1,774 research outputs found

    Improved Third Order PID Sliding Mode Controller for Electrohydraulic Actuator Tracking Control

    Get PDF
    An electrohydraulic actuator (EHA) system is a combination of hydraulic systems and electrical systems which can produce a rapid response, high power-to-weight ratio, and large stiffness. Nevertheless, the EHA system has nonlinear behaviors and modeling uncertainties such as frictions, internal and external leakages, and parametric uncertainties, which lead to significant challenges in controller design for trajectory tracking. Therefore, this paper presents the design of an intelligent adaptive sliding mode proportional integral and derivative (SMCPID) controller, which is the main contribution toward the development of effective control on a third-order model of a double-acting EHA system for trajectory tracking, which significantly reduces chattering under noise disturbance. The sliding mode controller (SMC) is created by utilizing the exponential rule and the Lyapunov theorem to ensure closed-loop stability. The chattering in the SMC controller has been significantly decreased by substituting the modified sigmoid function for the signum function. Particle swarm optimization (PSO) was used to lower the total of absolute errors to adjust the controller. In order to demonstrate the efficacy of the SMCPID controller, the results for trajectory tracking and noise disturbance rejection were compared to those obtained using the proportional integral and derivative (PID), the proportional and derivative (PD), and the sliding mode proportional and derivative (SMCPD) controllers, respectively. In conclusion, the results of the extensive research given have indicated that the SMCPID controller outperforms the PD, PID, and SMCPD controllers in terms of overall performance.

    Neural MRAC based on modified state observer

    Get PDF
    A new model reference adaptive control design method with guaranteed transient performance using neural networks is proposed in this thesis. With this method, stable tracking of a desired trajectory is realized for nonlinear system with uncertainty, and modified state observer structure is designed to enable desired transient performance with large adaptive gain and at the same time avoid high frequency oscillation. The neural network adaption rule is derived using Lyapunov theory, which guarantees stability of error dynamics and boundedness of neural network weights, and a soft switching sliding mode modification is added in order to adjust tracking error. The proposed method is tested by different theoretical application problems simulations, and also Caterpillar Electro-Hydraulic Test Bench experiments. Satisfying results show the potential of this approach --Abstract, page iv

    A novel design and control solution for an aircraft sidestick actuator based on Halbach permanent magnet machine

    Get PDF
    This paper is concerned with the design and control of a new sidestick actuators used to handle a civilian aircraft behaviour. Indeed, a discrete robust adaptive sliding mode control for a new designed aircraft sidestick based on synchronous Halbach permanent magnet machine. The main objective is to provide a new design structure and a control solution that ensures maintaining high performance specifications for the actuator and respects the set of constraints required by the considered aeronautical application. Indeed, this study achieved in a partnership with an industrial center of excellence for Fly by Wire Cockpit Controls (side sticks, rudder controls, thrust controls), proposes a novel design that enhances the characteristics of the actuator’s structure and the human machine interface between the pilot and the aircraft. Then, a new control strategy is proposed to optimize the efficiency of this actuator for the considered application. It is based on a discrete optimal adaptive sliding mode control considering time delays and uncertainties in the model by using a delay ahead predictor. The proposed strategy combines an optimal sliding mode surface with the delay ahead predictor in an adaptive control structure. Indeed, a varying parameter is used to achieve an ”on-line” adaption to the varying level of disturbances that affects the system. Then, since the sidestick actuator is designed to handle an aircraft displacement, the proposed control strategy is designed for position tracking. Simulations performed on the previously designed actuator prove the efficiency of the proposed technological solution for aircraft position control

    Position Tracking Performance for ElectroHydraulic Actuator System with the Presence of Actuator Internal Leakage

    Get PDF
    Electro-hydraulic actuator (EHA) system is known as one of the highly nonlinear systems due to its parameters uncertainties. Many types of robust controller had been studied and proposed to control the nonlinear EHA system. Different parameters uncertainties test is needed in the procedure to evaluate the controller robustness. In this paper, the effect of the actuator internal leakage to the output actuator displacement is studied. The actuator output displacement is analyzed using Root Mean Square Error (RMSE) by means of giving sinusoidal input reference. The results show that as the actuator internal leakage increases, the RMSE will increase and the actuator will start to vibrate or show damping characteristics

    Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems

    Full text link
    An adaptive-gain super-twisting sliding mode observer is proposed for fault reconstruction in electro-hydraulic servo systems (EHSS) receiving bounded perturbations with unknown bounds. The objective is to address challenging problems in classic sliding mode observers: chattering effect, conservatism of observer gains, strong condition on the distribution of faults and uncertainties. In this paper, the proposed super-twisting sliding mode observer relaxes the condition on the distribution of uncertainties and faults, and the gain adaptation law leads to eliminate observer gain overestimation and attenuate chattering effects. After using the equivalent output-error-injection feature of sliding mode techniques, a fault reconstruction strategy is proposed. The experimental results are presented, confirming the effectiveness of the proposed adaptive super-twisting observer for precise fault reconstruction in electro-hydraulic servo systems.Comment: Final versio

    An Alternative Nonlinear Lyapunov Redesign Velocity Controller for an Electrohydraulic Drive

    Get PDF
    This research aims at developing control law strategies that improve the performances and the robustness of electrohydraulic servosystems (EHSS) operation while considering easy implementation. To address the strongly nonlinear nature of the EHSS, a number of control algorithms based on backstepping approach is intensively used in the literature. The main contribution of this paper is to consider an alternative approach to synthetize a Lyapunov redesign nonlinear EHSS velocity controller. The proposed control law design is based on an appropriate choice of the control lyapunov function (clf), the extension of the Sontag formula and the construction of a nonlinear observer. The clf includes all the three system variable states in a positive define function. The Sontag formula is used in the time derivative of our clf in order to ensure an asymptotic stabilizing controller for regulating and tracking objectives. A nonlinear observer is developed in order to bring to the proposed controller the estimated values of the first and the second time output derivatives. The design, the tuning implementation and the performances of the proposed controller are compared to those of its equivalent backstepping controller. It is shown that the proposed controller is easier to design with simple implementation tuning while the backstepping controller has several complex design steps and implementation tuning issue. Moreover, the best performances especially under disturbance in the viscous damping are achieved with the proposed controller

    Constrained Motion Control of an Independent Metering System with Uncertain Loads

    Get PDF
    Independent metering systems (IMSs) have been applied and researched in mobile machinery due to their advantages of reduced throttling energy losses and remarkable advances under negative load through decoupling actuator throttling control. Although IMSs have the control flexibility to deal with negative workloads, the control performance of the IMSs is challenged by uncertain loads in mobile operations, limiting the control accuracy. In addition, if the motion reference is improperly specified and exceeds the constraints, the pressure of the actuator may oscillate significantly and potentially result in control instability. In this study, a constrained adaptive robust control strategy is proposed for an IMS. An adaptive robust control strategy is designed for the meter-in and meter-out throttling to achieve precision motion control despite the nonlinearities and uncertainties of the electro-hydraulic IMS. The value of the uncertain workload is estimated in real-time and utilized in the model-based controller to improve control accuracy. In addition, a constrained trajectory planning approach is presented to handle out-of-constraint references and ensure motion tracking performance. This effectively prevents pressure fluctuations caused by the inappropriate reference

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    An Active Disturbance Rejection Control Solution for Electro-Hydraulic Servo Systems

    Get PDF
    The intriguing history of disturbance cancellation control is reviewed in this thesis first, which demonstrates that this unique control concept is both reasonable and practical. One novel form of disturbance cancellation, ADRC (Active Disturbance Rejection Control), attracts much attention because of its good disturbance rejection ability and simplicity in implementation. Hydraulic systems tend to have many disturbances and model uncertainties, giving us a great motivation to find out a good control method. In this thesis, electro-hydraulic servo control problem is reformulated to focus on the core problem of disturbance rejection. An ADRC solution is developed and evaluated against the industry standard solution, with promising result
    • …
    corecore