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Abstract: Ambient energy-powered sensors are becoming increasingly crucial for the sustainability
of the Internet-of-Things (IoT). In particular, batteryless sensors are a cost-effective solution that
require no battery maintenance, last longer and have greater weatherproofing properties due to the
lack of a battery access panel. In this work, we study adaptive transmission algorithms to improve
the performance of batteryless IoT sensors based on the LoRa protocol. First, we characterize the
device power consumption during sensor measurement and/or transmission events. Then, we
consider different scenarios and dynamically tune the most critical network parameters, such as
inter-packet transmission time, data redundancy and packet size, to optimize the operation of the
device. We design appropriate capacity-based storage, considering a renewable energy source (e.g.,
photovoltaic panel), and we analyze the probability of energy failures by exploiting both theoretical
models and real energy traces. The results can be used as feedback to re-design the device to have an
appropriate amount energy storage and meet certain reliability constraints. Finally, a cost analysis is
also provided for the energy characteristics of our system, taking into account the dimensioning of
both the capacitor and solar panel.

Keywords: adaptive algorithms; batteryless; energy harvesting; internet of things; LoRa; wireless
sensor networks

1. Introduction

The rise of the Internet-of-Things’ (IoT’s) demands for efficient and sustainable power
sources and, therefore, ambient energy-powered sensors have attracted significant attention
due to their environmental and economic benefits. By capturing, converting, and storing
energy from the immediate environment (such as solar radiation, thermal gradients, and
mechanical vibrations), autonomous sensors are opening new perspectives in different
fields, especially where power supply from the grid is absent, e.g., in agriculture [1,2].
Moreover, new batteryless sensors offer numerous advantages compared to conventional
alternatives, making them an attractive choice for IoT applications. Indeed, a batteryless
design allows for IoT devices to be powered with improved cost-effectiveness, recyclability,
longevity, and weatherproofing due to the elimination of batteries. batteryless sensors
find application in a wide range of IoT scenarios, such as agriculture (e.g., soil monitoring
systems), healthcare (e.g., wearable or intra-body devices), and smart cities (e.g., solar-
powered streetlights and traffic signals, surveillance cameras, etc.). As IoT technologies
are becoming increasingly integrated into daily life, adopting batteryless sensors can
significantly extend device lifespan, reduce carbon footprints and contribute to a more
environmentally conscious society.
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In general, an energy-autonomous system combines energy harvesting (EH) equip-
ment with an energy storage system to ensure the continuity of the supply. The total cost
depends on the level of reliability required: a lower probability of failure results in a higher
cost. The device sensors and the data transmission system represent a variable load whose
supply must be provided by the harvesting and storage sub-system [3,4]. Indeed, the
energy autonomy requirement implies the correct sizing and management of these three
components, i.e., sources, load, and storage. On the one hand, the size of harvesting and
storage cannot exceed certain limits (mainly due to cost and size issues); on the other hand,
it is necessary to avoid energy failures and to ensure the transmission of sensor data [5].
Providing solutions to avoid the use of batteries by harvesting energy from the environ-
ment would encourage the deployment of IoT devices. The design of batteryless systems is
therefore a complex task, which includes the correct sizing of both the harvesting and of
the storage systems and the energy management optimization. Many energy sources can
be considered in the design, e.g., solar cells, vibration-based systems, thermoelectric, and
solar thermoelectric methods [6]. However, the highest power density (about 15 mW/cm2)
is provided by solar cells [7] and, for this reason, in this paper, we focus mainly on this
energy source. For energy storage, rechargeable batteries or supercapacitors are usually
adopted. Batteries offer a higher energy density compared to supercapacitors; however,
supercapacitors have very low internal impedance, allowing for a higher current pulse
without detriments to efficiency [8]. In the charge/discharge process, energy flows twice in
the same circuit path of the accumulator, and this suggests that we should move toward
low-impedance storage systems, such as super-capacitors, to improve the efficiency of the
storage system. Moreover, batteryless sensors are more cost-effective and recyclable, last
longer, require no battery maintenance, and have greater weatherproofing due to the lack
of a battery access panel [9]. These benefits motivate the present work. However, there are
still several problems and hurdles that must be tackled. For instance, energy-harvesting
power sources with low and intermittent output, energy storage capacitors, wireless inter-
ference, and intermittent random access transmissions can frequently cause power and/or
communication failures.

In the literature, various energy-aware transmission algorithms have been proposed
to optimize the performance of battery-free IoT sensors [10–13]. Adaptive transmission
algorithms play a crucial role in maximizing the efficiency and reliability of these sen-
sors [14,15]. The aim is to balance energy consumption with communication requirements,
considering parameters such as transmission power, data rate, modulation scheme, and
duty cycle [16,17]. By adapting the data transmission to the available energy and spe-
cific application needs, these algorithms improve the overall performance, reliability, and
lifespan of battery-free IoT devices. For instance, in [10], it is possible to observe the imple-
mentation of specific wake-up policies through optimized algorithms for the best sampling
frequency implementation based on the power received from the source. Furthermore,
the use of adaptive algorithms can adress the challenge of incorporating intelligence into
small battery-free sensors subject to the constraints of limited energy resources and dynam-
ically adapting computation conditions based on the unpredictable nature of harvested
energy [18–20]. Adaptive protocols have been proposed in [21] to promote the coexis-
tence of different battery-free devices, with varying transmission requirements, and to
dynamically allocate transmission slots for 40 devices without requiring prior knowledge
of the environment. Furthermore, adaptive algorithms can decide whether to use the
harvested energy immediately for transmission or to store it for future communications.
This approach optimizes energy management and ensures efficient resource allocation,
reducing, for example, transmission latency [12] and improving coexistence [21]. All this
further highlights the importance of adaptive algorithms for battery-free IoT sensors.
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In this paper, we analyzed two commercial LoRa devices: a FiPy module equipped
with Pytrack expansion board and a TTGO T-Beam ESP32 board. These devices are based
on the ESP32 System on Chip (SoC) and feature an SX1276 LoRa transceiver. We believe that
an approach based on real measurements is more realistic than simulation-based studies.
Moreover, to the best of our knowledge, we are the first to optimize specific network
parameters for improved energy management, such as packet size or payload redundancy,
in the context of batteryless LoRa devices. We thus propose a general approach that models
both the energy source and storage, together with optimized energy management for the
transmission system, which are tuned in real-time to comply with the available energy.
Results are verified on a realistic case study, analyzing different performance requirements
such as the loss of energy probability. Finally, we provide a cost analysis for dimensioning
the energy storage and EH sub-systems. In summary, the main contributions of this
paper are:

• An architectural design and energy consumption analysis of the batteryless device,
based on two commercial LoRa transmitters;

• The optimization of data transmission using adaptive scheduling and redundancy
schemes;

• The validation of our model with a real dataset, evaluating the probability of energy
failure and cost analysis for energy storage and harvesting.

The rest of the paper is organized as follows: Section 2 presents state-of-art of batteryless
IoT sensors, and Section 3 describes the general architecture of the proposed system and
models the device energy consumption. Section 4 is devoted to energy harvesting and
management, including generation and optimization issues, while results are presented in
Section 5, varying storage size and analyzing the energy production in different seasons of the
year. Finally, Section 6 discusses cost/performance issues, and Section 7 concludes the paper.

2. Background and Related Work

In this section, we present some background and literature works aimed at developing
batteryless devices and optimizing transmission parameters based on the available energy
from EH sources.

2.1. Batteryless Devices for IoT

Making a device completely energy-neutral requires a thorough analysis of power con-
sumption in different working states [22]. Several works developed theoretical models for
batteryless devices using emulated environments [22–24]. For example, Delgado et al. [22]
provide a Markov model to characterize the performance of battery-free LoRaWAN devices
for uplink and downlink (UL/DL) transmissions and assess their performance in terms
of the model parameters (i.e., device configuration, application behavior, and environ-
mental conditions). The study demonstrates that a 47 mF capacitor can handle 1 Byte SF7
transmissions every 60 s at a 1 mW energy harvesting rate. Indeed, the work shows that
battery-free LoRaWAN communications are possible with the correct setup (i.e., capacitor
size and turn-on voltage threshold) for various application behaviors (i.e., transmission
interval, packet sizes, energy harvesting rate). Furthermore, in [24], the effectiveness of
battery-free LoRa networks powered by ambient EH sources has been studied, assuming
random transmission schemes. By using methods from stochastic geometry and Markov
chain analysis, a mathematical model for each of the system’s components was built, and
the likelihood of an energy and communication outage was analytically computed. The
study has shown that LoRa networks’ adaptive data rate (ADR) can result in energy outages
when employing higher spreading factors, and suggests adaptive charging time schemes
as a successful remedy. In [23], authors investigated the optimal parameters to schedule
application tasks on batteryless IoT sensor devices. Using an environment emulator and a
SODAQ ExpLoRer board, the authors validated a mathematical model for choosing the
optimal parameters, in terms of minimum application cycle completion time, at which
to perform sensing and transmission, considering different device and environmental
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conditions. The analysis shows that a device using LoRaWAN Class A, equipped with
a capacitor of 10 mF, can measure the temperature and transmit its data at least once
every 5 s, and can harvest at least 50 mW (10 mA of current). Finally, the work in [16]
developed an energy-aware system model to operate battery-free IoT devices that include
several wireless communication protocols. To assess the total energy efficiency of the IoT
network, simulations based on a probabilistic sensing model are used. According to the
results, to achieve self-sustainability in a heterogeneous short- and long-range network
and enhance energy efficiency, an energy harvesting device combining a solar panel with a
270 F lithium-ion super-capacitor must be utilized as a power storage device.

However, these theoretical results, particularly [22,24], might be overly optimistic
in terms of inter-arrival times between packets and the size of the storage capacitor, and
require confirmation in real-world implementation. The studies [25,26] proposed some
prototypes of batteryless nodes based on LoRa technology. Specifically, Orfei et al. [25]
demonstrated the performance of a batteryless sensor for monitoring road traffic and bridge
conditions, powered by a low-cost electromagnetic EH device, which employs an array
of permanent magnets to improve energy efficiency. The collected energy is stored in a
supercapacitor and powers an ARM Cortex M0+ microcontroller and a LoRa radio module
to transmit information. On the other hand, Boitier et al. [26] introduced a self-contained
LoRa sensor with a photovoltaic power source and a pair of 25 F supercapacitors for
energy storage. This solution assures 11 days of storage life in the absence of light. The
proposed system also includes a circuit for energy management and troubleshooting on
the first startup.

2.2. Energy Management Optimization

One of the challenges for batteryless IoT devices is their limited energy availability and
reliance on the surrounding environment. If a device runs out of energy, it cannot perform
its functions until the harvesting system recharges its energy storage [27]. Generally, the
main parameters used to optimize energy consumption on wireless nodes are the data
transmission interval T (i.e., the time between two consecutive packets) and data over-
head/redundancy NR (which can be implemented in several ways, e.g., through coding
or transmission repetition). Therefore, developing a good policy for choosing the periodic
interval to transmit information and tune the amount of data redundancy is of paramount
importance. Due to the imperfect predictability of real-world events that affect energy
sources, the optimization strategy must strike a balance between capturing these events
and consuming all available energy. To achieve this, recent studies have suggested using
artificial intelligence (AI) to learn such policies for battery-free sensors. In particular, it
has been shown that data-driven strategies, such as reinforcement learning, can be ex-
ploited because the amount of available energy changes in similar patterns to other close
environments. [17,28–30]. In other words, energy availability could be predicted to make
better decisions when implementing proper energy resource management strategies in
batteryless devices [14,31]. However, the unpredictable nature of the energy sources re-
quires large datasets to train these AI-based systems and optimize the device parameters in
relation to the energy storage process. Moreover, these strategies should be implementable
on low-complexity hardware, which is usually different for AI algorithms.

In [15], several scheduling algorithms are applied to batteryless LoRaWAN nodes,
analyzing their performance in various simulated scenarios. Based on real-world EH
measurements gathered from a testbed, the work studies the impact of energy-aware
schemes on the number of transmitted packets and the mean packet interval. The results
demonstrate that energy-aware algorithms can significantly enhance the performance of
batteryless LoRaWAN nodes. However, the presented results are strongly influenced by
the harvesting capabilities of the nodes. The works [32,33] suggest a simple approach for
network optimization, exploiting a revised sigmoid function that can be easily computed on
low-cost hardware. The operating strategy can be adjusted based on a small subset of the
most recent energy information or even the last two samples. Specifically, these methods
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reduce energy consumption by modifying the sample rate based on the remaining battery
level [32] or the harvested ambient energy [33]. In particular, the authors in [33] developed
an objective function to optimize the transmission period T, with dynamic sampling
adaptation schemes that can be classified into two possible categories: (a) threshold-based
sampling adaptation (T-ASA), which basically adapts the sampling time based on energy
thresholds, or (b) data-driven adaptive sampling algorithm (DDASA) by exploiting a
sigmoid function to dynamically adapt the sampling time. Moreover, this scheme can
be adjusted to the variability of the ambient energy, requires less computational capacity
compared to complex AI or Markov chain schemes, and can be easily implemented on
ultra-low power boards, such as batteryless LoRa nodes [34]. However, both these studies
consider the use of batteries to supply wireless sensors; the first one used a battery-powered
sensor without EH capabilities [32], while the second one used a photovoltaic source and a
battery as a storage system [33]. Conversely, this work investigates, for the first time, the
possibility of using the revised sigmoid function algorithm to optimize the transmission
parameters of a batteryless LoRa node powered by a solar panel.

In particular, we adopted DDASA to dynamically set the transmission time of the
device and compute the optimal value with a low-complexity algorithm that can be imple-
mented on low-cost hardware. Moreover, a sigmoid-based approach can also be applied to
adjust the data redundancy according to the environmental conditions (e.g., state of charge
or solar radiation). This consideration is also essential for the correct design of the nodes:
indeed, from the literature, it is clear that an appropriate choice of electronic components,
along with the correct optimization of transmission parameters (T, NR, packet size, etc.), is
essential to achieve the right balance between energy and economic efficiency. For example,
regarding the storage system capacity, very different values have been used in the state
of the art, ranging from 10 mF [23] to 270 F [16]; for this reason, we believe it is necessary
to design the system, taking into consideration not only transmission parameters and
energy efficiency but also the costs of the entire system. To achieve this goal, our work
considers the loss of energy probability (LoEP). Lastly, to the best of our knowledge, this
study represents the first characterization of batteryless LoRaWAN sensors, powered by
solar energy, using adaptive algorithms to optimize transmission parameters and compute
the LoEP to minimize the costs of the sensor node architecture.

3. System Architecture

The main components of the proposed adaptation system are presented in Figure 1.
The batteryless device acquires energy from a renewable energy source (e.g., solar energy)
stored in a supercapacitor. Physical components, such as the solar panel and supercapacitor,
must be designed to provide enough energy in normal operating conditions. This represents
a significant challenge because the device design is critical to optimize the amount of
energy harvested from renewable sources to perform sensing and transmission operations.
Regarding data processing, when the device has acquired new data from the sensors
and has enough energy, it transmits a new packet according to two parameters: (i) the
transmission interval, i.e., the time T between two consecutive packets; (ii) the packet data
size, with redundancy parameter NR.

In our implementation, these parameters are either fixed or tuned dynamically ac-
cording to the algorithm described in Section 3.2, which considers the energy stored in the
device.

As a renewable energy source, we used a photovoltaic (PV) panel as an energy source.
In particular, we considered both a theoretical model and a real radiation data set as input,
analyzing the impact of the EH source on the device and the effect of possible energy
failures. Regarding the theoretical model, we used Duffie’s radiation model [35], which is
detailed in Section 4.2. We employed the open data provided in [36,37] for the real radiation
dataset.
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Solar Panel Super Capacitor

ESTORED

Dev Params

EDEV

Optimization
Sensing / Processing

Transceiver

Opt Params

Figure 1. System Architecture and logical components.

3.1. Device Energy Model

The energy harvesting-based device was designed, taking the following parameters
into account:

• Device consumption profile (EDEV);
• Solar panel size (SPV);
• Energy storage capacity (C);
• Transmission interval (T);
• Data redundancy (NR).

For simplicity, the proposed model considers discrete time samples n = k · TPV , k ∈ N,
where TPV is the energy source measurement sampling time, e.g., 1 h or 15 min. Without
loss of generality, in our scenario, we take into account a PV panel as energy source, which
can be modeled as:

EPV(n) = η · SPV · Gsolar(n) (1)

where η represents the PV efficiency, SPV is the panel size and Gsolar(n) is the solar radiation
in the time interval between [n − 1, n], i.e., [k − 1, k] · TPV . The efficiency η allows for
different materials to be considered for the PV cell (mono, polycristalline or others).

The energy stored in the system is modeled using the following equation:

EST(n) = min[EPV(n) + EST(n− 1)− EDEV · fTX(n), Emax] (2)

where EST(n− 1) is the energy stored by the system at time n− 1, EPV(n) is the energy
provided by the source, EDEV is the energy consumed by the device and fTX(n) is a function
that is equal to 1 if there is a transmission in the last interval (zero otherwise), as formalized
in Equation (4). The system energy storage is mainly composed of a supercapacitor which
allows for high-speed charge accumulation, up to the Emax limit (function of C). In our
analysis, we consider that the charging time of the capacitor is very short compared to TPV ,
so we can neglect the capacitor transient times. Finally, the energy consumed by the device
EDEV is computed as the sum of three main components as:

EDEV = ESENS + ETX(NR) + ERX (3)

where ESENS is the energy required to acquire and process data from the different sensors,
ETX(NR) is the energy spent by the device to transmit a packet over the air and ERX is the
energy used to perform the receiving operation.

Note that ETX depends not only on the parameters of the LoRa transmission protocol
but also on the payload size. Such a payload can change dynamically to increase/decrease
the number of sensor data sent in a single frame or to implement an additional redun-
dancy mechanism to improve the reliability of LoRaWAN transmissions (tuned by the
overall NR parameter). A simple way to implement this solution consists of introducing
temporal redundancy, i.e., retransmitting the same measurement data into multiple trans-
missions, thus increasing the probability that at least one of the packets is received. This
approach is already being exploited in commercial applications such as the Sensing Labs
platform [38]. Thus, we implemented a sliding window mechanism that transmits the
last NR measurements, with higher NR values yielding a greater probability of success.
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Figure 2 illustrates the shift-memory structure of NR, which updates the values whenever
a new sensor measurement is performed.

0 1 2 3 4 5 6 7 8 9

NR=10

10 11Measurement ID

payload

…

Figure 2. Sliding window scheme for data redundancy NR.

Finally, the device can only transmit if EST is high enough to perform a complete
packet transmission. We model this functionality using the following activation function:

fTX(n, T) =
{

1 EPV(n) + EST(n− 1) ≥ EDEV ∧ n = k · T
0 otherwise

(4)

where the time interval T is the interval between two consecutive transmissions (for
simplicity, we assume n to be a multiple of T). Clearly, the transmission delay decreases
reductions in T; in contrast, the amount of energy needed for the transmissions increases
(and vice-versa). Next, we discuss how to tune T and NR parameters based on the energy
received from the renewable source.

3.2. DDASA-Based Transmission Algorithm

We defined a DDASA-based algorithm to dynamically adapt the transmission period
of the sensor data. Indeed, as discussed in Section 2, the DDASA algorithm [33] can be
employed to adapt sampling and data transmission to optimize the resource utilization of
the device. In particular, we considered this algorithm to increase or reduce the transmission
interval and the data redundancy according to the amount of energy available to optimize
energy consumption and minimize transmission failures. The adaptation is represented by
a revised sigmoid function, which is expressed by y(x) = 2

1+e−x , where x, in our case, is the
difference in stored energy computed between two consecutive transmissions.

Figure 3 reports a flowchart of the proposed algorithm, while the pseudocode is
described in Algorithm 1. The device checks whether the elapsed time m · TPV is greater
than the transmission period T and if the stored energy EST is greater than the energy
required EDEV to transmit a LoRa frame. A transmission occurs if these conditions are
verified, after which the parameters T and NR are updated. The algorithm dynamically
updates T and NR by considering two components: the variation in stored energy (line 8)
and the gap between the stored energy s and the energy device (line 10). Moreover, the
algorithm introduces two sigmoid parameters: v1, which considers the accumulated energy
variation between two transmissions, and v2, which measures the gap between the current
stored energy and the energy needed to process and transmit a data packet. Finally, the
values of T and NR are constrained between Tmin = 1 h and Tmax = 24 h, while NR can
assume values between 1 and 10.
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Figure 3. Flowchart of the DDASA-based Transmission Algorithm.

Algorithm 1 DDASA-based Transmission Algorithm

T = Tmin . Initialize variables
NR = NRmax
m = 0
n = 0
while true do

if (m · TPV ≥ T) & (EST(n) ≥ EDEV) then
run(TxLoRaFrame) . Transmit data
b1 = (EST(n)− EST(n−m))/mean(EST) . Energy variation
m = 0 . reset time counter
b2 = (EST(n)− EDEV)/Emax . energy gap
v1 = 2

1+e−b1
. Sigmoid function 1

v2 = 2
1+e−b2

. Sigmoid function 2

T = min(Tmax, max(Tmin, T
v1·v2

)) . Update T
NR = min(NRmax, max(NRmin, NR · v1 · v2)) . Update NR

end if
m ++
n ++

end while
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4. Power Consumption Measurements and Solar Energy Model

In this section, we analyze the consumption of real LoRaWAN nodes for use in the
adaptive algorithm described above. We used two commercial development boards, the
LoRa FiPy and TTGO nodes. Additionally, we present a model to characterize solar energy
radiation and its variability, which is crucial for our analysis. We compare the model output
against a real dataset and discuss the design of the solar panel, characterizing the maximum
power point for efficient energy conversion. This characterization allows for optimization
of the proposed system, with an operating point that reduces the system sensitivity to the
current fluctuations.

4.1. Device Consumption Measurements

In our analysis, we conducted experiments to evaluate the current consumption in
four different operating modes (sensing, transmitting, receiving, and sleeping). As shown
in Figure 4, the experimental setup was composed of a PV panel, a protection circuit, a
supercapacitor and the LoRa device, with transmission settings summarized in Table 1. In
particular, we evaluated the power consumption of the LoRa FiPy and TTGO nodes, which
include the ESP32 SoC and the SX1276 LoRa transceiver. We used a Tektronix MSO 2024B
oscilloscope with TCP0020 current probe to measure the PV Panel Voltage, source voltage
(from the supercapacitor) and the current absorbed by the device. For example, the power
consumption of the TTGO device is depicted in Figure 5 during different node activities.
Specifically, the figure shows the device consumption during sensing, the transmission
of a LoRa packet (LoRa TX), and the subsequent receive windows (LoRa RX1 and RX2)
when the device listens for responses, acknowledgments, or downlink messages from the
network server.

PV Panel

Protection 
circuit SuperCap

Current 
Probe

LoRa Device

Antenna

Device Current 
PV Panel Voltage
SuperCap Voltage

Figure 4. Experimental testbed setup used to measure the power consumption of the devices.

Table 1. Default values used for energy consumption measurements.

Setting Value
Supply Voltage 3.7 V

Frequency channel hopping in 868 MHz band
Spreading Factor 12

Forward Error Correction 4/5
CRC Enabled

Payload length 2 bytes
Preamble Length 8 symbols

The average power consumption of the two considered devices in all the four men-
tioned states is outlined in Table 2. In particular, the table shows that, in the three active
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states (transmit, receive, sensing), the power consumption of the TTGO device is lower
than the FiPy device. In contrast, the TTGO device initially had higher power consumption
in the sleep state (about 10 mW), which was reduced at 0.15 mW by making the hardware
changes suggested in [39]. Based on both devices’ energy consumption characterization
outcomes, it was decided to proceed with the analysis focusing solely on the TTGO device,
as it shows lower energy consumption in all the measured conditions.

Sensing

LoRa TX

LoRa RX1 LoRa RX2

Sleep

Figure 5. TTGO node power consumption in different working states.

Table 2. Power consumption of the two devices in the different operating modes.

Device Transmit Receive Sensing Sleep
FiPy 820 mW 600 mW 560 mW 0.225 mW

TTGO 420 mW 228 mW 195 mW 0.15 mW

4.2. Solar Energy Production Model

In this subsection, we model the solar energy production based on the radiation
theoretical model explained in Chapter 1 of [40]. In particular, solar radiation can be
predicted based on the day of the year, latitude, and azimuth. Energy reaches the Earth, is
partially scattered by the atmosphere, and can be converted by photovoltaic devices into
electrical energy. Generally, the solar radiation overall captured by a solar panel comprises
three components: direct, diffuse, and reflected. In our analysis, we selected the correlations
by Erbs et al. [35]: based on measurements taken at various locations in the United States,
an experimental data regression model is proposed for the luminosity index to estimate the
diffused solar radiation.

The next step involves estimating the power generated by a solar panel to predict
hourly production and determine the energy flows exchanged with the LoRa device and
supercapacitor. The power delivered from the photovoltaic panel was calculated consid-
ering the photoelectric conversion efficiency, panel area, solar radiation incident on the
panel, and operating temperature, using the empirical relationship expressed in [41]. We
analyzed two different radiation datasets to validate the theoretical model and measure
the performance of the proposed adaptation algorithm. Thus, we compared the average
monthly power output of the theoretical model against the real dataset provided in [36,37],
at two reference locations (latitudes 38.132° and 45.45° N). These datasets are provided
by the National Solar Radiation Database (NSRDB) of the USA and Servizio Informativo
Agrometeorologico Siciliano (SIAS), Italy, respectively. The first dataset is a comprehensive
and publicly available source of solar radiation and meteorological data offered by the
National Renewable Energy Laboratory (NREL) in the United States. The NSRDB provides
high-resolution solar irradiance data and covers an extensive period, from 1991 to the
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present, with regular updates. The NSRDB offers high temporal (hourly or sub-hourly) and
spatial (4 km × 4 km) resolution data, making it suitable for detailed analyses and accurate
energy production simulations. The dataset includes various solar radiation parameters
such as global horizontal irradiance (GHI), direct normal irradiance (DNI), and diffuse
horizontal irradiance (DHI). Additionally, it provides essential meteorological parameters
such as temperature, humidity, wind speed, and precipitation. The NSRDB combines mea-
surements from ground-based stations, satellite-derived data, and advanced atmospheric
models to ensure accuracy and reliability. In particular, the spectral on-demand data
service provides solar irradiances on inclined PV panels and emploies the Fast All-sky
Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces
(FARMS-NIT) [42], which is a radiative transfer model developed at NREL specifically for
the calculation of solar energy distribution in narrow-wavelength bands over inclined PV
panels. When clear-sky conditions are present, the Simple Model of the Atmospheric Radia-
tive Transfer of Sunshine (SMARTS) [43] is employed to determine the optical properties of
the atmosphere. This model considers three paths of photon transmission and solves the
radiative transfer equation using the single-scattering approximation to compute clear-sky
radiances in narrow-wavelength bands. For cloudy-sky conditions, instead, FARMS-NIT
utilizes the cloud reflectance of irradiance and bidirectional transmittance distribution
function (BTDF) from a precomputed lookup table generated by the LibRadtran model
with a 32-stream Discrete Ordinates Radiative Transfer (DISORT). By combining the cloud
reflectance, BTDF, and clear-sky properties, FARMS-NIT computes spectral radiances on
the land surface and plane-of-array (POA) irradiances. The NSRDB database is freely
accessible through NREL’s online platform or APIs, allowing users to download data for
specific locations, time periods, and parameters.

Regarding the second dataset provided by SIAS (an agrometeorological information
service in Sicily, Italy), it is based on a real-time weather monitoring system employing a
network of meteorological stations distributed across the island of Sicily. The stations have
wind speed sensors at 2 m and 10 m height, utilizing Robinson cups and optoelectronic
transducer technology. The wind direction sensors at the same heights employ vane and
optoelectronic transducer technology. Other sensors include a global radiation sensor
(measuring cumulative solar radiation), air temperature sensor, relative humidity sensor,
precipitation sensor (tipping bucket rain gauge), leaf wetness sensor, atmospheric pressure
sensor, and snow depth sensor. The stations are synchronized in time to align with the
forecasting models, and a weekly time check ensures station accuracy. The datalogger
used is the MTX WST1800 [44] model, featuring a single-board CMOS microprocessor with
128 KB of RAM and 64 KB of EPROM memory. The SIAS dataset provides data acquired
since 2003 at an hourly time resolution.

Comparing the theoretical model with the real datasets, Figure 6 reveals that, for both
the considered locations, the theoretical model closely follows the actual solar radiation
in the autumn and spring seasons; conversely, it tends toward underestimation in the
summer months and overestimation during winters. The theoretical model performance is
summarized in Table 3, in terms of Coefficient of Determination (R2), Root Mean Square
Error (RMSE), and Mean Bias Error (MBE). In particular, the analysis of MBE is used to
estimate the average bias of the model. The obtained results show low bias. According to
RMSE, the model has a significant impact on outliers, and this is reasonable because the
model does not account for unpredictable radiation fluctuations due to atmospheric events.
Considering a maximum normal surface radiance of around 1000 W/m2 at sea level on a
clear day, we can assume a normalized RMSE of approximately 10–13%. Finally, the R2

values obtained are greater than 70%, which is an acceptable model fit.

Table 3. Difference between the theoretical model and real dataset at two latitudes.

Latitude R2 RMSE [W/m 2] MBE [W/m2]

45.45° 0.71 135.57 −1.63
38.132° 0.83 109.03 1.01
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Figure 6. Monthly average solar radiation of the theoretical model and real dataset

4.3. Solar Panel Parameters

Maximizations in the efficiency of converted solar energy are strictly tied to solar panel
selection. The power conversion efficiency (PCE) and maximum power point (MPP), as
well as the size, are essential features for the design of the panel [45]. In our experiments, we
employed a commercial silicon solar panel (sized 7.5 × 14 cm ). Therefore, a mathematical
model, given in [46], was used to characterize the PV panel and identify the electrical
parameters. In Figure 7, the PV panel’s I–V and P–V characteristics are reported, assuming
820 W/m2 of solar radiation. In the figure, Isc, Voc, Imp, and Vmp denote short-circuit
current, open-circuit voltage, the maximum power point current, and the maximum power
point voltage, respectively. By extracting these four parameters, we can identify the
MPP operating condition in which the power transferred from the source to the load is
maximized. Thanks to this characterization of the panel, the proposed dynamic algorithm
can be tuned to work on the operating point closest to the Vmp voltage, reducing the system’s
sensitivity to current at the MPP point. From the figure, it is clear that the operating voltage
value (Vope) must fall within the supply voltage range of [3.3–5.2] V.

MPP

Operating 
voltage range

Vmp VocVope

Pope

Pmp

Iope

Imp

Isc

Figure 7. Solar panel characterization under 820 W/m2 of solar exposure.
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5. Evaluation and Results

In order to evaluate the proposed system, we exploited the consumption model
obtained from the device characterization, as discussed in Section 4, to simulate the behavior
of the system by changing design parameters such as capacity and solar panel size. We
also employed the adaptation algorithm, based on energy-aware DDASA, to dynamically
adapt the transmission period T and payload size as a function of NR, as described in
Algorithm 1. Finally, we conducted simulated experiments for one year using both the
energy radiation model and real-world radiation datasets, as described in Section 4.2.

5.1. Performance of the Adaptation Algorithm

As a first experiment, we validated the adaptation algorithm capabilities to optimize
the transmission parameters (i.e., transmission interval and NR). In particular, we mea-
sured the number of correct transmissions (#TX_DONE), the number of transmissions that
failed due to insufficient energy (#TX_FAILED), and the number of bytes transmitted per
packet. A transmission is considered failed when the stored energy is not sufficient to
perform the overall procedure of sensing, processing, and transmission. Moreover, we
compute the Loss of Energy Probability (LoEP), which directly translates to a packet loss, as

#TX f ailed
#TX f ailed+#TXdone

. We analyze the impact of data redundancy defining a Loss of Information
Probability (LoIP), i.e., the probability of losing NR consecutive packets, which can be
computed as LoIP = LoEPNR.

Tables 4 and 5 summarize the results obtained using the theoretical model or the real
dataset, respectively. For the experiments, we consider C = 4.5 F and PV = 0.01 m2, and
we assume an EH efficiency of 15 mW/cm2 [7] and a latitude of 38.132°. The tables report
the average TX interval T and NR parameters computed by the adaptive algorithm, the
LoEP and LoIP probabilities, and the average packet size, which is directly influenced by
NR and the number of sensors on the device (we assume a total sensor data of 2 Bytes, i.e.,
2 · NR bytes). Values show that during higher solar radiation periods (mainly summer and
spring), the adaptation algorithm lowers T and increases NR, obtaining a good number
of successful transmissions and resulting in a low LoEP compared to other seasons with
lower radiation intensity (autumn and winter). For example, 1167 successful transmissions
were obtained during the summer season using the theoretical radiation model while, in
the winter, only 691 frames were successfully transmitted. Similar numbers were obtained
using the real data. Note that, with the specific values selected for C and PV size, the
LoEP for the theoretical model is generally lower than the real dataset. This is due to
abrupt weather events (e.g., cloud obfuscation), which are not included in the theoretical
model, but are recorded in the real dataset. In any case, the tables show that LoIP is
extremely low, even with LoEP as high as 20% (winter and autumn seasons in Table 5).
This demonstrates the importance of the data redundancy NR, which helps recover lost
packets by retransmitting data multiple times.

Table 4. Results obtained per season using the theoretical model with C = 4.5 F and PV = 0.01 m2.

Season Average T [h] Average NR #TX_DONE #TX_FAIL LoEP [%] LoIP [%] Av. Pkt Size [B]
Winter 2.84 8.31 691 104 13.08 4.57 × 10−6 16.62
Spring 1.83 9.20 1141 72 5.94 5.18 × 10−10 18.40

Summer 1.86 9.19 1164 78 6.28 8.96 × 10−10 18.38
Autumn 2.84 8.27 676 132 16.34 3.12 × 10−5 16.54

Year 2.34 8.74 3672 386 9.51 1.17 × 10−7 17.48
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Table 5. Results obtained per season using the real dataset, with C = 4.5 F and PV = 0.01 m2.

Season Average T [h] Average NR #TX_DONE #TX_FAIL LoEP [%] LoIP [%] Av. Pkt Size [B]
Winter 3.55 7.64 540 127 19.04 3.15 × 10−4 15.27
Spring 1.76 9.28 1193 81 6.36 7.83 × 10−10 18.56

Summer 1.66 9.27 1291 85 6.18 6.17 × 10−10 18.54
Autumn 3.24 7.94 581 138 19.19 2.02 × 10−4 15.89

Year 2.55 8.53 3605 431 10.68 5.13 × 10−7 17.07

Figure 8 shows a Cumulative Distribution Function (CDF) representation of the algo-
rithm execution time and the CDF of the time deviation from the scheduled transmission.
Figure 8a shows that the running time of the algorithm on the hardware used in our lab,
while Figure 8b demonstrates the algorithm’s bility of to cope with unexpected delays
(due to power failures), measuring the deviation from the scheduled transmission time.
Regarding the processing time, this includes the time elapsed to perform the algorithm
computation, the conditional operations, and the execution of the radio commands. From
Figure 8a, computed over 1 year and roughly 3000 transmission events, it is clear that
the system usually requires less than 50 µs to perform the algorithm operations, with a
median value of 12 µs. Finally, Figure 8b shows the transmission deviation, defined as the
time between the scheduled transmission event and the real packet transmission (which
might be delayed due to power failure). The figure shows that around 98% of transmission
attempts are executed without any delay, demonstrating the accuracy of the algorithm.

0 50 100 150 200 250
Execution Time [us]

0%

20%

40%

60%

80%

100%

CD
F

(a) Algorithm execution time

0 5 10 15 20
Transmission Deviation [h]

90%

92%

94%

96%

98%

100%

CD
F

(b) Algorithm transmission deviation
Figure 8. Complexity and accuracy of the proposed algorithm. CDF of the execution time and of the
time deviation from the planned transmission time due to power failures.

5.2. Impact of Supercapacitor and PV Panel Size

A second set of experiments was conducted by varying the values of C and PV and
analyzing the overall LoEP obtained using the proposed adaptive algorithm. The results
are summarized in Figures 9 and 10, considering a one-year observation period for two
different latitudes. The heatmap shown in the figures depicts the average LoEP as a
function of the capacity and solar panel size, respectively, on the x- and y-axes. Moreover,
we highlight values that are less than 5% of LoEP by explicitly indicating the obtained
value in the plot. These figures are helpful for establishing some component constraints for
the optimal design of the device, as discussed in the following section.
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Figure 9. LoEP results at latitude = 38.132°.
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Figure 10. LoEP results at latitude = 45.45°.

6. Design Parameters and Cost Analysis

Fixing a LoEP (or LoIP) threshold involves the definition of acceptable loss probability
and, in the design of a batteryless device, can help identify appropriate design parameters
(such as capacity and solar panel size) that achieve this threshold value. Together with
these parameters, the design optimization should also consider other factors, such as cost.
Concerning Figures 9 and 10, values of C and PV can be identified so as to satisfy the
constraints on the LoEP (e.g., less than 5%); in this way, the choice of components for given
LoEP can be made by optimizing the cost. However, the optimal choice of source and
storage size must take into account the availability on the market. The required values
can be obtained directly by a single unit or by composing multiple smaller components
until the desired value is reached. In particular, concerning the size of the PV source,
the choice can start from a single cell, but array can also be considered. Similarly, the
capacitance of the storage system can be composed by the parallel connection of two or
more capacitors, if necessary. It should be noted that the total cost usually does not rise
linearly; indeed, the market often proposes cheaper components, with higher performances
for the corresponding elementary units that are to be connected.

We examined three potential commercial solutions for supercapacitors and solar
panels to emphasize this phenomenon. Their characteristics and costs are displayed in
Tables 6 and 7, respectively. Then, we assessed all possible combinations of supercapacitors
and photovoltaic cells to select the most cost-effective solution that maintained a LoEP
of 5% or less, focusing on a Duffie’s radiation model with a specific location of latitude
38.132°.
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Table 6. Capacitor unit characteristics and cost.

Component Type Manufacturer Code C [F] Cost per Unit [€]
A SCMR22D155PRBB0 1.5 3.77
B SCMS22D255PRBB0 2.5 2.23
C SCMT32D755SRBB0 7.5 4.75

Table 7. Photovoltaic cell characteristics and cost.

Component
Type

Manufacturer
Code Power [W] Size [m2] Cost per Unit

[€]
A 313070004 0.5 0.0038 3.4
B 186-0599 1.5 0.0263 16
C 914-8445 5 0.06 64.56

Specifically, the combinations, analyzed with their costs, are shown in Tables 8 and 9,
where the most cost-effective solutions have been underlined. Regarding supercapacitors,
the cost analysis in Table 8 shows that, for capacitance values required in the range (3–5.5) F,
the most economical solution is provided by the adoption of two units “B” supercapacitors
in parallel, obtaining a total capacitance of 5 F at the cost of €4.46. On the contrary, for
desired capacitance values between 6 F and 7.5 F, choosing a single “C”-type supercapac-
itor of 7.5 F at the cost of €4.75 is more convenient. Similar considerations hold for the
photovoltaic sources detailed in Table 9. In fact, for PV areas of 0.025 m2 or less, choosing a
single element of type “B”, of size 0.026 m2, at a cost of €16 is the cheapest solution. For an
area between 0.030 and 0.035 m2, it would be more convenient to adopt several elementary
“A”-type cells in series. For the remaining desired surface area values, listed in Table 9, a
pair in series of “B”-type components should be adopted.

Table 8. Capacitor cost analysis for LoEP values below 5%.

A-Type Capacitor B-Type Capacitor C-Type Capacitor
Cap

Required
[F]

Cap
Obtained

[F]

Cap
Number

Cost
[€]

Cap
Obtained

[F]

Cap
Number

Cost
[€]

Cap
Obtained

[F]

Cap
Number

Cost
[€]

3.0 3.0 2 7.54 5 2 4.46 7.5 1 4.75
3.5 4.5 3 11.31 5 2 4.46 7.5 1 4.75
4.0 4.5 3 11.31 5 2 4.46 7.5 1 4.75
4.5 4.5 3 11.31 5 2 4.46 7.5 1 4.75
5 4.5 3 11.31 5 2 4.46 7.5 1 4.75

5.5 6 4 15.08 5 2 4.46 7.5 1 4.75
6 6 4 15.08 7.5 3 6.69 7.5 1 4.75

6.5 6 4 15.08 7.5 3 6.69 7.5 1 4.75
7 7.5 5 18.85 7.5 3 6.69 7.5 1 4.75

7.5 7.5 5 18.85 7.5 3 6.69 7.5 1 4.75

Once the optimal system design has been obtained, the LoEP and LoIP can be re-
analyzed with these new values. In particular, in the last experiment, we measured the
loss probabilities when varying T and NR (in particular, by tuning Tmax and NRmax), with
a fixed C = 5 F and SPV = 0.035 m2. Figure 11 shows the performance of the adaptation
algorithm in terms of LoEP, as a function of Tmax. The figure clearly shows that the LoEP
limit of 5% is satisfied when Tmax is greater than 5 h. Instead, with a Tmax fixed to 5 h,
Figure 12 shows the LoIP when varying NRmax between 1 and 10. In this case, we can
highlight an exponential reduction in information loss probability, which can ensure data
transmission even with small values of NR.
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Table 9. Cost analysis of photovoltaic cell for LoEP values below 5%.

A-Type Photovoltaic Cell B-Type Photovoltaic Cell C-Type Photovoltaic Cell
PV

Required
[m2]

PV
Obtained

[m2]

Cells
Number

Cost
[€]

PV
Obtained

[m2]

Cells
Number

Cost
[€]

PV
Obtained

[m2]

Cells
Number

Cost
[€]

0.02 0.019 5 17 0.026 1 16 0.06 1 64.56
0.025 0.027 7 23.8 0.026 1 16 0.06 1 64.56
0.03 0.030 8 27.2 0.052 2 32 0.06 1 64.56
0.035 0.034 9 30.6 0.052 2 32 0.06 1 64.56
0.04 0.042 11 37.4 0.052 2 32 0.06 1 64.56
0.045 0.046 12 40.8 0.052 2 32 0.06 1 64.56
0.05 0.050 13 44.2 0.052 2 32 0.06 1 64.56
0.055 0.057 15 51 0.052 2 32 0.06 1 64.56
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Figure 11. LoEP as a function of Tmax, with C = 5 F, SPV = 0.035 m2, NRmax = 10.
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Figure 12. LoIP as a function of NRmax, with C = 5 F, SPV = 0.035 m2, Tmax = 5 h.

7. Conclusions

In this work, we analyzed LoRa-based batteryless devices, optimizing the transmis-
sion parameters through an energy-aware adaptation algorithm. By characterizing and
modeling the power consumption of two batteryless sensors and using theoretical energy
models and real radiation traces, we studied how to dynamically tune the transmission
interval and payload size to cope with the available energy. Finally, we provided a gen-
eral approach for the design of capacity-based storage and PV panel size, obtaining a
cost-effective methodology to design batteryless solutions for ambient-energy-powered
LoRa sensors. The results showed that, for a given threshold probability of power failure,
the proposed approach can successfully optimize the device’s energy consumption by
automatically setting the relevant transmission parameters. Moreover, information loss
can be dramatically reduced simply by repeating the data transmission in multiple packets.
From the presented results, a system composed of a 5 F supercapacitor and a PV panel of
0.035 m2 is capable of transmitting data packets every 5 h, with a redundancy of 3 and a
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LoIP of 10−2. Finally, the LoEP results obtained with the proposed algorithm, combined
with an in-depth cost analysis, has allowed for the most economical solution to be selected
for the dimensioning of the PV panel and supercapacitor, balancing implementation costs
and energy failure probability. The proposed approach is applicable to different IoT
applications that require autonomous energy systems, such as agriculture or emergency
scenarios. In future research activities, we will test the proposed algorithm on a large-scale
deployment and study the impact of networking and modulation parameters, such as the
resource allocation of different spreading factors and adaptive data rate algorithms.
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