3,777 research outputs found

    A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment

    Full text link
    Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis

    COMPACT: biometric dataset of face images acquired in uncontrolled indoor environment

    Get PDF
    Biometric databases are important components that help to improve state-of-the-art recognition performance. The availability of more and more difficult data attracts the researchers' attention, who systematically develop novel recognition algorithms and increase identification accuracy. Surprisingly, most of the popular face datasets, like LFW or IJBA are not fully unconstrained. The majority of the available images were not acquired on-the-move, which reduces the amount of blur caused by motion or incorrect focusing. Therefore, in this paper, the COMPACT database for studying less-cooperative face recognition is introduced. The dataset consists of high-resolution images of 108 subjects acquired in a fully automated manner as people go through the recognition gate. This ensures that the collected data contains the real world degradation factors: different distances, expressions, occlusions, pose variations and motion blur. Additionally, the authors conducted a series of experiments that verify face recognition performance on the collected data

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future

    People detection in surveillance: Classification and evaluation

    Full text link
    This paper is a postprint of a paper submitted to and accepted for publication in IET Computer Vision and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library and at IEEE Xplore.Nowadays, people detection in video surveillance environments is a task that has been generating great interest. There are many approaches trying to solve the problem either in controlled scenarios or in very specific surveillance applications. The main objective of this study is to give a comprehensive and extensive evaluation of the state of the art of people detection regardless of the final surveillance application. For this reason, first, the different processing tasks involved in the automatic people detection in video sequences have been defined, then a proper classification of the state of the art of people detection has been made according to the two most critical tasks, object detection and person model, that are needed in every detection approach. Finally, experiments have been performed on an extensive dataset with different approaches that completely cover the proposed classification and support the conclusions drawn from the state of the art.This work has been partially supported by the Spanish Government (TEC2011-25995 EventVideo)

    Substracción de fondo y algoritmo yolo: Dos métodos para la detección de personas en entornos descontrolados

    Get PDF
    Introduction: This article is the result of research entitled “Signal processing system for the detection of people in agglomerations in areas of public space in the city of Cúcuta”, developed at the Universidad Francisco de Paula Santander in 2020.Problem: The high percentage of false positives and false negatives in people detection processes makes decision making in video surveillance, tracking and tracing applications complex. Objective: To determine which technique for the detection of people presents better results in terms of respon-se time and detection hits.Methodology: Two techniques for the detection of people in uncontrolled environments are validated in Python with videos taken inside the Universidad Francisco de Paula Santander: Background subtraction and the YOLO algorithm.Results: With the background subtraction technique, we obtained a hit rate of 84.07 % and an average response time of 0.815 seconds. Likewise, with the YOLO algorithm the hit rate and average response time are 90% and 4.59 seconds respectively.Conclusion: It is possible to infer the use of the background subtraction technique in hardware tools such as the Pi 3B+ Raspberry board for processes in which the analysis of information in real time is prioritized, while the YOLO algorithm presents the characteristics required in the processes in which the information is analyzed after the acquisition of the image.Originality: Through this research, aspects required for the real-time analysis of information obtained in pro-cesses of people detection in uncontrolled environments were analyzed. Limitations: The analyzed videos were taken only at the Universidad Francisco de Paula Santander. Also, the Raspberry Pi 3B+ board overheats when processing the video images, due to the full resource requirement of the device.Introducción: Este artículo es resultado de la investigación titulada “Sistema de procesamiento de señales para la detección de personas en aglomeraciones en zonas de espacio público de la ciudad de Cúcuta”, desarrollada en la Universidad Francisco de Paula Santander en el año 2020.Problema: El alto porcentaje de falsos positivos y falsos negativos en los procesos de detección de personas hace que la toma de decisiones en las aplicaciones de videovigilancia, seguimiento y localización sea compleja. Objetivo: Determinar qué técnica de detección de personas presenta mejores resultados en cuanto a tiempo de respuesta y aciertos en la detección.Metodología: Dos técnicas para la detección de personas en entornos no controlados son validadas en Python con videos tomados dentro de la Universidad Francisco de Paula Santander: la sustracción de fondo y el al-goritmo YOLO.Resultados: Con la técnica de sustracción de fondo se obtuvo una tasa de acierto del 84,07 % y un tiempo de respuesta medio de 0,815 segundos. Asimismo, con el algoritmo YOLO, la tasa de acierto y el tiempo de respuesta promedio son del 90% y 4,59 segundos respectivamente.Conclusión: Es posible inferir el uso de la técnica de sustracción de fondo en herramientas de hardware como la placa Raspberry Pi 3B+ para procesos en los que se prioriza el análisis de la información en tiempo real, mientras que el algoritmo YOLO presenta las características requeridas en los procesos en los que se analiza la información después de la adquisición de la imagen.Originalidad: A través de esta investigación se analizaron los aspectos necesarios para el análisis en tiempo real de la información obtenida en los procesos de detección de personas en ambientes no controlados

    Naval Reserve support to information Operations Warfighting

    Get PDF
    Since the mid-1990s, the Fleet Information Warfare Center (FIWC) has led the Navy's Information Operations (IO) support to the Fleet. Within the FIWC manning structure, there are in total 36 officer and 84 enlisted Naval Reserve billets that are manned to approximately 75 percent and located in Norfolk and San Diego Naval Reserve Centers. These Naval Reserve Force personnel could provide support to FIWC far and above what they are now contributing specifically in the areas of Computer Network Operations, Psychological Operations, Military Deception and Civil Affairs. Historically personnel conducting IO were primarily reservists and civilians in uniform with regular military officers being by far the minority. The Naval Reserve Force has the personnel to provide skilled IO operators but the lack of an effective manning document and training plans is hindering their opportunity to enhance FIWC's capabilities in lull spectrum IO. This research investigates the skill requirements of personnel in IO to verify that the Naval Reserve Force has the talent base for IO support and the feasibility of their expanded use in IO.http://archive.org/details/navalreservesupp109451098
    corecore