1,242 research outputs found

    Interventional radiology virtual simulator for liver biopsy

    Get PDF
    Purpose Training in Interventional Radiology currently uses the apprenticeship model, where clinical and technical skills of invasive procedures are learnt during practice in patients. This apprenticeship training method is increasingly limited by regulatory restrictions on working hours, concerns over patient risk through trainees’ inexperience and the variable exposure to case mix and emergencies during training. To address this, we have developed a computer-based simulation of visceral needle puncture procedures. Methods A real-time framework has been built that includes: segmentation, physically based modelling, haptics rendering, pseudo-ultrasound generation and the concept of a physical mannequin. It is the result of a close collaboration between different universities, involving computer scientists, clinicians, clinical engineers and occupational psychologists. Results The technical implementation of the framework is a robust and real-time simulation environment combining a physical platform and an immersive computerized virtual environment. The face, content and construct validation have been previously assessed, showing the reliability and effectiveness of this framework, as well as its potential for teaching visceral needle puncture. Conclusion A simulator for ultrasound-guided liver biopsy has been developed. It includes functionalities and metrics extracted from cognitive task analysis. This framework can be useful during training, particularly given the known difficulties in gaining significant practice of core skills in patients

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Virtual Reality Simulation of Liver Biopsy with a Respiratory Component

    Get PDF
    International audienceThe field of computer-based simulators has grown exponentially in the last few decades, especially in Medicine. Advantages of medical simulators include: (1) provision of a platform where trainees can practice procedures without risk of harm to patients; (2) anatomical fidelity; (3) the ability to train in an environment wherein physiological behaviour is observed, something that is not permitted where in-vitro phantoms are used; (4) flexibility regarding anatomical and pathological variation of test cases that is valuable in the acquisition of experience; (5) quantification of metrics relating to task performance that can be used to monitor trainee performance throughout the learning curve; and (6) cost effectiveness. In this chapter, we will focus on the current state of the art of medical simulators, the relevant parameters required to design a medical simulator, the basic framework of the simulator, methods to produce a computer-based model of patient respiration and finally a description of a simulator for ultrasound guided for liver biopsy. The model that is discussed presents a framework that accurately simulates respiratory motion, allowing for the fine tuning of relevant parameters in order to produce a patient-specific breathing pattern that can then be incorporated into a simulation with real-rime haptic interaction. Thus work was conducted as part CRaIVE collaboration [1], whose aim is to develop simulators specific to interventional radiology

    Virtual Reality, Ultrasound-guided Liver Biopsy Simulator: Development and Performance Discrimination

    Get PDF
    International audienceObjectives: Identify and prospectively investigate simulated ultrasound-guided targeted liver biopsy performance metrics as differentiators between levels of expertise in interventional radiology. Methods: Task analysis produced detailed procedural step documentation allowing identification of critical procedure steps and performance metrics for use in a virtual reality ultrasound-guided targeted liver biopsy procedure. Consultant (n 5 14, male 5 11, female 5 3) and trainee (n 5 26, male 5 19, female 5 7) scores on the performance metrics were compared. Ethical approval was granted by the Liverpool Research Ethics Committee (UK). Independent t-tests and analysis of variance (ANOVA) investigated differences between groups. Results: Independent t-tests revealed significant differences between trainees and consultants on 3 performance metrics: targeting, p 5 0.018, t 5 22.487 (22.040 to 20.207); probe usage time, p 5 0.040, t 5 2.132 (11.064 to 427.983); mean needle length in beam, p 5 0.029, t 5 22.272 (20.028 to 20.002). ANOVA reported significant differences across years of experience (0-1, 1-2, 3+ years) on seven performance metrics: no-go area touched, p 5 0.012; targeting, p 5 0.025; length of session, p 5 0.024; probe usage time, p 5 0.025; total needle distance moved, p 5 0.038; number of skin contacts, p , 0.001; total time in no-go area, p 5 0.008. More experienced participants consistently received better performance scores on all 19 performance metrics. Conclusion: It is possible to measure and monitor performance using simulation, with performance metrics providing feedback on skill level and differentiating levels of expertise. However, a transfer of training study is required

    Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation

    Full text link
    Modeling the liver deformation forms the basis for the development of new clinical applications that improve the diagnosis, planning and guidance in liver surgery. However, the patient-specific modeling of this organ and its validation are still a challenge in Biomechanics. The reason is the difficulty to measure the mechanical response of the in vivo liver tissue. The current approach consist of performing minimally invasive or open surgery aimed at estimating the elastic constant of the proposed biomechanical models. This dissertation presents how the use of medical image analysis and evolutionary computation allows the characterization of the biomechanical behavior of the liver, avoiding the use of these minimally invasive techniques. In particular, the use of similarity coefficients commonly used in medical image analysis has permitted, on one hand, to estimate the patient-specific biomechanical model of the liver avoiding the invasive measurement of its mechanical response. On the other hand, these coefficients have also permitted to validate the proposed biomechanical models. Jaccard coefficient and Hausdorff distance have been used to validate the models proposed to simulate the behavior of ex vivo lamb livers, calculating the error between the volume of the experimentally deformed samples of the livers and the volume from biomechanical simulations of these deformations. These coefficients has provided information, such as the shape of the samples and the error distribution along their volume. For this reason, both coefficients have also been used to formulate a novel function, the Geometric Similarity Function (GSF). This function has permitted to establish a methodology to estimate the elastic constants of the models proposed for the human liver using evolutionary computation. Several optimization strategies, using GSF as cost function, have been developed aimed at estimating the patient-specific elastic constants of the biomechanical models proposed for the human liver. Finally, this methodology has been used to define and validate a biomechanical model proposed for an in vitro human liver.Martínez Martínez, F. (2014). Determining the Biomechanical Behavior of the Liver Using Medical Image Analysis and Evolutionary Computation [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/39337TESI

    Low-cost pseudo-anthropomorphic PVA-C and cellulose lung phantom for ultrasound-guided interventions

    Get PDF
    A low-cost custom-made pseudo-anthropomorphic lung phantom, offering a model for ultrasound-guided interventions, is presented. The phantom is a rectangular solidstructure fabricated with polyvinyl alcohol cryogel (PVA-C) and cellulose to mimic the healthy parenchyma. The pathologies of interest were embedded as inclusions containing gaseous, liquid, or solid materials. The ribs were 3D-printed using polyethylene terephthalate, and the pleura was made of a bidimensional reticle based on PVA-C. The healthy and pathological tissues were mimicked to display acoustic and echoic properties similar to that of soft tissues. Theflexible fabrication process facilitated the modification of the physical and acoustic properties of the phantom. The phantom´s manufacture offers flexibility regarding the number, shape, location, and composition of the inclusions and the insertion of ribs and pleura. In-plane and out-of-plane needle insertions, fine needle aspiration, and core needle biopsy were performed under ultrasound image guidance. The mimicked tissues displayed a resistance and recoil effect typically encountered in a real scenario for a pneumothorax, abscesses, and neoplasms. The presented phantom accurately replicated thoracic tissues (lung, ribs, and pleura) and associated pathologies providing a useful tool for training ultrasound-guided procedures.This work was supported in part by Cabildo de Tenerife under IACTEC Technological Training Program, grant TF INNOVA 2016–2021, and the project MACBIOIDI2 MAC2/1.1b/352, within the INTERREG Program, funded by the European Regional Development Fund (ERDF)

    Robust GPU-based Virtual Reality Simulation of Radio Frequency Ablations for Various Needle Geometries and Locations

    Full text link
    Purpose: Radio-frequency ablations play an important role in the therapy of malignant liver lesions. The navigation of a needle to the lesion poses a challenge for both the trainees and intervening physicians. Methods: This publication presents a new GPU-based, accurate method for the simulation of radio-frequency ablations for lesions at the needle tip in general and for an existing visuo-haptic 4D VR simulator. The method is implemented real-time capable with Nvidia CUDA. Results: It performs better than a literature method concerning the theoretical characteristic of monotonic convergence of the bioheat PDE and a in vitro gold standard with significant improvements (p < 0.05) in terms of Pearson correlations. It shows no failure modes or theoretically inconsistent individual simulation results after the initial phase of 10 seconds. On the Nvidia 1080 Ti GPU it achieves a very high frame rendering performance of >480 Hz. Conclusion: Our method provides a more robust and safer real-time ablation planning and intraoperative guidance technique, especially avoiding the over-estimation of the ablated tissue death zone, which is risky for the patient in terms of tumor recurrence. Future in vitro measurements and optimization shall further improve the conservative estimate.Comment: 18 pages, 14 figures, 1 table, 2 algorithms, 2 movie
    • …
    corecore