1,627 research outputs found

    Sound Zone Control inside Spatially Confined Regions in Acoustic Enclosures

    Get PDF

    Towards perceptually optimized sound zones:A proof-of-concept study

    Get PDF

    The Creation of Perceptually Optimized Sound Zones Using Variable Span Trade-Off Filters

    Get PDF

    Twenty years of load theory—Where are we now, and where should we go next?

    Get PDF
    Selective attention allows us to ignore what is task-irrelevant and focus on what is task-relevant. The cognitive and neural mechanisms that underlie this process are key topics of investigation in cognitive psychology. One of the more prominent theories of attention is perceptual load theory, which suggests that the efficiency of selective attention is dependent on both perceptual and cognitive load. It is now more than 20 years since the proposal of load theory, and it is a good time to evaluate the evidence in support of this influential model. The present article supplements and extends previous reviews (Lavie, Trends in Cognitive Sciences, 9, 75–82. doi:10.​1016/​j.​tics.​2004.​12.​004, 2005, Current Directions in Psychological Science, 19, 143–148. doi:10.​1177/​0963721410370295​, 2010) by examining more recent research in what appears to be a rapidly expanding area. The article comprises five parts, examining (1) evidence for the effects of perceptual load on attention, (2) cognitive load, (3) individual differences under load, (4) alternative theories and criticisms, and (5) the future of load theory. We argue that the key next step for load theory will be the application of the model to real-world tasks. The potential benefits of applied attention research are numerous, and there is tentative evidence that applied research would provide strong support for the theory itself, as well as real-world benefits related to activities in which attention is crucial, such as driving and education

    OVERLAPPED-SPEECH DETECTION WITH APPLICATIONS TO DRIVER ASSESSMENT FOR IN-VEHICLE ACTIVE SAFETY SYSTEMS

    Get PDF
    ABSTRACT In this study we propose a system for overlapped-speech detection. Spectral harmonicity and envelope features are extracted to represent overlapped and single-speaker speech using Gaussian mixture models (GMM). The system is shown to effectively discriminate the single and overlapped speech classes. We further increase the discrimination by proposing a phoneme selection scheme to generate more reliable artificial overlapped data for model training. Evaluations on artificially generated co-channel data show that the novelty in feature selection and phoneme omission results in a relative improvement of 10% in the detection accuracy compared to baseline. As an example application, we evaluate the effectiveness of overlapped-speech detection for vehicular environments and its potential in assessing driver alertness. Results indicate a good correlation between driver performance and the amount and location of overlapped-speech segments

    Auditory-visual interaction in computer graphics

    Get PDF
    Generating high-fidelity images in real-time at reasonable frame rates, still remains one of the main challenges in computer graphics. Furthermore, visuals remain only one of the multiple sensory cues that are required to be delivered simultaneously in a multi-sensory virtual environment. The most frequently used sense, besides vision, in virtual environments and entertainment, is audio. While the rendering community focuses on solving the rendering equation more quickly using various algorithmic and hardware improvements, the exploitation of human limitations to assist in this process remain largely unexplored. Many findings in the research literature prove the existence of physical and psychological limitations of humans, including attentional, perceptual and limitations of the Human Sensory System (HSS). Knowledge of the Human Visual System (HVS) may be exploited in computer graphics to significantly reduce rendering times without the viewer being aware of any resultant image quality difference. Furthermore, cross-modal effects, that is the influence of one sensory input on another, for example sound and visuals, have also recently been shown to have a substantial impact on viewer perception of virtual environment. In this thesis, auditory-visual cross-modal interaction research findings have been investigated and adapted to graphics rendering purposes. The results from five psychophysical experiments, involving 233 participants, showed that, even in the realm of computer graphics, there is a strong relationship between vision and audition in both spatial and temporal domains. The first experiment, investigating the auditory-visual cross-modal interaction within spatial domain, showed that unrelated sound effects reduce perceived rendering quality threshold. In the following experiments, the effect of audio on temporal visual perception was investigated. The results obtained indicate that audio with certain beat rates can be used in order to reduce the amount of rendering required to achieve a perceptual high quality. Furthermore, introducing the sound effect of footsteps to walking animations increased the visual smoothness perception. These results suggest that for certain conditions the number of frames that need to be rendered each second can be reduced, saving valuable computation time, without the viewer being aware of this reduction. This is another step towards a comprehensive understanding of auditory-visual cross-modal interaction and its use in high-fidelity interactive multi-sensory virtual environments
    • …
    corecore