5,293 research outputs found

    Simultaneous Range-Velocity Processing and SNR Analysis of AFIT\u27s Random Noise Radar

    Get PDF
    This paper presents two research objectives aimed at advancing the AFIT RNR signal processing algorithm and modeling capability toward the overarching goal of performing collision avoidance on an autonomous vehicle. In both research efforts, analytical, simulated, and measured results are provided and used to draw research conclusions. The first research effort is aimed at reducing the memory required for 2D processing in the time domain in order to distribute the processing algorithm across hundreds of processors on a GPU. Distributed processing reduces the overall 2D processing time and the feasibility of a near real-time implementation is studied. The second effort consists of improving a Simulink® model of the AFIT RNR. Each component of the AFIT RNR, as well as the target environment, is modeled and compared to measured results. A robust model will provide a useful tool to study the signal-to-noise ratio (SNR) of the RNR at all points within the radar system

    The applications of satellites to communications, navigation and surveillance for aircraft operating over the contiguous United States. Volume 1 - Technical report

    Get PDF
    Satellite applications to aircraft communications, navigation, and surveillance over US including synthesized satellite network and aircraft equipment for air traffic contro

    A modified model for the Lobula Giant Movement Detector and its FPGA implementation

    Get PDF
    The Lobula Giant Movement Detector (LGMD) is a wide-field visual neuron located in the Lobula layer of the Locust nervous system. The LGMD increases its firing rate in response to both the velocity of an approaching object and the proximity of this object. It has been found that it can respond to looming stimuli very quickly and trigger avoidance reactions. It has been successfully applied in visual collision avoidance systems for vehicles and robots. This paper introduces a modified neural model for LGMD that provides additional depth direction information for the movement. The proposed model retains the simplicity of the previous model by adding only a few new cells. It has been simplified and implemented on a Field Programmable Gate Array (FPGA), taking advantage of the inherent parallelism exhibited by the LGMD, and tested on real-time video streams. Experimental results demonstrate the effectiveness as a fast motion detector

    Bioinspired engineering of exploration systems for NASA and DoD

    Get PDF
    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers

    BatMobility: Towards Flying Without Seeing for Autonomous Drones

    Full text link
    Unmanned aerial vehicles (UAVs) rely on optical sensors such as cameras and lidar for autonomous operation. However, such optical sensors are error-prone in bad lighting, inclement weather conditions including fog and smoke, and around textureless or transparent surfaces. In this paper, we ask: is it possible to fly UAVs without relying on optical sensors, i.e., can UAVs fly without seeing? We present BatMobility, a lightweight mmWave radar-only perception system for UAVs that eliminates the need for optical sensors. BatMobility enables two core functionalities for UAVs -- radio flow estimation (a novel FMCW radar-based alternative for optical flow based on surface-parallel doppler shift) and radar-based collision avoidance. We build BatMobility using commodity sensors and deploy it as a real-time system on a small off-the-shelf quadcopter running an unmodified flight controller. Our evaluation shows that BatMobility achieves comparable or better performance than commercial-grade optical sensors across a wide range of scenarios

    A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic.

    Get PDF
    Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. It is similar to influenza viruses and raises concerns through alarming levels of spread and severity resulting in an ongoing pandemic worldwide. Within eight months (by August 2020), it infected 24.0 million persons worldwide and over 824 thousand have died. Drones or Unmanned Aerial Vehicles (UAVs) are very helpful in handling the COVID-19 pandemic. This work investigates the drone-based systems, COVID-19 pandemic situations, and proposes an architecture for handling pandemic situations in different scenarios using real-time and simulation-based scenarios. The proposed architecture uses wearable sensors to record the observations in Body Area Networks (BANs) in a push-pull data fetching mechanism. The proposed architecture is found to be useful in remote and highly congested pandemic areas where either the wireless or Internet connectivity is a major issue or chances of COVID-19 spreading are high. It collects and stores the substantial amount of data in a stipulated period and helps to take appropriate action as and when required. In real-time drone-based healthcare system implementation for COVID-19 operations, it is observed that a large area can be covered for sanitization, thermal image collection, and patient identification within a short period (2 KMs within 10 min approx.) through aerial route. In the simulation, the same statistics are observed with an addition of collision-resistant strategies working successfully for indoor and outdoor healthcare operations. Further, open challenges are identified and promising research directions are highlighted
    • …
    corecore