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This work concentrates on validating a real-time perceptual model predicting distraction caused by

audio-on-audio interference. The real-time model was recently developed on the basis of another

successfully validated, perceptual distraction model, which is not able to calculate predictions in

real time. Both models are non-blind, i.e., their inputs take target and interferer signals separately.

This paper describes a validation experiment for the real-time distraction model, which compares

the model’s predictions to subjective distraction ratings obtained from a listening experiment. The

accuracy of the real-time model is also compared to that of the original distraction model. The cal-

culated root-mean-squared errors for a speech zone and a music zone were 10.2% and 12.6% for

the real-time model, respectively, compared to 11.3% and 11.5% for the original model. The results

indicate that the real-time model is able to predict the distraction with similar accuracy as the origi-

nal model, and thus, is a suitable tool for sound-zone evaluation. Furthermore, the real-time capa-

bility of the model is considered to be vital for certain applications, including the evaluation of

adaptive sound zones. VC 2018 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1121/1.5045321

[MAH] Pages: 153–163

I. INTRODUCTION

Audio-on-audio interference is constantly present in our

everyday lives, when two or more sound sources are compet-

ing for our attention. The sound sources can be natural sour-

ces or they can be audio systems, such as a TV, a radio, or

portable speakers connected to a smartphone. This paper

considers the latter case, where the sound sources are elec-

trical devices, especially in the context of sound-zone

systems.

The concept of sound zones was originally proposed by

Druyvesteyn et al. (1994). In the past decade and a half,

there have been plenty of contributions in developing differ-

ent sound-zone concepts and methods, e.g., Betlehem et al.,
2015; Chang et al., 2009; Choi and Kim, 2002; Møller et al.,
2012; Olik et al., 2013; Pasco et al., 2017; Schellekens and

Møller, 2016; Shin et al., 2010; Wu and Abhayapala, 2011;

Zhu et al., 2017. The main idea in sound zones is to create

personal zones for multiple users within one acoustical

space, where they are able to control and listen to their own

audio content without disturbing other users.

In sound-zone scenarios, audio-on-audio interference

occurs when the audio from other zones leak and interfere

with the target audio that one is concentrating on in their

own zone. Francombe et al. (2014a) conducted an elicitation

experiment to define the perceptual attributes that describe

the experience of audio-on-audio interference while listening

to a target audio programme in the presence of an interfering

audio programme. They concluded that distraction was by

far the most important attribute for describing audio-on-

audio interference, while balance and blend (of the two pro-

gramme materials) came second.

Motivated by the elicitation study, Francombe et al.
developed a perceptual model aimed at predicting the experi-

enced distraction occurring in audio-on-audio interference

situations (Francombe, 2014; Francombe and Baykaner,

2017; Francombe et al., 2013, 2015). The model was origi-

nally trained by using a simple loudspeaker setup, consisting

of only two loudspeakers, while at the same time considering

that one of the main applications for the model would be the

evaluation of sound-zone systems.

Recently, the performance of the model was success-

fully validated using two different sound-zone systems

(R€am€o et al., 2016; R€am€o et al., 2017b). Although, the

model is operating as expected in sound-zone environments,

the main issue is that it is computationally slow, and thus, it

is not possible to predict the distraction in real time, which

would be beneficial and even obligatory for certain applica-

tions such as for adaptive sound zones.

R€am€o et al. (2017a) have developed a modified version

of the distraction model, which provides distraction predic-

tions in real-time. This paper concentrates on validating the

real-time distraction model by using a different sound-zone

system, resulting in a different sound field, than during the

development of the model.

The paper is organized as follows. Section II introduces

both the original and the real-time distraction models.

Section III describes the sound-zone setup and the recordings

a)Current address: Department of Signal Processing and Acoustics, Aalto

University, Espoo, Finland. Also at: Bang & Olufsen a/s, Peter Bangs Vej

15, Struer, 7600, Denmark. Electronic mail: jussi.ramo@aalto.fi
b)Also at Department of Electronic Systems, Aalborg University, Fredrik

Bajers Vej 7, Aalborg, 9220, Denmark.
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used in the validation procedure. Section IV presents the

design and the results of the listening experiment used to

obtain subjective distraction ratings. Section V shows the

results for the model performance by comparing the model’s

predictions against the subjective distraction ratings. Finally,

Sec. VI concludes this paper.

II. PERCEPTUAL DISTRACTION MODELS

This section describes the original distraction model

implemented by Francombe et al. (Francombe, 2014;

Francombe and Baykaner, 2017; Francombe et al., 2013,

2015) and the modified version of that model, capable of

real-time processing, developed by R€am€o et al. (2017a).

A. Original distraction model

The distraction model (Francombe, 2014; Francombe

and Baykaner, 2017; Francombe et al., 2013, 2015) was

trained to predict the distraction that users experience, when

they are in an environment with two competing audio sour-

ces. The training setup consisted of two loudspeakers, one

for the target audio, which the user was concentrating on,

and one for the competing, interfering sound. Both the target

and interferer stimuli were music (music-on-music) during

the training of the model. Although, the training was con-

ducted using such a simple loudspeaker setup, the model

was aimed to be used in the context of sound zones.

The distraction model consists of five features and one

constant term. The distraction prediction ŷ is calculated from

the features as follows:

ŷ ¼ 24:19þ 1:04f1 � 2:04f2 � 0:41f3 � 0:95f4 � 0:16f5;

(1)

where the features are described as

f1: maximum long term loudness (LTL; Glasberg and

Moore, 2002) when both the target and the interferer are

active,

f2: target-to-interferer ratio (TIR) using LTL,

f3: interference-related perceptual score (IPS) from the

PEASS software toolbox (Emiya et al., 2011; Vincent, 2012),

f4: the range of computational auditory signal-processing

and perception (CASP) model (Jepsen et al., 2008) output for

the interferer signal at high frequencies (bands 20–31),

f5: percentage of temporal windows (400 ms, 25% over-

lap) where TIR derived from the CASP model’s outputs is

less than 5 dB.

Furthermore, the model output ŷ is limited between 0

(not at all distracting) and 100 (overpoweringly distracting).

The model requires a dummy head recording as well as a

typical single channel recording of the target and interferer

signals from inside the zones.

B. Validation of the original model

The model has been previously validated in R€am€o et al.
(2016) and R€am€o et al. (2017b) using two different complex

sound-zone setups, illustrated in Fig. 1. In both setups, the

idea is that zone A is for speech programmes, such as news

or sport shows from TV or radio, and zone B is for music.

Furthermore, the zones act as interfering sound sources to

one another, so the target sound of zone A becomes the inter-

ferer in zone B and vice versa.

The first round of validations (R€am€o et al., 2016) were

conducted using the setup depicted in Fig. 1(a). The validation

experiment was carried out only in zone B, i.e., with music tar-

gets and speech interferers (speech-on-music). The aim of the

second round of validations (R€am€o et al., 2017b) was to make

physical alterations to the setup, as illustrated in Fig. 1(b), and

validate the distraction model in both zones, i.e., with speech

FIG. 1. Schematics of sound-zone setups where (a) illustrates the setup with a ring-shaped mid-frequency loudspeaker array used in the first validation experi-

ment for the original model (R€am€o et al., 2016) and in the development of the real-time model in R€am€o et al. (2017a), and (b) illustrates the setup with mid-

frequency line arrays used in the second validation experiment of the original model (R€am€o et al., 2017b) and in the validation of the real-time distraction

model in this paper. Note that the number of loudspeakers depicted does not represent the actual number of loudspeakers in these setups. Adapted from R€am€o
et al. (2017b).
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targets and music interferers (music-on-speech) in zone A and

music targets and speech interferers in zone B.

Table I shows the validation results from both of the

previous experiments (R€am€o et al., 2016; R€am€o et al.,
2017b), as well as the results obtained from the training data-

set that was used in developing the model (Francombe,

2014), i.e., the two-loudspeaker setup described in Sec. II A

with music-on-music interference.

The root-mean-squared-error (RMSE) and the epsilon-

insensitive root-mean-squared-error (RMSE*) describe the

model’s goodness of fit. Both the RMSE and RMSE* take

the number of features used in the model into account, as

described in Francombe (2014) and R€am€o et al. (2017b),

while the RMSE* also considers the subjective uncertainty

in the data by utilizing the confidence intervals of the subjec-

tive data. The RMSE* considers there is an error between

the predicted and observed values only when the predicted

value lies outside the confidence interval, and then, the error

is calculated as a distance between the predicted value and

the nearest confidence interval bound.

Furthermore, correlation (R) measures the linear associ-

ation between the observed and predicted values, whereas

the R2—the coefficient of determination—describes the

amount of variance in the data explained by the model. Last,

the adjusted R2 is also aware of the number of features used

in the predictive model, which is useful in order to avoid

overfitting of the model by introducing too many features.

As can be seen in Table I, the validation results are close

to that of the dataset that was used to train the model in

Francombe (2014), suggesting that the model operates well

when used in actual complex sound-zone environments

(R€am€o et al., 2016; R€am€o et al., 2017b).

The main issue with the distraction model is that it is com-

putationally slow, and thus, cannot operate in real time. The

model takes approximately 13 min to calculate a single distrac-

tion prediction for a 10-s signal when using MATLAB and a Mid

2014 MacBook Pro (15-inch; Apple Inc., Cupertino, CA).

C. Real-time distraction model

The real-time distraction model (R€am€o et al., 2017a) was

developed based on the original model. This was motivated

by the successful validation experiments described in Sec.

II B. The approach in developing the real-time distraction

model was to utilize similar features as used in the original

model [see Eq. (1) and the feature descriptions below that],

but to replace the underlying algorithms with faster ones.

The main building block of the real-time model was cho-

sen to be the ITU-R BS.1770-4 (2015) recommendation for

multichannel loudness estimation. It was used to replace the

Glasberg–Moore loudness algorithm and the CASP model,

which were essential parts of the original distraction model

estimating features f1 and f2, and f4 and f5, respectively. The

PEASS algorithm used in the calculation of f3 could not be

directly replaced by using the ITU-loudness algorithm.

However, the calculation of the real-time version of feature 3

is still indirectly based on the ITU-loudness algorithm, since it

is estimated using the TIR calculated with the ITU-loudness

algorithm for feature 2, as shown in Eq. (4). The equation is

empirically derived, as explained in R€am€o et al. (2017a), and

it is not directly related to the PEASS algorithm.

Figure 2 shows the block diagram of the real-time dis-

traction model where the input signals are dummy head

recordings of the target audio, interfering audio, and their

combination. Furthermore, the first four blocks inside the

TABLE I. Validation results for the original distraction model. Adapted

from R€am€o et al. (2017b).

Traininga Validation Ib
Validation IIc

Statistics Music-on-music Zone B Zone A Zone B

Root-mean-squared error

(RMSE; %)

9.46 11.0 11.3 10.4

Epsilon-insensitive

root-mean-squared-error

(RMSE*; %)

4.41 5.56 4.48 5.09

R 0.94 0.99 0.98 0.99

R2 0.88 0.96 0.95 0.95

Adjusted R2 0.87 0.94 0.93 0.94

aData from Francombe (2014).
bData from R€am€o et al. (2016).
cData from R€am€o et al. (2017b).

FIG. 2. Block diagram of the real-time distraction model based on the ITU recommendation ITU-R BS.1770-4 (2015). Function block 10 log( ) is described in

Eq. (2). Adapted from R€am€o et al. (2017a).
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gray box depict the building blocks of the ITU-loudness

algorithm, where the K-filtering block consists of two cas-

caded biquad filters, one accounting for the acoustics of the

head and the other acting as a highpass filter. Only the high-

pass filter is included in the real-time distraction model since

the acoustics of the head are physically taken into account

by the dummy head. Moreover, the gating blocks are defined

to be 400 ms with 75% overlap, after which the loudness of

the jth gating block is calculated using

lj ¼ �0:691þ 10 logðzjÞ; (2)

where zj is the mean square of the jth gating block

The features of the real-time distraction model are illus-

trated in Fig. 2 and described as follows:

f 01: maximum ITU-based loudness, when both the target

and the interferer are active,

f 02: TIR based on the ITU loudness estimation,

F03: calculated based on f 02; see Eq. (4),

f 04: the range of the ITU loudness estimation of the inter-

ferer signal at high frequencies [equivalent rectangular band-

width (ERB) motivated bands 20–31],

f 05: percentage of temporal windows (400 ms, 25% over-

lap) where TIR based on the ITU loudness estimations is

less than 13 dB.

The distraction prediction ŷ0 is obtained from these fea-

tures with

ŷ0 ¼ 24:19þ 1:04f 01� 2:04f 02þF03� 0:95f 04� 0:16f 05;

(3)

where F03 is

F03 ¼
0; when f 02 < 0

2:04f 02; when 0 � f 02 � 20

�40; when f 02 > 20

:

8><
>:

(4)

The model was trained and tested with the same dataset

used in the first validation experiment of the original model

(R€am€o et al., 2016), i.e., the speech-on-music stimuli in

zone B reproduced with the sound-zone setup depicted in

Fig. 1(a). The main idea in the training of the model was to

fine-tune the model features (f 01�5) to match those of the orig-

inal model (f1–5), so it would be possible to use the same

model weights in the real-time model, in Eq. (3), as were

used in the original model in Eq. (1).

The results showed that the real-time model had a

RMSE of 10.9% compared to the RMSE of 11.0% for the

original model’s predictions of the same data (R€am€o et al.,
2017a). Thus, the accuracy of the real-time model was simi-

lar to that of the original model, while only taking 0.04% of

the computational time that was used by the original model.

Another benefit of the real-time model is that it requires only

the dummy head recordings and not the extra single channel

recording needed in the original model.

III. SOUND-ZONE SETUP

This section describes the sound-zone setup, stimuli,

and the recording procedure for the stimuli used in the vali-

dation experiment described in Secs. IV and V. The

validation setup for the real-time model, illustrated in Fig.

1(b), was the same one that was used in the second round of

validations of the original model in R€am€o et al. (2017b).

The sound-zone setup was located in a large room (279

m3) treated with absorption material, resulting in reverbera-

tion time of T20–500Hz< 0.6 s and T500–8000Hz � 0.3 s. The

setup consisted of three loudspeaker arrays [see Fig. 1(b)]:

(1) Low-frequency array: 8 subwoofers,

(2) Mid-frequency array: 2� 5-loudspeaker line arrays (one

per zone),

(3) High-frequency array: 2 cylindrical loudspeaker arrays

with 24 loudspeakers in each (one per zone).

The signal processing algorithm used to create the sound

zones is a time-domain method broadband acoustic contrast

control with pressure matching penalty (BACC-PM; G�alvez

et al., 2015; Møller and Olsen, 2016). The idea in BACC-

PM is to minimize the reproduction error in the bright zone

and the mean square pressure in the dark zone at the same

time. The performance of the BACC-PM algorithm in the

actual sound-zone setup [Fig. 1(b)] is illustrated in Figs. 3

and 4.

Figure 3 shows the measured acoustic contrast inside

the zones where the two curves illustrate the difference

between the target sound and the leaked interfering sound

from the adjacent zone when both zones were playing white

noise equally loud. The differences between the acoustic

contrast plots in zones A and B are probably due to the

room, e.g., zone B is located closer to a wall that is likely to

reflect high frequencies more efficiently to zone B than to

zone A.

By using the sound-zone setup with the BACC-PM algo-

rithm, the TIR was on average 15 dB in both zones when cal-

culated using the LAeq (10 s) values from the target and

interferer recordings. For example, if both targets in both

zones are reproduced at the level of 70 dB, as illustrated in

Fig. 4(a), both interfering audio programmes (i.e., the leaked

sound from the adjacent zone) are attenuated by 15 dB, result-

ing in interferer levels of 55 dB in both zones. This means the

TIR in both zones would be 75 dB – 55 dB¼ 15 dB.

The targets in zone A were speech signals and the tar-

gets in zone B were music signals. Moreover, since the zones

acted as interfering sound sources to each other, the inter-

ferer in zone A was the leaked music signal from zone B,

and the interferer in zone B was the leaked speech signal

from zone A.

FIG. 3. Acoustic contrast within the zones measured using white noise and

plotted with 1/3-octave smoothing.
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A. Sound-zone recordings

The stimuli set used in this validation experiment was

the same set that was used in R€am€o et al. (2017b) to validate

the original model. The stimuli set was recorded by placing

a Br€uel and Kjær (B&K, Nærum, Denmark) head-and-torso

simulator (HATS) model 4100 in the sound-zone setup. The

HATS was placed in both zones, one after another, and the

target and interferer signals in both zones were recorded sep-

arately. The binaural HATS recordings were used as stimuli

for the listening test as well as input signals for the real-time

distraction model.

The programme materials reproduced with the sound-

zone setup were the same loudness-matched speech and

music samples used in R€am€o et al. (2016). The samples

were originally acquired from radio shows in the United

Kingdom by a random radio sampling procedure described

in Francombe et al. (2014b). The recorded speech and music

samples were paired to form target-interferer pairs for both

zones. This study used the same randomly chosen pairing as

in R€am€o et al. (2016) and R€am€o et al. (2017b) in order to

allow direct comparisons to previous results.

IV. LISTENING EXPERIMENT

This section describes a listening experiment conducted

in order to obtain experimental data to be compared with the

predictions of the real-time distraction model. The listening

experiment has been previously reported and data from it

have been used to validate the original distraction model in

R€am€o et al. (2017b). Using data derived from the same lis-

tening experiment as before gives us the possibility to com-

pare the performance of the real-time model to that of the

original model in Sec. V.

A. Stimuli

The stimuli set was built by having 31 music and speech

sample pairs loudness matched to produce the maximum

LTL of 70 dB in the their target zone (R€am€o et al., 2016).

The first sample pair had a zero gain for both samples (i.e.,

both samples were equally loud in their target zone). After

that, a gain was applied to one of the samples so that, first,

the level of the target stimuli were kept constant at 70 dB

and the level of the interferer stimuli were reduced by

between 2 and 30 dB with 2 dB increments. This was also

done the other way around, where the levels of the interferer

stimuli were kept constant while the levels of the target stim-

uli were reduced. This way, every stimuli pair had a different

TIR in the range from �15 to þ45 dB with the increment of

2 dB. Note that the TIR is also different depending in which

zone you are listening to the stimuli pair. For example, if the

speech target is reproduced at 70 dB and the music target at

50 dB, the TIR in zone A would be 35 dB and in zone B it

would be �5 dB, as illustrated in Fig. 4(b).

In addition to the 31 sample pairs, 5 reference stimuli

were included in the experiment. The references had only

the target sound and no interferer whatsoever. The references

were added in order to check whether the participants had

understood the task at hand correctly or not. Furthermore,

four of the normal sample pairs were randomly chosen to be

repeated during the test (same samples for all subjects) in

order to see how consistently the participants were able to

rate them. In total, this resulted in 40 stimuli pairs that the

participants were asked to evaluate in both zones.

B. Design

The listening test was conducted by using a pair of

Sennheiser HD 600 headphones (Wedemark, Germany) to

reproduce the above described stimuli set consisting of bin-

aural HATS recordings with varying TIRs. It is generally

known that headphone reproduction might have some issues

while reproducing spatial aspects of recorded sound fields.

However, the perceptual attributes used to evaluate audio-

on-audio interference, like distraction evaluated in this

paper, are not spatial by nature (Francombe et al., 2014a).

The main motivations, on the other hand, for using

headphone reproduction in our listening experiments in the

first place were to avoid visual bias and enable scalability

since we have experimented with two different sound-zone

setups (so far), and practicality, allowing us to conduct lis-

tening experiments in multiple geographical locations

(R€am€o et al., 2016; R€am€o et al., 2017b) without building

multiple replicas of the quite complex sound-zone setups.

The listening level of the headphones was adjusted so

the target stimuli, without any gain reductions applied to

them, were reproduced at 70 dB with A-weighting. The level

and the calibration procedure were the same as used before

in R€am€o et al. (2016), where the headphone level was

adjusted using a B&K HATS (model 4128), including its dif-

fuse field correction.

FIG. 4. Example TIRs gained from the sound-zone signal processing in the

validation setup [Fig. 1(b)]. At the top, the solid lines depict the target sound

(with normalized level at 0 dB) and the dashed lines illustrate the leaked

interfering sound (attenuated by 15 dB compared to the target level). The

example scenarios (a) and (b) illustrate how the level of the target pro-

grammes affect the TIRs in the two zones.
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In the listening experiment, the participants were asked

to rate the distraction they were experiencing due to the

interfering sound leaking from the adjacent zone. The graph-

ical user interface1 (GUI), shown in Fig. 5, was a modified

version of the interface used in Francombe (2014) and R€am€o
et al. (2016). The GUI defined distraction as “how much the

alternate audio pulls your attention or distracts you from the

target audio.” The participants were presented eight stimuli

per page with a slider for each stimulus. The sliders were

unmarked except for the endpoint labels “not at all dis-

tracting” and “overpowered.” The endpoint labels were

located at values 10 and 90, while the full scale for the

sliders was from 0 to 100, which is the same scale as used by

the perceptual models. There were five pages in total, and

each page contained a hidden reference—a target sound

without any interferer.

Twenty-five persons participated in the listening experi-

ment. They were aged between 21 and 60 yr. Twenty of

them conducted the experiment at Aalborg University in

Aalborg, Denmark, while the remaining five participants

underwent the experiment at Bang & Olufsen premises in

Struer, Denmark. Both groups used the exact same equip-

ment during the listening experiment. There were both naive

and more experienced listeners in the group of participants.

The hearing of each participant was tested with an audi-

ometry test. No one was excluded from the experiment

because of hearing loss, while the thresholds for exclusion

were defined as a moderate hearing loss in one of the ears

(45 dB hearing level or more) or mild hearing loss in both

ears (25 dB hearing level or more).

C. Results

Figure 6 shows box plots of the listening experiment

results for both zones, zone A in Fig. 6(a) and zone B in Fig.

6(b). The horizontal line inside each box shows the median

of the distraction estimates for each sample pair, while the

bottom of the box shows the 25th percentile and the top of

the box shows the 75th percentile of the data. Furthermore,

the whiskers extend a maximum of 1.5 times the height of

the boxes, whereas the plus (þ) markers depict outliers that

do not fit within the whiskers. The numbers next to each out-

lier show the number of the participant in question.

Furthermore, the five cases on the right-hand side of the ver-

tical dashed line, in both Figs. 6(a) and 6(b), are the referen-

ces, where there are no interferers present, and thus, the

TIRs in these cases are marked as infinite. The horizontal

dashed lines depict the distraction values of 10 and 90,

where the endpoint labels were located in the GUI of the lis-

tening experiment; see Fig. 5.

The x axis shows the TIR of the stimuli inside the zone

where the effect of the sound-zone signal processing is taken

into account, as described in Sec. IV A and illustrated in Fig.

4. That is, when the TIR is 15 dB, both of the zones are play-

ing their targets equally loud. With TIRs> 15 dB, it means

that the target level was kept constant at 70 dB and the level

of the interferer was decreased, and with TIRs< 15 dB, it is

the opposite, i.e., the interferer level was kept constant while

the target level was decreased.

When TIR is zero, the levels of the target sound and the

interferer sound inside a zone are the same, which can be

compared to a scenario where one would have two loud-

speakers, one for the target and one for the interferer, playing

equally loud without any sound-zone signal processing.

Furthermore, as can be seen in Figs. 6(a) and 6(b), when

TIR< 0 dB, almost all subjects rated the scenarios to be dis-

tracting (>50), while the median values were over 80, i.e.,

highly distracting.

As the TIR increased, the distraction ratings decreased,

as expected, since the target audio became more prominent.

When TIRs were approximately between 0 and 28 dB, there

was a lot of variance in the subjects’ distraction ratings (i.e.,

tall boxes), probably because different people actually have

quite a different standpoint as to what is distracting and what

is not. However, after the TIR was above approximately

25 dB in zone A and 29 dB in zone B, the variance of the rat-

ings plummeted and the participants seemed to have reached

a consensus that the scenarios were not distracting anymore.

Before comparing the listening test results to the predic-

tions of the model, a prescreening of the data was conducted

FIG. 5. GUI for the listening experi-

ment, implemented with Max/MSP.
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in order to see whether the participants had correctly under-

stood the task at hand or not, and if they had, could they pro-

vide consistent distraction ratings to the stimuli. The

prescreening was conducted based on the hidden reference

stimuli and the repeated stimuli that were included in the lis-

tening experiment.

Before the actual prescreening of the data, it can be

clearly seen in Figs. 6(a) and 6(b) that participant no. 1 had

somehow misunderstood the task, since they have 17 outliers

in zone A ratings and 20 in zone B ratings, most of them at

the opposing end of the distraction scale compared to the

general opinion of the other participants. On top of that,

participant no. 1 failed both repeatability and reliability tests

in both zones, and thus, was excluded from all further analy-

sis, including the prescreening of the references and repeated

stimuli, discussed in Secs. IV D and IV E.

D. Prescreening: References

The threshold for the reference ratings was defined so

that all of the references must be rated at “not at all dis-

tracting.” In practice, all references had to be rated to be less

than or equal to 10 on the distraction scale, i.e., where the

“not at all distracting” label was placed in the GUI. Most of

FIG. 6. Results of the listening experiment where (a) shows a box plot of zone A ratings and (b) shows a box plot of zone B ratings. The plus (þ) markers

depict outliers and the numbers next to them show the number of the participant in question.
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the references were correctly rated to be near 0 by all partici-

pants, as can be seen in Figs. 6(a) and 6(b), however, there

were two reference stimuli in zone A and one stimulus in

zone B that were rated incorrectly by one or more partici-

pants (excluding participant no. 1, as explained above).

In zone A, there were three subjects that failed to rate one

of the references below 10 on the distraction scale. Participant

no. 6 gave the rating of 11 for the fourth reference (from the

left) in Fig. 6(a), and thus, was excluded from further analysis

based on the reference threshold. The ratings of participants

nos. 9 and 14 for the second reference (from the left) raised

some suspicions, since these two participants who were able

to identify all other references correctly gave ratings as high

as 23 and 25 for this one reference stimulus. It turned out that

the target speech sample, recorded from a radio show, had

also music in the background, starting after 5 s from the start

of the sample. We suspect that the two participants mistook

the music that was part of the target radio programme as being

an interfering programme from the adjacent zone. It was

decided not to exclude either of the participants from further

analysis due to the ambiguous reference stimulus.

In zone B, there was only one participant (no. 7) who

failed to give a correct rating to one of the reference stimuli

[see Fig. 6(b)] and had to be excluded from the final analysis.

All in all, the music references in zone B were consistently

rated to 0 (slightly better than the speech references in zone

A), as can be seen from the low variance in the reference rat-

ings in Fig. 6(b).

E. Prescreening: Repeats

Figure 7 illustrates the ratings of the repeated stimuli

used to evaluate the participants’ consistency when rating

the stimuli. The gray bars show the results in zone A and the

black bars show the results in zone B. Each bar illustrates

the mean of the absolute difference of a subject’s ratings for

the four repeated stimuli that were presented during the

experiment. The gray and black solid lines show the overall

mean across the subjects for zones A and B, respectively,

while the dashed lines show the mean plus one standard

deviation (SD), which was also used as a threshold for the

repeatability screening, similarly as in Francombe (2014).

Note that participant no. 1 is not included in Fig. 7 (as

explained in Sec. IV C).

As can be seen in Fig. 7, for zone A there were three

bars (participants) that were above the gray dashed line,

illustrating the threshold. Thus, participant nos. 14, 16, and

25 were excluded from the final analysis of the zone A

results. For zone B, there were five black bars above the

threshold (black dashed line), namely, participant nos. 8, 11,

16, 20, and 22, and thus, they were also excluded from fur-

ther analysis of the results.

V. MODEL PERFORMANCE

To summarize the prescreening results, there were four

participants excluded from further analysis in zone A and six

participants excluded from zone B, based on the evaluation

of their ratings of the reference stimuli and the repeated

stimuli. On top of that, participant no. 1 was removed from

both zones, thus, leaving 20 valid participants in zone A and

18 in zone B. Furthermore, the references and repeated stim-

uli were removed from the dataset used to report the perfor-

mance of the model in this section.

Figure 8 plots the prescreened data from the listening

experiment as well as the predictions of the original distrac-

tion model [Figs. 8(a) and 8(b)] and the real-time distraction

model [Figs. 8(c) and 8(d)] for both zones. The cross

markers (�) depict the means of the experimental data

accompanied with 95% confidence intervals calculated from

the t-distribution, while the round markers (�) show the

models’ predicted values. The vertical dashed line in the

middle shows the point where TIR is 15 dB and both zones

are playing equally loud.

It is worth mentioning that although the experimental

data used to validate the performance of the real-time model

in this section are derived from the same listening experi-

ment as utilized in R€am€o et al. (2017b), the experimental

results for zone B are somewhat different than reported in

R€am€o et al. (2017b). This is due to a slightly different pre-

screening procedure resulting in the exclusion of four more

participants from zone B results than in R€am€o et al. (2017b).

The effect can be seen when comparing the results of the

original model in zone B in Table I (last column) and Table

II (second column).

FIG. 7. Repeatability of the selected

stimuli. The two solid lines show the

overall mean and the dashed lines

show the repeatability threshold—

mean plus one standard deviation

(SD)—for all participants in zone A

(gray) and zone B (black).
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As can be seen in Figs. 8(c) and 8(d), the predictions of

the real-time model were quite accurate when compared to

the experimental results. In zone A results [Fig. 8(c)] there

was only one clear misprediction when the TIR was 5 dB,

while in zone B [Fig. 8(d)] there were two predictions that

were clearly off, one overestimation and one underestima-

tion, at TIR values of 1 dB and 7 dB, respectively.

The fact that the above-mentioned poorer predictions

occurred at TIRs less than 10 dB is actually not so critical in

practice as it would be with larger TIRs since it does not

make a large difference what the actual distraction rating is,

if it is distracting in any case. However, underestimations

can be detrimental also in practice, i.e., when the model

would suggest a certain scenario is not distracting, while

actually it is perceived to be distracting, as was the case in

Fig. 8(d) at TIR¼ 7 dB.

Figure 9 plots the predicted distraction against the

observed distraction for both zones and both models. Figures

9(a)–9(d) illustrate the balance of over- and underpredictions

in different cases. The cross markers that are above the y¼ x

dashed line are overpredictions, and the markers that are

below the dashed line are underpredictions. For example,

Fig. 9(c) shows that the real-time model in zone A operates

well with only a few underpredictions. Moreover, two of

those were in the range where the observed distraction was

around 90, which, as mentioned before, does not matter in

practical applications.

Table II shows the results in the form of statistics calcu-

lated based on the experimental data and predicted data,

shown in Figs. 8(a)–8(c). The statistics in Table II show that

the real-time model’s predictions were slightly more accu-

rate in zone A (RMSE¼ 10.2%) than in zone B

(RMSE¼ 12.6%), which is a good result, while at the same

time a bit surprising since both the original model and the

real-time model were trained using music targets, corre-

sponding more to zone B than to zone A.

When TIR was approximately 10 dB or more, the pre-

dictions of the real-time model were accurate in both zones,

i.e., almost all predictions were within the confidence inter-

vals, as shown in Figs. 8(c) and 8(d). Furthermore, when the

accuracy was evaluated within the TIR range from 0 to

20 dB—the range where current sound-zone systems oper-

ate—the RMSE values were 7.2% and 11.2% for zones A

and B, respectively. These values are slightly better com-

pared to the full-range RMSE values shown in Table II, indi-

cating the model’s capability of providing accurate

distraction predictions in the general sound-zone operating

range.

As a result, the fact that the model was able to operate

well in both zones is rather significant since it suggests that a

single model can be used to evaluate the whole sound-zone

system, consisting of both speech and music programmes.

FIG. 8. Predictions of the distraction models compared against the subjective data from the listening experiment. The cross markers (�) show the mean of the

subjective distraction ratings and the error bars indicate 95% confidence intervals. The round markers (�) show the predicted values of the distraction models,

(a) and (b) show the predictions of the original model and (c) and (d) show the predictions of the real-time model. The vertical dashed line, in each figure, indi-

cates the point where both zones are playing equally loud, i.e., TIR¼ 15 dB. (a) and (b) are adapted from R€am€o et al. (2017b).

TABLE II. Validation results of the real-time model, compared against that

of the original model.

Original model Real-time model

Statistics Zone A Zone B Zone A Zone B

RMSE (%) 11.3 11.5 10.2 12.6

RMSE* (%) 4.48 5.21 3.29 7.23

R 0.98 0.99 0.98 0.98

R2 0.95 0.96 0.96 0.95

Adjusted R2 0.93 0.94 0.94 0.93
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Furthermore, the prediction accuracy is comparable to that

of the original model, as shown in Figs. 8 and 9, and in

Table II, suggesting that the real-time model can be used to

predict user-experienced distraction instead of the much

slower original model.

VI. CONCLUSION

This paper concentrated on validating a real-time percep-

tual model that predicts the distraction experienced by users

in audio-on-audio interference situations. The real-time model

is based on a previous distraction model, which has been vali-

dated in two different sound-zone setups in order to ensure

that the model works correctly in real-life audio-on-audio

interference scenarios. The real-time model estimates similar

features as the original model, but utilizes different, faster

algorithms to obtain these features, the main one being the

ITU-R BS.1770-4 (2015) loudness estimation algorithm.

A listening experiment was conducted in order to get

subjective data on different situations within a sound-zone

environment, including different TIRs and different music

and speech targets and interferers. The data from the listen-

ing experiment were then compared against the predictions

of the real-time model, and the performance was also com-

pared to that of the original model.

The results of the real-time model are highly compara-

ble to those of the original model, indicating that the real-

time model is able to provide accurate predictions. The

RMSEs for the real-time model were 10.2% and 12.6% for

zones A and B, respectively, while the corresponding

RMSEs for the original model were 11.3% and 11.5%,

respectively.

The main benefit of the real-time model over the orig-

inal distraction model is its improvement in computational

speed. For the original model, it takes approximately

13 min to calculate a single distraction prediction for a 10-

s sample, while the real-time model is able to produce a

prediction in 0.3 s. In practice, this means that the real-

time model can be used to monitor the performance of a

sound-zone system continuously while the sound-zone

setup is active, which was not possible with the original

distraction model.

The real-time distraction model can be used as a tool

when designing, evaluating, and monitoring sound-zone sys-

tems. Furthermore, one major benefit of the real-time capa-

bility of the model is that the distraction predictions could be

used as a control parameter for adaptive sound-zone systems,

where the performance of the system can be optimised in

real time, based on, e.g., current programme materials, num-

ber or location of users, or available loudspeaker configura-

tions. Moreover, the use of the model is not limited in

sound-zone environments, but could also be utilized in other

applications where audio-on-audio interference is present.
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1Originally based on a Max/MSP patcher for MUSHRA listening tests,

available from https://github.com/IoSR-Surrey/MUSHRA-MaxMSP (Last

viewed 28 June 2018).
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