14 research outputs found

    БЕЗПЕКА ПЕРЕДАЧІ ДАНИХ ДЛЯ ІНТЕРНЕТУ РЕЧЕЙ

    Get PDF
    The article discusses the MQTT protocol for the Internet of Things and touch wireless networks, its features, applications, and specific procedures. The information elements and principles of the message owner are analyzed. This article covers topics such as secure storage of the Internet of Things, the transfer of that data through the secure interface of mobile devices and web applications. It also looks at all the key tools provided by MQTT for information security. The proposed identification of users in this article is to identify them from the Cloudant database. This application works on the Node.js server in IBM Bluemix and provides an API or RESTful that requires mobile client authentication. The mobile client access service is designed to call these two APIs in any authentication application. It is suggested to use separate authentication approaches: for the web application - on the Cloud Directory and for the mobile application - MobileFirst Client Access. However, both the web and mobile applications use the same level of application security to allow the user to access device data. To improve the security of messages, it is suggested to use a transport layer security protocol that uses different cryptographic methods. We are offered homomorphic encryption of these protocols. The transport layer security protocol increases the performance of the protocol and reduces the computational cost, but it does not apply when initially connecting to the server or when a previous session has already expired. The article presents an algorithm for the detection of weak symmetry breaking for the analysis of the chance of a recovered e-mail. A method of homomorphic encryption and authentication of users and their emails in wireless sensor networks of the Internet of Things is proposed.У статті обговорюється протокол MQTT для Інтернету речей та сенсорних безпровідних мереж, його особливості, варіанти застосування та конкретні процедури. Проаналізовано інформаційні елементи та принципи власника повідомлення. Ця стаття охоплює такі теми, як безпечне зберігання даних Інтернету речей, передачу цих даних через захищений інтерфейс мобільних пристроїв та веб-додатків. Також розглядаються всі ключові інструменти, передбачені протоколом MQTT для захисту інформації. Запропонована у цій статті ідентифікація користувачів здійснюється щляхом їх визначення із бази даних Cloudant. Таке застосування працює на сервері сервера Node.js в середовищі IBM Bluemix і надає інтерфейс API або RESTful, для яких потрібен мобільний клієнтський доступ аутентифікації користувачів. Послуга доступу до мобільного клієнта призначена для виклику цих двох API у будь-якому застосуванні аутентифікації. Запропоновано використовувати окремі підходи до аутентифікації: для веб-додатку -  на Cloud Directory, а для мобільного додатку - MobileFirst Client Access. Однак і веб, і мобільні додатки використовують один і той же рівень захисту додатків, щоб дозволити користувачеві доступ до даних пристрою. Для покращення безпеки повідомлень запропоновано використовувати протокол транспортного рівня безпеки, які використовує різні криптографічні методи. Нам пропонується гомоморфне шифрування цих протоколів. Протокол транспортного рівня безпеки збільшує продуктивність протоколу і зменшує обчислювальні витрати, однак він не застосовується при початковому підключенні до сервера або у випадках, коли попередній сеанс вже минув. У статті представлено алгоритм виявлення порушення слабкої симетрії для аналізу випадковості відновленого електронного повідомлення. Запропоновано метод гомоморфного шифрування та аутентифікації користувачів і їхніх електронних повідомлень в безпровідних сенсорних мережах Інтернету речей

    Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT)

    Get PDF
    Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO2 and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings

    Adaptive Algorithms for Batteryless LoRa-Based Sensors

    Get PDF
    Ambient energy-powered sensors are becoming increasingly crucial for the sustainability of the Internet-of-Things (IoT). In particular, batteryless sensors are a cost-effective solution that require no battery maintenance, last longer and have greater weatherproofing properties due to the lack of a battery access panel. In this work, we study adaptive transmission algorithms to improve the performance of batteryless IoT sensors based on the LoRa protocol. First, we characterize the device power consumption during sensor measurement and/or transmission events. Then, we consider different scenarios and dynamically tune the most critical network parameters, such as inter-packet transmission time, data redundancy and packet size, to optimize the operation of the device. We design appropriate capacity-based storage, considering a renewable energy source (e.g., photovoltaic panel), and we analyze the probability of energy failures by exploiting both theoretical models and real energy traces. The results can be used as feedback to re-design the device to have an appropriate amount energy storage and meet certain reliability constraints. Finally, a cost analysis is also provided for the energy characteristics of our system, taking into account the dimensioning of both the capacitor and solar panel

    Hardware Prototype for Wrist-Worn Simultaneous Monitoring of Environmental, Behavioral, and Physiological Parameters

    Get PDF
    We designed a low-cost wrist-worn prototype for simultaneously measuring environmental, behavioral, and physiological domains of influencing factors in healthcare. Our prototype continuously monitors ambient elements (sound level, toxic gases, ultraviolet radiation, air pressure, temperature, and humidity), personal activity (motion tracking and body positioning using gyroscope, magnetometer, and accelerometer), and vital signs (skin temperature and heart rate). An innovative three-dimensional hardware, based on the multi-physical-layer approach is introduced. Using board-to-board connectors, several physical hardware layers are stacked on top of each other. All of these layers consist of integrated and/or add-on sensors to measure certain domain (environmental, behavioral, or physiological). The prototype includes centralized data processing, transmission, and visualization. Bi-directional communication is based on Bluetooth Low Energy (BLE) and can connect to smartphones as well as smart cars and smart homes for data analytic and adverse-event alerts. This study aims to develop a prototype for simultaneous monitoring of the all three areas for monitoring of workplaces and chronic obstructive pulmonary disease (COPD) patients with a concentration on technical development and validation rather than clinical investigation. We have implemented 6 prototypes which have been tested by 5 volunteers. We have asked the subjects to test the prototype in a daily routine in both indoor (workplaces and laboratories) and outdoor. We have not imposed any specific conditions for the tests. All presented data in this work are from the same prototype. Eleven sensors measure fifteen parameters from three domains. The prototype delivers the resolutions of 0.1 part per million (PPM) for air quality parameters, 1 dB, 1 index, and 1 °C for sound pressure level, UV, and skin temperature, respectively. The battery operates for 12.5 h under the maximum sampling rates of sensors without recharging. The final expense does not exceed 133€. We validated all layers and tested the entire device with a 75 min recording. The results show the appropriate functionalities of the prototype for further development and investigations

    Design and Performance of a XBee 900 MHz Acquisition System Aimed at Industrial Applications

    Get PDF
    Wireless technologies are being introduced in industrial applications since they provide certain benefits, such as the flexibility to modify the layout of the nodes, improving connectivity with monitoring and decision nodes, adapting to mobile devices and reducing or eliminating cabling. However, companies are still reluctant to use them in time-critical applications, and consequently, more research is needed in order to be massively deployed in industrial environments. This paper goes in this direction by presenting a novel wireless acquisition system aimed at industrial applications. This system embeds a low-cost technology, such as XBee, not frequently considered for deterministic applications, for deploying industrial applications that must fulfill certain QoS requirements. The use of XBee 900 MHz modules allows for the use of the 2.4 GHz band for other purposes, such as connecting to cloud services, without causing interferences with critical applications. The system implements a time-slotted media access (TDMA) approach with a timely transmission scheduling of the messages on top of the XBee 900 MHz technology. The paper discusses the details of the acquisition system, including the topology, the nodes involved, the so-called coordinator node and smart measuring nodes, and the design of the frames. Smart measuring nodes are implemented by an original PCB which were specifically designed and manufactured. This board eases the connection of the sensors to the acquisition system. Experimental tests were carried out to validate the presented wireless acquisition system. Its applicability is shown in an industrial scenario for monitoring the positioning of an aeronautical reconfigurable tooling prototype. Both wired and wireless technologies were used to compare the variables monitored. The results proved that the followed approach may be an alternative for monitoring big machinery in indoor industrial environments, becoming especially suitable for acquiring values from sensors located in mobile parts or difficult-to-reach places.This research was funded by the Basque Government, through the project EKOHEGAZ (ELKARTEK KK-2021/00092), Diputación Foral de Álava (DFA) through the project CONAVANTER, and to the UPV/EHU through the project GIU20/063

    Reliable Control Applications with Wireless Communication Technologies: Application to Robotic Systems

    Get PDF
    The nature of wireless propagation may reduce the QoS of the applications, such that some packages can be delayed or lost. For this reason, the design of wireless control applications must be faced in a holistic way to avoid degrading the performance of the control algorithms. This paper is aimed at improving the reliability of wireless control applications in the event of communication degradation or temporary loss at the wireless links. Two controller levels are used: sophisticated algorithms providing better performance are executed in a central node, whereas local independent controllers, implemented as back-up controllers, are executed next to the process in case of QoS degradation. This work presents a reliable strategy for switching between central and local controllers avoiding that plants may become uncontrolled. For validation purposes, the presented approach was used to control a planar robot. A Fuzzy Logic control algorithm was implemented as a main controller at a high performance computing platform. A back-up controller was implemented on an edge device. This approach avoids the robot becoming uncontrolled in case of communication failure. Although a planar robot was chosen in this work, the presented approach may be extended to other processes. XBee 900 MHz communication technology was selected for control tasks, leaving the 2.4 GHz band for integration with cloud services. Several experiments are presented to analyze the behavior of the control application under different circumstances. The results proved that our approach allows the use of wireless communications, even in critical control applications.This research was funded by the Basque Government through the project EKOHEGAZ (ELKARTEK KK-2021/00092), by Diputación Foral de Álava (DFA) through the project CONAVANTER, and by UPV/EHU through the project GIU20/063

    Evolution towards Smart and Software-Defined Internet of Things

    Get PDF
    The Internet of Things (IoT) is a mesh network of interconnected objects with unique identifiers that can transmit data and communicate with one another without the need for human intervention. The IoT has brought the future closer to us. It has opened up new and vast domains for connecting not only people, but also all kinds of simple objects and phenomena all around us. With billions of heterogeneous devices connected to the Internet, the network architecture must evolve to accommodate the expected increase in data generation while also improving the security and efficiency of connectivity. Traditional IoT architectures are primitive and incapable of extending functionality and productivity to the IoT infrastructure’s desired levels. Software-Defined Networking (SDN) and virtualization are two promising technologies for cost-effectively handling the scale and versatility required for IoT. In this paper, we discussed traditional IoT networks and the need for SDN and Network Function Virtualization (NFV), followed by an analysis of SDN and NFV solutions for implementing IoT in various ways

    Green internet of things using UAVs in B5G networks: A review of applications and strategies

    Get PDF
    Recently, Unmanned Aerial Vehicles (UAVs) present a promising advanced technology that can enhance people life quality and smartness of cities dramatically and increase overall economic efficiency. UAVs have attained a significant interest in supporting many applications such as surveillance, agriculture, communication, transportation, pollution monitoring, disaster management, public safety, healthcare, and environmental preservation. Industry 4.0 applications are conceived of intelligent things that can automatically and collaboratively improve beyond 5G (B5G). Therefore, the Internet of Things (IoT) is required to ensure collaboration between the vast multitude of things efficiently anywhere in real-world applications that are monitored in real-time. However, many IoT devices consume a significant amount of energy when transmitting the collected data from surrounding environments. Due to a drone's capability to fly closer to IoT, UAV technology plays a vital role in greening IoT by transmitting collected data to achieve a sustainable, reliable, eco-friendly Industry 4.0. This survey presents an overview of the techniques and strategies proposed recently to achieve green IoT using UAVs infrastructure for a reliable and sustainable smart world. This survey is different from other attempts in terms of concept, focus, and discussion. Finally, various use cases, challenges, and opportunities regarding green IoT using UAVs are presented.This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 847577; and a research grant from Science Foundation Ireland (SFI) under Grant Number 16 / RC / 3918 (Ireland's European Structural and Investment Funds Programmes and the European Regional Development Fund 2014-2020)

    A system-level methodology for the design and deployment of reliable low-power wireless sensor networks

    Get PDF
    Innovative Internet of Things (IoT) applications with strict performance and energy consumption requirements and where the agile collection of data is paramount are rousing. Wireless sensor networks (WSN) represent a promising solution as they can be easily deployed to sense, process, and forward data. The large number of Sensor Nodes (SNs) composing a WSN are expected to be autonomous, with a node's lifetime dictated by the battery's size. As the form factor of the SN is critical in various use cases such as industrial and building automation, minimizing energy consumption while ensuring availability becomes a priority. Moreover, energy harvesting techniques are increasingly considered as a viable solution for building an entirely green SN and prolonging its lifetime. In the process of building a SN and in the absence of a clear and well-rounded methodology, the designer can easily make unfounded decisions about the right hardware components, their configuration and data reliable data communication techniques such as automatic repeat request (ARQ) and forward error correction (FEC). In this thesis, a methodology to better optimize the design, configuration and deployment of reliable ultra-low power WSNs is proposed. Comprehensive and realistic energy and path-loss (PL) models of the sensor node are also established. Through estimations and measurements, it is shown that following the proposed methodology, the designer can thoroughly explore the design space and make most favorable decisions when choosing commercial off-the-shelf (COTS) components, configuring the node, and deploying a reliable and energy-efficient WSN
    corecore