60 research outputs found

    Biomechanical Modeling and Inverse Problem Based Elasticity Imaging for Prostate Cancer Diagnosis

    Get PDF
    Early detection of prostate cancer plays an important role in successful prostate cancer treatment. This requires screening the prostate periodically after the age of 50. If screening tests lead to prostate cancer suspicion, prostate needle biopsy is administered which is still considered as the clinical gold standard for prostate cancer diagnosis. Given that needle biopsy is invasive and is associated with issues including discomfort and infection, it is desirable to develop a prostate cancer diagnosis system that has high sensitivity and specificity for early detection with a potential to improve needle biopsy outcome. Given the complexity and variability of prostate cancer pathologies, many research groups have been pursuing multi-parametric imaging approach as no single modality imaging technique has proven to be adequate. While imaging additional tissue properties increases the chance of reliable prostate cancer detection and diagnosis, selecting an additional property needs to be done carefully by considering clinical acceptability and cost. Clinical acceptability entails ease with respect to both operating by the radiologist and patient comfort. In this work, effective tissue biomechanics based diagnostic techniques are proposed for prostate cancer assessment with the aim of early detection and minimizing the numbers of prostate biopsies. The techniques take advantage of the low cost, widely available and well established TRUS imaging method. The proposed techniques include novel elastography methods which were formulated based on an inverse finite element frame work. Conventional finite element analysis is known to have high computational complexity, hence computation time demanding. This renders the proposed elastography methods not suitable for real-time applications. To address this issue, an accelerated finite element method was proposed which proved to be suitable for prostate elasticity reconstruction. In this method, accurate finite element analysis of a large number of prostates undergoing TRUS probe loadings was performed. Geometry input and displacement and stress fields output obtained from the analysis were used to train a neural network mapping function to be used for elastopgraphy imaging of prostate cancer patients. The last part of the research presented in this thesis tackles an issue with the current 3D TRUS prostate needle biopsy. Current 3D TRUS prostate needle biopsy systems require registering preoperative 3D TRUS to intra-operative 2D TRUS images. Such image registration is time-consuming while its real-time implementation is yet to be developed. To bypass this registration step, concept of a robotic system was proposed which can reliably determine the preoperative TRUS probe position relative to the prostate to place at the same position relative to the prostate intra-operatively. For this purpose, a contact pressure feedback system is proposed to ensure similar prostate deformation during 3D and 2D image acquisition in order to bypass the registration step

    Contributions of biomechanical modeling and machine learning to the automatic registration of Multiparametric Magnetic Resonance and Transrectal Echography for prostate brachytherapy

    Get PDF
    El cáncer de próstata (CaP) es el primer cáncer por incidencia en hombres en países occidentales, y el tercero en mortalidad. Tras detectar en sangre una elevación del Antígeno Prostático Específico (PSA) o tras tacto rectal sospechoso se realiza una Resonancia Magnética (RM) de la próstata, que los radiólogos analizan para localizar las regiones sospechosas. A continuación, estas se biopsian, es decir, se toman muestras vivas que posteriormente serán analizadas histopatológicamente para confirmar la presencia de cáncer y establecer su grado de agresividad. Durante la biopsia se emplea típicamente Ultrasonidos (US) para el guiado y la localización de las lesiones. Sin embargo, estas no son directamente visibles en US, y el urólogo necesita usar software de fusión que realice un registro RM-US que transfiera la localizaciones marcadas en MR al US. Esto es fundamental para asegurar que las muestras tomadas provienen verdaderamente de la zona sospechosa. En este trabajo se compendian cinco publicaciones que emplean diversos algoritmos de Inteligencia Artificial (IA) para analizar las imágenes de próstata (RM y US) y con ello mejorar la eficiencia y precisión en el diagnóstico, biopsia y tratamiento del CaP: 1. Segmentación automática de próstata en RM y US: Segmentar la próstata consiste en delimitar o marcar la próstata en una imagen médica, separándola del resto de órganos o estructuras. Automatizar por completo esta tarea, que es previa a todo análisis posterior, permite ahorrar un tiempo significativo a radiólogos y urólogos, mejorando también la precisión y repetibilidad. 2. Mejora de la resolución de segmentación: Se presenta una metodología para mejorar la resolución de las segmentaciones anteriores. 3. Detección y clasificación automática de lesiones en RM: Se entrena un modelo basado en IA para detectar las lesiones como lo haría un radiólogo, asignándoles también una estimación del riesgo. Se logra mejorar la precisión diagnóstica, dando lugar a un sistema totalmente automático que podría implantarse para segunda opinión clínica o como criterio para priorización. 4. Simulación del comportamiento biomecánico en tiempo real: Se propone acelerar la simulación del comportamiento biomecánico de órganos blandos mediante el uso de IA. 5. Registro automático RM-US: El registro permite localizar en US las lesiones marcadas en RM. Una alta precisión en esta tarea es esencial para la corrección de la biopsia y/o del tratamiento focal del paciente (como braquiterapia de alta tasa). Se plantea el uso de la IA para resolver el problema de registro en tiempo casi real, utilizando modelos biomecánicos subyacentes.Prostate cancer (PCa) is the most common malignancy in western males, and third by mortality. After detecting elevated Prostate Specific Antigen (PSA) blood levels or after a suspicious rectal examination, a Magnetic Resonance (MR) image of the prostate is acquired and assessed by radiologists to locate suspicious regions. These are then biopsied, i.e. living tissue samples are collected and analyzed histopathologically to confirm the presence of cancer and establish its degree of aggressiveness. During the biopsy procedure, Ultrasound (US) is typically used for guidance and lesion localization. However, lesions are not directly visible in US, and the urologist needs to use fusion software to performs MR-US registration, so that the MR-marked locations can be transferred to the US image. This is essential to ensure that the collected samples truly come from the suspicious area. This work compiles five publications employing several Artificial Intelligence (AI) algorithms to analyze prostate images (MR and US) and thereby improve the efficiency and accuracy in diagnosis, biopsy and treatment of PCa: 1. Automatic prostate segmentation in MR and US: Prostate segmentation consists in delimiting or marking the prostate in a medical image, separating it from the rest of the organs or structures. Automating this task fully, which is required for any subsequent analysis, saves significant time for radiologists and urologists, while also improving accuracy and repeatability. 2. Segmentation resolution enhancement: A methodology for improving the resolution of the previously obtained segmentations is presented. 3. Automatic detection and classification of MR lesions: An AI model is trained to detect lesions as a radiologist would and to estimate their risk. The model achieves improved diagnostic accuracy, resulting in a fully automatic system that could be used as a second clinical opinion or as a criterion for patient prioritization. 4. Simulation of biomechanical behavior in real time: It is proposed to accelerate the simulation of biomechanical behavior of soft organs using AI. 5. Automatic MR-US registration: Registration allows localization of MR-marked lesions on US. High accuracy in this task is essential for the correctness of the biopsy and/or focal treatment procedures (such as high-rate brachytherapy). Here, AI is used to solve the registration problem in near-real time, while exploiting underlying biomechanically-compatible models

    Deformable MRI to Transrectal Ultrasound Registration for Prostate Interventions Using Deep Learning

    Get PDF
    RÉSUMÉ: Le cancer de la prostate est l’un des principaux problèmes de santé publique dans le monde. Un diagnostic précoce du cancer de la prostate pourrait jouer un rôle vital dans le traitement des patients. Les procédures de biopsie sont utilisées à des fins de diagnostic. À cet égard, l’échographie transrectale (TRUS) est considérée comme un standard pour l’imagerie de la prostate lors d’une biopsie ou d’une curiethérapie. Cette technique d’imagerie est relativement peu coûteuse, peut scanner l’organe en temps réel et est sans radiation. Ainsi, les scans TRUS sont utilisés pour guider les cliniciens sur l’emplacement d’une tumeur à l’intérieur de la prostate. Le défi majeur réside dans le fait que les images TRUS ont une faible résolution et qualité d’image. Il est difficile de distinguer l’emplacement exact de la tumeur et l’étendue de la maladie. De plus, l’organe de la prostate subit d’importantes variations de forme au cours d’une intervention de la prostate, ce qui rend l’identification de la tumeur encore plus difficile.----------ABSTRACT: Prostate cancer is one of the major public health issues in the world. An accurate and early diagnosis of prostate cancer could play a vital role in the treatment of patients. Biopsy procedures are used for diagnosis purposes. In this regard, Transrectal Ultrasound (TRUS) is considered a standard for imaging the prostate during a biopsy or brachytherapy procedure. This imaging technique is comparatively low-cost, can scan the organ in real-time, and is radiation free. Thus, TRUS scans are used to guide the clinicians about the location of a tumor inside the prostate organ. The major challenge lies in the fact that TRUS images have low resolution and quality. This makes it difficult to distinguish the exact tumor location and the extent of the disease. In addition, the prostate organ undergoes important shape variations during a prostate intervention procedure, which makes the tumor identification even harder

    Toward quantitative limited-angle ultrasound reflection tomography to inform abdominal HIFU treatment planning

    Get PDF
    High-Intensity Focused Ultrasound (HIFU) is a treatment modality for solid cancers of the liver and pancreas which is non-invasive and free from many of the side-effects of radiotherapy and chemotherapy. The safety and efficacy of abdominal HIFU treatment is dependent on the ability to bring the therapeutic sound waves to a small focal ”lesion” of known and controllable location within the patient anatomy. To achieve this, pre-treatment planning typically includes a numerical simulation of the therapeutic ultrasound beam, in which anatomical compartment locations are derived from computed tomography or magnetic resonance images. In such planning simulations, acoustic properties such as density and speed-of-sound are assumed for the relevant tissues which are rarely, if ever, determined specifically for the patient. These properties are known to vary between patients and disease states of tissues, and to influence the intensity and location of the HIFU lesion. The subject of this thesis is the problem of non-invasive patient-specific measurement of acoustic tissue properties. The appropriate method, also, of establishing spatial correspondence between physical ultrasound transducers and modeled (imaged) anatomy via multimodal image reg-istration is also investigated; this is of relevance both to acoustic tissue property estimation and to the guidance of HIFU delivery itself. First, the principle of a method is demonstrated with which acoustic properties can be recovered for several tissues simultaneously using reflection ultrasound, given accurate knowledge of the physical locations of tissue compartments. Second, the method is developed to allow for some inaccuracy in this knowledge commensurate with the inaccuracy typical in abdominal multimodal image registration. Third, several current multimodal image registration techniques, and two novel modifications, are compared for accuracy and robustness. In conclusion, relevant acoustic tissue properties can, in principle, be estimated using reflected ultrasound data that could be acquired using diagnostic imaging transducers in a clinical setting

    Implementation and Algorithm Development of 3D ARFI and SWEI Imaging for in vivo Detection of Prostate Cancer

    Get PDF
    <p>Prostate cancer (PCa) is the most common non-cutaneous cancer in men with an estimated almost 30,000 deaths occurring in the United States in 2014. Currently, the most widely utilized methods for screening men for prostate cancer include the digital rectal exam and prostate specific antigen analysis; however, these methods lack either high sensitivity or specificity, requiring needle biopsy to confirm the presence of cancer. The biopsies are conventionally performed with only B-mode ultrasound visualization of the organ and no targeting of specific regions of the prostate, although recently, multi-parametric magnetic resonance imaging has shown promise for targeting biopsies. Earlier work has demonstrated the feasibility of acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) to visualize cancer in the prostate, however multiple challenges with both methods have been identified.</p><p>The aim of this thesis is to contribute to both the technical development and clinical applications of ARFI and SWEI imaging using the latest advancements in ultrasound imaging technology.</p><p>The introduction of the Siemens Acuson SC2000 provided multiple technological improvements over previous generations of ultrasound scanners, including: an improved power supply, arbitrary waveform generator, and additional parallel receive beamforming. In this thesis, these capabilities were utilized to improve both ARFI and SWEI imaging and reduce acoustic exposure and acquisition duration. However, the SC2000 did not originally have radiation force imaging capabilities; therefore, a new tool set for prototyping these sequences was developed along with rapid data processing and display code. These tools leveraged the increasing availability of general purpose computing on graphics processing units (GPUs) to significantly reduce the data processing time, facilitating real-time display for ultrasonic research systems.</p><p>These technical developments for both acquisition and processing were applied to investigate new methods for ARFI and SWEI imaging. Specifically, the power supply on the SC2000 allowed for a new type of multi-focal zone ARFI images to be acquired, which are shown to provide improved image quality over an extended depth of field. Additionally, a new algorithm for SWEI image processing was developed using an adaptive filter based on a maximum a posteriori estimator, demonstrating increases in the contrast to noise ratio of lesion targets upwards of 50%.</p><p>Finally, the optimized ARFI imaging methods were integrated with a transrectal ultrasound transducer to acquire volumetric in vivo data in patients undergoing robotic radical prostatectomy procedures in an ongoing study. When the study was initiated, it was recognized that the technological improvements of Siemens Acuson SC2000 allowed for the off-axis response to the radiation force excitation to be concurrently recorded without impacting ARFI image quality. This volumetric SWEI data was reconstructed retrospectively using the approaches developed in this thesis, but the images were low quality. A further investigation identified multiple challenges with the SWEI sequence, which should be addressed in future studies. The ARFI image volumes were very high quality and are currently being analyzed to assess the accuracy of ARFI to visualize prostate anatomy and clinically significant prostate cancer tumors. After a blinded evaluation of the ARFI image volumes for suspicion of prostate cancer, three readers correctly identified 63% of all clinically significant tumors and 74% of clinically significant tumors in the posterior region, showing great promise for using ARFI in the context of prostate cancer visualization for targeting biopsies, focal therapy, and watchful waiting.</p>Dissertatio

    A Markov Random Field Based Approach to 3D Mosaicing and Registration Applied to Ultrasound Simulation

    Get PDF
    A novel Markov Random Field (MRF) based method for the mosaicing of 3D ultrasound volumes is presented in this dissertation. The motivation for this work is the production of training volumes for an affordable ultrasound simulator, which offers a low-cost/portable training solution for new users of diagnostic ultrasound, by providing the scanning experience essential for developing the necessary psycho-motor skills. It also has the potential for introducing ultrasound instruction into medical education curriculums. The interest in ultrasound training stems in part from the widespread adoption of point-of-care scanners, i.e. low cost portable ultrasound scanning systems in the medical community. This work develops a novel approach for producing 3D composite image volumes and validates the approach using clinically acquired fetal images from the obstetrics department at the University of Massachusetts Medical School (UMMS). Results using the Visible Human Female dataset as well as an abdominal trauma phantom are also presented. The process is broken down into five distinct steps, which include individual 3D volume acquisition, rigid registration, calculation of a mosaicing function, group-wise non-rigid registration, and finally blending. Each of these steps, common in medical image processing, has been investigated in the context of ultrasound mosaicing and has resulted in improved algorithms. Rigid and non-rigid registration methods are analyzed in a probabilistic framework and their sensitivity to ultrasound shadowing artifacts is studied. The group-wise non-rigid registration problem is initially formulated as a maximum likelihood estimation, where the joint probability density function is comprised of the partially overlapping ultrasound image volumes. This expression is simplified using a block-matching methodology and the resulting discrete registration energy is shown to be equivalent to a Markov Random Field. Graph based methods common in computer vision are then used for optimization, resulting in a set of transformations that bring the overlapping volumes into alignment. This optimization is parallelized using a fusion approach, where the registration problem is divided into 8 independent sub-problems whose solutions are fused together at the end of each iteration. This method provided a speedup factor of 3.91 over the single threaded approach with no noticeable reduction in accuracy during our simulations. Furthermore, the registration problem is simplified by introducing a mosaicing function, which partitions the composite volume into regions filled with data from unique partially overlapping source volumes. This mosaicing functions attempts to minimize intensity and gradient differences between adjacent sources in the composite volume. Experimental results to demonstrate the performance of the group-wise registration algorithm are also presented. This algorithm is initially tested on deformed abdominal image volumes generated using a finite element model of the Visible Human Female to show the accuracy of its calculated displacement fields. In addition, the algorithm is evaluated using real ultrasound data from an abdominal phantom. Finally, composite obstetrics image volumes are constructed using clinical scans of pregnant subjects, where fetal movement makes registration/mosaicing especially difficult. Our solution to blending, which is the final step of the mosaicing process, is also discussed. The trainee will have a better experience if the volume boundaries are visually seamless, and this usually requires some blending prior to stitching. Also, regions of the volume where no data was collected during scanning should have an ultrasound-like appearance before being displayed in the simulator. This ensures the trainee\u27s visual experience isn\u27t degraded by unrealistic images. A discrete Poisson approach has been adapted to accomplish these tasks. Following this, we will describe how a 4D fetal heart image volume can be constructed from swept 2D ultrasound. A 4D probe, such as the Philips X6-1 xMATRIX Array, would make this task simpler as it can acquire 3D ultrasound volumes of the fetal heart in real-time; However, probes such as these aren\u27t widespread yet. Once the theory has been introduced, we will describe the clinical component of this dissertation. For the purpose of acquiring actual clinical ultrasound data, from which training datasets were produced, 11 pregnant subjects were scanned by experienced sonographers at the UMMS following an approved IRB protocol. First, we will discuss the software/hardware configuration that was used to conduct these scans, which included some custom mechanical design. With the data collected using this arrangement we generated seamless 3D fetal mosaics, that is, the training datasets, loaded them into our ultrasound training simulator, and then subsequently had them evaluated by the sonographers at the UMMS for accuracy. These mosaics were constructed from the raw scan data using the techniques previously introduced. Specific training objectives were established based on the input from our collaborators in the obstetrics sonography group. Important fetal measurements are reviewed, which form the basis for training in obstetrics ultrasound. Finally clinical images demonstrating the sonographer making fetal measurements in practice, which were acquired directly by the Philips iU22 ultrasound machine from one of our 11 subjects, are compared with screenshots of corresponding images produced by our simulator

    A Markov Random Field Based Approach to 3D Mosaicing and Registration Applied to Ultrasound Simulation

    Get PDF
    A novel Markov Random Field (MRF) based method for the mosaicing of 3D ultrasound volumes is presented in this dissertation. The motivation for this work is the production of training volumes for an affordable ultrasound simulator, which offers a low-cost/portable training solution for new users of diagnostic ultrasound, by providing the scanning experience essential for developing the necessary psycho-motor skills. It also has the potential for introducing ultrasound instruction into medical education curriculums. The interest in ultrasound training stems in part from the widespread adoption of point-of-care scanners, i.e. low cost portable ultrasound scanning systems in the medical community. This work develops a novel approach for producing 3D composite image volumes and validates the approach using clinically acquired fetal images from the obstetrics department at the University of Massachusetts Medical School (UMMS). Results using the Visible Human Female dataset as well as an abdominal trauma phantom are also presented. The process is broken down into five distinct steps, which include individual 3D volume acquisition, rigid registration, calculation of a mosaicing function, group-wise non-rigid registration, and finally blending. Each of these steps, common in medical image processing, has been investigated in the context of ultrasound mosaicing and has resulted in improved algorithms. Rigid and non-rigid registration methods are analyzed in a probabilistic framework and their sensitivity to ultrasound shadowing artifacts is studied. The group-wise non-rigid registration problem is initially formulated as a maximum likelihood estimation, where the joint probability density function is comprised of the partially overlapping ultrasound image volumes. This expression is simplified using a block-matching methodology and the resulting discrete registration energy is shown to be equivalent to a Markov Random Field. Graph based methods common in computer vision are then used for optimization, resulting in a set of transformations that bring the overlapping volumes into alignment. This optimization is parallelized using a fusion approach, where the registration problem is divided into 8 independent sub-problems whose solutions are fused together at the end of each iteration. This method provided a speedup factor of 3.91 over the single threaded approach with no noticeable reduction in accuracy during our simulations. Furthermore, the registration problem is simplified by introducing a mosaicing function, which partitions the composite volume into regions filled with data from unique partially overlapping source volumes. This mosaicing functions attempts to minimize intensity and gradient differences between adjacent sources in the composite volume. Experimental results to demonstrate the performance of the group-wise registration algorithm are also presented. This algorithm is initially tested on deformed abdominal image volumes generated using a finite element model of the Visible Human Female to show the accuracy of its calculated displacement fields. In addition, the algorithm is evaluated using real ultrasound data from an abdominal phantom. Finally, composite obstetrics image volumes are constructed using clinical scans of pregnant subjects, where fetal movement makes registration/mosaicing especially difficult. Our solution to blending, which is the final step of the mosaicing process, is also discussed. The trainee will have a better experience if the volume boundaries are visually seamless, and this usually requires some blending prior to stitching. Also, regions of the volume where no data was collected during scanning should have an ultrasound-like appearance before being displayed in the simulator. This ensures the trainee\u27s visual experience isn\u27t degraded by unrealistic images. A discrete Poisson approach has been adapted to accomplish these tasks. Following this, we will describe how a 4D fetal heart image volume can be constructed from swept 2D ultrasound. A 4D probe, such as the Philips X6-1 xMATRIX Array, would make this task simpler as it can acquire 3D ultrasound volumes of the fetal heart in real-time; However, probes such as these aren\u27t widespread yet. Once the theory has been introduced, we will describe the clinical component of this dissertation. For the purpose of acquiring actual clinical ultrasound data, from which training datasets were produced, 11 pregnant subjects were scanned by experienced sonographers at the UMMS following an approved IRB protocol. First, we will discuss the software/hardware configuration that was used to conduct these scans, which included some custom mechanical design. With the data collected using this arrangement we generated seamless 3D fetal mosaics, that is, the training datasets, loaded them into our ultrasound training simulator, and then subsequently had them evaluated by the sonographers at the UMMS for accuracy. These mosaics were constructed from the raw scan data using the techniques previously introduced. Specific training objectives were established based on the input from our collaborators in the obstetrics sonography group. Important fetal measurements are reviewed, which form the basis for training in obstetrics ultrasound. Finally clinical images demonstrating the sonographer making fetal measurements in practice, which were acquired directly by the Philips iU22 ultrasound machine from one of our 11 subjects, are compared with screenshots of corresponding images produced by our simulator

    Modélisation Biomécanique pour l'Imagerie de Prostate

    Get PDF
    In 2012 in France, prostate cancer was the most frequent cancer with 53 465 new cases estimated and 8 876 deaths. Transrectal prostate biopsy is the only method used to prove the presence of cancer with a histopathologic study. Twelve biopsies are evenly punctured all around the prostate by the urologist as well as targeted areas. This is generally done with the guidance of endorectal ultrasound images. The difficulties for the urologist are to perform this 3D task precisely and accurately based on 2D imaging. Moreover image acquisition itself contributes to prostate motion and deformation. It is within this framework that we proposed the development of patient-specific biomechanical model of prostate. This model can be used in a clinical time and is based only on 3D ultrasonographic volumes. The model allows the urologist to monitor the deformations and the displacements of the prostate and to follow targeted areas. Firstly, we were interested in building a validation workflow for prototyping and conducting a large-scale test to evaluate the impact of each necessary step before the dynamic simulation. An initial test was conducted with a realistic deformable prostate phantom. This experiment is based on more than 800 simulations allowing us to complete a statistical survey. We then developed and validated tools, such as the calibration of a robot probe-holder to improve the workflow and to perform real patient data acquisitions. An evaluation of the impact of each parameter of the biomechanical model was achieved on a realistic deformable prostate phantom. Finally, we had the opportunity to apply our workflow on one patient biopsy session acquisition. Results are encouraging and shows good perspectives to our work.Le cancer de prostate était, en France en 2012, le premier cancer masculin avec plus de 53 465 nouveaux cas par an et 8 876 décès. La biopsie transrectale de prostate est la méthode utilisée afin de déterminer de manière histopathologique la présence ou non du cancer. Le plus souvent, l’urologue ponctionne la prostate en douze positions, équiréparties sur l’ensemble la prostate ainsi que des zones cibles. Ceci se fait classiquement sous guidage échographique endorectal. La difficulté pour l’urologue est de pouvoir réaliser cette cartographie de prostate de manière précise alors qu’il ne dispose, le plus souvent, que d’une imagerie 2D et que l’acquisition des images elle-même contribue à déplacer et déformer la prostate.C’est dans ce cadre que nous proposons le développement d’un modèle biomécanique de prostate patient-spécifique, utilisable en temps clinique, basé uniquement sur l’acquisition d’échographies transrectales. Ce modèle apporte un moyen de prendre en compte les déplacements et déformations de la prostate ainsi que des zones cibles. Pour cela, nous nous sommes intéressés à la construction d’une chaîne de validation permettant le prototypage et le test à grande échelle de paramètres sur des données issues de bancs expérimentaux ou cliniques afin d’évaluer l’impact de chaque étape jusqu’à la simulation biomécanique. Au cours de cette thèse, une première phase de test a été réalisée sur un fantôme réaliste de prostate afin d’étudier l’impact des paramètres de nos modèles au travers d’une étude statistique basée sur plus de 800 simulations. Des conclusions de ce premier essai, nous avons développé et validé des outils permettant l’acquisition de données cliniques tels que le calibrage d’un robot porte-sonde ou le développement d’une méthode de collision basée sur des contraintes projectives. Un premier test patient a pu être réalisé au cours de cette thèse et montre des résultats encourageants pour la poursuite de ces travaux

    Detection and modelling of contacts in explicit finite-element simulation of soft tissue biomechanics

    Get PDF
    Realistic modelling of soft-tissue biomechanics and mechanical interactions between tissues is an important part of surgical simulation, and may become a valuable asset in surgical image-guidance. Unfortunately, it is also computationally very demanding. Explicit matrix-free FEM solvers have been shown to be a good choice for fast tissue simulation, however little work has been done on contact algorithms for such FEM solvers. This work introduces such an algorithm that is capable of handling the scenarios typically encountered in image-guidance. The responses are computed with an evolution of the Lagrange-multiplier method first used by Taylor and Flanagan in PRONTO 3D with spatio-temporal smoothing heuristics for improved stability with coarser meshes and larger time steps. For contact search, a bounding-volume hierarchy (BVH) capable of identifying self collisions, and which is optimised for the small time steps by reducing the number of bounding-volume refittings between iterations through identification of geometry areas with mostly rigid motion and negligible deformation, is introduced. Further optimisation is achieved by integrating the self-collision criterion in the BVH creation and updating algorithms. The effectiveness of the algorithm is demonstrated on a number of artificial test cases and meshes derived from medical image data
    corecore