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ABSTRACT 

A new model reference adaptive control design method with guaranteed transient 

performance using neural networks is proposed in this thesis.   With this method, stable 

tracking of a desired trajectory is realized for nonlinear system with uncertainty, and 

modified state observer structure is designed to enable desired transient performance with 

large adaptive gain and at the same time avoid high frequency oscillation. The neural 

network adaption rule is derived using Lyapunov theory, which guarantees stability of 

error dynamics and boundedness of neural network weights, and a soft switching sliding 

mode modification is added in order to adjust tracking error.  

The proposed method is tested by different theoretical application problems 

simulations, and also Caterpillar Electro-Hydraulic Test Bench experiments. Satisfying 

results show the potential of this approach. 
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SECTION 

1.  INTRODUCTION 

Applications of artificial neural networks in the field of control have been 

developed for decades. Neural networks’ universal function approximation property can 

be useful in solving control problems. Various adaptive control techniques using neural 

networks were put forward. 

At the same time, based on the philosophy of feedback linearization, dynamic 

inversion is developed for nonlinear control design. In this approach, an co-ordinate 

transformation is carried out to make the system dynamics take a linear form, then linear 

design methods could be taken, and based on this method, model reference adaptive 

control(MRAC) is developed. The drawback of dynamic inversion is its sensitivity to 

modeling errors and parameter inaccuracies while neural networks technique is able to 

cancel out the inversion error. The neural networks are trained online using a Lyapunov-

based approach. 

Though it provides stability, to reduce tracking error, it is required to increase 

adaption gain, and for conventional mode reference adaptive control it usually leads to 

oscillation in neural network output, as a result the control signal will oscillate. In many 

control application scenarios, unwanted oscillation in control signal may eventually lead 

to failure of the system. 

The objective of this thesis is to present an approach using neural network 

controller based on with modified predictor structure, which prevents high frequency 

oscillation in high adaption gain, and combines with a soft-switching sliding mode 

modification, which ideally reduce tracking error.  In paper 1, the method is introduced 

and applied in theoretical application of robot-arm motion and ship steering control; In 

paper 2, a missile autopilot control problem is taken to show the method’s ability in 

reducing oscillation and tracking error; In paper 3, the method is applied in a Caterpillar 

Electro-Hydraulic test bench for piston velocity tracking control purpose, and satisfying 

experimental results show its potential. 
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ABSTRACT 

A new model reference adaptive control design method using neural networks 

that guarantees transient performance is proposed in this paper.   Stable tracking of a 

desired trajectory can also be achieved for nonlinear systems that operate under 

uncertainties. A modified state observer structure is designed to enable desired transient 

performance fast with large adaptive gains and at the same time avoid high frequency 

oscillations during uncertainty learning. The neural network adaptation rule is derived 

using Lyapunov theory, which guarantees stability of error dynamics and boundedness of 

neural network weights. An extra term is added in the controller expression using a ‘soft 

switching’ sliding mode that can be used to adjust tracking errors. Analytical bounds are 

derived and simulation results from two representative problems are presented to 

demonstrate the performance of the developed  control technique. 

1. INTRODUCTION 

 The field of artificial neural networks and its application to control systems has 

seen phenomenal growth in the last two decades. The origin of research on artificial 

neural networks can be traced back to 1940s [1]. In 1990, a compiled book was published 

[2] detailing various applications of artificial neural networks. A good survey paper 

appeared in 1992 [3], which outlined various applications of artificial neural networks to 

PAPER 

I. Development and Time Domain Analysis of  

a New Model  Reference Adaptive Controller  

Y. Yang, S. N. Balakrishnan 
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control system design. The main philosophy that is exploited in system theory 

applications is the universal function approximation property of neural networks [4]. 

Benefits of using neural networks for control applications include its ability to effectively 

control nonlinear plants while adapting to unmodeled dynamics and time-varying 

parameters.  

 In 1990, a paper by Narendra and Parthasarathy demonstrated the potential and 

applicability of neural networks for the identification and control of nonlinear dynamical 

systems [5]. The authors suggested various architectures as well as learning algorithms 

useful for identification and adaptive control of nonlinear dynamic systems using 

recurrent neural networks. Since then, Narendra and his co-workers have come up with a 

variety of useful adaptive control design techniques using neural networks, including 

applications concerning multiple models [6].  

 In 1992, Sanner and Slotine [7] developed a direct adaptive tracking control 

architecture with Gaussian Radial Basis Function (RBF) networks to compensate for 

plant nonlinearities. The update process also kept the weights of the neural networks 

bounded. In 1996, Lewis et al. [8] proposed an online neural network that approximated 

unknown functions and it was used in designing a controller for a robot. Their approach 

avoided some of the limiting assumptions (like linearized models) of traditional adaptive 

control techniques. More important, their theoretical development also provided a 

Lyapunov stability analysis that guaranteed both tracking performance as well as 

boundedness of weights. However, the applicability of this technique was limited to 

systems which could be expressed in the “Brunovsky form” [9] and which were affine in 

the control variable (in state space form). A robust adaptive output feedback controller 

for SISO systems with bounded disturbance was studied by Aloliwi and Khalil [10]. In a 

more recent paper, an adaptive output feedback control scheme for the output tracking of 

a class of nonlinear systems was presented by Seshagiri and Khalil using RBF neural 

networks [11].  

 A relatively simpler and popular method of nonlinear control design is the 

technique of dynamic inversion (e.g. [12, 13, 14]), which is essentially based on the 

philosophy of feedback linearization [9, 15]. In this approach, an appropriate co-ordinate 

transformation is carried out to make the system dynamics take a linear form. Linear 
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control design tools are then used to synthesize the controller. A drawback of this 

approach is its sensitivity to modeling errors and parameter inaccuracies. One way of 

addressing the problem is to augment the dynamic inversion technique with the H∞  

robust control theory [14]. Important contributions have come from Calise and his co-

workers in a number of publications (e.g. [16 - 20]), who have proposed to augment the 

dynamic inversion technique with neural networks so that the inversion error is cancelled 

out. The neural networks are trained online using a Lyapunov-based approach (similar to 

the approach followed in [7] and [8]). This basic idea has been extended to a variety of 

cases, namely output based control design [19, 20], reconfigurable control design [21] etc. 

The feasibility and usefulness of this technique has been demonstrated in a number of 

applications in the field of flight control.  

MRAC has been widely applied recently to solve control problems for system 

with matched unmodeled dynamics [22][23]. With MRAC, it is difficult to achieve a 

desired(fast) transient performance and avoid unwanted high frequency oscillations at the 

same time when uncertainties are present. It is due to the fact that high gains are required 

typically to learn the uncertainties online. If neural networks are used to represent 

uncertainties, this process necessarily results in an uncertainty model showing 

oscillations during the transient learning period before the weights stabilize. Use of 

dynamic inversion to cancel the uncertainties during learning then leads to oscillatory 

control signals which if unchecked could excite the unmodeled high frequency dynamics 

of the plant and lead to instability. Various NN-based MRAC methods have been recently 

developed (for example, [24][25]) to address the issue of boundedness of tracking errors. 

Modification to the adaptive law such as σ-modification [26], e-modification [27] have 

been introduced. These methods modify the adaptive law by adding a factor depending 

on the prediction error and ensure the convergence of parameter estimation. Moreover, 

when close to steady state conditions, the modification term becomes inactive and 

therefore, the estimation accuracy is guaranteed.  In [28], a projection operator was used 

to modify the adaptive law. Projection operator replaces the common Lipschitz 

continuous property with an arbitrary many times continuous differentiability, and 

estimation parameters are proven to be bounded.  
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Although these developments help improve the robustness of the adaptive control 

laws, their tracking accuracy can only be shown to be bounded, and the bound depends 

on the magnitude of disturbances. At the same time, a typical MRAC cannot avoid 

unwanted oscillations. Recently many methods were developed to solve these two 

problems. In [29][30], a new MRAC neural networks controller named L1 adaptive 

controller is proposed, and the transient performance of both system’s input and output 

signal are characterized with some norms. This adaptive control architecture has a low-

pass filter in the feedback loop, and its desired transient performance can be guaranteed 

by increasing adaption gain and improving the NN approximation, and at the same time, 

the high frequency oscillation is avoided. In [31], an adaptive control method that allows 

fast adaptation for systems with slow reference models is given. In this method, in order 

to allow fast adaptation, the neural network is trained with a high bandwidth state 

emulator. Low bandwidth control is maintained by a filter to isolate fast emulator 

dynamics from the control signal. In [32], a novel Kalman-filter version of the e-

modification [27] is developed. In this method the standard e-modification term is 

interpreted as the gradient of a norm measure of a linear constraint violation, and this 

linear constraint is then used to develop a Kalman-filter-based e-modification. It is shown 

that this method leads to smaller tracking errors without generating significant 

oscillations in the system response. 

Sliding mode control (SMC) is inherently robust to uncertainties [33][34][35]. In 

SMC, trajectories are forced to reach a designed sliding surface in a finite time and to 

stay on the surface for all future time. Dynamics on the sliding surface is independent of 

matched uncertainties and the sliding surface is designed so as to guarantee the 

asymptotic stability of control objective. Though it has many advantages, a major 

drawback of the SMC in applications is control switching along the sliding surface, called 

‘chatter’ thus oscillations are usually unavoidable. Saturation functions with a boundary 

layer[9] can be used to alleviate chatter but it cannot be eliminated. Also, asymptotic 

stability inside the boundary layer needs to be separately shown. Recently, there has been 

some work with higher-order sliding mode controllers to avoid ‘chatter’[36]. A soft-

switching sliding mode technique has been introduced by Lyshevsky [37][38] to 

eliminate ‘chatter’. By modifying signum function used in a typical SMC to continuous 
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real-analytic function, for example, hyperbolic tangent functions, the soft switching 

sliding mode controller avoid oscillations and remain asymptotic stable at the same time. 

In [39], a systematic way to combine adaptive control and SMC for trajectory tracking in 

presence of parametric uncertainties and uncertain nonlinearities is developed. The 

sliding mode controller is smoothed with two methods based on the concept of boundary 

layer [34]. Asymptotic stability of adaptive system in presence of parametric 

uncertainties are realized, and the drawback of control chattering is reduced significantly. 

In [40], a modified switching function which provides low-chattering control signal is 

introduced, and the SMC is combined with a neural network adaptive controller which 

identifies modeling error online. In [41], by using a similar approaching to SMC, a novel 

approach that combines NN feed forward controller with continuous robust integral of 

sign of error (RISE) feedback controller is introduced. In this interesting method, by 

designing sliding surface using sign of error, a continuous RISE feedback is combined 

with a NN-based adaptive controller, and it is shown that using Lyapunov theory the 

tracking error is asymptotically stable, while typical NN-based controller formulations 

can only yield uniformly ultimately bounded (UUB) stability [9], and at the same time, 

the control is free from oscillations. Experimental results show the potential of this 

method in reducing tracking errors [42][43].  

This paper develops a new neural network MRAC with guaranteed transient 

performance and asymptotic stability, and at the same time free from unwanted 

oscillations. Based on MRAC neural networks controller, the neural network observer 

structure is modified in the manner of [44]. The basic notion is to separate the functions 

of a controller and observer. That is the controller stabilizes (tracks) a reference and an 

observer tracks the true system. By having a dynamic observer instead of just calculating 

the uncertainty as in other MRAC approaches, it is believed that the designer can make 

the estimation error decay fast with the observer gains. This allows one to use higher 

learning rates for the adaptation that helps achieve better tracking performance without 

inducing high-frequency oscillations. At the same time, the modified term is inactive 

when neural network estimation is ideal, therefore the estimation accuracy is guaranteed. 

Furthermore, the proposed technique has a sliding mode term to provide asymptotic 

stability. Since this technique has an observer in the loop, the excellent RISE scheme is 
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not applicable; a soft switching sliding mode term is added to guarantee asymptotic 

stability. It is proven using Lyapunov method that it ideally leads to asymptotic stability 

instead of UUB, and at the same time is free from oscillations which is common for 

typical sliding mode based adaptive controller. In general, the proposed controller 

enables higher adaptive gain without generating oscillations, provides better transient 

performance and asymptotic stability at the same time.  

Rest of the paper is organized as follows. In Section 2, the system dynamics and 

the neural networks structure are defined.  In Section 3, the new control solution is 

proposed. Stability proofs for both the observer and state error signals are presented and 

the guaranteed transient performance is explained in Section 4. Illustrative simulation 

studies of a robot-arm and a ship steering control problems are carried out in Section 5 

and conclusions are drawn in Section 6. 

 

2. PROBLEM DESCRIPTION 

Consider the following single input single output (SISO) system. 

 

 

1 2

2 3

...
( ( ))n

x x
x x

x b u f

=⎧
⎪ =⎪
⎨
⎪
⎪ = −⎩ x  (1) 

 
and the system output is defined as 

 
 1y cx=  (2) 

 
c  is a non-zero constant. The initial condition is set to  

 
 (0) =x 0 . (3) 
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 The set of equations in (1) can be written in a compact form as  

 
 ( ) ( ) ( ( ))t Ax t B u f x= + −x  (4) 

 
where x n∈ is the system state vector, and all states are assumed to be measurable. 

u ∈ is control signal, A is n n× system matrix, B is 1n× vector, 0b > , ( , )A B is 

controllable. : nf → is an unknown continuous nonlinear function. 
The control objective is to design a neural adaptive controller which ensures 

output ( )y t tracks a desired bounded continuous trajectory ( )r t , and the system behavior 

follows a nominal linear time-invariant (LTI) system which is designed through standard 

methods(for example, through linear quadratic regulator theory[37]), and at the same 

time guarantee desired transient and steady state performance. 

Assume the following NN approximation of ( )f x exists 

 
 *( ) ( ) ( ) ( )Tf φ ε ε ε= +    <x W x x x  (5) 

 
where ( )φ x is a set of radial basis functions[34], and each element of ( )φ x  is defined as, 

 
 2( ) exp( ( ) ( ) / )Ty y z y zφ σ= − − −  (6)  

 
In (6), z is the location of selected center, σ is the ‘width’. W are the ideal network 

weights, ( )ε x is the network approximation error, *ε is its uniform bound. Further assume 

that a compact convex set Ω is known a priori such that 

 
 W∈Ω  (7) 

 
In order to realize tracking control for this SISO system, the following neural 

network adaptive controller is developed. 
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3. CONTROL SOLUTION 

The proposed controller is a combination of a linear feedback control, neural 

network adaptive control and a soft switching sliding mode control. First of all, divide the 

controller expression into three parts-the linear feedback control 1xK , neural networks 

adaptive control eu and soft switching sliding mode control μ  

 
 1 eu K u μ= +x +  (8) 

 
where 1K  the closed loop feedback gain, which ensures closed-loop reference dynamics 

matrix 1( )A BK−  is Hurwitz. The linear feedback control ensures stability when there is 

no uncertainty; the adaptive control is obtained through neural networks observer, and 

cancels the uncertainty; the soft switching sliding mode control guarantees asymptotic 

stability in presence of neural networks estimation error, and it is going to be exactly 

defined later with stability proof. 

 Substitute (8) into (4), (4) becomes 

 
 ( ) ( ) ( ( ) ( ))m et A t B u t fμ= + −x x + x  (9) 

 
where 1mA A BK= − . 

Define the following state observer structure, 

 
 2

ˆˆ ˆ( ) ( ) ( ( ) ) ( )m et A t B u t f K tμ= + − −x x + x  (10) 

 
where ˆ( )tx represents the observer states at time t. The initial conditions for observer are 

 
  ˆ (0) =x 0  (11) 

 
 Since the uncertainty and the true neural network weights are unknown, they are 

represented as ˆ ( )TφW x where Ŵ represents the estimated neural network weights with a 

proper weight update law. The observer gain matrix is assumed diagonal for convenience 
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and are given by 1 2
2 2 2 2( , ,..., )nK diag k k k=  . In the observer structure, f̂ is assumed to be 

canceled perfectly by neural networks controller, i.e. ˆ ˆ ( )Tf φ= W x .  

 Define the observer error as 

 
 ˆ( ) ( ) ( )x x xt t t≡ −  (12) 

 
And the adaptive weight update law is defined as follows 

 

 ˆ ˆ( ) Pr ( ( ), ( ) ( ) )T
ct oj t t PBφ= ΓW W x x  (13) 

 
where P is defined by T

m mA P PA Q+ = − , with Q being a positive definite matrix and cΓ is 

the learning rate of the neural network. The projection operator property guarantees the 

boundedness of neural networks weights error 

 
 maxW WT W≤  (14) 

 
where 2

max
ˆmax 4 ,W W W W WW ∈Ω≡ ≡ − [28].  

Now with neural networks weights, the adaptive control expression becomes 

 
 ˆ( ) ( )T

e gu k r t φ= + W x  (15) 

 
where  

 

 1

1
g

m

k
CA B−≡  (16) 

 
is the open loop gain of the reference system. 

 By subtracting  (9) from (10), and using (15), the observer error dynamics is 

rewritten as 

 
 2( ) ( ) ( ( ) )T

mt A K B φ ε= − + −x x W x  (17) 
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By using Lyapunov method [9], it will be shown that the neural network 

estimation error and the observer error are bounded. By introducing the observer gain K2, 

the learning process is made smooth and the modified term 2 ( )K tx decreases as 

x decreases, therefore the learning accuracy is guaranteed. As a result, the modified 

observer structure allows for high values of adaptation gain without generating high 

frequency oscillations. 

 

4. STABILITY ANALYSIS 

In this section, Lyapunov method is used to prove the boundedness of the 

observer error dynamics. And in order to assure asymptotic convergence of reference 

error, the soft-switching sliding mode controller is derived. Details of the proofs are 

provided in the following subsections. 

4.1. OBSERVER ERROR 

To get the error bound for neural network observer, consider a Lyapunov function 

as 1( , ) T T
cV P −= + Γx W x x W W , and differentiate V(.) to get 

 
 1( )T T T T

cV x Px x Px −= + + Γ +W W W W  (18) 

 
substitute the weight update law (13) and observer error dynamics (17), (18) becomes 

 

 [ ]

2

2
min min 2

2 2 ( ( ) ( ))
ˆ2 Pr ( , ( ) )

2 ( ) 2 ( )

T T T T

T T

V Q K P PB

oj PB

PB Q K P

φ ε

φ

ε λ λ

= − − − −

          +

≤ − +

x x x x x W x x

W W x x

x x  (19) 

where minλ  represents the minimum eigenvalue. Therefore 0V ≤ when  

 

 
*

min min 2

2
( )

( ) 2 ( )
Pb

t
Q K P

ε

λ λ
≥

+
x  (20) 
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As a result, 

 

 

1
max

2*
1

max max
min min 2

( , )

2
( )

( ) 2 ( )

x W x xT
c

c

V P W

PB
P W

Q K P
ε

λ
λ λ

−

−

≤ + Γ

⎛ ⎞
⎜ ⎟≤ + Γ
⎜ ⎟+⎝ ⎠

  (21) 

 
and at the same time 

 
 2

min( , ) ( )x W x x xTV P Pλ≥ ≥  (22) 

 
 (21) and (22) lead to 

 

 

2*
1

max max
min min 2

min

0

2
( )

( ) 2 ( )
( )

( )

c

Pb
P W

Q K P
t

P

ε
λ

λ λ

λ
γ

−
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ + Γ
⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠≤

≡

x

 (23) 

 
In (23), by increasing adaptation gain cΓ and observer gain K2, x can be driven 

to be as small as possible, therefore, precise uncertainty estimation using online neural 

networks is guaranteed. Also, with the modification term to smooth out learning, the state 

observer structure suppresses the high frequency oscillation so that increased adaptation 

gain and smooth control are possible at the same time. 

4.2. REFERENCE ERROR 

Notice that, with adaptive control and linear feedback control alone, or in other 

words when 0μ = , the controller is able to track reference system, however, with a soft-

switching sliding mode controller, the tracking error can be shown asymptotic stable. 

Define a reference LTI system dynamics as 

 
 r m r gA bk r= +x x  (24) 
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By subtracting the reference dynamics (24) from actual system dynamics (9), the 

tracking error dynamics are expressed as 

 

 

( ) ( )
ˆ( ( ) ( ) ( ))

r

T T
m

t t

A b μ φ ε

≡ −

= + + − −  

e x x

e W W x x  (25) 

 
Recalling the definition of system dynamics as given in (1), (25) can be written as 

 

1 2

2 3

1

...

( ( ) ( ))T
n

e e
e e

e bK b μ φ ε

=⎧
⎪ =⎪
⎨
⎪
⎪ = + + −⎩ e W x x  (26) 

 
Then, define the sliding surface as 

 

 ( )
1

1
1

0

( ) ( )
n

n p
p

p

s t e tλ
−

− −

=

≡ ∑  (27) 

 
where 0, 0,1,..., 1i i nλ > = − . In most cases we can just take 0 1λ = . For example, when 

n=3, the sliding manifold is 3 1 2 2 1s e e eλ λ= + + . 

 With a  Lyapunov function 21
2sV s= , its derivative is given by 

 

 

( )

( )

( )

1
( )

1 1
1

1

1
1

1

1 1
1

( )

( )

( ( ))e

n
n p n

s p
p

n
n p

p n
p

n
n p

p
p

V ss s e e

s e e

s e bK b D

λ

λ

λ μ

−
−

=

−
−

=

−
−

=

= = +

= +

= + + +

∑

∑

∑  (28) 

 
where  

 
 ( ) ( )TD φ ε≡ −W x x  (29) 
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Recall NN approximation property (5) and weights error boundedness (14), 

immediately the following bound for D is obtained 

 

 * *
max

( ) ( )TD

W D

φ ε

ε

= −

≤ + ≡

W x x

 (30) 

 
Now the soft switching sliding manifold control term is formulated as  

 ( )
1

1 1
1

/ tanh( )e
n

n p
p

p

e b K sμ λ β α
−

−

=

= − − −∑ ,  (31) 

 
By substituting (31) into (28), it can be shown that 

 
 ( tanh( ) )sV bs s Dβ α= − +  (32) 

 
When s>0 

 

 *

( tanh( ) )

( tanh( ) )
sV bs s D

bs s D

β α

β α

= − +

≤ − +  (33) 

 
0sV ≥ only when 

 
 *tanh( ) /s Dα β≤  (34) 

 
which leads to 

 

 

*

*

1
10 ln

2 1

D

s
D
β

α
β

+
< ≤

−
 (35) 

 
When s<0 

 

 *

( tanh( ) )

( )( tanh( ) )
sV bs s D

b s s D

β α

β α

= − +

≤ − +  (36) 
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0sV ≥ only when 

 
 *tanh( ) /s Dα β> −  (37) 

 
which leads to 

 

*

*

1
10 ln

2 1

D

s
D
β

α
β

−
> ≥

+
 (38) 

 
From (35) and (38), it can be observed that the bound for the sliding manifold is  

 

 

*

1*

1
1 ln

2 1

D

s
D
β γ

α
β

+
< ≡

−
 (39) 

 
As long as 0α > , *Dβ > , the sliding manifold will remain bounded. Notice that, 

by increasing α and β the bound of the sliding manifold will converge to 0. The tracking 

of controller system is asymptotically stable when 1 0γ = .  

To sum up, with (8), (15), and (31), we can get the final expression for proposed 

controller as follows 

 

 ( )
1

1 1
1

ˆ( ) ( ) / tanh( )
n

n pT
r g p

p

u K k r t e b sφ λ β α
−

−

=

= + + − −∑x W x  (40) 

 
Note that since no discontinuous function is introduced, this controller is smooth. 

Without generating additional oscillations, the controller will drive the tracking error 

asymptotic to 0.  
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5. SIMULATION 

This section contains two representative applications with which the performance 

of the proposed controller is analyzed. The first problem is about a robot arm motion and 

the second one relates to ship steering. 

5.1. ROBOT ARM MOTION 

Consider a single-link robot arm motion in the presence of friction and 

disturbance. This problem is described in [45]. The governing equation of motion for the 

robot arm is given by  

 
 2 sin ( )u w tθ θ+ Ω = +  (37) 

 
where θ (radian) is the arm angle u (N/m·kg)is the specific torque(i.e., the torque 

divided by the moment of inertia), and 2 /g lΩ = , where l is the length of the arm and g is 

the gravitational acceleration. A value of 4Ω = is used in simulations. In order to analyze 

the controller performance under uncertainties, an uncertainty function ( )w t is added as a 

matched unknown disturbance. 

Governing equation (37) is converted to a state space form by defining [ , ]x Tθ θ≡ . 

In terms of x 

 

 ( )1

( )
0 1 0

16sin
0 0 1

A B u f

u w x

= + −

⎡ ⎤ ⎡ ⎤
= + + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

x x

x  (38) 

 
Note that in controller design, the nonlinear term 116sin x− is added to w as an 

uncertainty and ( 116sinw x− ) is estimated by online neural networks. This allows for use 

of linear system theory to design the nominal controller. 

Take [ ]1 10 10K = as the closed-loop feedback gain, which provides fast 

convergence to the arm angle. Take observer gain [ ]2 ( 10 10 )K diag= , learning rate 

500cΓ =  which is large enough for fast adaptation, Q I= , sampling time 0.1 second, 
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finishing time 40 seconds, and max 25W =  as  a  conservative  estimation  to  the  bound  

of weights. Centers of RBF distribute over the grid: { }1 3, 1,1,3x = − − { }2 3, 1,1,3x = − − , 

and all widths are set to 1. The RBF centers and widths selected ensures desired 

sensitivity of neural networks within the working region. The command signal 

is ( ) sin( / 3)r t t= , and the objective is to make arm angle of actual system tracking the 

reference linear system output with command as input, which is sinusoid rotation.  The 

reference system is designed as, 

 

 

1( )

0 1 0
10 10 1

r r g

m r g

r g

x A BK x Bk r

A x Bk r

x k r

= − +

= +

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (39) 

 
The sliding manifold is designed as 

 
 2 110s e e= + ,  (40) 

 
After tuning, the sliding mode modification parameter is set to 

 
 5, 5α β= = . (41) 

 
Increase in α will increase the controller’s sensitivity to tracking error; however as 

α approaches infinity, the hyperbolic tangent sigmoid function of sα will converge to 

sign( )s and becomes equivalent to typical sliding mode control that brings in chatter or 

oscillations. Further increase β can accelerate the response speed but it results in 

overshooting. The simulations were carried out for two cases:, i) disturbance ( ) 0w t = and 

ii), ( ) cos(10 )w t t= .  

For case i), the command input r , actual system output state θ , reference system 

output state rθ , and for comparison, the system output Mθ  using MRAC with same 

design parameters except 2 0, 0K μ= = , are all shown in Figure 1. It can be seen that 

proposed actual system output overlaps with reference system output perfectly using 
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proposed method, while MRAC does not provide precise tracking. In Figure 2, control 

signal using proposed method and MRAC is compared, though the difference in control 

is small, from Figure 3 the tracking error comparison plot shows clearly that proposed 

method reduced tracking error by more than 80% percent comparing to MRAC. 
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Figure 1. Arm angle, ( ) 0w t =  
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Figure 2. Control signal, ( ) 0w t =  
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Figure 3. Tracking error, ( ) 0w t =  
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For case ii), the command input r , actual system output state θ , reference system 

output state rθ , and for comparison, the system output Mθ  using MRAC with same 

design parameters except 2 0, 0K μ= = , are all shown in Figure 4. As it shows, in 

presence of added disturbance, proposed actual system output still overlaps with 

reference system output perfectly using proposed method, while MRAC is clearly 

interfered by disturbance. In Figure 5, control signal using proposed method and MRAC 

is compared, for both of them the oscillations are due to added disturbance, and the small 

difference in control leads to significant difference in tracking error, as is shown in 

Figure 6, proposed method shows its robustness, in presence of additional disturbance, 

the tracking error is still under 20% of MRAC. 
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Figure 4. Arm angle, ( ) cos(10 )w t t=  
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Figure 5. Control signal, ( ) cos(10 )w t t=  
 
 

0 5 10 15 20 25 30 35 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

t(sec)

Er
ro

r(
R

ad
ia

n)

 

 

Proposed Method
MRAC

 
 

Figure 6. Tracking error, ( ) cos(10 )w t t=  
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5.2. SHIP STEERING 

Use a ship steering example from [46]. The governing equations are, 

 0 0( ) ( )T T K K wϕ ϕ δ+ Δ + = + Δ +  (42) 

where φ is the ship heading angle, δ is the rudder angle, T0 and K0 are nominal 

parameters that are of the ship design velocity, ∆T0 and ∆K0 are variety of T0 and K0, and 

w is the model uncertainty parameters and the disturbance uncertainties of the system. 

  Define [ ], Tx ϕ ϕ= , write governing equation (42) as, 

 

 ( )
0 0 0

( )
0 1 0
0 1/ /

x x

x

A B u f

f
T K T

δ

= + −

⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (43) 

 
where 

 
 0 0 2 0 0 0 0 0/ ( ( )) ( ) / ( ( )) 1/ ( )f T T T T x T K K T T T T T T wδ= −Δ + Δ − Δ − Δ + Δ − + Δ  (41) 

 

0 0

0 0 0 0

261.73, 0.42,
1/ 25 , / 25% %

T K
T T K K T
= =

Δ = × Δ = − ×  (42) 

 
It is assumed that there is no knowledge about f at all, and it is taken completely as 

unmodeled dynamics, the neural networks will estimate its value online. 

 For an initial design, the feedback gain 1 [1,33]K =  is taken to result in the 

reference system have a 5% settling time at approximately 200 seconds. High values of 

observer gain [ ]2 ( 100 100 )K diag= are selected to allow quick observer error decay. 

The learning rate is set at 100cΓ = , Q I= ; a sampling time 0.1 second was taken as 

appropriate with a final time of 500 seconds, and  max 5W = which serves as a conservative 

bound for the weights. It should be noted observed that further increase in the learning 

rate leads to unstable behavior for the MRAC due to oscillations in the control signal. 

Although the proposed controller does not exhibit such behavior, for the performance 

comparison to be valid, a higher learning rate is not used. Centers of RBF are distributed 

over the grid: { }1 15,0,15x = − { }2 2,0, 2x = − , and all widths are set to 1.These numbers 
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have been selected a based on the working domain of the system states. The command 

signal is 

 

 
0, 5sec

( )
10, 250 sec

t onds
r t

t onds
     0 ≤ ≤⎧

= ⎨     5 < ≤  ⎩
  

 
Controller objective is to make the plant track the reference linear system output with 

command as input that will result in the ship make a turn of 10 degrees. With the design 

parameters set at the values in the previous section, the reference system can be 

calculated as 

 

 
1( )r r g

m r g

x A BK x Bk r

A x Bk r

= − +

= +  (44)  

 
The sliding manifold is designed as 

 
 2 110s e e= +  (45) 

 
and the sliding mode modification parameter is, 

 
 10, 10α β= =  (46) 

 
They are tuned in a similar manner as mentioned in previous subsection. 

In the simulation, the rudder is simulated by a close-loop servo, which is 

expressed as, 

 
 e E E ET Kδ δ δ= −  (47) 

 
where TE=2.5s is the rudder time constant, KE=1 is the gain of rudder, and δ is real rudder 

command, 35δ ≤ , 3Eδ ≤  , Eδ is the total input control. For the controller design, the 

servo dynamics is considered unknown. Results from two cases are discussed in the 

following sections. In the first case there is no disturbance and ( ) 0w t =  and in the 

second ( ) 5 4sin(0.05 )w t e t= . 
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Histories of the command input, actual system output, reference system output, 

and for comparison, the system output using MRAC with same design parameters 

except 2 0, 0K μ= = , are all shown in Figure 7. It can be seen that both proposed method 

and MRAC are close to the reference system and both method exhibit good tracking. 

However, the control signal history in Figure 8. shows clearly that control signal using 

MRAC is quite oscillatory until steady state while proposed method provides smooth 

control. This is due to the fact that the uncertainty estimation is a part of the observer 

dynamics in the new technique and it allows for smooth signals and faster uncertainty 

estimation, and since control is used to cancel the uncertainties, it also implies proposed 

method’s advantage over MRAC in neural networks uncertainty estimation. Furthermore 

in Figure 9, it can be seen that with proposed method tracking error quickly converges 

while tracking error of MRAC is not relatively larger in magnitude(though not in 

absolute value), and is oscillatory. 
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Figure 7. Ship heading angle, ( ) 0w t =  
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Figure 8. Rudder angle, ( ) 0w t =  
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Figure 9. Tracking error, ( ) 0w t =  
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Histories of the command input, actual system output, reference system output, 

and for comparison, the system output using MRAC with same design parameters 

except 2 0, 0K μ= = , are all shown in Figure 10 for the case with disturbances in the 

system. As in the previous case, the proposed method and MRAC overlap with reference 

output. But as is shown in Figure 11, the transient response of the proposed method 

shows smooth control signals in the presence of disturbances while the MRAC control is 

oscillatory. In Figure 12, the tracking errors of both methods show similar behavior as the 

control signals. 
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Figure. 10 Ship heading angle, ( ) 5 4sin(0.05 )w t e t=  
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Figure 11. Rudder angle, ( ) 5 4sin(0.05 )w t e t=  
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Figure 12. Tracking error ( ) 5 4sin(0.05 )w t e t=  
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6. CONCLUSION 

 A new robust adaptive control has been derived in this paper. Bounds on transient 

response error shave been derived. A novel sliding mode term has been added to result in 

asymptotic stability of the errors instead of the usual upper bounded derivations. 

Performance of the proposed technique was evaluated with two representative problems 

and compared with a typical model reference adaptive controller. It is clear from the 

results that the transient response of the new controller is superior and does not show 

oscillatory behavior while learning and cancelling out the uncertainties. This fact is 

crucial in any implementation for two reasons. The first is that the oscillatory signals 

could lead to excitation of troublesome unmodeled dynamics. Second, it could lead to 

controller fatigue. From the limited examples, the performance of the proposed controller 

seems to be robust to these problems that are germane to adaptive controllers. 

Furthermore, the settling time of the system with the proposed controller seems to be 

faster than that of the typical model reference adaptive controller. 
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ABSTRACT 

 A new model reference adaptive control design method using neural networks 

that guarantees transient performance is proposed in this paper.   Stable tracking of a 

desired trajectory can also be achieved for nonlinear systems that operate under 

uncertainties. A modified state observer structure is designed to enable desired transient 

performance fast with large adaptive gains and at the same time avoid high frequency 

oscillations during uncertainty learning. The neural network adaptation rule is derived 

using Lyapunov theory, which guarantees stability of error dynamics and boundedness of 

neural network weights. An extra term is added in the controller expression using a ‘soft 

switching’ sliding mode that can be used to adjust tracking errors. Analytical bounds are 

derived and simulation of the proposed method is presented to solve a missile autopilot 

design problem. 

1. INTRODUCTION 

 The field of artificial neural networks and its application to control systems has 

seen phenomenal growth in the last two decades. The origin of research on artificial 

neural networks can be traced back to 1940s [1]. In 1990, a compiled book was published 

[2] detailing various applications of artificial neural networks. A good survey paper 

appeared in 1992 [3], which outlined various applications of artificial neural networks to 

control system design. The main philosophy that is exploited in system theory 

applications is the universal function approximation property of neural networks [4]. 

Benefits of using neural networks for control applications include its ability to effectively 

II. A New Model Reference Adaptive Controller  

in Missile Autopilots Design 

Y. Yang, S. N. Balakrishnan 
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control nonlinear plants while adapting to unmodeled dynamics and time-varying 

parameters.  

 In 1990, a paper by Narendra and Parthasarathy demonstrated the potential and 

applicability of neural networks for the identification and control of nonlinear dynamical 

systems [5]. The authors suggested various architectures as well as learning algorithms 

useful for identification and adaptive control of nonlinear dynamic systems using 

recurrent neural networks. Since then, Narendra and his co-workers have come up with a 

variety of useful adaptive control design techniques using neural networks, including 

applications concerning multiple models [6].  

 In 1992, Sanner and Slotine [7] developed a direct adaptive tracking control 

architecture with Gaussian Radial Basis Function (RBF) networks to compensate for 

plant nonlinearities. The update process also kept the weights of the neural networks 

bounded. In 1996, Lewis et al. [8] proposed an online neural network that approximated 

unknown functions and it was used in designing a controller for a robot. Their approach 

avoided some of the limiting assumptions (like linearized models) of traditional adaptive 

control techniques. More important, their theoretical development also provided a 

Lyapunov stability analysis that guaranteed both tracking performance as well as 

boundedness of weights. However, the applicability of this technique was limited to 

systems which could be expressed in the “Brunovsky form” [9] and which were affine in 

the control variable (in state space form). A robust adaptive output feedback controller 

for SISO systems with bounded disturbance was studied by Aloliwi and Khalil [10]. In a 

more recent paper, an adaptive output feedback control scheme for the output tracking of 

a class of nonlinear systems was presented by Seshagiri and Khalil using RBF neural 

networks [11].  

 A relatively simpler and popular method of nonlinear control design is the 

technique of dynamic inversion (e.g. [12, 13, 14]), which is essentially based on the 

philosophy of feedback linearization [9, 15]. In this approach, an appropriate co-ordinate 

transformation is carried out to make the system dynamics take a linear form. Linear 

control design tools are then used to synthesize the controller. A drawback of this 

approach is its sensitivity to modeling errors and parameter inaccuracies. One way of 

addressing the problem is to augment the dynamic inversion technique with the H∞  
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robust control theory [14]. Important contributions have come from Calise and his co-

workers in a number of publications (e.g. [16 - 20]), who have proposed to augment the 

dynamic inversion technique with neural networks so that the inversion error is cancelled 

out. The neural networks are trained online using a Lyapunov-based approach (similar to 

the approach followed in [7] and [8]). This basic idea has been extended to a variety of 

cases, namely output based control design [19, 20], reconfigurable control design [21] etc. 

The feasibility and usefulness of this technique has been demonstrated in a number of 

applications in the field of flight control.  

MRAC has been widely applied recently to solve control problems for system 

with matched unmodeled dynamics [22][23]. With MRAC, it is difficult to achieve a 

desired(fast) transient performance and avoid unwanted high frequency oscillations at the 

same time when uncertainties are present. It is due to the fact that high gains are required 

typically to learn the uncertainties online. If neural networks are used to represent 

uncertainties, this process necessarily results in an uncertainty model showing 

oscillations during the transient learning period before the weights stabilize. Use of 

dynamic inversion to cancel the uncertainties during learning then leads to oscillatory 

control signals which if unchecked could excite the unmodeled high frequency dynamics 

of the plant and lead to instability. Various NN-based MRAC methods have been recently 

developed (for example, [24][25]) to address the issue of boundedness of tracking errors. 

Modification to the adaptive law such as σ-modification [26], e-modification [27] have 

been introduced. These methods modify the adaptive law by adding a factor depending 

on the prediction error and ensure the convergence of parameter estimation. Moreover, 

when close to steady state conditions, the modification term becomes inactive and 

therefore, the estimation accuracy is guaranteed.  In [28], a projection operator was used 

to modify the adaptive law. Projection operator replaces the common Lipschitz 

continuous property with an arbitrary many times continuous differentiability, and 

estimation parameters are proven to be bounded.  

Although these developments help improve the robustness of the adaptive control 

laws, their tracking accuracy can only be shown to be bounded, and the bound depends 

on the magnitude of disturbances. At the same time, a typical MRAC cannot avoid 

unwanted oscillations. Recently many methods were developed to solve these two 
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problems. In [29][30], a new MRAC neural networks controller named L1 adaptive 

controller is proposed, and the transient performance of both system’s input and output 

signal are characterized with some norms. This adaptive control architecture has a low-

pass filter in the feedback loop, and its desired transient performance can be guaranteed 

by increasing adaption gain and improving the NN approximation, and at the same time, 

the high frequency oscillation is avoided. In [31], an adaptive control method that allows 

fast adaptation for systems with slow reference models is given. In this method, in order 

to allow fast adaptation, the neural network is trained with a high bandwidth state 

emulator. Low bandwidth control is maintained by a filter to isolate fast emulator 

dynamics from the control signal. In [32], a novel Kalman-filter version of the e-

modification [27] is developed. In this method the standard e-modification term is 

interpreted as the gradient of a norm measure of a linear constraint violation, and this 

linear constraint is then used to develop a Kalman-filter-based e-modification. It is shown 

that this method leads to smaller tracking errors without generating significant 

oscillations in the system response. 

Sliding mode control (SMC) is inherently robust to uncertainties [33][34][35]. In 

SMC, trajectories are forced to reach a designed sliding surface in a finite time and to 

stay on the surface for all future time. Dynamics on the sliding surface is independent of 

matched uncertainties and the sliding surface is designed so as to guarantee the 

asymptotic stability of control objective. Though it has many advantages, a major 

drawback of the SMC in applications is control switching along the sliding surface, called 

‘chatter’ thus oscillations are usually unavoidable. Saturation functions with a boundary 

layer[9] can be used to alleviate chatter but it cannot be eliminated. Also, asymptotic 

stability inside the boundary layer needs to be separately shown. Recently, there has been 

some work with higher-order sliding mode controllers to avoid ‘chatter’[36]. A soft-

switching sliding mode technique has been introduced by Lyshevsky [37][38] to 

eliminate ‘chatter’. By modifying signum function used in a typical SMC to continuous 

real-analytic function, for example, hyperbolic tangent functions, the soft switching 

sliding mode controller avoid oscillations and remain asymptotic stable at the same time. 

In [39], a systematic way to combine adaptive control and SMC for trajectory tracking in 

presence of parametric uncertainties and uncertain nonlinearities is developed. The 
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sliding mode controller is smoothed with two methods based on the concept of boundary 

layer [34]. Asymptotic stability of adaptive system in presence of parametric 

uncertainties are realized, and the drawback of control chattering is reduced significantly. 

In [40], a modified switching function which provides low-chattering control signal is 

introduced, and the SMC is combined with a neural network adaptive controller which 

identifies modeling error online. In [41], by using a similar approaching to SMC, a novel 

approach that combines NN feed forward controller with continuous robust integral of 

sign of error (RISE) feedback controller is introduced. In this interesting method, by 

designing sliding surface using sign of error, a continuous RISE feedback is combined 

with a NN-based adaptive controller, and it is shown that using Lyapunov theory the 

tracking error is asymptotically stable, while typical NN-based controller formulations 

can only yield uniformly ultimately bounded (UUB) stability [9], and at the same time, 

the control is free from oscillations. Experimental results show the potential of this 

method in reducing tracking errors [42][43].  

This paper develops a new neural network MRAC with guaranteed transient 

performance and asymptotic stability, and at the same time free from unwanted 

oscillations. Based on MRAC neural networks controller, the neural network observer 

structure is modified in the manner of [44]. The basic notion is to separate the functions 

of a controller and observer. That is the controller stabilizes (tracks) a reference and an 

observer tracks the true system. By having a dynamic observer instead of just calculating 

the uncertainty as in other MRAC approaches, it is believed that the designer can make 

the estimation error decay fast with the observer gains. This allows one to use higher 

learning rates for the adaptation that helps achieve better tracking performance without 

inducing high-frequency oscillations. At the same time, the modified term is inactive 

when neural network estimation is ideal, therefore the estimation accuracy is guaranteed. 

Furthermore, the proposed technique has a sliding mode term to provide asymptotic 

stability. Since this technique has an observer in the loop, the excellent RISE scheme is 

not applicable; a soft switching sliding mode term is added to guarantee asymptotic 

stability. It is proven using Lyapunov method that it ideally leads to asymptotic stability 

instead of UUB, and at the same time is free from oscillations which is common for 

typical sliding mode based adaptive controller. In general, the proposed controller 
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enables higher adaptive gain without generating oscillations, provides better transient 

performance and asymptotic stability at the same time. In this paper, a longitudinal 

missile dynamics model is studied using proposed method, in this model the reference 

system is designed using RSLQR method [45], by developing the existing MRAC 

controller, the proposed method is shown improved transient performance and reduced 

high frequency oscillations significantly. 

Rest of the paper is organized as follows. In Section 2, the system and the neural 

networks structure is defined.  In Section 3, the control solution is proposed. A stability 

proof of both observer and state error signal is put forward, and the guaranteed transient 

performance is also explained in Section 4. Simulation studies of a missile autopilot 

problem were carried out in Section 5 and conclusions are drawn in Section 6. 

 

2. LINEAR LONGITUDINAL DYNAMICS 

In this paper, the longitudinal missile dynamics taken from [45] is studied. The 

governing equations of the missile dynamics are 

 

 2 ( )

e

e

e e e c

Z Zq
V V

q M M

α δ

α δ

α α α

α α δ

α δ

δ ζ ω δ ω δ δ

= + +

= +

= − − −   (1) 

 
The states modeled areα , q and eδ (normal acceleration, pitch rate (radian/s), and elevator 

fin deflection (radian)), and includes a second order actuator model. The autopilot is 

designed using the robust servomechanism linear quadratic regulator (RSLQR) approach 

[45], which incorporates integral control into a LQR state feedback design to build a type 

1 controller. This will enable zero steady state error to constant commands, and at the 

same time LQR controller provides desired stability and robustness. The autopilot design 

model with matched uncertainty in state space from is  

 ( )A B u f= + −x x  (2) 

 



39 

 

with initial condition 

 
 (0) =x 0  (3) 

 
And the output of system is 

 
 ( ) ( )y t C t= x  (4) 

 

In (2), [ , , , , ]T
r e ee qα δ δ= ∫x , re y r= − ,

2

0 1 0 0 0

0 1 0

0 0 0
0 0 0 0 1
0 0 0 2
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α α αω ζ ω
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⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

,

2

0
0
0
0

B

αω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. In (4), 

[ ]0 1 0 0 0C = .  

( )f x  is a matched continuous nonlinear uncertainty function, and it is treated as 

unknown during controller design. 

The control objective is to design a neural adaptive controller which ensures 

output ( )y t tracks a desired bounded continuous trajectory ( )r t , the system behavior 

follows a nominal linear time-invariant (LTI) system which is designed through standard 

methods(for example, through linear quadratic regulator theory[37]), and at the same 

time guarantees desired transient and steady state performance. 

Assume the following NN approximation of ( )f x exists 

 
 *( ) ( ) ( ) ( )Tf φ ε ε ε= +    <x W x x x  (5) 

 
where ( )φ x is a set of radial basis functions, and each element of ( )φ x  is defined as 

 

 
2( ) exp( ( ) ( ) / )Tx y z y zφ σ= − − −  (6) 

In (6), z is the location of selected center, σ is the ‘width’. W are the ideal network 

weights, ( )ε x is the network approximation error, *ε is its uniform bound. Furthermore, 

assume that a compact convex set Ω is known a priori such that 
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 W ∈Ω  (7) 

 

In order to realize tracking control for this SISO system, the following neural 

network adaptive controller is developed. 

 

3. CONTROL SOLUTION 

 The proposed controller is a combination of a linear feedback control, neural 

network adaptive control and a soft switching sliding mode control. First of all, divide the 

controller expression into three parts-the linear feedback control 1xK , neural networks 

adaptive control eu and soft switching sliding mode control μ  

 
 1 eu K u μ= +x +  (8) 

 
where 1K  the closed loop feedback gain, which ensures closed-loop reference dynamics 

matrix ( 1A BK− ) is Hurwitz. The linear feedback control term ensures stability when 

there is no uncertainty or when it is compensated for; the adaptive control part cancels the 

uncertainty term that is estimated online through a neural network in conjunction with an 

observer. Note that there is always a residual error in uncertainty calculations with a 

neural network. The soft switching sliding mode control guarantees asymptotic stability 

in presence of such errors. By substituting (8) into (2), (2) becomes 

 
 ( ) ( ) ( ( ) ( ( ))m et A t B u t f t= + −x x x  (9) 

 
where 1mA A BK= − . And define the following state observer structure, 

 
 2

ˆˆ ˆ( ) ( ) ( ( ) ) ( )m et A t B u t f K tμ= + − −x x + x  (10) 

where ˆ( )tx represents the observer states at time t. Since the uncertainty and the true 

neural network weights are unknown, they are represented as ˆ ( )TφW x where 

Ŵ represents the estimated neural network weights with a proper weight update law. The 



41 

 

observer gain matrix is assumed diagonal for convenience and are given by 
1 2

2 2 2 2( , ,..., )nK diag k k k=  . In the observer structure, f̂ is assumed to be canceled perfectly 

by neural networks controller, i.e. ˆ ˆ ( )Tf φ= W x . The initial conditions for observer are 

 
 ˆ ( )t =x 0  (11) 

 
The observer error is 

 
 ˆ( ) ( ) ( )x x xt t t≡ −  (12) 

 
And the adaptive weight update law is defined as follows: 

 

 ˆ ˆ( ) Pr ( ( ), ( ( )) ( ) )W W x x T
ct oj t t t PBφ= Γ  (13) 

 
where P is defined by T

m mA P PA Q+ = − , with Q being a positive definite matrix and cΓ is 

the learning rate of the neural network. The projection operator property guarantees the 

boundedness of neural networks weights error 

 
 maxW WT W≤  (14) 

 
where 2

max
ˆmax 4 ,W W W W WW ∈Ω≡ ≡ − [28].  

Now with neural networks weights, the adaptive control expression becomes 

 
 ˆ( ) ( )T

e gu k r t φ= + W x  (15) 

 
where 

 

 1

1
g

m

k
CA B−≡  (16) 

is the open loop gain of the reference system. Subtract (9) from (10), and substitute (15), 

the observer error dynamics is written as, 
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 2( ) ( ) ( ( ) )T
mt A K B φ ε= − + −x x W x  (17) 

 
 By using Lyapunov method [9], it will be shown that the neural network 

estimation error and the observer error are bounded. By introducing the observer gain K2, 

the learning process is smoothed, and the modified term decrease as x decreases, 

therefore the learning accuracy is guaranteed. As a result, the modified observer structure 

enables increasing adaptation gain without generating high frequency oscillations. 

 

4. STABILITY ANALYSIS 

In this section, Lyapunov method is used to prove the boundedness of the 

observer error dynamics. And in order to assure asymptotic convergence of reference 

error, the soft-switching sliding mode controller is derived. Details of the proofs are 

provided in the following subsections. 

4.1. OBSERVER ERROR 

To get the error bound for neural network observer, consider a Lyapunov function 

as 1( , ) T T
cV P −= + Γx W x x W W , and differentiate V(.) to get 

 
 1( )T T T T

cV x Px x Px −= + + Γ +W W W W  (18) 

 
substitute the weight update law (13) and observer error dynamics (17), (18) becomes 

 

 [ ]

2

2
min min 2

2 2 ( ( ) ( ))
ˆ2 Pr ( , ( ) )

2 ( ) 2 ( )

T T T T

T T

V Q K P PB

oj PB

PB Q K P

φ ε

φ

ε λ λ

= − − − −

          +

≤ − +

x x x x x W x x

W W x x

x x  (19) 

 
where minλ  represents the minimum eigenvalue. Therefore 0V ≤ when  

 
*

min min 2

2
( ) 2 ( )

x
Pb

Q K P
ε

λ λ
≥

+
 (20) 
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As a result, 

 

 

1
max

2*
1

max max
min min 2

( , )

2
( )

( ) 2 ( )

x W x xT
c

c

V P W

PB
P W

Q K P
ε

λ
λ λ

−

−

≤ + Γ

⎛ ⎞
⎜ ⎟≤ + Γ
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  (21) 

 
and at the same time 

 
 2

min( , ) ( )x W x x xTV P Pλ≥ ≥  (22) 

 
(21) and (22) lead to 

 

 

2*
1

max max
min min 2

min

0

2
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( ) 2 ( )

( )

c

Pb
P W

Q K P

P

ε
λ

λ λ

λ
γ

−
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⎜ ⎟⎜ ⎟ + Γ
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≡

x

 (23) 

 
In (23), by increasing adaptation gain cΓ and observer gain K2, x can be driven 

to be as small as possible, therefore, precise uncertainty estimation using online neural 

networks is guaranteed. Also, with the modification term to smooth out learning, the state 

observer structure suppresses the high frequency oscillation so that increased adaptation 

gain and smooth control are possible at the same time. 

4.2. REFERENCE ERROR 

Note that with adaptive control and linear feedback control alone (with 0μ = ), the 

controller is able to track reference system but with bounded tracking errors. However, 

with a soft-switching sliding mode controller, the tracking error can be shown to be 

asymptotic stable. Define a reference LTI system dynamics as 

 
 r m r gA bk r= +x x  (24) 
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By subtracting the reference dynamics (24) from actual system dynamics (9), the 

tracking error dynamics are expressed as 

 

 

( ) ( )
ˆ( ( ) ( ) ( ))

r

T T
m

t t

A b μ φ ε

≡ −

= + + − −  

e x x

e W W x x  (25) 

 
Recalling the definition of system dynamics as given in (1), (25) can be written as 

 

1 2

2 2 3 4

3 2 4

4 5

2
5 4 5 12 ( ( ) ( ))T

e e
Z Ze e e e
V V

e M e M e
e e

e e e bK b

α δ

α δ

α α αω ζ ω μ φ ε

=⎧
⎪
⎪ = + +
⎪
⎨ = +
⎪

=⎪
⎪

= − + + + + −⎩ e W x x  (26) 

 
Then, define the sliding surface as 

 
 [ ]5 2 3 4 rs e eλ λ λ= +  (27) 

 
where [ ]2 3 4

T
re e e e= and [ ]2 3 4λ λ λ is selected in such a way that 
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A M M

α α

α δ

λ λ λ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− − −⎣ ⎦  (28) 

 
is Hurwitz. Therefore, when s=0, 

 

 

5

/ 1 / 0
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0 0 0 1
r r

r r

Z V Z V
e M M e e

A e

α α

α δ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=  (29) 

 
is asymptotic stable. Take differential to the sliding surface, the following relationship is 

obtained, 
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where 
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α α
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 (31) 

 ( ) ( )TD φ ε= −W x x  (32) 

 

Take Lyapunov function 21
2sV s= , take its derivative, 

 

 ( )1 ( )
sV ss
s bK b Dμ
=

= Σ + + +e  (33) 

 
Recall NN approximation property (5) and weights error bound (14), immediately 

the following bound for D is obtained 

 

 * *
max

( ) ( )TD

W D

φ ε

ε

= −

≤ + ≡

W x x

 (34) 

Now take the soft switching sliding mode modification term in this manner 

 

 ( )1
1 tan sig( )eK s
b

μ β α= − + −Σ + ,  (35) 

 
substitute (35) into (30), (30) becomes 

 ( tanh( ) )sV bs s Dβ α= − +  (36) 
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 As long as 0α > , *Dβ > , the sliding manifold will remain bounded. By 

increasing α and β , the bound of the sliding manifold will converge to 0. The tracking of 

controller system is asymptotically stable when 1 0γ = .  

To sum up, with (8), (15), and (35), the final expression for proposed controller is 

finally obtained as 

 

 ( )

1

1

ˆ( ) ( , )

1 tan ( )

T
r gu K k r t u

K s
b

φ

β α

= + +

− + −Σ +

x W x

e sig  (37) 

 
Note that since no discontinuous function is introduced, this controller is smooth. 

Without generating additional oscillations, the controller will drive the tracking error 

asymptotic to 0. 

 

5. SIMULATION 

Recall the close loop system description (8), and with numerical parameters 

provided in [45], using RSLQR method, the reference system can be obtained. 

 
  [0 0 0 0 4624]TB =  (38) 

 1 [0.0681,0.0099, 0.7994, 2.9394,0.0101]K = −  (39) 

 

0 1 0 0 0
0 1. 1.55 3 0 0
0 4.12 2 0 1.51 2 0
0 0 0 0 1

3.15 2 4.57 3.471 3 1.82 4 1.28 2

m

e
A e e

e e e e

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

75
 (40) 

 
Take observer gain 2 100K = , learning rate 100cΓ = , Q I= . Notice that, here 

further increase learning rate will lead to unstable behavior for MRAC due to the 

oscillation in control signal, but for proposed will work better, in order for comparing 

higher learning rate is not taken. The sliding mode defined by 
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2 16.85λ = , 2 2.31λ = , 3 22.2λ = − , on the selected sliding surface the tracing error will 

converge to 0. 0.01=α , β=1 is tuned sliding mode parameters, further increasingα will 

increase the sensitivity to tracking error, while as α approaches infinite the soft switching 

sliding mode will be equivalent to typical sliding mode, therefore generates chatter; 

further increasing β accelerate rise time but brings in overshooting. The sampling time is 

set to 0.01 second, and max 5W = as a conservative estimation to the bound of weights. The 

following functions are used as basis function 

 

 1 1 1 2 1 3 1 4 1 5

1 2 3 4 5

( ), ( ), ( ), ( ), ( ),
, , , ,

Tx x x x x
x x x x x
φ φ φ φ φ

φ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (41) 

 
where 2( ) exp( )i j jx xφ = − .  And the centers of RBFs are all set to 0, and widths are all 1. 

The radial basis function ensures desired sensitivity for neural networks to approximate 

error. 

Apply the proposed controller (37), and the results is compared to MRAC with 

identical design parameters except for modified observer gain 2 0K = , and sliding mode 

controller 0μ = . Three different cases are tested: 

Case A 

 
 1 0.1 0.5xf K qα α= + +  (42) 

 
 In this case the linear feedback control is canceled by unmodeled dynamics, and 

beyond that additional nonlinear disturbance is added. 

The command signal is  

 

 
0, 0.1sec

( )
3 , 10 sec

t onds
r t

t onds
     0 ≤ ≤⎧

= ⎨     0.1 < ≤  ⎩
。

 (43) 

 
Under the command signal the missile is going to make a turning of 3 degrees in 

AoA. The command signal, actual system AoA trajectory and reference system AoA 

trajectory are shown in Figure 1. It can be seen that precise tracking of the reference 
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system is realized. Also the uncertainty estimation is perfect according to Figure 2. 

Figure 3 is the comparison of AoA tracking error between proposed method and MRAC. 

For this case, the tracking error magnitude of proposed method is much smaller than 

MRAC during transient. For both methods tracking error converges. In Figure 4, control 

signal of both methods are compared. It can be seen that proposed method completely 

gets rid of the high-frequency oscillation which is shown in MRAC. At the same time, 

because control is used to cancel uncertainty which is estimated by neural networks, 

reducing oscillations in control signal implies that the neural network estimation is also 

smooth. 
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Figure 1. AoA trajectory, 1 0.1 0.5xf K qα α= + +  



49 

 

0 1 2 3 4 5 6 7 8 9 10
-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

t(sec)

U
nc

er
ta

in
ty

 fu
nc

tio
n(

R
ad

ia
n)

 

 

Actual
Estimated

 

 
Figure 2. Uncertainty estimation, 1 0.1 0.5xf K qα α= + +  
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Figure 3. Tracking error history, 1 0.1 0.5xf K qα α= + +  
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Figure 4. Control history, 1 0.1 0.5xf K qα α= + +  

 
 
Case B 

 
 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  (44) 

 
 Now comparing to case A, a time variant function is added as additional                       

disturbance to test the robustness of proposed method. 

The command signal is  

 

 
0, 0.1sec

( )
3 , 10 sec

t onds
r t

t onds
     0 ≤ ≤⎧

= ⎨     0.1 < ≤  ⎩
。

 (45) 

 
The command signal, actual system AoA trajectory and reference system AoA 

trajectory are shown in Figure 5. The tracking is still very precise under added 

disturbance. The uncertainty estimation is shown in Figure 6, and the estimation is fast 

and accurate. Figure 7 is the comparison of AoA tracking error between proposed method 

and MRAC. Comparing to previous case, proposed method keeps almost same 



51 

 

performance when additional disturbance is added, while MRAC’s tracking error 

significantly increases. Control signal of both methods are compared in Figure 8, and like 

previous case proposed method shows its advantage over MRAC in control smoothness. 
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Figure 5. AoA trajectory, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
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Figure 6. Uncertainty estimation, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
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Figure 7. Tracking error history, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
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Figure 8. Control history, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
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Case C 

To further verify the method, take 

 
 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  (46) 

 
same as case B. 

And change the command signal to sinusoid function  

 
 ( ) 3 sin( )r t t=  (47) 

 
Now the command signal, actual system AoA trajectory and reference system 

AoA trajectory are shown in Figure 9. It is shown that precise tracking of reference 

system under a sinusoid input is realized. The uncertainty estimation is shown in Figure 

10, it can be seen that the neural networks perfectly estimate the unmodeled dynamics. 

Figure 11 is the comparison of AoA tracking error between proposed method and MRAC. 

It is shown that proposed method has better transient and steady state tracking 

performance comparing to MRAC. Control signal of both methods are compared in 

Figure 12, and again the proposed method removed oscillations comparing to MRAC. 
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Figure 9. AoA trajectory, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
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Figure 10. Uncertainty estimation, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
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Figure 11. Tracking error history, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
 
 



55 

 

0 1 2 3 4 5 6 7 8 9 10
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t(sec)

Fi
n 

de
fle

ct
io

n(
R

ad
ia

n)

 

 

0 1 2 3 4 5 6 7 8 9 10
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

t(sec)

Fi
n 

de
fle

ct
io

n(
R

ad
ia

n)

 

 

Proposed Method

MRAC

 
 

Figure 12. Control history, 1 0.1 0.5 0.1sin( )xf K q tα α= + + +  
 

 

6. CONCLUSION 

 A new robust adaptive control has been derived in this paper. Bounds on transient 

response error shave been derived. A novel sliding mode term has been added to result in 

asymptotic stability of the errors instead of the usual upper bounded derivations. 

Performance of the proposed technique was evaluated with a missile autopilot problem 

and compared with a typical model reference adaptive controller. It is clear from the 

results that the transient response of the new controller is superior and does not show 

oscillatory behavior while learning and cancelling out the uncertainties. This fact is 

crucial in any implementation for two reasons. The first is that the oscillatory signals 

could lead to excitation of troublesome unmodeled dynamics. Second, it could lead to 

controller fatigue. From the missile autopilot example, the performance of the proposed 

controller seems to be robust and smooth. 
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ABSTRACT 

 A new model reference adaptive control design method using neural networks 

that guarantees transient performance is proposed in this paper.   Stable tracking of a 

desired trajectory can also be achieved for nonlinear systems that operate under 

uncertainties. A modified state observer structure is designed to enable desired transient 

performance fast with large adaptive gains and at the same time avoid high frequency 

oscillations during uncertainty learning. The neural network adaptation rule is derived 

using Lyapunov theory, which guarantees stability of error dynamics and boundedness of 

neural network weights. An extra term is added in the controller expression using a ‘soft 

switching’ sliding mode that can be used to adjust tracking errors. The method is applied 

to control the velocity of an electro-hydraulic piston, and experimental results show that 

desired performance is achieved with smooth control effort. 
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1. INTRODUCTION 

 Applications of artificial neural networks (NN) in the field of control have been 

developed for decades. Various applications of neural networks in control system 

designed were outlined in [1]. In [2], it is claimed that neural networks’ universal 

function approximation property can be useful in solving control problems. Narendra and 

Parthasarathy provided stability proof for the first time, and demonstrated the potential of 

neural networks in identification and control in nonlinear systems [3]. In 1992, Sanner 

and Slotine [4] developed a directive tracking control method with Gaussian radial basis 

function (RBF) networks for feedback control of nonlinearity. From then on, various 

adaptive control techniques using neural networks were put forward. 

 Based on the philosophy of feedback linearization [5]-[6], dynamic inversion [7]-

[9] is developed for nonlinear control design. In this approach, an co-ordinate 

transformation is carried out to make the system dynamics take a linear form, then linear 

design methods could be taken, and based on this method, combining adaptive learning 

technique, model reference adaptive control (MRAC) is developed. The drawback of 

dynamic inversion is its sensitivity to modeling errors and parameter inaccuracies. Calise 

et al. proposed to introduce neural networks to dynamics inversion technique in order to 

cancel out the inversion error [10]-[13]. The neural networks are trained online using a 

Lyapunov-based approach, similar to the approach followed in [4] [14]. 

 MRAC has been widely applied recently in solving control problems for system 

with matched unmodeled dynamics [15][16]. For conventional MRAC, it is hard to 

achieve desired transient performance and avoid unwanted high frequency oscillations at 

the same time. Various NN-based MRAC methods were developed (for example, [17]-
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[18]), some modifications to the adaptive law were also introduced for better transient 

performance. Modification to the adaptive law such σ-modification [19], e-modification 

[20] are introduced. These methods modify the adaptive law by adding factor depending 

on the prediction error, which ensures the convergence of parameter estimation, 

moreover, when close to steady state conditions, the modification term becomes inactive 

and therefore the estimation accuracy is guaranteed.  In [21], a projection operator is 

developed to modify the adaptive law. Projection operator replaces the common Lipschitz 

continuous property with arbitrary many times continuous differentiability, and 

estimation parameters are proven to be bounded.  

 However, although these developments to the adaptive law can be employed to 

improve robustness, tracking accuracy can only be shown bounded, and the bound 

depends on the disturbances itself. At the same time, typical MRAC cannot avoid 

unwanted oscillations. Recently many methods were developed to solve these two 

problems. In [22][23], a new MRAC neural networks controller named L1 adaptive 

controller is proposed, and transient performance of both system’s input and output signal 

are characterized. This adaptive control architecture has a low-pass filter in the feedback 

loop, and its desired transient performance can be guaranteed by increasing adaption gain 

and improving NN approximation, and at the same time, high frequency oscillation is 

avoided. In [24], an adaptive control method that allows fast adaptation for systems with 

slow reference models is given. In this method, in order to allow fast adaptation, the 

neural network is trained with a high bandwidth state emulator. Low bandwidth control is 

maintained by a filter to isolate fast emulator dynamics from control signal. In [25], a 

novel Kalman-filter version of the e-modification [20] is developed. In this method 
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standard e-modification term is interpreted as the gradient of a norm measure of a linear 

constraint violation, and this linear constraint is then used to develop a Kalman-filter-

based e-modification. It is shown that this method leads to smaller tracking error without 

generating significant oscillation in the system response. 

 At the same time, because of its simplicity, adaptation to disturbance and 

guaranteed transient performance, sliding mode controller (SMC) is also often used in 

adaptive control [26][27][28]. In SMC, trajectories are forced to reach a designed sliding 

surface in finite time and to stay on the surface for all future time. Dynamics on the 

sliding surface is independent of matched uncertainties and the sliding surface is designed 

so as to guarantee the asymptotic stability of control objective. Though it has many 

advantages, an outstanding drawback of SMC in application is when control switching 

signs along the sliding surface oscillations are usually unavoidable. A soft-switching 

sliding mode technique has been introduced by Lychevsky [29][30]. By modifying sign 

function used in typical SMC to continuous real-analytic function, for example, tanh and 

erf, the soft switching sliding mode controller avoid oscillations and remain asymptotic 

stable at the same time. In [31], a systematic way to combine adaptive control and SMC 

for trajectory tracking in presence of parametric uncertainties and uncertain nonlinearities 

is developed. The sliding mode controller is smoothed with two methods based on the 

concept of boundary layer [27]. Asymptotic stability of adaptive system in presence of 

parametric uncertainties is realized, and the drawback of control chattering is reduced 

significantly. In [32], a modified switching function which provides low-chattering 

control signal is introduced, and the SMC is combined with a neural network adaptive 

controller which identifies modeling error online. In [33], by using a similar approaching 
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to SMC, a novel approaching which combines NN feedforward controller with 

continuous robust integral of sign of error (RISE) feedback controller is introduced, in 

this method, by designing sliding surface using sign of error, a continuous RISE feedback 

is combined with NN-based adaptive controller, and it is shown that using Lyapunov 

theory the tracking error is asymptotically stable, while typical NN-based controller can 

only yield uniformly ultimately bounded (UUB) stability, and at the same time, the 

control is free from oscillations, experimental results show the method’s potential in 

reducing tracking error [34][35]. 

 In recent years, electronic control of hydraulic systems has been explored 

extensively, however, most research focused on controlling precise actuator using 

sophisticated servo-valves and high-precision instrumentation, which can be prohibitively 

expensive, and not suit for industrial hydraulic machinery environment. In [36], a 

practical control algorithm is presented and tested for use on this kind of electro-

hydraulic machinery.  Electro-hydraulic systems have been widely used in the industry. 

Hydraulic systems are capable of produce large force/torque at high speeds while 

maintaining a high power-to-size ratio. However, significant nonlinearities, such as dead-

band, saturation, hysteresis, and nonlinear gain in hydraulic systems make it difficult to 

design high performance force/position tracking controllers. To cope with the 

nonlinearities, nonlinear control methods are typically used.  Feedback linearization 

method is used [37-39]. However this method requires accurate system model which is 

difficult to achieve for electro-hydraulic system. Sliding mode control has also been used 

in electro-hydraulic system control [40-42]. However, the performance of sliding mode 

control is complicated by the choice of dead band. If the dead band is too small, 
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chattering may occur; if the dead band is too large, it may deteriorate the tracking 

performance. In addition to the nonlinearities, there also exist significant uncertainties in 

the hydraulic system. Parameters may change with time due to different operating 

conditions, temperature, and/or wearing of hydraulic components. To deal with the 

uncertainties and the nonlinearities, several nonlinear adaptive control methodologies 

have been proposed. A nonlinear adaptive control based on back stepping is applied to 

the electro-hydraulic system force control in [43].  An adaptive sliding mode control 

technique is proposed in [44]. A nonlinear adaptive robust control scheme is proposed in 

[45] for single-rod hydraulic actuator motion control. 

 This paper develops a new neural network MRAC with guaranteed transient 

performance and asymptotic stability, and at the same time free from unwanted 

oscillations. Based on MRAC neural networks controller, the neural network observer 

structure is modified in the manner of [46]. In this modification, instead of introducing 

any additional filters, by adding a factor of observer error in the neural network observer 

structure, it is shown that high frequency oscillations are avoided, and as a result this new 

method enables further increasing adaptive gain, which leads to better tracking 

performance. At the same time, the modified term is inactive when neural network 

estimation is ideal, therefore the estimation accuracy is guaranteed. Moreover, in order to 

get better transient performance and stability, a soft-switching sliding mode modification 

[29] is combined with neural network adaptive controller, it is proven using Lyapunov 

method that it ideally leads to asymptotic stability instead of UUB, and at the same time 

is free from oscillations which is common for typical sliding mode adaptive controller. In 

general, the proposed controller enables higher adaptive gain without generating 
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oscillations, provides better transient performance and asymptotic stability at the same 

time.   This method to a Caterpillar electro-hydraulic test bench [36] for velocity tracking 

control and the results shows satisfactory tracking performance is achieved with smooth 

control.  

 Rest of the paper is organized as follows. In Section 1, the system and the neural 

networks structure is defined.  In Section 2, the control solution is proposed. A stability 

proof of both observer and state error signal is put forward, and the guaranteed transient 

performance is also explained in Section 3. Section 4 includes description of the electro-

hydraulic piston system and results and analysis of a series of experiments using the 

control algorithm. 

 

2. PROBLEM DESCRIPTION 

Consider the following single input single output (SISO) system. 

 

 

1 2

2 3

...
( ( ))n

x x
x x

x b u f

=⎧
⎪ =⎪
⎨
⎪
⎪ = −⎩ x  (1) 

 
and the system output is defined as 

 
 1y cx=  (2) 

 
c  is a non-zero constant. The initial condition is set to  

 
 (0) =x 0 . (3) 

 The set of equations in (1) can be written in a compact form as  

 ( ) ( ) ( ( ))t Ax t B u f= + −x x  (4) 



67 

 

where x n∈ is the system state vector, and all states are assumed to be measurable. 

u ∈ is control signal, A is n n× system matrix, B is 1n× vector, 0b > , ( , )A B is 

controllable. : nf → is an unknown continuous nonlinear function. 
The control objective is to design a neural adaptive controller which ensures 

output ( )y t tracks a desired bounded continuous trajectory ( )r t , and the system behavior 

follows a nominal linear time-invariant (LTI) system which is designed through standard 

methods(for example, through linear quadratic regulator theory[29]), and at the same 

time guarantee desired transient and steady state performance in the presence of 

uncertainties. 

Assume the following NN approximation of ( )f x exists 

 
 *( ) ( ) ( ) ( )Tf φ ε ε ε= +    <x W x x x  (5) 

 
where ( )φ x is a set of radial basis functions, and each element of ( )φ x  is defined as 

 
 2( ) exp( ( ) ( ) / )Ty y z y zφ σ= − − −  (6)  

 
 In (6), z is the location of selected center,σ is the ‘width’. Ware the ideal network 

weights, ( )ε x is the network approximation error, *ε is its uniform bound. Further assume 

that a compact convex set Ω is known a priori such that 

 
 W∈Ω  (7) 

 
In order to realize tracking control for this SISO system, the following neural 

network adaptive controller is developed. 
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3. CONTROL SOLUTION 

The proposed controller is a combination of a linear feedback control, neural 

network adaptive control and a soft switching sliding mode control. First of all, divide the 

controller expression into three parts-the linear feedback control 1xK , neural networks 

adaptive control eu and soft switching sliding mode control μ  

 
 1 eu K u μ= +x +  (8) 

 
where 1K  the closed loop feedback gain, which ensures closed-loop reference dynamics 

matrix 1mA A BK= −  is Hurwitz. The linear feedback control ensures stability when there 

is no uncertainty; the adaptive control is obtained through neural networks observer, and 

cancels the uncertainty; the soft switching sliding mode control guarantees asymptotic 

stability in presence of neural networks estimation error, and it is going to be exactly 

defined later with stability proof. 

 Substitute (8) into (4), (4) becomes 

 
 ( ) ( ) ( ( ) ( ))m et A t B u t fμ= + −x x + x  (9) 

 
And define the following state observer structure, 

 
 2

ˆˆ ˆ( ) ( ) ( ( ) ) ( )m et A t B u t f K tμ= + − −x x + x  (10) 

 
where ˆ( )tx represents the observer states at time t. The initial conditions for observer are 

 
  ˆ (0) =x 0  (11) 

 
 Since the uncertainty and the true neural network weights are unknown, they are 

represented as ˆ ( )TφW x where Ŵ represents the estimated neural network weights with a 

proper weight update law. The observer gain matrix is assumed diagonal for convenience 
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and is expressed as 1 2
2 2 2 2( , ,..., )nK diag k k k=  . In the observer structure, f̂ is assumed to be 

canceled perfectly by neural networks controller, i.e. ˆ ˆ ( )Tf φ= W x .  

 Define the observer error as 

 
 ˆ( ) ( ) ( )x x xt t t≡ −  (12) 

 
The adaptive weight update law is defined as follows[28]: 

 

 ˆ ˆ( ) Pr ( ( ), ( ) ( ) )T
ct oj t t PBφ= ΓW W x x  (13) 

 
where P is defined by T

m mA P PA Q+ = − , with Q being a positive definite matrix and cΓ is 

the learning rate of the neural network. The projection operator property guarantees the 

boundedness of neural networks weights error 

 
 maxW WT W≤  (14) 

 
where 2

max
ˆmax 4 ,W W W W WW ∈Ω≡ ≡ − [21].  

Now with neural networks weights, the adaptive control expression becomes 

 
 ˆ( ) ( )T

e gu k r t φ= + W x  (15) 

 
where  

 

 1

1
g

m

k
CA B−≡  (16) 

 
is the open loop gain of the reference system. 

 Subtract (9) from (10), and substitute (15), the observer error dynamics is 

obtained as, 

 
 2( ) ( ) ( ( ) )T

mt A K B φ ε= − + −x x W x  (17) 
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By using Lyapunov method [9], it will be shown that the neural network 

estimation error and the observer error are bounded. By introducing the observer gain K2, 

the learning process is smoothed, and the modified term decrease as x decreases, 

therefore the learning accuracy is guaranteed. As a result, the modified observer structure 

enables increasing adaptation gain without generating high frequency oscillations. 

 

4. STABILITY ANALYSIS 

In this section, Lyapunov method is used to prove the boundedness of the 

observer error dynamics. And in order to assure asymptotic convergence of reference 

error, the soft-switching sliding mode controller is derived. Details of the proofs are 

provided in the following subsections. 

4.1. OBSERVER ERROR 

To get the error bound for neural network observer, consider a Lyapunov function 

as 1( , ) T T
cV P −= + Γx W x x W W , and differentiate V(.) to get 

 
 1( )T T T T

cV x Px x Px −= + + Γ +W W W W  (18) 

 
substitute the weight update law (13) and observer dynamics (17), (18) becomes 

 

 [ ]

2

2
min min 2

2 2 ( ( ) ( ))
ˆ2 Pr ( , ( ) )

2 ( ) 2 ( )

T T T T

T T

V Q K P PB

oj PB

PB Q K P

φ ε

φ

ε λ λ

= − − − −

          +

≤ − +

x x x x x W x x

W W x x

x x  (19) 

 
therefore 0V ≤ when  

 

 
*

min min 2

2
( ) 2 ( )

x
Pb

Q K P
ε

λ λ
≥

+
 (20) 

 
As a result, 
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1
max

2*
1

max max
min min 2

( , )

2
( )

( ) 2 ( )

x W x xT
c

c

V P W

PB
P W

Q K P
ε

λ
λ λ

−

−

≤ + Γ

⎛ ⎞
⎜ ⎟≤ + Γ
⎜ ⎟+⎝ ⎠

  (21) 

 
and at the same time 

 
 2

min( , ) ( )x W x x xTV P Pλ≥ ≥  (22) 

 
(21) and (22) lead to 

 

 

2*
1

max max
min min 2

min

0

2
( )

( ) 2 ( )

( )

c

Pb
P W

Q K P

P

ε
λ

λ λ

λ
γ

−
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ + Γ
⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠≤

≡

x

 (23) 

 
In (23), by increasing adaptation gain cΓ and observer gain K2, x can be driven 

to be as small as possible, therefore, precise uncertainty estimation using online neural 

networks is guaranteed. Also, with the modification term to smooth out learning, the state 

observer structure suppresses the high frequency oscillation so that increased adaptation 

gain and smooth control are possible at the same time. 

4.2. REFERENCE ERROR 

Note that with adaptive control and linear feedback control alone (with 0μ = ), the 

controller is able to track reference system but with bounded tracking errors. However, 

with a soft-switching sliding mode controller, the tracking error can be shown to be 

asymptotic stable. Define a reference LTI system dynamics as 

 
 r m r gA bk r= +x x  (24) 

 
where ( )T

r ru φ≡ W x is the reference controller, which cancels uncertainty. 

By subtracting the reference dynamics (24) from actual system dynamics (9), the 

tracking error dynamics are expressed as 
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( ) ( )
ˆ( ( ) ( ) ( ))

r

T T
m

t t

A b μ φ ε

≡ −

= + + − −  

e x x

e W W x x  (25) 

 
Recalling the definition of system dynamics as given in (1), (25) can be written as 

 

1 2

2 3

1

...

( ( ) ( ))T
n

e e
e e

e bK b μ φ ε

=⎧
⎪ =⎪
⎨
⎪
⎪ = + + −⎩ e W x x  (26) 

 
Then, define the sliding surface as 

 

 ( )
1

1
1

0

n
n p

p
p

s eλ
−

− −

=

≡ ∑  (27) 

 
where 0, 0,1,..., 1i i nλ > = − . In most cases, the designer can just set 0 1λ = . For example, 

when n=3, the sliding manifold is 3 1 2 2 1s e e eλ λ= + + . 

 With a  Lyapunov function 21
2sV s= , its derivative is given by 

 

 

( )

( )

( )

1
( )

1 1
1

1

1
1

1

1 1
1

( )

( )

( ( ))e

n
n p n

s p
p

n
n p

p n
p

n
n p

p
p

V ss s e e

s e e

s e bK b D

λ

λ

λ μ

−
−

=

−
−

=

−
−

=

= = +

= +

= + + +

∑

∑

∑  (28) 

 
where  

 
 ( ) ( )TD φ ε≡ −W x x  (29) 

 
Recall NN approximation property (5) and weights error boundedness (14), 

immediately we have the following bound for D 
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 * *
max

( ) ( )TD

W D

φ ε

ε

= −

≤ + ≡

W x x

 (30) 

 
Now the soft switching sliding manifold control term is formulated as  

 ( )
1

1 1
1

/ tanh( )e
n

n p
p

p

e b K sμ λ β α
−

−

=

= − − −∑ ,  (31) 

 
By substituting (31) into (28), it can be shown that 

 
 ( tanh( ) )sV bs s Dβ α= − +  (32) 

 
When s>0 

 

 *

( tanh( ) )

( tanh( ) )
sV bs s D

bs s D

β α

β α

= − +

≤ − +  (33) 

 
0sV ≥ only when 

 
 *tanh( ) /s Dα β≤  (34) 

 
which leads to 

 

 

*

*

1
10 ln

2 1

D

s
D
β

α
β

+
< ≤

−
 (35) 

 
When s<0 

 

 *

( tanh( ) )

( )( tanh( ) )
sV bs s D

b s s D

β α

β α

= − +

≤ − +  (36) 
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0sV ≥ only when 

 
 *tanh( ) /s Dα β> −  (37) 

 
which leads to 

 

 

*

*

1
10 ln

2 1

D

s
D
β

α
β

−
> ≥

+
 (38) 

 
From (35) and (38), it can be observed that the bound for the sliding manifold is  

 

 

*

1*

1
1 ln

2 1

D

s
D
β γ

α
β

+
< ≡

−
 (39) 

 
As long as 0α > , *Dβ > , the sliding manifold will remain bounded. By 

increasing α and β , the bound of the sliding manifold will converge to 0. The tracking of 

controller system is asymptotically stable when 1 0γ = .  

To sum up, with (8), (15), and (31), we can get the final expression for proposed 

controller as follows 

 

 ( )
1

1 1
1

ˆ( ) ( ) / tanh( )
n

n pT
r g p

p

u K k r t e b sφ λ β α
−

−

=

= + + − −∑x W x  (40) 

 
Note that since no discontinuous function is introduced, this controller is smooth. 

Without generating additional oscillations, the controller will drive the tracking error 

asymptotic to 0. 
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5. EXPERIMENTAL RESULTS 

The test bed for the control method is a Caterpillar Electro-Hydraulic Test Bench 

(Figure 1.), which was a gift from Caterpillar to Missouri University of Science and 

Technology as part of a laboratory dedicated to electro-hydraulics and mechatronics.  

 
 

 
 

Figure 1. Caterpillar Electro-Hydraulic Test Bench 
 
 
The test bench consists of the electro-hydraulic valves and piston, with five 

distinct physical components which affect the system operation and dynamics: control 

electronics, pilot solenoid valve, spool valve, hydraulic cylinder, and sensors. 

Additionally, specialized computer hardware and software interfaces with the control 

electronics and sensors, providing for real-time computerized control. The complete 

system is shown in diagram form in Figure 2.  
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Figure 2.  Electro-Hydraulic System Diagram 
 
 
The electro-hydraulic system considered in this study cannot be well described by 

a linear, time-invariant model, since the nonlinear characteristics such as friction, dead 

band, and nonlinear valve gains cannot be neglected. The system includes pressure 

sensors that measure the pressures in each chamber of the piston and an encoder that 

measures the piston displacement. In this system, the spool valve is contained in a sealed 

housing with no integrated sensor; therefore it is impossible to measure its position either 

in real-time or offline. Additionally, it is subject to significant and unpredictable stiction 

effects and flow forces, so its position cannot be accurately predicted based solely on the 

control input and measured states. 

The input current which feeds into the pilot valve will decide the direct input into 

forward and reverse valve, the relationship between them is, 

 

 

0

0

, 0, 0
0, , 0
0 0, 0

cf c cf cr c

cf cr c cf c

cf cr c

I I I I if I
I I I I if I
I I if I

= + =  >⎧
⎪ = = +  <⎨
⎪ = =  =⎩  (41) 

 
where cI  is the input current, cfI is input to forward valve, crI  is input to reverse valve, 

0 0 0.4cf crI I= =  A is the estimated dead band value of each valve. 

From previous work [36], a simple input-output model for the piston response 

was developed based on experimental data. In order to remove noise from encoder, a 

low-pass filter is utilized for obtaining filtered position signal. The filtered piston position 

is numerically differentiated to calculate the (approximate) piston velocity. It is done 
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online so a first order backwards finite difference is used. The relationship between 

velocity and encoder position output is 

 
 5 5 ev x x x= = − +  (42) 

 
where v is estimated velocity, x is filtered position, ex is encoder position output. 

As a result, instead of using a high order system, in the following experiments, a 

simple linear model with matched uncertainties is used, 

 

 1 2
1 ( ( ( , , , , ))c cv Bv b I f x v P P I
m

= − + −  (43) 

 
where x (mm) is the displacement of the piston, v (mm/sec) is piston velocity, 

2B = (kg/sec) is the estimated value of the viscous friction coefficient, 1b = is the 

estimated value of the control gain. 1P (kPa) and 2P (kPa) are the measured pressure from 

each chamber, f is the unknown nonlinear dynamics. 3.85m =  kg is the measured piston 

mass. The sample period is 0.01 sec. 

With the feedback control gain 1K , the closed loop reference velocity dynamics 

are 

 

 1
1 1( ( ) ) ( )r r g m r gv B bK v bk r B v bk r
m m

= − + + = − +  (44) 

 
The desired reference linear system should be realizable, and given that satisfied, 

as fast as possible. In order to obtain a suitable center value for mB , a series of open loop 

experiments are conducted. The results are shown in Table 1. 

It can be seen that the test bench is highly nonlinear and asymmetric; the forward 

direction saturates at 0.2cI >  A and the reverse direction saturates at 0.3cI >  A. The 

settling time varies from 4.45 to 5.9 sec. As a result, a realizable and desired reference 

performance is taken as 1 1K = , 3mB = , 3gk = . Therefore closed loop reference system  is 

modeled as 
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 1 ( 3 3 )
3.85r rv v r= − +  (45) 

 
 

Table 1. Open Loop Experiments Results 
Ic (A) Steady state  velocity (mm/s) 5% settling time (s) 

0.04 9.9 4.15 

−0.04 −10.5 4.22 

0.07 17.6 4.26 

−0.07 −18.5 4.33 

0.1 21.7 5.75 

−0.1 −24.5 5.72 

0.2 22.5 5.7 

−0.2 −26 5.74 

0.3 22.7 5.8 

−0.3 −27.2 5.9 

0.4 22.9 5.8 

−0.4 −27.5 5.9 

 
 
 
From Table 1, the average experimental settling time is 5.27 sec, and the 5% 

settling time of reference system is 3.85 seconds, providing a 27% decrease in the 5% 

settling time. Experiments show that, the maximum forward acceleration is 11.2 mm/s2, 

and the maximum reverse acceleration is 13.1 mm/s2. 

The control law is 
 

 1 1
ˆ tanh( )T

c gI K v k r W K e sφ β α= + + − −  (46) 

The radial basis function 12φ ∈ used for neural network structure is 

 
 [ ]1 2 3 1 4 2 5( ), ( ), ( ), ( ), ( ),1 T

cv x P P Iφ φ φ φ φ φ=  (47) 

 
where 
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2 22 2 2 2

3 11 1 2 1 ( ) /( ) / ( ) /
1( ) , ,

T
v zv z v zv e e e σσ σφ − −− − − −⎡ ⎤= ⎣ ⎦  

 
2 2

4 2( ) /
2 ( ) x zx e σφ − −=  

 
2 2 2 2 2 2

1 5 3 1 6 3 1 7 3( ) / ( ) / ( ) /
3 1( ) , ,

T
P z P z P zP e e eσ σ σφ − − − − − −⎡ ⎤= ⎣ ⎦  

 
2 2 2 2 2 2

2 8 4 2 9 4 2 10 6( ) / ( ) / ( ) /
4 2( ) , ,

T
P z P z P zP e e eσ σ σφ − − − − − −⎡ ⎤= ⎣ ⎦  

 
2 2

1 11 7( ) /
5 ( ) cI z

cI e σφ − −=  

 
Here 1 0z =  mm/s, 2 15z =  mm/s, 3 15z = −  mm/s, 4 0z =  

mm/s, 5 8 0z z= = kPa, 6 9 40z z= = kPa, 7 10 40z z= = kPa, 11 0z =  

A, 1 1σ = , 2 20σ = , 3 4 5 6 2σ σ σ σ= = = = , and 7 0.05σ = . The centers and widths of the 

RBF are selected so that the neural network can estimate uncertainty over the entire 

working region of the system with similar sensitivity. Notice that, as long as f is a 

continuous function of x , v , 1P , 2P , and cI , the neural network approximation assumption 

(3) is valid. 

The learning rate for the adaptive controller is selected as 100Γ = , the observer 

gain is 2 100K = , and the sliding surface is rs e v v= = − since the modeled system is first 

order. The soft switching sliding mode control parameters are =200α , =100β . 

Increasing Γ causes larger overshoot, while decrease it increase error bound; increasing 

2K  increases error bound, while decrease it increases overshoot. The parameters are 

tuned in order to decrease the steady state error bound and obtain the best possible 

transient performance. Increasingα will increase the feedback controller’s sensitivity to 

tracking error, and increasing β can increase the controller’s response speed, but when it 

is too large there will be significant overshoot. Neural network weights are updated by 

the adaptive law (10), with 1P = . 

The system diagram is shown in Figure 3. 
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Figure 3. Control System Block Diagram 
 
 
To verify the feasibility of this controller, a series of different command inputs are 

tested. 

Case 1: constant velocity signal 

 Take the command input as 

 
 18s ign(sin(2 / 32) ) mm/sr tπ=   (48) 

 Results are shown in Figure 4. The velocity trajectory, control history and a 

velocity tracking error history is given. 
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Figure 4. Experimental results for constant reference 
 
 

 There is an initial inevitable delay (approximately 0.8 sec) for each experiment, 

due to the flow filling process of the test bench. At 0.8 sec, the error reaches peak value 

of 7.9 mm/sec, after that the controller keeps the velocity error bounded during both 

steady stage and transient, the closed-loop system velocity tracks the reference system. 

Disregarding the first step, the 5% settling time for second, third and forth steps are 3.8, 

8.25, and 3.7 sec respectively. The difference is due to the nonlinearity and asymmetry of 

the system. For reverse direction, the settling time is very close to reference model, i.e. 

3.85 sec. During the transient stage, the tracking error increases up to a peak value of 4.3 

mm/sec for forward direction and 5.4 mm/sec for reverse direction. After the transient, 

with the adaptive controller, tracking error quickly decreased down to 5% percent bound, 
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i.e. 0.9 mm/sec. During steady stage, the neural network controller takes care of the 

disturbance and keeps error bounded under 5%. 

Case 2: sinusoidal velocity signal 

To test the controller stability under time varying conditions, the following 

reference signal is considered 

 
 15sin( ) mm/sr t=   (49) 

 
The results are shown in Figure 5.  
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Figure 5. Experimental results for 15sin( ) mm/sr t=   
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 It can be seen that the actual system tracks the reference. The output tracks the 

desired trajectory when velocity switches direction. Disregard the initial error, peak value 

of velocity tracking error is 1.0 mm/sec for forward direction and 0.9 mm/sec for reverse 

direction. The closed-loop velocity is 2.6% higher than reference velocity; the phase 

delay is under 0.5 degree. At the same time, the control signal is smooth without any high 

frequency oscillations, as evidenced by a Fast Fourier Transform that showed significant 

energy only at the 1 rad/s and its multiples, and 90% of energy concentrated under 25 

rad/s.  

To further verify the system performance, the following reference signal is 

considered 

 
 15sin(5 ) mm/sr t=   (50) 

 
The results are shown in Figure 6. As the results show, compared to low 

frequency results, the tracking error and the phase delay both increase. Disregard the 

initial error, peak value of velocity tracking error is 1.4 mm/sec for forward direction and 

1.2 mm/sec for reverse direction. The closed-loop velocity is 8.6% higher than reference 

velocity; the phase delay is 3.4 degree. As frequency continues to increase, the controller 

will meet the limit which prevents precise tracking. The control signal is still prevented 

from high frequency oscillations, and a Fast Fourier Transform shows significant energy 

only at the 5 rad/s and its multiples 10 rad/s, more than 90% of energy concentrated 

under 55.6 rad/s. 

By testing other frequencies, a bode diagram of the frequency properties of the 

controller system is obtained. Figure 7 shows the steady state magnitude of closed-loop 

system vs reference system, and the phase delay of actual system comparing to the 

reference. 

As the Figure 7 illustrates, with the proposed neural network controller, when 

sinusoid signal is input, the actual system is able to track reference system. The cutoff 

frequency is 13 rad/sec. Due to the limitation of acceleration, as frequency increases, the 

peak velocity have to decrease, as a result, when applying frequencies even higher, the 

piston velocity is too small (<0.5mm/s) for effective control. As a conclusion, under 
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working frequency below 13 rad/sec, proposed controller is getting a satisfying result for 

both magnitudes and phase tracking. 
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Figure 6. Experimental results for 15sin(5 ) mm/sr t=   
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Figure 7. Closed-loop frequency response 
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6. SUMMARY AND CONCLUSIONS 

 A new robust adaptive control has been derived in this paper. Bounds on transient 

response error shave been derived. A novel sliding mode term has been added to result in 

asymptotic stability of the errors instead of the usual upper bounded derivations. The 

transient response of the new controller is guaranteed and it reduces oscillatory behavior 

while learning and cancelling out the uncertainties. The controller is designed and applied 

in a Caterpillar Electro-Hydraulic Test Bench, for velocity tracking objective. 

Experimental results show that precise tracking of the reference model system is realized 

with adaptive controller for different cases. The potential of this technique is with 

modified state observer structure, it is possible to choose large adaptive gain, suppress 

high frequency oscillations, and achieve asymptotic stability at the same time.  
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SECTION 

2.  CONCLUSIONS 

An new neural network controller based on modified predictor structure is 

developed in this thesis. The new method combines model reference adaptive control 

with soft switching sliding control, and prevents high frequency oscillation in high 

adaption gain. The new method provides asymptotic tracking, and is better in both 

transient and steady stage performance comparing to traditional MRAC, and it is shown 

through simulation and experimental results. In paper 1, two theoretical models are 

considered, one is robot-arm motion control, and the other is ship steering control; In 

paper 2, a missile autopilot control design problem is studied, with comparison to MRAC, 

it is show that the method reduces oscillation and tracking error at the same time; In 

paper 3, the method is applied in a Caterpillar Electro-Hydraulic test bench, in order to 

precisely control velocity of a piston, and satisfying experimental results are provided. 
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