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Abstract

In this paper, we deal with the problem of jointly determining the optimal coding strategy and

the scheduling decisions when receivers obtain layered data from multiple servers. The layered data is

encoded by means of Prioritized Random Linear Coding (PRLC) in order to be resilient to channel

loss while respecting the unequal levels of importance in the data, and data blocks are transmitted

simultaneously in order to reduce decoding delays and improve the delivery performance. We formulate

the optimal coding and scheduling decisions problem in our novel framework with the help of Markov

Decision Processes (MDP), which are effective tools for modeling adapting streaming systems. Rein-

forcement learning approaches are then proposed to derive reduced computational complexity solutions

to the adaptive coding and scheduling problems. The novel reinforcement learning approaches and the

MDP solution are examined in an illustrative example for scalable video transmission. Our methods

offer large performance gains over competing methods that deliver the data blocks sequentially. The

experimental evaluation also shows that our novel algorithms offer continuous playback and guarantee

small quality variations which is not the case for baseline solutions. Finally, our work highlights the

advantages of reinforcement learning algorithms to forecast the temporal evolution of data demands and

to decide the optimal coding and scheduling decisions.
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Index Terms

Prioritized Random Linear Codes, rateless codes, layered data, MDP, Q-learning, virtual experience.

I. INTRODUCTION

The emergence of new multimedia devices such as laptops or smartphones has motivated the research on

efficient data delivery mechanisms that are able to adapt to dynamic network conditions and heterogeneous

devices’ capabilities. The quality of experience of the different receivers depends on their display size,

processing power, network bandwidth, etc. In order to accommodate for such a diversity, the data is

progressively encoded in several quality layers. This permits to offer a basic quality to receivers with

limited capabilities, while other devices can have higher quality of experience. Further, the layered

encoding of the data helps data delivery systems to cope with the strict delivery deadlines as data quality

can be adapted to meet decoding deadlines when network resources get scarce.

Methods such as Fountain codes (Random Linear Coding [1], Raptor codes [2], LT codes [3]) have

been proposed recently for efficient data delivery in error-prone networks. Usually, Fountain codes are

applied at servers, and the receivers obtain the requested data from possibly multiple servers. The use of

such codes leads to significant performance gains [4], [5] compared to classical channel codes because

channel protection does not have to be determined beforehand. If the set of clients is very heterogeneous,

the source data can be encoded in a scalable way for adaptive delivery. This can be achieved with the

use of embedded (prioritized) codes such as Expanding Fountain (EWF) Codes [6], Prioritized Random

Linear Codes (PRLC) [7] and Prioritized Random Linear Network Codes (PRLNC) [8]. These schemes

encode the layered data progressively and form classes of packets with unequal importance. However,

in order to optimize the decoding quality an optimized coding algorithm along with a proper scheduling

mechanism and inter-server coordination are needed for efficient resources allocation.

In this paper, we examine data transmission from multiple servers, which improves the resilience of the

communication process [4]. When a receiver is connected to multiple servers, the receiver could reliably

receive the data from the other servers even if one of the servers fails. Our communication scenario can

be seen as a special case of data delivery in peer-to-peer systems [9], [10]. Here, we focus on the multi-

server time-constrained transmission of layered data encoded with PRLC. PRLC is employed to respect

the unequal importance of the data layers. We consider a novel framework where the data is encoded

in groups of elements (i.e., generations) that have the same decoding deadline, which are transmitted
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concurrently to the receiver in order to improve performance and decrease the decoding delay. Our

framework is different from common rateless and network coding based systems [11]–[15], where data

is sequentially transmitted. In this context, we devise a receiver driven protocol in order to communicate

information about the link statistics and the buffers states of the different servers and decide on the data

requests. Then, we investigate a new problem of deciding the optimal coding and scheduling policies for

layered data transmission such that the quality at the receivers is maximized, while the decoding deadlines

are respected. We first propose a data-aware optimization framework based on Markov Decision Processes

(MDPs) [16] in order to characterize the performance of our adaptive streaming system. While MDPs

offer an elegant way to describe our novel framework, they require high computational complexity and

perfect knowledge of the environment in order to describe the state transition probabilities and reward

matrices. In order to cope with these limitations, we propose a variant of the Q-learning approach [17]

that is inspired from the “virtual experience” concept introduced in [18]. We start with the observation

that channel dynamics are independent from the states and actions, which in our formulation represent the

buffer content of the receiver and the senders and the requested packets, respectively. Then, we exploit the

knowledge acquired by observing a state-action pair by extending it to multiple statistically equivalent

state-action pairs. This new algorithm trades off convergence rate of the optimization algorithm with

computational complexity. Like Q-learning, our solution does not require precomputing and storing the

transition probabilities and reward matrices. It however converges faster than Q-learning, with a higher

computational complexity. We present simulation results for an illustrative scalable video transmission

example. These results show the advantages of the proposed method compared to myopic methods for

coding and scheduling and to the original Q-learning, in terms of video quality and quality fluctuations.

Moreover, our scheme offers small quality variations as it efficiently considers the data importance in

the coding and scheduling decisions. This is an important advantage in real-time video communication

systems. Further, the proposed Q-learning variant improves the data quality with only minimal additional

computational cost compared to Q-learning. Overall, the proposed solution permits easy adaptation to

changing network conditions, as the optimal coding and scheduling decisions can be continuously updated

based on the actual network dynamics.

In summary, the main contributions in this paper are the following:

• we propose the first foresighted decision making scheme in RLC and network coding literature that

simultaneously considers data from multiple generations and multiple senders.

• we formulate the optimal coding and scheduling decision problem for layered data and multiple
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generations with the help of MDPs.

• we propose a Q-learning variant that converges faster than the original Q-learning algorithm to the

optimal coding and scheduling policies.

The paper is organized as follows. In Section II, we provide a brief discussion of Fountain and network

coding communication systems that target the delay-constrained delivery of data. Next, we present in

Section III the basic principles of the Prioritized Random Linear Coding and describe our receiver-driven

communication protocol. In Section IV, we formulate our joint PRLC coding and scheduling optimization

problem with the help of Markov Decision Processes. Then, we describe our reduced complexity solution

that is based on Q-learning in Section V. In Section VI, we analyze our framework for an illustrative

video application with multiple servers and a single receiver and evaluate its performance for transmission

of layered video data. Finally, conclusions are drawn in Section VII.

II. RELATED WORK

In this section, we briefly overview and position our work with respect to other systems that employ

Fountain codes and RLC for delivery of time-constrained data from single and multiple sources.

Streaming of scalable video from multiple servers has been investigated in [4], where data from

each Group of Pictures (GOP) and layer is independently protected by means of Raptor codes. A rate

allocation algorithm determines the optimal number of Raptor packets to be sent from each GOP and

layer. Similar concepts have been presented in [5] for transmission of scalable video in mobile ad hoc

networks (MANETS). Video on Demand delivery in wireless mesh networks has been studied in [19]

where the video streams are protected with Reed Solomon codes prior to transmission. Then, the streams

are transmitted over multiple disjoint paths that are discovered by two heuristics algorithms. The optimal

rate per path is decided by a data unaware optimization algorithm. The problem of time-constrained data

streaming from a single server has been more extensively studied in the literature. Although the extension

from a single server to multiple servers is not trivial, the investigation of single server systems sheds

light on the properties that efficient multi-source streaming schemes should have.

A variety of Application Layer Forward Error Correction (AL-FEC) schemes appropriate for transmis-

sion of scalable video over broadcast erasure channels have been recently presented in [4], [5], [11]–[13],

[20]. In [11], the sliding window concept has been introduced and it has been later combined in [12] with

Unequal Error Protection (UEP) Raptor codes for providing enhanced error robustness. This scheme has

been further improved in [13], where data replication is used prior to the application of Fountain codes.
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This results in stronger protection for the most important layers. The expanding window approach has

been proposed in [20] for video multicast as an alternative to the sliding window method.

Unfortunately, digital Fountain codes such as Raptor codes and LT codes may perform poorly in terms

of delay [21], [22]. To this aim, systematic Random Linear Codes (RLC) with feedback have been studied

in [21] for minimizing the average delay in database replication systems. The feedback messages contain

information about the packets that have been delivered to the receivers. These messages are used to

optimize the coding decisions such that the decoding delay is small. The decoding delay distribution has

been investigated in [22] for RLC systems. Markov chains are utilized in order to find the optimal coding

solution for the case of two receivers. However, this problem is computationally intractable for three

or more receivers and hence only a heuristic solution is presented. The delay benefits of a RLC based

scheme have been examined in [23], where repair packets are generated on-the-fly through RLC according

to feedback messages that are periodically received by the servers. This scheme copes efficiently with

the packet erasures and is appropriate for real-time sources such as video. From the above studies, the

advantages of RLC over Fountain codes in terms of delay become clear.

Although the employment of RLC may result in large delay gains, scheduling of RLC encoded data

is a NP-hard problem [21]. Since it is hard to find the optimal coding and scheduling solution, a number

of practical solutions in wireless networks that exploit the feedback messages that are available to each

network node are proposed in [14], [15], [24]. In [24], the size of the coding generations is adapted

by considering hard deadlines imposed by the target applications. It is shown that the generation size

should become smaller as the delivery deadline approaches. The joint coding and scheduling problem

is studied in [15] for video transmission in wireless networks, where coding operations are performed

in binary fields. The problem is modeled as MDP and is solved by a dynamic programming algorithm.

The employed XOR-based coding permits instantaneous decoding but with some performance penalty

compared to schemes that work in larger finite fields. The approaches in [15], [24] provide some interesting

directions towards the development of adaptive data delivery mechanisms. However, their applications are

rather limited as the work in [15] is appropriate only for small generations and the work in [24] is data

oblivious. Both works are myopic and process sequentially the generations which generally penalizes

the performance compared to foresighted strategies. Finally, the work in [25] proposes an interesting

framework with concurrent generation delivery. Two major problems are associated with this approach:

(a) the decoding computational cost and (b) the coding overhead [26] (a header with the coding coefficients

that should be communicated along with the payload of the packets). The decoding computational cost

and the overhead increase with the number of generations involved in the encoding operations. This
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prohibits the use of the approach in [25] in real-time applications. The system that we propose in this

paper does not have such limitations.

Our work departs from the common choice of sequential processing of generations and considers

simultaneously coding and scheduling of data from multiple generations. It aims to find the optimal PRLC

coding and scheduling decisions so that the data quality is maximized and the playback of streaming data

is smooth at receivers. To the best of our knowledge, this strategy has not been investigated for PRLC. Our

system is inspired by the recent advances in cross layer optimization for wireless communication systems

[18], [27]. In [27], the joint scheduling and rate allocation problem of wireless video from multiple servers

is modeled as Multi-User MDP (MUMDP) and then is effectively solved with online reinforcement

learning methods [28] where multiple states are simultaneously updated using stochastic sub-gradient

methods [29]. The work in [18] makes joint physical layer and system level power management decisions

for delay sensitive applications. It uses the concepts of the “postdecision state” [30] in order to decompose

the problem in two learning problems: one that factors the known dynamics and another that has the

unknown dynamics. Further, it proposes the concept of “virtual experience” in order to accelerate the

learning process.

III. PRIORITIZED DELIVERY OF PRLC ENCODED DATA

A. Network model

We consider a framework where receivers request layered data from multiple servers. The time is slotted

and receivers send their data requests to all their parents simultaneously. The servers then encode the

data in order to meet the requests of receivers, and deliver coded packets of uniform size to the receivers.

The link connecting a server i with the receiver j is denoted by the tuple (i, j) and is characterized by

three parameters: the transmission rate fij expressed in packets per second, the packet loss probability

ǫij and the transmission delay ηij . We assume that fij and ǫij do not change very frequently, at least

not faster than the optimization decisions. This is a valid assumption in slow fading wireless channels

[31]. Similar assumptions have been made by other reinforcement based schemes proposed for wireless

channels [32], [33]. It is also valid in wired channels, as such channels do not change frequently [31]

(chapter 2). In general, our scheme can deal with channels that vary fast as long as accurate channel

statistics are available to the receiver. When channel conditions change fast, the convergence is slower,

because the optimal policies also change. However, the employment of PRLC coding makes our system

more resilient to channel variations as shown in [8], [34].
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Due to nodes’ limited upload and download capabilities, all the servers are not necessarily available

for every receiver. Hence, the set of servers for the receiver j is represented by

Pj = {i : (i, j) ∈ E},

where E is the set of links, which are in general non-homogeneous in terms of their loss rates. Here,

without loss of generality we assume that the set of servers Pj does not change with the time. Our

algorithm can deal with changing Pj , however at the cost of slower convergence. The link parameters, as

well as the amount of data available at servers, are periodically sent to receivers. Finally, the transmission

delays on each link are non-homogeneous and modeled as i.i.d. random variables. Thus, the channels

do not interfere with each other and no congestion problems occur. To deal with congestion, we could

adopt methods similar to [33], [35].

B. Layered data

Since servers and receivers are heterogeneous devices with diverse capabilities, the data is progressively

encoded in L quality layers, i.e., a base layer and several enhancement layers. Such an encoding enables

receivers with limited capabilities to receive the base layer, while receivers with more resources decode

the data in higher quality. The data from the base layer is the most important, followed by the data of

the successive enhancement layers that offer incrementally finer levels of quality. A receiver can decode

data from an enhancement layer only when it has decoded all the lower layers.

The data is further segmented in generations G0, G1, . . . , Gk , which are groups of time-constrained data

(e.g., images in video case). We consider that the data of the lth layer of a generation is packetized into

αl packets. Therefore, the first k layers consist of βk =
k
∑

l=1

αl packets. The distortion reduction associated

with the decoding of the data layer l of a generation Gm is denoted as δl,m, while the cumulative distortion

reduction after decoding the first l layers is ∆l,m =
l
∑

i=1
δl,m.

Each generation has in total βL packets and is associated with a decoding delay deadline. The deadline

of the nth generation is written as

Dn = D0 + nDG, (1)

where DG is the duration of the rendering of the information contained in a generation. We focus on the

case where DG is identical for all generations. The parameter D0 in (1) represents the playback delay

and depends on the application’s requirements.
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C. Prioritized Random Linear Coding

We consider that the servers encode the data with PRLC codes [7] in order to respect the unequal levels

of importance in the data layers. The encoding of the data permits to deal with losses in the network;

at the same time, it avoids the need for precise coordination among the multiple servers transmitting

data to the same receiver. All the PRLC operations are performed in a finite field Fq of size q. We

restrict the coding operations to packets that belong to the same generation. Then, for a generation of

βL packets, an overhead of length βL symbols is appended to each packet that belongs to that particular

generation, in order to convey the coding coefficients to the receiver. Although some bandwidth is spent

for transmitting the coding overhead, the use of PRLC has several appealing features. Specifically, PRLC

codes simplify scheduling decisions, improve the robustness of the communication and perform close to

Maximum Distance Separable (MDS) codes. The coding overhead is not a real limitation in our system

as there are techniques to drastically reduce its size [36], [37].

Similarly to the Prioritized Randomized Network Coding method presented in [8], [34] we consider

that a packet of class l is a random linear combination of data from the first l video layers. Finally, the

type of each packet is described by a tuple (Gm, l), where Gm and l stand for the generation m and

the class l, respectively. Upon the arrival of the PRLC packets at the receiver, the packets are sorted

according to their generation Gm. These packets are examined in terms of their innovation (i.e., whether

they bring innovative information with respect to the information that is already available at the receiver).

If they are innovative, they are stored in the decoding matrix Wm, otherwise they are dropped. Each

row of the decoding matrix Wm corresponds to an innovative packet from generation Gm. This row

contains the coding coefficients contained in the header of the received packet. Although the packets do

not necessarily arrive in order, we assume that the rows of the Wm matrix are sorted in an ascending

class order. Therefore, packets from the first class are placed on the top of the matrix, followed by packets

from the second class, etc. The matrix Wm is divided into L submatrices Flm, where Flm is a nlm×βL

matrix and nlm denotes the number of received packets of class l from generation Gm. Recall that βl is

the number of packets from the first l layers of a generation. This is illustrated in Fig. 1.

Within the matrix Wm one can form submatrices Rlm that are the unions of the first l submatrices

F1m, . . . ,Flm. For these submatrices, it holds that 0 ≤ rlm ≤ βl, where rlm = rank(Rlm), as the

number of innovative packets from class l in generation Gm cannot exceed the cumulative number of

source packets from the first l layers. When rlm = βl, a receiver can successfully decode the first l layers

of the generation Gm by means of Gaussian elimination, for example.
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Fig. 1. Decoding matrix Wm of generation Gm constructed at the receivers. It consists of submatrices Fim that contain

the innovative data from the ith video layer of the generation Gm. Matrices Rlm are the unions of the first l submatrices

F1m, . . . ,Flm, whose number of rows nim denotes the number of innovative packets from the layer i of the generation Gm.

Decoding of only the first l layers of the generation Gm is possible when
l∑

i=1

nim = βl and
i∑

j=1

njm ≤ βi,∀i > l.

The rank vector rm = (r1m, . . . , rLm) for the submatrices Rlm of the generation Gm, completely

defines the buffer state of the receiver. For notational convenience we define hereafter the buffer state of

a receiver i as Bi = {rm}, i.e., Bi is the collection of the rm vectors (one per generation Gm) in the

buffer of the ith receiver. A similar buffer state variable is used to describe the data available at servers.

D. Receiver-driven delivery optimization

In our receiver-driven system multiple servers simultaneously transmit data from different generations

to the receiver. When the receiver estimates that it cannot receive all the data of a particular generation

at a given rate by its decoding deadline, it either decides to request lower data rate, hence lower data

quality or to skip the particular generation and proceed with the next one. With their decisions, the

receivers naturally attempt to obtain high data quality with small quality fluctuations. This happens as

the transmission of packets from future generations leads to an increased probability of decoding these

generations before their playback delay. Thus, the probability that a receiver has data that cannot be

decoded is minimized. Essentially, our scheme works similarly to prefetching algorithms.

The receiver periodically computes the optimal coding and scheduling strategies taking into account

the local statistics, i.e., the channel loss rate ǫij and the capacity fij of each link connecting the receiver

to the available servers.1 It also considers information about the available data at each server (i.e., the

buffer maps Bi[n] of the server i at time t = tn). This information becomes available to the receivers

with the form of messages Ii = (Bi[n], ǫij , fij , ηij) that are transmitted from the servers i ∈ Pj to the

1In wireless channels, this information can be obtained by measuring the channel statistics in real-time.
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Fig. 2. Data delivery system under consideration. Multiple servers that have layered data simultaneously transmit packets to

a single receiver (node j). Each link (i, j) is characterized by the transmission rate fij , the loss rate ǫij and the transmission

delay ηij . The receiver j computes the request allocation vectors vi based on the Ij = (Bj [n], ǫji, fji, ηji).

receiver j. The size of these messages depends on the number of considered generations and the number

of layers. Hence, when the channel parameters (ǫij, fij , ηij) can be represented with one byte, the coding

operations are in F256 and in each decision interval decisions are made for two generations and two layers

(with less than 256 packets), the length of the messages Ii is equal to seven bytes. These messages are

transmitted once per decision interval.2

The receiver j takes into account these messages Ii to calculate a request allocation vector vj =

[vij , ∀i ∈ Pj ], which is sent to all the servers. The request allocation vector for the ith server is written

as vij = [vij11, . . . , v
ij
1L, . . . , v

ij
l1 , . . . , v

ij
lL, . . . , v

ij
m1, . . . , v

ij
mL], where vijlk denotes the number of packets

of class k in generation Gl that receiver j requests from server i. The request allocation vector vj is

computed at the receiver in order to maximize the cumulative expected distortion reduction in the nth

time slot for all the generations that have not expired. The overall data delivery system is illustrated in

Fig. 2.

IV. MDP FORMULATION

In this section, we propose a Markov Decision Process (MDP) formulation to find the request allocation

vector vj at receiver j that maximizes the cumulative expected distortion reduction given the messages Ii

that are received from the servers i ∈ Pj . The receiver, also called agent in our formulation, periodically

determines the optimal request allocation policy π∗ every T time slots. Hence, the first decision is made

2The messages Ii can be transmitted over the same channel or over a separate, more reliable, channel.
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at t = t0, while the nth decision is at tn = t0+nT . We consider that all receivers then act independently

in our system. In the rest of the paper, we drop the index j of the receiver and hence P = Pj , v = vj ,

ǫij = ǫi, fij = fi, ηij = ηi for easy notation. The actions, states and the rewards of the proposed MDP

framework are now presented in detail for one receiver.

A. States

The state of the receiver at time tn is completely characterized by its own buffer map B[n] and the

buffer maps of the servers (Bk[n], ∀k ∈ P ). Therefore, the state of the receiver is defined as

S[n] = {Bk[n] (∀k ∈ P ), B[n], tn} (2)

For infinite length data, the states space is enormous. It becomes smaller when the states space is

quantized by considering that time is discrete and that not all the generations are active (i.e., decoding

deadlines expire during the transmission).

In order to find which generations should be included in the states definition, at time instant t the

generations are relabeled based on their expiration time (urgency). The relabeling is done as Gm
t
−→

G∗
m−µ(tn)

, where µ(tn) is the index of the generation with the closest decoding deadline at time tn,

µ(tn) = argmin
m: tn<Dm

Dm (3)

Therefore, the remaining time τ(n) until the deadline of the most urgent generation Gµ(tn) is denoted

as τ(n) = Dµ(tn) − tn. Clearly, τ(n) satisfies 1 ≤ τ(n) ≤ DG, with DG the duration of a generation.

Hence, the state definition of (2) can be re-written as follows:

S[n] = {Bk[n] (∀k ∈ P ), B[n], τ [n]} , (4)

We now analyze briefly the size of the states space S . We note that for any generation Gm, the number

of valid vectors (states) is finite, constant and dependent on the source data, i.e., the number of packets

per layer, αl. Therefore, the overall number of states |S| is given by

|S| =

β1
∑

v1=0

β2−u1
∑

u2=0

· · ·

βL−1−
∑L−2

k=1 uk
∑

uL−1=0

(

βL −
L−1
∑

k=1

uk

)

. (5)

From (5), we conclude that the states space increases exponentially with the number of packets per

layer. The number of generations that might be available in the buffer of the receiver at time tn is
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determined by the capacity of its incoming links and the decoding deadlines of the generations. We note

that we only consider information from the generations that have not expired nor been decoded in the

states definition.

B. Actions

An action Ak is defined as the request allocation vector (vk) transmitted from the receiver to the server

k. This vector determines, for the server k, the class and the generation of the PRLC encoded packets

to be sent. Then, an action A consists of actions Ak, ∀k ∈ P and is written as

A = [Ak, ∀k ∈ P ] (6)

The length of the request vector vk that corresponds to the action Ak is equal to the overall number

of layers L · Nm, where Nm stands for the number of generations that have not expired and L the

number of layers per generation.3 It is assumed that these vectors arrive at the servers before the next

decision interval. Based on vk, each server k generates packets by PLRC coding and transmits them to

the receiver. The lth packet in the vector is scheduled for transmission at t = tn + (l − 1)f−1
k , where

f−1
k is the time interval between the transmission of two consecutive packets on the link from the server

k to the receiver.

We now study briefly the size of the action space A. Now, if Ak is the action space of the server k, it

holds A = ×k∈PAk. Given a state S[n], and that the receiver might request packets that belong to Mk

different classes from the server k, hence, the size of the action space |A| for a given state S[n] is

|A| =
∏

k∈P

(

Nk +Mk − 1

Nk

)

(7)

where Nk is the number of requested packets from server k.

3We assume that all the generations have the same number of layers
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C. State transition Probability

The transition probability from an arbitrary state-action pair to another arbitrary state is written as

Pr
(

S[n+ 1]
∣

∣ S[n], A[n]
)

= Pr
(

Bk[n+ 1] (∀k ∈ P ), B[n+ 1], τ [n + 1]
∣

∣ Bk[n] (∀k ∈ P ), B[n], τ [n], A[n]
)

= Pr

(

Bk[n+ 1] (∀k ∈ P ), B[n+ 1]

∣

∣

∣

∣

Bk[n] (∀k ∈ P ), B[n], τ [n], A[n]

)

= Pr
(

B[n+ 1]
∣

∣ I[n]
)

× Pr
(

Bk[n+ 1] (∀k ∈ P )
∣

∣ I[n], B[n+ 1]
)

(8)

where I[n] = {Bk[n] (∀k ∈ P ), B[n], τ [n], A[n]} is the complete local information set at tn. For the

sake of simplicity, we have not included the channel parameters fk, ǫk, ηk in (8). The first conditional

probability in (8) represents the belief of the receiver for the buffer state while the second is the belief of

the receiver for the buffer states of the parents. Specifically, Pr(B[n+ 1] | I[n]) denotes the probability

for the receiver to be in the buffer state B[n + 1] at the next decision time. Since the action A[n] is

given, the types of the requested packets and their transmission order is known. Using the remaining time

information extracted from τ [n], along with the channel capacity fk,∀k ∈ P , the packet loss probabilities

(ǫk,∀k ∈ P ) and the delay distributions (ηk,∀k ∈ P ) in the incoming links, the probability that exactly

zml packets arrive in time (before their corresponding deadlines) for any packet type (Gm, l) ∈ A[n] can

be calculated. Then, for a given zml value, the problem reduces to a slightly more complex version of

the coupon collector problem, as we have different classes of packets. The transition probabilities are

calculated using the propositions presented in the Appendix A in [38] in which take into consideration

the maximum number of innovative packets per packet type (Gm, l) and the size of the finite field Fq.

Regarding the second term in (8), we assume that it is equal to one as the content of the servers is known

to the receiver. This is due to the fact that the servers and the receivers know when the data from each

generation becomes available to the servers.

D. Rewards

Since the successful decoding of a layer is associated with a reduction in the distortion of the decoded

data, the expected reward J(·) at time slot n is expressed as the resulting cumulative distortion reduction

for all active generations after the completion of all actions decided at time tn−1. The reward J(S[n], A[n])

is a non-negative function of the current state-action pair.

Let G[n] = {Gm : tn < Dm ≤ tn+1} be the set of generations that have deadlines in (tn,tn+1]. If G[n]

is non-empty, τ [n] is smaller than T and then the distortion reduction might be positive. When G[n] 6= ∅,
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the expected distortion reduction is ∆ℓ,m =
∑ℓ

k=1 δk,m (with ∆0,m = 0), when no layers have been

decoded for the generation Gm in the previous decision interval. Then, the reward function becomes

J(S[n], A[n]) =
∑

Gm∈G[n]

L
∑

ℓ=0

Pℓ,m(S[n], A[n])∆ℓ,m, (9)

where Pℓ,m(S[n], A[n]) denotes the probability that the receiver recovers only the first ℓ layers of the

generation Gm, that is, rℓm = βℓ and rlm < βl,∀l > ℓ, given S[n] and A[n]. This probability can be

calculated by considering the subspaces formed by the received packets from different classes. Let us

denote by Vℓ,m the subspace spanned by the source packets from the first ℓ layers of the generation Gm.

Furthermore, let Bi
ℓ,m[n] denote the subspace spanned by the innovative packets from the class ℓ of the

generation Gm that are transmitted by the node i to the receiver.4 To compute Pℓ,m(S[n], A[n]), we need

to consider the events in which the received packets span Vℓ,m, but cannot span Vr,m, ∀r > ℓ. Thus,

Pℓ,m(S[n], A[n]) = Pr





⋃

i∈P ′

ℓ
⋃

k=1

Bi
k,m[n] = Vℓ,m,

⋃

i∈P ′

r
⋃

k=ℓ+1

Bi
k,m[n] ⊂ Vr,m, r ∈ { ℓ+ 1, ..., L}



 (10)

where P
′

is the set comprised of the receiver and its parental servers.

In order to calculate the probability Pℓ,m(S[n], A[n]), we need to consider the probability that the PRLC

coded packets received from the servers are innovative. Non innovative packets (i.e., packets that can be

expressed as linear combinations of the existing in the buffer packets) can be received as PRLC selects

the coding coefficients uniformly at random. These packets can be discarded as only innovative packets

bring benefits to the receiver. Based on those considerations, the probability Pℓ,m can be computed by

considering the set of packets that are available to the servers and the receiver (we need to know how

many packets we require to decode a layer) and the probability to receive as many packets are required

for rendering decodable the packets that belong to class ℓ of generation m. Details are provided in the

Appendix A in [38] and in particular in Proposition 3.

In order to avoid myopic behaviors and greedy decisions, the MDP framework considers future rewards

in the optimization of the rate allocation vector. Hence, we consider the expected rewards for future

4This is a slight abuse of the notation Bi
k,m[n] which originally denotes the subspace spanned by the innovative packets from

the class ℓ of the generation Gm that are stored at server i.
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generations as

Jk(S[n], A[n]) =
∑

Gm∈G[n′ ]

L
∑

ℓ=0

Pℓ,m(S[n], A[n])∆ℓ,m, (11)

with n
′

= n+ k and k > 0.

The rewards in (11) are discounted by a factor γ ∈ [0, 1] which is known as “discount rate” and

controls the contribution of the future rewards (delayed rewards). Hence, the reward of actions A[n] for

generations Gn+k is weighted by γk. If γ = 0, the decisions are myopic. In contrast, if γ = 1 the agent

becomes farsighted and is interested only in future rewards. This is further discussed in the next section.

E. Optimization Problem

With the above MDP framework, we can now define the problem that is solved for the optimal rate

vector selection. We want to maximize the total expected discounted reward (value function), which is

the discounted sum of the received rewards starting from state S[0] and following a decision policy π

that defines the action A[n] at state S[n], i.e., A[n] = π(S[n]). Formally, the value function is given by

V π(S[n]) =

∞
∑

k=0

γkJk(S[n], π) (12)

The objective of our optimization problem is to maximize the expected distortion reduction:

max
π

V π(S[n]) (13)

subject to the following conditions

1) vijl > 0, if for server i, we have rijl > 0 (rijl is the rank of the packets from the jth generation and

lth layer at server i)

2) vijl = 0, if rjl = βl

3) G[n] = {Gm : tn < Dm ≤ tn+1}

The first condition means that the receiver requests packets that belong to a given class only if the

server has packets of this class or if it can generate them by PRLC encoding. The second condition

implies that, once a receiver decodes the layer l, it will not request packets from the first l layers as it

has already βl innovative packets from these layers. Hence, any further received packet from classes l
′

≤ l

cannot bring innovative information. Finally, the last condition determines the set of active generations.

The above MDP can be solved by the value iteration method [39], which is a form of dynamic

programming algorithm. This method updates the values of V (·) function according to the Bellman
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equation

Vk+1(S[n]) = max
A[n]







∑

S[n+1]

(

Pr
(

S[n+ 1]
∣

∣ S[n], A[n]
)

Jk+1(S[n], A[n]) + γVk(S[n+ 1])
)







, (14)

where Vk(·) is the value function at the kth iteration and Jk+1(S[n], A[n]) is given in (9) and the

transition probability Pr(S[n + 1]
∣

∣S[n], A[n]) is computed as in Section IV-C. This process is repeated

until
∣

∣Vk+1(S[n])− VkS[n]
∣

∣, ∀S[n] ∈ S is smaller than a threshold value. If the algorithm terminates at

the k iteration, the derived policy π is given by

π(S[n]) = argmax
A[n]







∑

S[n+1]

(

Pr
(

S[n+ 1]
∣

∣ S[n], A[n]
)

Jk+1(S[n], A[n]) + γVk(S[n+ 1])
)







∀S[n] ∈ S.

(15)

More details can be found in Section 4.4 of [28].

V. Q-LEARNING SOLUTION

MDP offers an interesting framework to formalize the scheduling and coding decision processes in

multi-source streaming, but it unfortunately requires real time computation of the transition probabilities

and rewards functions as shown in (14). It also necessitates significant storage space, which can be as

large as |S| × |A| × |S| for the transition probability function. The cost of computing and storing these

functions becomes very large as the states space increases exponentially with the number of packets

per data layer. In order to avoid the computation of these functions beforehand, we propose alternative

solutions to (13) based on model-free reinforcement learning approaches [28] and more specifically on the

Q-learning method [17], which is a TD (Temporal Difference) control algorithm. These methods could

further learn the model in an environment and then update it online in another. Although optimality is not

guaranteed with the Q-learning method, the resulting solutions are close to the optimal ones as long as

the method runs for a sufficiently large number of iterations. We describe below the Q-learning method,

and more specifically the virtual experience algorithm that is used in our solution.

A. Q-Learning Algorithm

Similarly to the value iteration algorithm, the Q-learning aims to find the optimal policy π⋆ that

maximizes the expected reward given in (11). It achieves that with no need to precompute the transition

probabilities and rewards functions and hence can be applied online. Specifically, the Q-learning algorithm

[17] computes a Q(S[n], A[n]) function for deciding the π⋆. This is a function of both the states and
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the actions and has size equal to |S| × |A|. Q-learning learns the optimal actions to be taken based on

experience tuples of the form (S[n], A[n], J(S[n], A[n]), S[n + 1]).

In more details the Q-learning algorithm works as follows. Initially, all the entries of the Q function

are set to zero. At the nth decision interval (when the algorithm is applied online, the decision interval

may coincide with the time tn of the delivery process), the next state S[n + 1] is determined by the

current state S[n] and an action A[n] that is selected with probability

eQ(S[n],A[n])/Θ(n)

∑

A[n+1]∈A

eQ(S[n],A[n+1])/Θ(n)
, (16)

where Θ(n) is the temperature value at the nth decision interval. For a given action A[n], one can then

find the next state S[n+ 1] and calculate the J(S[n], A[n]). The Q-learning algorithm then updates the

function value Q(S[n], A[n]) as follows

Q(S[n], A[n])← (1− λn)Q(S[n], A[n]) + λn(J(S[n], A[n]) + γ max
A[n+1]

Q(S[n+ 1], A[n + 1])), (17)

where λn is the learning rate at time tn that is given by

λn =
1

1 +Nv(S[n], A[n])
,

where Nv(S[n], A[n]) is the number of visits of (S[n], A[n]) action-state pair up to the nth iteration

(time tn). For time t1, the parameter λ1 is set to one.

The above procedure is repeated N times. The value of N depends on the considered application. At

time tn, the policy π (A[n] = π(S[n])) can be found as

π(S[n]) = max
A[n]

Q(S[n], A[n]), ∀S[n] ∈ S (18)

As N goes to infinity, the learned Q(S[n], A[n]) function approximates the optimal Q⋆(S[n], A[n])

and the derived policy is identical to the optimal policy π⋆. This is true when the transition probability is

stationary, when all the state-action pairs are visited infinitely often and when λn satisfies the stochastic

approximation conditions, i.e.,
∑∞

n=0 λn = ∞ and
∑∞

n=0 λ
2
n < ∞ [18]. The accuracy of the approx-

imation depends on λn and Θ(n) that will be discussed later and the number of Q-learning iterations

(episodes) N . In practice, the optimal Q⋆(S[n], A[n]) can generally be found for N ≪∞.

A critical parameter for the convergence of the Q-learning algorithm is the temperature value Θ(n)

used in (16). In the beginning, the temperature value Θ(n) is typically set to a high value in order

to permit consistent exploration of the states-actions space. This is called the exploration phase, as all
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the pairs (S[n], A[n]) have almost equal probability of being selected due to the high value of Θ(n).

With time, the temperature value decreases and the knowledge acquired during the exploration phase is

exploited, i.e., the values of the Q(·) function are not equal and the probabilities given by (16) become

different. The temperature generally decreases following the model in [40], i.e.,

Θ(n) = Θmin + ϕ · (Θ(n− 1)−Θmin), (19)

where n is the index of the decision interval (the index of the current episode), Θ(0) = Θmax is the

initial value of the temperature, Θmin is the minimum temperature and ϕ is a parameter that controls the

exploration/exploitation rate. The value of ϕ is found by experimentation and takes values in the range

(0, 1].

B. Q-Learning with Virtual Experience

Although Q-learning eliminates the need to precompute the transition probabilities and rewards matrices

that is required by the value iteration algorithm (14), it is characterized by a slow convergence rate, which

may limit its application in practical settings. Hence, in order to improve the convergence rate, we propose

to use in our problem a variant of the Q-learning algorithm that is hereafter referred to as “Q-learning

VE”, where VE stands for virtual experience. Our method is inspired by [18] where the concept of virtual

experience has been first proposed for improved convergence of the PDS-learning algorithm (a variant

of Q-learning).

Differently from the Q-learning algorithm, where, in each decision interval, a single state-action

pair Q(S[n], A[n]) is updated, the “Q-learning VE” simultaneously updates multiple state-action pairs

Q(S[n], A[n]) that are statistically equivalent (virtual states-actions). In particular pair (S̄[n], Ā[n]) is

statistically equivalent to (S[n], A[n]) if the transition probability Pr(S[n + 1]
∣

∣S[n], A[n]) = Pr(S̄[n +

1]
∣

∣S̄[n], Ā[n]) and the reward J(S̄[n], Ā[n]) can be determined from J(S[n], A[n]).

In our specific problem, when an action A[n] is selected, a request allocation vector v is sent to the

receivers. Since the links connecting the servers with the receiver are lossy, the vector of packets v̄ that

arrive at the receiver may be different from the request allocation vector v that is determined by the

action A[n]. The probability the receiver to observe a vector v̄ while the request allocation vector was v

is equal to
m
∏

i=1

L
∏

j=1

∏

l∈Gn

(

vilj

v̄ilj

)

(ǫi)
vi
lj−v̄i

lj (1− ǫi)
v̄i
lj , (20)

where L is the number of data layers per generation, m is the number of receivers, Gn is the set of active
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Algorithm 1 Q-learning VE algorithm

1: Initialize: Q = 0, Nv = 0, Θ(0) = Θmax, n = 1, and U
2: Observe S[n]
3: repeat

4: Nv(S[n], A[n]) = Nv(S[n], A[n]) + 1
5: λn = 1

1+Nv(S[n],A[n])

6: Θ(n) = Θmin + ϕ · (Θ(n − 1)−Θmin)

7: Select action A[n] with probability eQ(S[n],A[n])/Θ(n)
∑

A[n+1]∈A

eQ(S[n],A[n+1])/Θ(n)

8: Sample the noise function (20)

9: Find the next state S[n+ 1] considering S[n], the action A[n] (step 7) and the noise (step 8)

10: Calculate the discounted reward J(S[n], A[n]) as in (11)

11: Q(S[n], A[n])← (1− λn)Q(S[n], A[n]) + λn(J(S[n], A[n]) + γ max
A[n+1]

Q(S[n + 1], A[n + 1]))

12: if mod (n,U) = 0 then

13: for S̄[n] ∈ S do

14: for Ā[n] ∈ A do

15: if Pr(S[n+ 1]
∣

∣S[n], A[n]) = Pr(S̄[n+ 1]
∣

∣S̄[n], Ā[n]), J(S[n], A[n]) = J(S̄[n], Ā[n]) and

S̄[n+ 1] = S[n+ 1] then

16: Nv(S̄[n], Ā[n]) = Nv(S̄[n], Ā[n]) + 1
17: λn = 1

1+Nv(S̄[n],Ā[n])

18: Q(S̄[n], Ā[n])← (1−λn)Q(S̄[n], Ā[n])+λn(J(S̄[n], Ā[n])+γ max
A[n+1]

Q(S[n+1], A[n+

1]))
19: end if

20: end for

21: end for

22: end if

23: S[n]← S[n+ 1]
24: n = n+ 1
25: until n ≤ N
26: π(S[n]) = maxA[n]Q(S[n], A[n]), ∀S[n] ∈ S

generations at time tn and ǫi is loss probability on the link connecting the ith sender with the receiver.

Therefore, given an action A[n], i.e. a request allocation vector v, and (20), we can find the next state

S[n+ 1] and calculate J(S[n], A[n]) as in (11).

The convergence is improved with the Q-learning VE, but we should mention that it comes with

increased computational complexity as we perform multiple updates of the (17) for all equivalent states-

actions pairs. The frequency of the updates U (every U iterations the algorithm updates all statistically

equivalent virtual states-actions), hence constitutes a tradeoff between convergence speed and compu-

tational complexity. In each decision interval, we update all the Q(S̄[n], Ā[n]) that result in the same

reward J(S[n], A[n]), i.e., the same expected distortion reduction, and lead to the same next state S[n+1]
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instead of updating only a single state-action pair Q(S[n], A[n]) as is done by the Q-learning algorithm.

Moreover, we assume that all the request allocation vectors v (that are determined by the A[n]) are

affected by the same error pattern. This is due to the fact that the channel conditions are independent

from the current state S[n] and the action A[n], i.e., the probability of packet loss depends only on the

channel and not to the packet class and generation. We should note that in our system the link capacity

is always fully exploited and the receivers never send packet replicas. This becomes possible as PRLC

belong to the rateless codes family.

The proposed Q-learning-VE algorithm is finally summarized in Algorithm 1.

C. Complexity of the Q-learning methods

In Table I, we report the action selection and the learning update complexity for the Q-learning and Q-

learning VE algorithms. In Q-learning only one state-action pair (S[n], A[n]) is updated in each decision

interval n; both the action selection and learning update complexities are equal to O(|A|) [18]. As

expected, the Q-learning VE method has higher complexity than Q-learning as all the equivalent virtual

state-action pairs are simultaneously updated in each decision interval. Hence, the action selection of

the Q-learning VE is O(|S
′

| × |A
′

|) and the update learning complexity is also O(|S
′

| × |A
′

|), where

|S
′

| < |S| and |A
′

| < |A|. However, we should note that the multiple state-action pairs can be updated in

parallel. In such case, the complexity of the Q-learning VE becomes identical to the one of Q-learning.

TABLE I

COMPLEXITY COMPARISON OF THE Q-LEARNING METHODS PER DECISION INTERVAL. IT IS |S
′

| < |S| AND |A
′

| < |A|.

Action selection complexity Learning update complexity

Q-learning O(|A|) O(|A|)

Q-learning VE O(|S
′

| × |A|) O(|S
′

| × |A|)

VI. SIMULATION RESULTS

In this section, the proposed MDP and Q-learning solutions are examined for transmission of layered

data from one or multiple servers. First, we describe the settings of a transmission scenario with one server.

Then, we evaluate the performance of the optimized policies in terms of quality in video transmission

from one server and eventually two servers.
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A. Data delivery from one server: setup

We first consider a scenario where the receiver obtains layered data from the server 1 at a rate equal to 1

packet/time slot. The nth generation of the layered data stream is available at the server at t = DGn = 5n

and the playback delay D0 is 10 time slots. Therefore, the decoding deadlines for the nth generation is

Dn = 10 + 5n. The receiver makes decisions at t = t0 = 5 and then every T = 5 time slots such that

τ [n] = 5 for all the states S[n].

In this simple scenario, the state of the server’s buffer B1[n] is deterministic for all the time slots

since the data generations are only available progressively at the server. As a result, we can remove

τ [n] and B1[n] from the states definition in (4). In order to further simplify the analysis, we remove the

packet transmission delays and set η1 = 0. Since the decisions are made at (t1, t2, . . . ) and since these

time instants coincide with the decoding deadlines (D0,D1, . . . ), at time tn there is only the decoding

matrix Wn (recall that this matrix contains the innovative packets from generation n) in the buffer of

the receiver, which should be played out immediately. The matrices that correspond to Wn−l, l < n

have been removed as their corresponding deadlines Dn−1,Dn−2, . . . have already passed, while the

Wn+1,Wn+2, . . . are empty as at time t + n the layered data for generations n + l, l > n is not

available at servers. Hence, the states definition contains only the current generation, i.e., G[n] = {Gn}

and the receiver might only gain a reward (observe a distortion reduction) by decoding Gn at time tn.

The actions are defined as A[n] = A1[n], as the layered data is transmitted from only one server in the

present case. Since tn < Dn in every decision time, there are exactly two generations from which packets

can be requested, namely Gn and Gn+1 in order to allow foresighted behavior. These packets become

available at the server at tn−1 and tn, respectively. The considered generations depend on the channel

capacity and the decoding deadlines. When the channel capacity is larger and the decoding deadlines are

more distant, the actions can also involve packets from generations Gn+l, l > 1, which results in larger

actions space.

In the above settings we further have,

Pr
(

S[n+ 1]
∣

∣ S[n], A[n]
)

= Pr
(

B[n+ 1]
∣

∣ B[n], A[n]
)

(21)

The transition probability from a state S[n] to S[n+1] given an action A[n] (the request allocation vector

that is sent from the receiver to the server) can be computed as discussed in Section IV-C, where the

states are described by the buffer maps B[n] and B[n+1] of the receiver at the decision intervals n and

n+ 1.
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B. Transmission of scalable video data from one server

In this section, we evaluate the policies of the MDP algorithm presented in Section IV-E which we call

it hereafter “Model-MDP” (this scheme considers the actual loss rates for deciding the optimal scheduling

policies) and the Q-Learning algorithms shown in Section V in an illustrative scenario for transmission

of scalable video data. The video data is encoded in two data layers, namely a base and one enhancement

layer. The parameters of the source data are reported in Table II. All the generations have constant size,

i.e., DG = 5.

TABLE II

PARAMETERS OF A GENERATION WITH TWO DATA LAYERS. THE PARAMETERS αi , βi , δi STAND FOR THE NUMBER OF

PACKETS IN THE iTH LAYER, THE CUMULATIVE NUMBER OF PACKETS IN THE FIRST i LAYERS AND THE DISTORTION

REDUCTION AFTER THE SUCCESSFUL DECODING OF THE iTH LAYER, RESPECTIVELY.

αi βi δi
Base Layer 3 3 11

Enhancement Layer 2 5 9

Using the settings presented in Section VI-A, the states are described by only the receiver buffer, i.e.,

S[n] = rn. By evaluating the valid rate allocation vectors in (5), we see that rn can take 18 different

values in this simple scenario, which are reported in Table III.

TABLE III

STATES SPACE. A STATE IS DESCRIBED BY A TWO-TUPLE WHICH HAS AS ENTRIES THE NUMBER OF PACKET PER LAYER

(WITH INCREASING ORDER) OF THE MOST URGENT GENERATION.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5) (1,0) (1,1) (1,2)

(1,3) (1,4) (2,0) (2,1) (2,2) (2,3) (3,0) (3,1) (3,2)

For the above setting, the actions involve packets from generations Gn and Gn+1 and hence there are

M1 = 4 possible packet types. Each action involves the transmission of N1 = fT = 1× 5 = 5 packets,

as the channel does not experience delay and the decisions are made every 5 time slots. Under these

assumptions, it is trivially shown by evaluating (7) that the action space size is
(

5+4−1
5

)

= 56. A few

possible actions in this scenario are presented in Table IV.

The first row of Table IV corresponds to an action (and a request allocation vector) where the receiver

demands from the server to send three packets from the first class of generation Gn and two packets

from the second class of the same generation, while no packets that belong to the generation Gn+1 are

requested from the server.

Before proceeding with the evaluation, we should note that here the policies for the proposed schemes

are determined offline. Then, the derived policies are evaluated in the simulations for various error patterns.
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TABLE IV

SAMPLES OF ACTIONS A[n] (REQUEST VECTORS AT tn). (Gn, l) PACKET TYPE CORRESPONDS TO PACKETS OF CLASS l AND

GENERATION Gn . EACH ROW CONTAINS THE NUMBER OF PACKETS PER CLASS AND FOR GENERATIONS Gn AND Gn+1 .

(Gn, 1) (Gn, 2) (Gn+1, 1) (Gn+1, 2)

3 2 0 0

0 0 5 0

0 2 2 1

2 1 1 1

0 10 20 30 40 50 60 70 80 90 100

13

14

15

16

17

18

19

Generation index

∆̄

 

 

Myopic

Foresighted

Fig. 3. Average distortion reduction evaluation of the model-MDP algorithm optimized for γ = 0.0 (myopic) and γ = 0.9
(foresighted) with respect to the generation index. The scalable video is encoded in two quality layers and the video parameters

are listed in Table II. The link connecting the server with the receiver experiences 5% loss rate.

We follow the value iteration method [39] in order to solve the proposed model-MDP. The threshold value

is set to 10−9. When this threshold value is reached, the output of the value-iteration algorithm is the

policy used in the simulations. This policy is considered as the optimal and is used as a benchmark.

Similarly, the Q-learning algorithm outputs the tested policy when the maximum number of iterations N

is reached. In all the experiments, the parameters Θ(0) and Θmin of the Q-learning algorithms are set to

75 and 0.5, respectively. All the presented results are averaged over 100 simulations. Each simulation has

duration of 100 sec, namely 100 generations. For the sake of fairness, in all schemes under comparison,

the transmitted packets in each link experience the same loss patterns.

1) Foresighted versus Myopic policies: We consider that the scalable video is encoded in two quality

layers. The video parameters are reported in Table II. The link connecting the server with the receiver

has 5% loss rate. We examine the influence of the discount factor γ for the Model-MDP scheme to the

quality (i.e., the achieved average distortion reduction ∆). Specifically, the value iteration algorithm is

executed for γ = 0.9 and γ = 0.0, which correspond to foresighted and myopic policies, respectively.

The average cumulative distortion reduction with respect to the generations index is depicted in Fig. 3.
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We observe that the foresighted policies offer large performance gains (average gain of approximately 1.5

dB) compared to the myopic policies. Further, we can see that the foresighted policies offer small quality

fluctuations compared to the myopic ones which is important for streaming systems. Hence, the joint

consideration of multiple generations in the scheduling and coding decisions is certainly advantageous.

Therefore, in the following we focus only on foresighted policies.

2) Influence of the number of Q-learning algorithms iterations to the quality: We evaluate the perfor-

mance of Q-learning and Q-learning VE algorithms in terms of the average expected distortion reduction

∆ for various numbers of iterations N . The ϕ values are found by experimentation for each N .5 We

assume that the frequency of the updates U of the virtual states-actions is 10 (every 10 decision intervals,

we apply the batch update, i.e., we perform the steps 12-20 of Algorithm 1, for all equivalent states-

actions pairs). The results are presented in Fig. 4. For the sake of completeness, we depict the average

value of the distortion reduction achieved by the Model-MDP for γ = 0.0 and γ = 0.9. From Fig. 4,

we can observe that Q-learning VE requires a relative small number of iterations in order to reach the

performance of Model-MDP with γ = 0.9 (foresighted). Specifically, for N = 50000, the performance

difference between Q-learning VE and the Model-MDP with γ = 0.9 is only 0.06 dB. We can also see

that the Q-learning algorithm requires more than 200000 iterations to converge to the performance of

the foresighted Model-MDP. Further, we can observe that even with 10000 iterations the performance

gains of the Q-learning VE over Myopic policies (Model-MDP with γ = 0.0) are noticeable and exceed

1 dB. Moreover, Q-learning VE outperforms Q-learning by approximately 0.5 dB. For 30000 iterations,

Q-learning VE performs very close to the Model-MDP with γ = 0.9, which shows that close to optimal

performance can be achieved with a relatively small number of iterations. We should emphasize that

Q-learning VE algorithm achieves significantly better performance than Q-learning for the same number

of iterations with slightly higher computational complexity, as the batch update of all equivalent virtual

states-actions is performed every 10 iterations.

3) Influence of the update rate U of the Q-learning VE algorithm to the quality: We examine the

influence of the frequency of the updates U of the Q-learning VE algorithm on the average expected

distortion reduction. The ϕ is set to 0.99986. The results are illustrated in Fig. 5. We consider 50000

iterations and then we change the frequency U from 1 (i.e., in every decision interval, we apply the batch

update of all the virtual states-actions) up to 100 (i.e., every 100 decision intervals, we perform a batch

update of all virtual states-actions). We also depict the performance of the Model-MDP and the original

5The same ϕ values are considered for both Q-learning algorithms. These are not presented for brevity reasons.
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Fig. 4. Average cumulative distortion reduction achieved by the Q-learning and Q-learning VE algorithms, optimized for

γ = 0.9, with respect to the number of iterations. The distortion values of Model-MDP algorithm for γ = 0.0 (myopic) and

γ = 0.9 (foresighted) are also depicted. Transmission of a video encoded in two quality layers from a single server to a receiver

with the parameters in Table II is considered.
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Fig. 5. Average cumulative distortion reduction achieved by the Q-learning VE algorithm, optimized for γ = 0.9 and N = 50000
iterations, with respect to the frequency of the updates of the virtual actions-states. The distortion values of Model-MDP algorithm

for γ = 0.9 and the Q-learning algorithm are also depicted. Transmission of a video encoded in two quality layers from a single

server to a receive with the parameters in Table II is considered.

Q-learning algorithm with γ = 0.9. We see that, when the update rate U is 1, the performance difference

is less than 0.06 dB, which is slightly better than the performance achieved when U equals to 10 and N

is 200000 (Fig. 4). As expected, when the updates are less frequent (larger U ), the performance drops.

However, it is worth to mention that Q-learning VE outperforms significantly the Q-learning even with

an update rate of 100. Such an update rate brings only a minimal additional computational cost compared

to the Q-learning. This is particularly valuable for scenarios involving receivers with low computational

capabilities.
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TABLE V

PARAMETERS OF A GENERATION OF A SCALABLE VIDEO ENCODED IN THREE LAYERS. THE PARAMETERS αi , βi , δi STAND

FOR THE NUMBER OF PACKETS IN THE iTH LAYER, THE CUMULATIVE NUMBER OF PACKETS IN THE FIRST i LAYERS AND

THE DISTORTION REDUCTION AFTER THE SUCCESSFUL DECODING OF THE iTH LAYER, RESPECTIVELY.

αi βi δi
Base Layer 3 3 11

Enhancement Layer 1 2 5 9

Enhancement Layer 2 2 7 12
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(a) DG = 5 time slots
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(b) DG = 7 time slots

Fig. 6. Average cumulative distortion reduction ∆ comparison of model-MDP, Q-learning, Q-learning VE and RandSched

policies optimized for γ = 0.9 and 5% loss rate. The scalable video is encoded in three quality layers and the video parameters

are listed in Table V. (a) decision interval is DG = 5 time slots and (b) the decision interval is DG = 7 time slots. When

DG = 5, ∆ for the video sequence are 18.56, 18.53, 18.54, and 10.01 dB for the model-MDP, Q-learning VE, Q-learning and

RandSched algorithms, respectively. When DG = 7, the ∆ values become 30.28, 30.18, 29.95, and 18.81 dB.

4) Transmission of three layer video: We further consider the transmission of videos encoded in three

quality layers. The parameters of the video are presented in Table V. Similarly to the case with two data

layers, the decision interval is set to 5 time slots, which is sufficient for transmitting 5 packets. The nth

generation of the layered data stream becomes available at the server at t = DGn = 5n and the playback

delay D0 is 10 decision intervals. The decoding deadlines for the nth generation is Dn = 10+5n. In the

nth decision interval, the generations Gn and Gn+1 are considered as urgent. The model-MDP, the Q-

learning and the Q-learning VE algorithms are optimized for γ = 0.9 and 5% loss rate. For the Q-learning

VE an update rate U of 10 is chosen. We set the (N , ϕ) tuple to (2·106,0.999995) and (2·105,0.99996) for

the Q-learning and Q-learning VE schemes, respectively. These solutions are compared to a scheme called

“RandSched” that implements random scheduling of PRLC packets from the most urgent generations.

Specifically, in each decision interval tn, this scheme randomly selects packets for transmission from the

generations Gn and Gn+1. The results are given in Fig. 6(a). We remark that the Q-learning VE is able
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to achieve the same performance as the Model-MDP with 10 times less iterations than those required

by the Q-learning algorithm. Both schemes are not able to decode the third layer. We can also observe

that the RandSched scheme performs very poorly. Despite the limited bandwidth, packets that belong to

third class are transmitted with RandSched, which reduces the bandwidth available for the second layer,

hence its decoding probability. Interestingly, we can further observe in Fig. 6(a) that model-MDP and

Q-learning methods behave similarly, although their policies are not necessarily the same. This is due to

the fact that the requested packets result in similar distortion reduction.

Finally, we evaluate the same schemes when a larger bandwidth is available. Specifically, we assume

that the duration of each time slot is shorter, namely 1/7 sec, hence the bandwidth is 7 packets/sec.

The decision interval is set to 7 time slots, which is sufficient for transmitting 7 packets. The decoding

deadlines for the nth generation is Dn = 10+7n. Again, two generations are marked as urgent. We set the

(N , ϕ) tuple to (13·106,0.9999986) and (4·105,0.999983) for the Q-learning and Q-learning VE schemes,

respectively. The results are illustrated in Fig. 6(b). We can see that the model-MDP and Q-Learning

algorithms are able to take advantage of the additional bandwidth and improve significantly the video

quality. We can further observe that both model-MDP and Q-learning VE outperform Q-learning. This

performance difference is due to the fact that the states space grows from 18 to 88 and the actions space

from 56 to 792. Specifically, as the states and actions space becomes larger, the probability that Q-learning

stops in a local minimum increases. Identical performance of model-MDP and Q-Leaning is still possible

by properly selecting the ϕ and N values. From Fig. 6(b), we can also see that RandSched algorithm

is not competitive with the model-MDP and Q-Learning schemes and their performance difference in

distortion is approximately 11 dB in this illustrative example.

C. Video Transmission from Multiple Servers

We finally evaluate our model-MDP and Q-Learning algorithms for an illustrative scenario of multi-

server scalable video transmission. We consider a scenario with two servers with bandwidths f1 = 0.6

packets/slot (3 packets/sec) and f2 = 0.4 packets/slot (2 packets/sec) and that both links have a 5%

loss rate. Essentially, the examined scenario and the scenario presented in Section VI-A are identical

from the receiver’s point of view as the overall capacity is one packet/sec and loss rate in both cases

is 5%. First, we examine the performance of Q-learning and Q-learning VE algorithms in terms of the

average expected distortion ∆ for various numbers of iterations N . The discount factor is set to 0.9.

The frequency of the updates of the virtual states-actions U is set to 10. The ϕ value are found by

experimentation for each N . We also present the performance of the foresighted and myopic schemes,
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Fig. 7. Average cumulative distortion reduction achieved by the Q-learning and Q-learning VE algorithms, optimized for

γ = 0.9, with respect to the number of iterations. The distortion values of Model-MDP algorithm for γ = 0.0 (Myopic) and

γ = 0.9 (Foresighted) are also depicted. Transmission of a video encoded in two quality layers from two servers to a single

receiver with the video parameters listed in Table II is considered.

i.e., Model-MDP for γ = 0.0 and γ = 0.9, respectively. The results are presented in Fig. 7. We see that

Q-learning VE performs significantly better than the Q-learning algorithm in terms of average expected

distortion. Similarly to Fig. 4, we observe that for 10000 iterations Q-learning VE outperforms Model-

MDP with γ = 0.0 by almost 1 dB. For 30000 iterations, the performance difference between Q-learning

VE and Model-MDP with γ = 0.9 is less than 0.2 dB. For 50000 iterations, the performance gap in

terms of distortion between the Q-learning VE and the Model-MDP is small and for 100000 iterations

it becomes negligible. Further, we can see that Q-learning can not reach the performance (in terms of

∆) achieved by the Q-learning VE even with 250000 iterations, and the performance difference is close

to 0.3 dB. We have observed that by increasing N to 650000 for the Q-learning scheme, it is possible

to approach the performance that Q-learning VE achieves with three times less iterations. More details

can be found in [38]. By observing Figs. 4 and 7, we can conclude that the increased number of servers

affects mainly the performance of the Q-learning algorithm, while the performance of the Q-learning VE

stays almost invariant. This is due to the larger states-actions space (the action space increases from 56

to 200, while the action space remains the same with 18 states) that slow down the convergence of the

Q-learning algorithm. Q-learning VE does not suffer from that as the batch updates help to exploit the

knowledge acquired by visiting an action-state pair to multiple.

We finally consider a scenario with three servers. We set the bandwidths values to f1 = 0.4 packets/slot

(2 packets/sec), f2 = 0.4 packets/slot (2 packets/sec) and f3 = 0.2 packets/slot (1 packet/sec). All the

links experience a loss rate of 5%. This scenario is identical to the one presented in Section VI-A from the

receiver’s point of view. We set the update rate of the virtual state-action pairs U to 10 and the discount
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Fig. 8. Average cumulative distortion reduction achieved by the Q-learning and Q-learning VE algorithms, optimized for

γ = 0.9, with respect to the number of iterations. The distortion values of Model-MDP algorithm for γ = 0.0 (Myopic) and

γ = 0.9 (Foresighted) are also depicted. Transmission of a video encoded in two quality layers from three servers to a single

receiver with the video parameters listed in Table II is considered.

factor to 0.9. Like in the comparison illustrated in Fig. 7, the ϕ values are found by experimentation

for each N . The results are shown in Fig. 8. The schemes under comparison are the Q-learning and

Q-learning VE. We also depict the performance of the Model-MDP for γ = 0.0 and γ = 0.9. From

the results, we observe a similar performance to the case of two servers (Fig. 7), i.e., Q-learning VE

outperforms significantly Q-learning. This is attributed to the multiple state-action pair updates of the Q-

learning VE. The convergence of the Q-learning is slower than in the case of two servers. This is expected

as the action space doubles. Despite the increase of the action space, the Q-learning VE method however

needs less than 50000 iterations to approach 18.50 dB (in terms of cumulative distortion reduction).

VII. CONCLUSIONS

We have investigated the problem of jointly selecting the optimal coding strategy and scheduling

decisions when receivers can obtain delay constrained layered data encoded with Prioritized Random

Linear Codes from multiple servers. Markov Decision Processes are used for formulating the optimization

problem. Then, we propose a Q-learning variant called Q-learning VE that exploits the fact that multiple

states-actions are statistically equivalent. This permits to find effective coding and scheduling solutions

with less iterations compared to the traditional Q-learning method with only slightly higher computational

complexity. In illustrative video transmission examples, first we show the benefits of the foresighted over

the myopic decisions. The results confirm the advantages of considering multiple generations concurrently

in the scheduling. Then, we see that the Q-learning VE algorithm outperforms significantly the Q-learning

method in terms of expected distortion reduction for the same number of iterations. We note that for
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the Q-learning VE algorithm a relative small number of iterations are needed for taking most of the

performance gains. Further, we observe that the Q-learning algorithm converges fast to that of the MDP

in terms of distortion reduction. Interestingly, with the proposed methods continuous playback and small

quality variations are favored. This work is a step towards using PRLC methods for real-time video

streaming. Our future research will investigate further simplification of the Q-learning approaches and

eventually end up with the definition of simple decision rules that approximate the performance of the

Q-learning VE algorithm.
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