370 research outputs found

    Real-time interactive video streaming over lossy networks: high performance low delay error resilient algorithms

    Get PDF
    According to Cisco's latest forecast, two-thirds of the world's mobile data traffic and 62 percent of the consumer Internet traffic will be video data by the end of 2016. However, the wireless networks and Internet are unreliable, where the video traffic may undergo packet loss and delay. Thus robust video streaming over unreliable networks, i.e., Internet, wireless networks, is of great importance in facing this challenge. Specifically, for the real-time interactive video streaming applications, such as video conference and video telephony, the allowed end-to-end delay is limited, which makes the robust video streaming an even more difficult task. In this thesis, we are going to investigate robust video streaming for real-time interactive applications, where the tolerated end-to-end delay is limited. Intra macroblock refreshment is an effective tool to stop error propagations in the prediction loop of video decoder, whereas redundant coding is a commonly used method to prevent error from happening for video transmission over lossy networks. In this thesis two schemes that jointly use intra macroblock refreshment and redundant coding are proposed. In these schemes, in addition to intra coding, we proposed to add two redundant coding methods to enhance the transmission robustness of the coded bitstreams. The selection of error resilient coding tools, i.e., intra coding and/or redundant coding, and the parameters for redundant coding are determined using the end-to-end rate-distortion optimization. Another category of methods to provide error resilient capacity is using forward error correction (FEC) codes. FEC is widely studied to protect streamed video over unreliable networks, with Reed-Solomon (RS) erasure codes as its commonly used implementation method. As a block-based error correcting code, on the one hand, enlarging the block size can enhance the performance of the RS codes; on the other hand, large block size leads to long delay which is not tolerable for real-time video applications. In this thesis two sub-GOP (Group of Pictures, formed by I-frame and all the following P/B-frames) based FEC schemes are proposed to improve the performance of Reed-Solomon codes for real-time interactive video applications. The first one, named DSGF (Dynamic sub-GOP FEC Coding), is designed for the ideal case, where no transmission network delay is taken into consideration. The second one, named RVS-LE (Real-time Video Streaming scheme exploiting the Late- and Early-arrival packets), is more practical, where the video transmission network delay is considered, and the late- and early-arrival packets are fully exploited. Of the two approaches, the sub-GOP, which contains more than one video frame, is dynamically tuned and used as the RS coding block to get the optimal performance. For the proposed DSGF approach, although the overall error resilient performance is higher than the conventional FEC schemes, that protect the streamed video frame by frame, its video quality fluctuates within the Sub-GOP. To mitigate this problem, in this thesis, another real-time video streaming scheme using randomized expanding Reed-Solomon code is proposed. In this scheme, the Reed-Solomon coding block includes not only the video packets of the current frame, but also all the video packets of previous frames in the current group of pictures (GOP). At the decoding side, the parity-check equations of the current frameare jointly solved with all the parity-check equations of the previous frames. Since video packets of the following frames are not encompassed in the RS coding block, no delay will be caused for waiting for the video or parity packets of the following frames both at encoding and decoding sides. The main contribution of this thesis is investigating the trade-off between the video transmission delay caused by FEC encoding/decoding dependency, the FEC error-resilient performance, and the computational complexity. By leveraging the methods proposed in this thesis, proper error-resilient tools and system parameters could be selected based on the video sequence characteristics, the application requirements, and the available channel bandwidth and computational resources. For example, for the applications that can tolerate relatively long delay, sub-GOP based approach is a suitable solution. For the applications where the end-to-end delay is stringent and the computational resource is sufficient (e.g. CPU is fast), it could be a wise choice to use the randomized expanding Reed-Solomon code

    Random Linear Network Coding for Wireless Layered Video Broadcast: General Design Methods for Adaptive Feedback-free Transmission

    Full text link
    This paper studies the problem of broadcasting layered video streams over heterogeneous single-hop wireless networks using feedback-free random linear network coding (RLNC). We combine RLNC with unequal error protection (UEP) and our main purpose is twofold. First, to systematically investigate the benefits of UEP+RLNC layered approach in servicing users with different reception capabilities. Second, to study the effect of not using feedback, by comparing feedback-free schemes with idealistic full-feedback schemes. To these ends, we study `expected percentage of decoded frames' as a key content-independent performance metric and propose a general framework for calculation of this metric, which can highlight the effect of key system, video and channel parameters. We study the effect of number of layers and propose a scheme that selects the optimum number of layers adaptively to achieve the highest performance. Assessing the proposed schemes with real H.264 test streams, the trade-offs among the users' performances are discussed and the gain of adaptive selection of number of layers to improve the trade-offs is shown. Furthermore, it is observed that the performance gap between the proposed feedback-free scheme and the idealistic scheme is very small and the adaptive selection of number of video layers further closes the gap.Comment: 15 pages, 12 figures, 3 tables, Under 2nd round of review, IEEE Transactions on Communication

    Adaptive Prioritized Random Linear Coding and Scheduling for Layered Data Delivery From Multiple Servers

    Get PDF
    In this paper, we deal with the problem of jointly determining the optimal coding strategy and the scheduling decisions when receivers obtain layered data from multiple servers. The layered data is encoded by means of prioritized random linear coding (PRLC) in order to be resilient to channel loss while respecting the unequal levels of importance in the data, and data blocks are transmitted simultaneously in order to reduce decoding delays and improve the delivery performance. We formulate the optimal coding and scheduling decisions problem in our novel framework with the help of Markov decision processes (MDP), which are effective tools for modeling adapting streaming systems. Reinforcement learning approaches are then proposed to derive reduced computational complexity solutions to the adaptive coding and scheduling problems. The novel reinforcement learning approaches and the MDP solution are examined in an illustrative example for scalable video transmission . Our methods offer large performance gains over competing methods that deliver the data blocks sequentially. The experimental evaluation also shows that our novel algorithms offer continuous playback and guarantee small quality variations which is not the case for baseline solutions. Finally, our work highlights the advantages of reinforcement learning algorithms to forecast the temporal evolution of data demands and to decide the optimal coding and scheduling decisions

    Application layer systematic network coding for sliced H.264/AVC video streaming

    Get PDF
    Application Layer Forward Error Correction (AL-FEC) with rateless codes can be applied to protect the video data over lossy channels. Expanding Window Random Linear Codes (EW RLCs) are a flexible unequal error protection fountain coding scheme which can provide prioritized data transmission. In this paper, we propose a system that exploits systematic EW RLC for H.264/Advanced Video Coding (AVC) slice-partitioned data. The system prioritizes slices based on their PSNR contribution to reconstruction as well as temporal significance. Simulation results demonstrate usefulness of using relative slice priority with systematic codes for multimedia broadcast applications

    Codage réseau pour des applications multimédias avancées

    Get PDF
    Network coding is a paradigm that allows an efficient use of the capacity of communication networks. It maximizes the throughput in a multi-hop multicast communication and reduces the delay. In this thesis, we focus our attention to the integration of the network coding framework to multimedia applications, and in particular to advanced systems that provide enhanced video services to the users. Our contributions concern several instances of advanced multimedia communications: an efficient framework for transmission of a live stream making joint use of network coding and multiple description coding; a novel transmission strategy for lossy wireless networks that guarantees a trade-off between loss resilience and short delay based on a rate-distortion optimized scheduling of the video frames, that we also extended to the case of interactive multi-view streaming; a distributed social caching system that, using network coding in conjunction with the knowledge of the users' preferences in terms of views, is able to select a replication scheme such that to provide a high video quality by accessing only other members of the social group without incurring the access cost associated with a connection to a central server and without exchanging large tables of metadata to keep track of the replicated parts; and, finally, a study on using blind source separation techniques to reduce the overhead incurred by network coding schemes based on error-detecting techniques such as parity coding and message digest generation. All our contributions are aimed at using network coding to enhance the quality of video transmission in terms of distortion and delay perceivedLe codage réseau est un paradigme qui permet une utilisation efficace du réseau. Il maximise le débit dans un réseau multi-saut en multicast et réduit le retard. Dans cette thèse, nous concentrons notre attention sur l’intégration du codage réseau aux applications multimédias, et en particulier aux systèmes avancès qui fournissent un service vidéo amélioré pour les utilisateurs. Nos contributions concernent plusieurs scénarios : un cadre de fonctions efficace pour la transmission de flux en directe qui utilise à la fois le codage réseau et le codage par description multiple, une nouvelle stratégie de transmission pour les réseaux sans fil avec perte qui garantit un compromis entre la résilience vis-à-vis des perte et la reduction du retard sur la base d’une optimisation débit-distorsion de l'ordonnancement des images vidéo, que nous avons également étendu au cas du streaming multi-vue interactive, un système replication sociale distribuée qui, en utilisant le réseau codage en relation et la connaissance des préférences des utilisateurs en termes de vue, est en mesure de sélectionner un schéma de réplication capable de fournir une vidéo de haute qualité en accédant seulement aux autres membres du groupe social, sans encourir le coût d’accès associé à une connexion à un serveur central et sans échanger des larges tables de métadonnées pour tenir trace des éléments répliqués, et, finalement, une étude sur l’utilisation de techniques de séparation aveugle de source -pour réduire l’overhead encouru par les schémas de codage réseau- basé sur des techniques de détection d’erreur telles que le codage de parité et la génération de message digest

    Implementation of WiMAX physical layer baseband processing blocks in FPGA

    Get PDF
    This project thesis elaborates on designing a baseband processing blocks for Worldwide Interoperability for Microwave Access (WiMAX) physical layer using an FPGA. WiMAX provides broadband wireless access and uses OFDM as the essential modulation technique. The channel performance is badly affected due to synchronization mismatches between the transmitter and receiver ends so the transmitted signal received is not reliable as the OFDM deals with high data rate. This thesis includes the theory and concepts behind OFDM, WiMAX IEEE 802.16d standard and other blocks algorithms, its architectures used for designing as well as a presentation of how they are implemented. Here Altera’s FPGA has been used for targeting to the EP4SGX70HF35C2 device of the Stratix IV family. WiMAX use sophisticated digital signal processing techniques, which typically require a large number of mathematical computations. Here Stratix IV devices are ideally suited for these kinds of complex tasks because the DSP blocks have a combination of dedicated elements that perform multiplication, addition, subtraction, accumulation, summation, and dynamic shift operations. The WiMAX physical layer baseband processing architecture consists of various major modules which were simulated block wise in order to check its giving the correct output as required. The coding style used here is VHDL. The sub-blocks have been synthesized using Altera Quartus II v11. 0 and simulated using ModelSim Altera Edition 6.6d

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components
    corecore