimization and data sharing. We address the following problems in the multicloud: how resource providers cooperate in a multicloud, how to reduce information leakage in a multicloud storage system and how to share the big data in a cost-effective way. More specifically, we make the following contributions: Cooperation in the decentralized cloud. We propose a decentralized cloud model in which a group of SDCs can cooperate with each other to improve performance. Moreover, we design a general strategy function for SDCs to evaluate the performance of cooperation based on different dimensions of resource sharing. Through extensive simulations using a realistic data center model, we show that the strategies based on reciprocity are more effective than other strategies, e.g., those using prediction based on historical data. Our results show that the reciprocity-based strategy can thrive in a heterogeneous environment with competing strategies. Multicloud optimization on information leakage. In this work, we firstly study an important information leakage problem caused by unplanned data distribution in multicloud storage services. Then, we present StoreSim, an information leakage aware storage system in multicloud. StoreSim aims to store syntactically similar data on the same cloud, thereby minimizing the user's information leakage across multiple clouds. We design an approximate algorithm to efficiently generate similarity-preserving signatures for data chunks based on MinHash and Bloom filter, and also design a function to compute the information leakage based on these signatures. Next, we present an effective storage plan generation algorithm based on clustering for distributing data chunks with minimal information leakage across multiple clouds. Finally, we evaluate our scheme using two real datasets from Wikipedia and GitHub. We show that our scheme can reduce the information leakage by up to 60% compared to unplanned placement. Furthermore, our analysis in terms of system attackability demonstrates that our scheme makes attacks on information much more complex. Smart data sharing. Moving large amounts of distributed data into the cloud or from one cloud to another can incur high costs in both time and bandwidth. The optimization on data sharing in the multicloud can be conducted from two different angles: inter-cloud scheduling and intra-cloud optimization. We first present CoShare, a P2P inspired decentralized cost effective sharing system for data replication to optimize network transfer among small data centers. Then we propose a data summarization method to reduce the total size of dataset, thereby reducing network transfer

    Financial evaluation of SLA-based VM scheduling strategies for cloud federations

    Get PDF
    In recent years, cloud federations have gained popularity. Small as well as big cloud service providers (CSPs) join federations to reduce their costs, and also cloud management software like OpenStack offers support for federations. In a federation, individual CSPs cooperate such that they can move load to partner clouds at high peaks and possibly offer a wider range of services to their customers. Research in this area addresses the organization of such federations and strategies that CSPs can apply to increase their profit. In this paper we present the latest extensions to the FederatedCloudSim framework that considerably improve the simulation and evaluation of cloud federations. These simulations include service-level agreements (SLAs), scheduling and brokering strategies on various levels, the use of real-world cloud workload traces and a fine-grained financial evaluation using the new CloudAccount module. We use FederatedCloudSim to compare scheduling and brokering strategies on the federation level. Among them are new strategies that conduct auctions or consult a reliance factor to select an appropriate federated partner for running outsourced virtual machines. Our results show that choosing the right strategy has a significant impact on SLA compliance and revenue

    Toward a fully cloudified mobile network infrastructure

    Get PDF
    Cloud computing enables the on-demand delivery of resources for a multitude of services and gives the opportunity for small agile companies to compete with large industries. In the telco world, cloud computing is currently mostly used by mobile network operators (MNO) for hosting non-critical support services and selling cloud services such as applications and data storage. MNOs are investigating the use of cloud computing to deliver key telecommunication services in the access and core networks. Without this, MNOs lose the opportunities of both combining this with over-the-top (OTT) and value-added services to their fundamental service offerings and leveraging cost-effective commodity hardware. Being able to leverage cloud computing technology effectively for the telco world is the focus of mobile cloud networking (MCN). This paper presents the key results of MCN integrated project that includes its architecture advancements, prototype implementation, and evaluation. Results show the efficiency and the simplicity that a MNO can deploy and manage the complete service lifecycle of fully cloudified, composed services that combine OTT/IT- and mobile-network-based services running on commodity hardware. The extensive performance evaluation of MCN using two key proof-of-concept scenarios that compose together many services to deliver novel converged elastic, on-demand mobile-based but innovative OTT services proves the feasibility of such fully virtualized deployments. Results show that it is beneficial to extend cloud computing to telco usage and run fully cloudified mobile-network-based systems with clear advantages and new service opportunities for MNOs and end-users

    Systemic Risk and Vulnerability Analysis of Multi-cloud Environments

    Full text link
    With the increasing use of multi-cloud environments, security professionals face challenges in configuration, management, and integration due to uneven security capabilities and features among providers. As a result, a fragmented approach toward security has been observed, leading to new attack vectors and potential vulnerabilities. Other research has focused on single-cloud platforms or specific applications of multi-cloud environments. Therefore, there is a need for a holistic security and vulnerability assessment and defense strategy that applies to multi-cloud platforms. We perform a risk and vulnerability analysis to identify attack vectors from software, hardware, and the network, as well as interoperability security issues in multi-cloud environments. Applying the STRIDE and DREAD threat modeling methods, we present an analysis of the ecosystem across six attack vectors: cloud architecture, APIs, authentication, automation, management differences, and cybersecurity legislation. We quantitatively determine and rank the threats in multi-cloud environments and suggest mitigation strategies.Comment: 27 pages, 9 figure

    Creation of a Cloud-Native Application: Building and operating applications that utilize the benefits of the cloud computing distribution approach

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementVMware is a world-renowned company in the field of cloud infrastructure and digital workspace technology which supports organizations in digital transformations. VMware accelerates digital transformation for evolving IT environments by empowering clients to adopt a software-defined strategy towards their business and information technology. Previously present in the private cloud segment, the company has recently focused on developing offers related to the public cloud. Comprehending how to devise cloud-compatible systems has become increasingly crucial in the present times. Cloud computing is rapidly evolving from a specialized technology favored by tech-savvy companies and startups to the cornerstone on which enterprise systems are constructed for future growth. To stay competitive in the current market, both big and small organizations are adopting cloud architectures and methodologies. As a member of the technical pre-sales team, the main goal of my internship was the design, development, and deployment of a cloud native application and therefore this will be the subject of my internship report. The application is intended to interface with an existing one and demonstrates in question the possible uses of VMware's virtualization infrastructure and automation offerings. Since its official release, the application has already been presented to various existing and prospective customers and at conferences. The purpose of this work is to provide a permanent record of my internship experience at VMware. Through this undertaking, I am able to retrospect on the professional facets of my internship experience and the competencies I gained during the journey. This work is a descriptive and theoretical reflection, methodologically oriented towards the development of a cloud-native application in the context of my internship in the system engineering team at VMware. The scientific content of the internship of the report focuses on the benefits - not limited to scalability and maintainability - to move from a monolithic architecture to microservices

    Rational Cybersecurity for Business

    Get PDF
    Use the guidance in this comprehensive field guide to gain the support of your top executives for aligning a rational cybersecurity plan with your business. You will learn how to improve working relationships with stakeholders in complex digital businesses, IT, and development environments. You will know how to prioritize your security program, and motivate and retain your team. Misalignment between security and your business can start at the top at the C-suite or happen at the line of business, IT, development, or user level. It has a corrosive effect on any security project it touches. But it does not have to be like this. Author Dan Blum presents valuable lessons learned from interviews with over 70 security and business leaders. You will discover how to successfully solve issues related to: risk management, operational security, privacy protection, hybrid cloud management, security culture and user awareness, and communication challenges. This open access book presents six priority areas to focus on to maximize the effectiveness of your cybersecurity program: risk management, control baseline, security culture, IT rationalization, access control, and cyber-resilience. Common challenges and good practices are provided for businesses of different types and sizes. And more than 50 specific keys to alignment are included. What You Will Learn Improve your security culture: clarify security-related roles, communicate effectively to businesspeople, and hire, motivate, or retain outstanding security staff by creating a sense of efficacy Develop a consistent accountability model, information risk taxonomy, and risk management framework Adopt a security and risk governance model consistent with your business structure or culture, manage policy, and optimize security budgeting within the larger business unit and CIO organization IT spend Tailor a control baseline to your organization’s maturity level, regulatory requirements, scale, circumstances, and critical assets Help CIOs, Chief Digital Officers, and other executives to develop an IT strategy for curating cloud solutions and reducing shadow IT, building up DevSecOps and Disciplined Agile, and more Balance access control and accountability approaches, leverage modern digital identity standards to improve digital relationships, and provide data governance and privacy-enhancing capabilities Plan for cyber-resilience: work with the SOC, IT, business groups, and external sources to coordinate incident response and to recover from outages and come back stronger Integrate your learnings from this book into a quick-hitting rational cybersecurity success plan Who This Book Is For Chief Information Security Officers (CISOs) and other heads of security, security directors and managers, security architects and project leads, and other team members providing security leadership to your busines
    • …
    corecore