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Abstract

High-Intensity Focused Ultrasound (HIFU) is a treatment modality for solid cancers of the liver and

pancreas which is non-invasive and free from many of the side-effects of radiotherapy and chemother-

apy. The safety and efficacy of abdominal HIFU treatment is dependent on the ability to bring the

therapeutic sound waves to a small focal ”lesion” of known and controllable location within the pa-

tient anatomy. To achieve this, pre-treatment planning typically includes a numerical simulation of the

therapeutic ultrasound beam, in which anatomical compartment locations are derived from computed

tomography or magnetic resonance images. In such planning simulations, acoustic properties such

as density and speed-of-sound are assumed for the relevant tissues which are rarely, if ever, deter-

mined specifically for the patient. These properties are known to vary between patients and disease

states of tissues, and to influence the intensity and location of the HIFU lesion.

The subject of this thesis is the problem of non-invasive patient-specific measurement of acoustic 

tissue properties. The appropriate method, also, of establishing spatial correspondence between 

physical ultrasound transducers and modeled (imaged) anatomy via multimodal image reg-istration 

is also investigated; this is of relevance both to acoustic tissue property estimation and to the 

guidance of HIFU delivery itself. First, the principle of a method is demonstrated with which acoustic 

properties can be recovered for several tissues simultaneously using reflection ultrasound, given ac-

curate knowledge of the physical locations of tissue compartments. Second, the method is developed 

to allow for some inaccuracy in this knowledge commensurate with the inaccuracy typical in abdom-

inal multimodal image registration. Third, several current multimodal image registration techniques, 

and two novel modifications, are compared for accuracy and robustness.

In conclusion, relevant acoustic tissue properties can, in principle, be estimated using reflected ultra-

sound data that could be acquired using diagnostic imaging transducers in a clinical setting.

Impact statement

The approach taken to estimate acoustic properties of a piecewise-homogeneous medium, 
particularly the principle of the novel method described in Chapter 4, could be investigated 
for possible implementation to improve the accuracy of clinical tumour targeting with HIFU.
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Chapter 1

Introduction

1.1 Problem statement and proposed solution method

Patient-specific estimation of acoustic properties of tissues in vivo is not available in the cur-

rent clinical practice of planning for High Intensity Focused Ultrasound (HIFU) of abdominal

tumours, such as those of the liver and kidneys. Such estimation is needed at least for valida-

tion of assumptions made in this planning, and is potentially advantageous for ensuring the

safety and efficacy of abdominal HIFU treatment.

Ultrasound is the natural physical field with which to interrogate tissue to obtain these properties.

The waves used to probe the tissue could be delivered near HIFU frequencies and intensities, or

at higher frequencies and lower intensities, where ultrasound imaging devices operate. The desire

to estimate acoustic properties before inducing any tissue heating with HIFU motivates a possible

approach where the estimation is done using data from a non-ablating device, such as an imaging

transducer array. The same temperature dependence has been shown to hold for absorption coeffi-

cient in muscle, whether or not the heating is delivered using HIFU. This offers plausibility to the idea

that acoustic property values estimated using imaging data may be extrapolated to values expected,

based on knowledge of temperature dependence, in the HIFU regime.

Under this idea, a subproblem arises since the ultrasound data normally available in, or just prior to,

a HIFU intervention consist of reflected signals which are sparse in spatial coverage, beamformed,

and subject to additional processing. Spatially detailed quantitative mapping of acoustic properties

from ultrasound tomography, by contrast, typically uses transmitted data from an array of sources

and receivers, whose relavive positions are precisely localised in space, and which give a full angular

coverage of the target.

In this thesis, a method to estimate, in vivo, acoustic properties of abdominal tissues is developed,

modelling the patient’s anatomy as a piece-wise homogeneous medium. Information about the loca-

tions of interfaces between different organs is used to regularise this estimation when the available

data are reflected signals. This information, as well as knowledge of the spatial locations of ultra-



sonic sources and receivers, was obtained through registration of a previously acquired magnetic

resonance or computed X-ray tomography image to the patient B-mode ultrasound imaging and spa-

tial tracking of the ultrasound imaging probe. Throughout the work, the acoustic approximation is

assumed to be valid, i.e. the media being modelled are treated as fluids and shear waves are ne-

glected. While shear waves play an important role in abdominal HIFU treatment, so that the shear

moduli of tissues are important quantities, particularly near the interfaces between ribs and soft tis-

sues, this work focuses on developing methods for estimating the most important quantities needed to

model acoustic waves and which determine the location of a HIFU focus; these are density, ρ, speed-

of-sound, c, bulk modulus, K and acoustic impedance, Z, where, owing to the following relationships,

each of these properties can be determined from any two of the others:

Z = ρc, (1.1)

K = ρc2. (1.2)

1.2 Contributions

The main two contributions of the work are

i. A demonstration that accurate recovery of density and bulk modulus is possible in simple media

using only reflected sound waves acquired over a limited angular range, when medium com-

partment interface locations are known,

ii. A novel method by which the above task can be accomplished when the interface locations are

subject to an error describable with a small number of parameters.

A subsidiary contribution is a comparison of the performances of several current multi-modal image

registration criteria in the same registration task.
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Chapter 2

Literature Review

2.1 HIFU treatment planning

The first suggestion that beams of high-intensity focused ultrasound (HIFU) might be used for ther-

apeutic purposes came in 1942 [1], after some biological effects of high-intensity ultrasound had

been studied [2], and the possibility to focus an ultrasound beam using a curved transmitter surface

had been investigated [3]. Thermal ablation, or destruction of tissue through localized heat transfer,

typically occurs when local tissue temperature is brought outside the range −20◦C to +55◦C, with

focused ultrasound operating at the upper extreme. Therapeutic ultrasound integrated with imaging

is now one of the most rapidly expanding techniques in image-guided therapy, with applications to

ablation of targets in the brain, prostate, abdomen, uterus, eye, thyroid and bone [4, 5, 6, 7, 8, 9, 10].

Other, non-ablative, applications include disruptions of the blood-brain barrier, optimization of drug

delivery and thrombolysis [11, 12, 6, 13].

Table 2.1, adapted from [14], lists current leading manufacturers of HIFU systems. Some of these

systems are illustrated in Figures, 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6.

Thermal ablation treatments with HIFU are currently carried out in the liver, pancreas, kidneys and

uterus with one of a small number of clinically approved devices. The most commonly used extracor-

poreal devices are the HAIFU System (Chongqing HIFU, China), the HIFU Tumor Therapy System

(China Medical Technologies, China), the Exablate 2000 system (Insightec, Israel), and the Philips

Sonalleve system [15, 16]. The first two systems use a one- or two-element spherically-focused

transducer, with B-mode ultrasound guidance imaging, while the Exablate and Sonalleve systems

use electronically phased HIFU transducers with magnetic resonance (MR) guidance. In the pre-

treatment planning phase for a treatment, an anatomical image is used to locate the target for ablation

and to set the transducer positioning and driving parameters so as to place the HIFU beam focus at

the desired treatment positions within the target. The rate of removal of heat from the tissue through

blood perfusion is also taken into account, e.g. to determine sonication times. In clinical practice

the simulation of the ultrasound beam path itself is typically of an ’incident field’ type, i.e. the tissue

through which the beam propagates is assumed to be homogeneous [17].



Company Device Trade Name /

Guidance

Clnical Application Status as of Dec 2011

InSightec, Haifa, Israel ExAblate 2000/MR extracoporeal, fibroids FDA cleared for fibroid ablation

InSightec, Haifa, Israel ExAblate 4000/MR extracorporeal, bone, brain,

breast, transrectal prostate

USA clinical and preclinical tri-

als

Misonix/USHIFU Focus Surgery, Indi-

anapolis, USA

Sonablate 500/US transrectal prostate approved in Europe (CE mark),

USA clinical and preclinical tri-

als

Phillips Healthcare P.O. Box 10.000,

5680 DA Best, the Netherlands

Sonalleve MR-

HIFU/MR

Uterine fibroids USA clinical and preclinical tri-

als

EDAP TMS S.S. Parc d’actvités

la Poudrette-Lamartine 4, rue du

Dauphine, 69120 Vaulx-en-Velin,

France

Ablatherm HIFU/US transrectal prostate approved in Europe (CE mark),

Canada, Russia, Australia,

South Korea; USA clinical and

preclinical trials

Chongqing Haifu (HIFU) Technology 1

Qingsong Road Renhe, Yubel District,

Chongqing 401121, China

Haifu/US extracorporeal, liver, bone,

fibroids, soft tissue sarco-

mas, kidney, pancreas etc.

USA clinical and preclinical tri-

als

Mirabilis Medica 18706 North Creek

Pkwy, Suite 110, Bothell, WA 98011,

USA

extracorporeal fibroids USA clinical and preclinical tri-

als

Profound Medical, 3080 Yonge St,

Suite 4040, Box 34, Toronto, Ontario,

Canada M4N 3N1

transurethral/prostate USA clinical and preclinical tri-

als

SuperSonic Imagine Les Jardins de la

Duranne, Bât E & F, 510 Rue René

Decartes, 13857 Aix-en-Provence,

France

brain

Theraction Pépiniére Paris Santé

Cochin, 29 rue du Faubourg Saint

Jacques, 75014 Paris, France

TH-One/US Parathyroid USA clinical and preclinical tri-

als in hyperparathyroidism

Image guided therapy 2, Allée du

Doyen Brus, 33600 Pessac, France

USA preclinical breast cancert

treatment and FUS mediated

drug delivery

Table 2.1: Therapeutic FUS Companies with Oncologic Applications. Reproduced from [14]
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Figure 2.1: ExAblate 4000 (InSightec) for trans-cranial ablation of brain tumours

2.2 Tissue heterogeneity and ex vivo characterisation

Some details are given next of the estimates of acoustic propagation parameters in tissues which

have been employed in the literature for simulation in HIFU planning. The focus here, and in Chapter

2 of this thesis, is on sound speed and mass density, since these tissue parameters determine the

important phenomena of reflection, refraction and linear wave interference.

One of the most widely cited reference texts on the values of acoustic propagation parameters of bio-

logical tissues is [18]. The plots shown in Figs 2.7,2.8,2.9 and 2.10 summarize results in [18] collected

from [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. Figure 2.7 summarises speed-

of-sound measurements compiled in [18] for liver at or near body temperature. The measurements

by Bamber et al. (1979) [20] at 1597ms-1 and 1639ms-1, were taken from bovine liver, and those by

Nasoni et al.(1979) [28] by Bowen et al. (1979) [21] were from dog liver. The other results are from

human liver.

One factor leading to speed variation between samples is the relative fat content of the liver, as

the average speed in fat is somewhat lower than in other soft tissues and fluids. For example, the

measurement plotted in Fig. 2.7 by Sehgal et al (1986) [31] at 1592ms-1 was of a sample containing

2.9% fat, whereas the same group measured 1522ms-1 in a sample containing 24% fat. This alone

could contribute significantly to variation between patients. Figure 2.8 shows speed measurements

compiled in [18] for skeletal muscle. The results by Miles et al. (1984) were from cow, with varying

fat content; those from Nasoni [28] and [21] were from canine muscle, and those from Lewin & Busk

(1982) [26] were from porcine muscle. The remaining three were from human forearm, psoas and

eye muscle [29, 32, 22]

Figure 2.9 shows speed-of-sound measurements made at 37◦C and collected in [18]. Those by [20]
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Figure 2.2: Sonablate 500 (Misonix/USHIFU Focus Surgery) for prostate cancer treatment

Figure 2.3: Ablatherm HIFU (EDAP TMS) for prostate cancer treatment
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Figure 2.4: Sonalleve MR-HIFU (Philips Healthcare), for treatment of uterine fibroids and palliative

therapy for bone pain

Figure 2.5: Haifu (Chongqing HIFU), for ablation of liver, kidney and bone tumours
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Figure 2.6: TH-One (Theraclion) for thyroid gland treatment
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Figure 2.7: Speed of sound measurements in liver. Those labelled “i.v.” were taken in vivo, and the

rest ex vivo. Error bars show standard deviations.
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Figure 2.8: Speed of sound measurements in skeletal muscle. Those labelled “i.v.” were taken in

vivo, and the rest ex vivo. Error bars show ranges.
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Figure 2.9: Ex vivo speed-of-sound measurements in fat. Error bars show ranges.

and [26] were from animal samples; those by Rajagopalan et al. (1979) [29], Buschmann et al. (1970)

[22] and Errabolu et al. (1988) [23] from human samples, and the rest were unspecified in [18].

Duck et al. [18] present tissue density values from four sources, measured ex vivo by comparing

apparent mass with and without submersion in water. However, temperatures at the time of measure-

ment are not specified. Values for some adbominal tissues are summarized in Fig. 2.10.

Measurements taken from freshly excised tissue samples ex vivo (typically less than one hour after

post-mortem for human or slaughter for animal) form the majority among published results, and have

been regarded as sufficiently representative of the living tissue state. Figures 2.7 and 2.8 do not

show a marked difference between in vivo and ex vivo measurements compared with the differences

between the various investigators. These larger differences, whether due to the difficulties of accurate

measurement, or to actual sample/patient differences, notably in fat content, are sufficiently large for

speed-of-sound that the ranges for liver and muscle may even overlap.
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Figure 2.10: Densities measured ex vivo by a water displacement method. The error bars show

ranges.

Some of the acoustic properties of tissues have been found to vary with disease states [35, 36],

and also with each other. Broad features that have been associated with diseased tissue, and de-

tectable with ultrasound, include increases in water content, acoustic scattering and density [36].

Diagnostic information visible in B-mode ultrasound images can be ambiguous, leading to research

into methods of extracting quantitative tissue parameters from ultrasound data directly, before image

formation. For example, fatty and cirrhotic livers produce almost indistinguishable diagnostic B-mode

ultrasound images, while the slope of the attenuation coefficient with respect to frequency, estimable

from reflection data, can be used to distinguish them [37]. Statistical analysis of the “speckle” pat-

terns seen in B-mode images can be used to estimate (through the backscatter coefficient) effec-

tive scatterer sizes and concentrations. This microstructural information correlates to pathological

states of liver tissue, and, for example, to a patient’s response to HIFU or chemotherapy in the liver

[38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50].

“Although it might be supposed that speckle suppression would lead to an improvement

in image perception this may not necessarily be so. The speckle in ultrasonics is not fully

developed and its texture is influenced by larger-then-Rayleigh scatterers. For this reason,

the image textures from different tissues may have different appearances which can assist

in clinical image interpretations.” [50]

A “highly significant” empirical linear relationship was found to hold between sound speed and density

for a wide range of soft tissues, and also between the nonlinearity parameter “B/A” and each of density
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and speed [51], but none of these three parameters were found to correlate significantly with atten-

uation coefficient. Women with high mammographic breast density have a four- to fivefold increased

risk of developing breast cancer compared to women with fatty breasts [52]. The strong correlation

between sound speed and density in breast tissue has motivated work in ultrasound transmission

tomography in the breast, e.g. [53, 52, 54, 55].

“The natural variation of the acoustical characteristics of biological media is often very

broad and this range is further broadened by difficulty in making accurate measurements.

As a consequence it is also difficult to specify in detail the wave-medium interaction mech-

anisms that are responsible for the observed acoustical characteristics.” [56]

It seems reasonable then, that if soft tissue interfaces affect a focused ultrasound beam path to the

extent of shifting the focus by some millimeters, assuming a single value of speed for each tissue

might well not enable sufficiently accurate prediction of this effect for different patients. This has been

explicitly investigated in the brain, and in abdominal HIFU, where the depth to focus is typically around

15cm, the distorting effects of soft tissue interfaces may be even more severe than that reported in

[57, 58]. In all studies involving ultrasound simulation for HIFU planning we have seen, a single

value for each parameter, typically a subset of density, speed-of-sound, attenuation coefficient and

absorption coefficient, has been assumed for each tissue compartment, and taken, either from a

single previous measurement study, or as an average over several such studies. Figure 2.11 shows

the dependencies in a selection of this work.

Tissue parameters of importance to the planning of HIFU delivery vary significantly with temperature.

Since HIFU works through inducing a temperature increase, a knowledge of this variation is important.

Attenuation and absorption coefficients in Np m−1 MHz−1 for ex-vivo muscle, liver and kidney (canine)

were found to approximately double on heating with a water bath between 25 ◦C and 70 ◦C in [59].

The absorption coefficients were also shown to follow a very similar trend when the heating was

accomplished through HIFU exposure. Canine liver samples measured in [60] showed sound speed

variations with temperature of around 20 m s−1 at 3 MHz and 5 MHz. Such speed variations with

heating are well known in HIFU and give rise to the phenomenon of thermal lensing, which has been

shown to produce thermal lesion shifts of several millimetres [61, 62]. Tissue heating at a sufficiently

high temperature causes the protein denaturation and tissue coagulation involved in HIFU lesioning.

By measuring at 37◦C both before and after heating, the authors of [60] also showed that sound

speed did not appear to be affected by tissue coagulation, but only temperature, whereas attenuation

coefficient not only varies during heating, but is increased after coagulation as well. In this work,

density was assumed not to vary over the temperature range.

The bulk modulus (K), shear modulus (µ) and Young’s modulus (E) of any material are related by

E =
9Kµ

3K + µ
, (2.1)
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Figure 2.11: Citation diagram. The authors to the left of the dotted line modelled ultrasound propaga-

tion through tissue using literature values of acoustic tissue properties taken from the authors to the

right. The main tissues compartments included in the modelling were: liver and overlying structures

(a), chest wall (b), uterus and overlying structures (c), brain and overlying structures (d).
.
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where, for human soft tissues, K is on the order of 1 GPa, and µ on the order of 1 kPa, so that

E ≈ 3µ. The variation of K in tissue with temperature is relatively small compared with that of µ,

which has been observed to increase by up to 74% in bovine liver samples for which irreversible

changes occurred on heating from 25 ◦C to 55 ◦C ([63]). The shear modulus becomes an important

parameter in modelling elastic wave propagation. Its variation in tissue, under HIFU conditions, along

with that of viscosity, were also measured in [64].

2.3 Non-invasive characterisation of acoustic tissue prop erties

2.3.1 The acoustic inverse problem

The task of non-invasively estimating acoustic properties of human tissues such as density and sound

speed, requires these properties to be inferred from the ’response’ of the tissue to sound waves [REF-

ERENCE SOMEONE?]. This observation means that the mathematical foundation to the task - which

provides clear-cut results detailing what is and isn’t possible, as well as general solution methods

- naturally lies in the field of wave equation constrained inverse problems. From this perspective,

a direct problem of mathematical physics is one in which one tries to solve a differential equation

subject to given initial and/or boundary conditions and given the coefficients of the equation. These

coefficients are typically functions of spatial position representing material properties, such as density,

sound speed, thermal conductivity, electrical impedance, x-ray attenuation or stiffness, while the solu-

tion is the specification of some field variable over the whole spatial and temporal domain of interest,

such as pressure, temperature, particle velocity, electrical potential or current density. Any of these

quantities may be scalar-, vector- or tensor-valued in general. A PDE-constrined inverse problem

is one in which one tries, given part of, or information about, a solution to a differential equation of

physics, to find its coefficents.

The differential equations of interest in physical problems are typically second-order partial differential

equations (PDEs), which may, depending on the values of their coefficients, be classfied as either

elliptic, parabolic or hyperbolic. Differential equations describing wave propagation in time under

general circumstances are hyperbolic. Kabanikhin [65] gives a useful classification of hyperbolic

PDE-constrained inverse problems according to the type of data about the solution to the forward

problem that is available.

In inverse kinematic problems, only data about travel times of signals between source points and

receiver points are known.

In inverse spectral problems, the eigenvalues and norms of eigenfunctions of differential operators

appearing in the PDE are deduced and used.

In inverse dynamic problems, the value of the field variable (solution) itself is recorded over time at

one or more spatial locations, inside or on the boundary of the domain in which the PDE coefficients

are sought.
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In inverse scattering problems, the value of the field variable is typically recorded at locations in the

far field, that is, at distances from the domain of interest which are large compared to the size of the

domain itself.

A slightly more general classification, also considering elliptic and parabolic PDE’s, appears in [66].

Aside from the type of data available, wave-equation-constrained inverse problems (“WECIP’s”) are

classified as one-dimensional or multidimensional, according to how many spatial dimensions the

PDE coefficients depend upon. Problems in which the medium is layered, i.e. is characterized by

properties that vary in only one dimension, but in which waves can propagate in more than one

dimension, may be classified in either way [67, 68, 66].

The following is a mathematical formulation of a direct problem in which a material property of some

medium varies in one dimension only, as q = q(x), while waves may propagate though the medium

in this same dimension only. The solution, u(x, t), to this direct problem is a scalar, such as the

transverse displacement of a vibrating string.

(
∂2

∂2t
− ∂2

∂2x

)
u = 0, (x, t) ∈ {R2|t > 0},

u|t=0 = δ(x),

ut|t=0 = 0.

It has been shown, [67], that, provided q is symmetrical about x = 0, i.e. q(−x) = q(x), at least inside

a region numerically equal in size to [−T/2, T/2] (the wave speed above is equal to 1) then the data

u|x=0 = f(t), t ∈ (0, T ]

enable the function q to be recovered uniquely within [−T/2, T/2].

Similarly, [68], for a medium in which x > 0 with the conditions

u|t<0 = 0

u|x=0 = f(t)

ux|x=0 = g(t),

q(x) may be uniquely determined from f(t) and g(t). In each of these formulations three conditions

or sources of data are required.

When the wave motion itself is not restricted to one spatial dimension, slightly less dynamical infor-

mation is required to recover more medium information. In the following direct problem, the density,
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ρ(x), and sound speed, c(x), vary in one dimension only, x1, but waves are able to propagate in any

direction. The solution, u(x, t) represents a scalar field, typically acoustic pressure.

utt − ρc2∇ · (ρ−1∇xu) = 0, (x, t) ∈ R
m
+ × R,

∂u

∂x1

∣∣∣∣
x1=0

= δ(x′)δ′(t),

ut<0 = 0. (2.2)

Here, x = (x1, . . . , xm) = (x1, x
′) and R

m
+ := {x ∈ R

m|x1 > 0}.

Given the solution to 2.2 on x1 for all x′ and all t up to some positive T , i.e. given

u|x1=0 = f(x′, t), x′ ∈ R
m−1, t < T, (2.3)

then ρ = ρ(x1) and c = c(x1) can be uniquely determined for x1 up to some finite value that depends

upon T and c itself [67]. In the case of two lateral co-ordinates (m = 3), where the f in Eq. 2.3

is axisymmetric, i.e. f(x′, t) = f(|x′|, t), these data may also be supplied as f̃(|k|, t) the Fourier

transform of f(x′, t) with respect to these two co-ordinates for two different values of |k| =
√
k2
2 + k2

3 ,

[68]. As another alternative, they may be supplied as f̆(ξ, p), Radon transforms of f(x′, t) for two

different vectors ξ.

2.3.2 Approaches with full data

2.3.3 Approaches with incomplete data

2.3.4 Incorporation of prior geometrical information

2.3.5 Techniques using (pre-processed) B-mode image data

Parameters estimated from analysis of (pre-processed) B-mode data include attenuation

coefficient,[69], backscatter coefficient, [40, 43] and non-linearity parameter B/A, [70, 71]. Measuring

sound speed in vivo using data from diagnostic transducers has proven more difficult [72, 73, 74],

but specially oriented and triggered diagnostic probes have been used to obtain speed profiles from

transmission data, with application to breast imaging, [75, 76]. A single diagnostic transducer array

may also operate so as to detect transmitted energy in a technique known as reflex transmission

imaging [77]. Reverberation from scattering sources behind the focal spot are detected and used to

image the attenuation of tissue between these sources and the array. Ultrasound elastography is a

widely used clinical technique which produces images of tissue stiffness, or Young’s modulus, E and,

in some forms, can give quantitative estimates of this quantity [78, 79], however, it does not provide

any information about the bulk modulus, K.
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2.4 Numerical methods for simulating acoustic wave propaga -

tion

Those computational methods for estimating acoustic tissue properties which attempt to take account

of more than superficial features of ultrasound physics typically involve repeated numerical simula-

tion of wave propagation through the medium concerned. From a mathematical point-of-view, this

amounts to solving, numerically, a suitable partial differential equation (PDE) to obtain a field variable,

such as pressure or particle velocity as a function of space and time, or space and frequency. The

variety of physical features to be reproduced in the simulation determine the choice of PDE, and the

term “model” generally refers to the equation itself. Under the acoustic approximation, the propaga-

tion medium does not support shear stresses, as is the case for fluids, so that no transverse (shear)

waves are present. The treatment of transverse waves in solids is outside the scope of this thesis.

One of the simplest acoustic models is the one-dimensional linear, lossless wave equation for a ho-

mogeneous fluid medium with small-signal sound speed ce, as for Eq. ?? , and excitation S(x, t). In

Eq. 3.13, p(x, t) is acoustic pressure, i.e. the pressure deviation about the ambient mean due to the

presence of the wave:

∂2p

∂x2
− 1

c2e

∂2p

∂t2
= −S(x, t) (2.4)

A more realistic model, also in the time domain, would include additional terms, to approximately

account for physical effects expected to play a significant role in the problem being studied. While re-

maining within the acoustic approximation, i.e. neglecting shear stresses and elasticity in the medium,

these may include small variations in sound speed (term ’a’ in Eq. 2.5), small variations in density

(’b’), absorption due to thermoviscous difffusivity (’c’), acoustic nonlinearity (’d’) and absorption due

to additional relaxation mechanisms (’e’). Eq. 2.5 combines features of models used in [80, 81].

∇2p− 1

c2e

∂2

∂t2
= −S(x, t)−

(a)︷ ︸︸ ︷
2∆c

c3e

∂2p

∂t2
+

(b)︷ ︸︸ ︷
1

ρe
∇(∆ρ) · ∇p−

(c)︷ ︸︸ ︷
δ

c4e

∂3p

∂t3
−

(d)︷ ︸︸ ︷
β

ρc4e

∂2p2

∂t2
+

(e)︷ ︸︸ ︷
v∑

m=1

ξm (2.5)

A number of famous wave equations approximate degrees of physical realism “between” those of Eq.

3.13 and 2.5, such as the Burgers, Blackstock, Kokhlov-Zabolotskaya-Kuznetzov (KZK) and Wester-

velt equations. Absorption may be modeled in several ways, including replacing term (c) above by

a fractional derivative term for non-viscous media with frequency power-law absorption [82]. Wave

equations attempt to model all frequency components of the wave simultaneously, but, by working

in the temporal frequency domain, individual Fourier components can be simulated separately. This

offers a computational speed-up in cases of linear propagation, where no energy is transferred be-

tween different frequency components of the wave, and amounts to solving a Helmholtz equation, of
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which one of the simplest comes from Fourier transforming Eq. 3.13

∂2
xp̃ω + k2p̃ω = −S̃ω(x) (2.6)

where k = ω2/c2e is the wavenumber for a particular frequency ω. For large amplitude-to-wavelength

ratios, the local sound speed of a medium begins to depend upon the density, due to high density

fluctuations, resulting in wavefront steepening behaviour approximately modeled by term (d) in Eq.

2.5. Since terms like this come from using a nonlinear equation of state and result in a wave equation

which is nonlinear in the field variable (in this case p), this phenomenon is known as nonlinearity.

Nonlinear wave equations are particularly challenging to solve because of the very small grid spacing

which must typically be used to represent the high frequency waves which result from them. Some of

the main approaches are summarized below.

2.4.1 Finite-difference, finite-element and boundary elem ent methods

All numerical methods can be categorized as operating in the time domain, or frequency domain,

depending on whether they solve a problem equivalent to a wave equation or a Helmholtz equation

(respectively). So-called “full-wave” methods are those which inherently model diffraction, refraction

and reflection. Partial-wave methods, such as ray-tracing and projection methods are therefore less

accurate for many problems, while generally faster. The full-wave FD, FE and BE methods are suitable

for modelling propagation in strongly heterogeneous media, and are the most commonly used meth-

ods [80, 83, 84, 85]. The Boundary Element Method is well suited to infinite-domain problems, and to

piecewise homogeneous media, but cannot handle complex small-scale medium variation well. Finite

elements are well suited to small-scale medium variation but cannot handle unbounded problems,

such as scattering problems as well as BEM. The FD method can handle both unbounded domains

and small heterogeneities but requires a regular spatial grid discretization, whereas FEM lends itself

to less computationally costly discretization through adaptive mesh sizing. As a rough rule-of-thumb,

FD and FEM need a spatial discretization of around ten points-per-wavelength (10 PPW), and this

requirement can rise with wavenumber, a phenomenon known as “numerical pollution” [86]. Iterative

solvers for BEM can require that multiple matrix-vector products be computed, so that computational

complexity can scale as O(N2) for N parameters, whereas FD is a matrix free method that scales as

O(N). Since it is based on reformulation of the PDE as an integral equation, BEM is applicable only

when the Green’s function of the differential operator in the PDE is known.

Figure 2.12 attempts to express the relationship between the common techniques for numerical solu-

tion of wave and Helmholtz equations.
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Figure 2.12: Numerical methods for acoustic simulation
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2.4.2 Green’s Function-based methods: Field II and INCS

As well as their place in BEM, Green’s functions, when known for a given differential operator, can

be used to “invert” (solve) the operator equation (the PDE) in a single step if the problem is (treated

as) linear, or iteratively if it is non-linear. A well-known implementation of the first approach is the

Field II MATLAB code by Jørgen Arendt Jensen [81], designed to simulate B-mode ultrasound in

heterogeneous media. This is a time domain method for solving

∇2p− 1

c2e

∂2p

∂t2
= −2∆c

c3e

∂2p

∂t2
+

1

ρe
∇(∆p) · ∇p. (2.7)

The terms on the right hand side are treated as contrast sources and convolved with the appropriate

Green’s function to obtain acoustic pressure p, as p = pi + ps, for

ps(r2, t) =

∫

V

∫

T

[
1

ρe
∇[∆ρ(r1)] · ∇p(r1, t1)−

2∆c(r1)

c3e

∂2p(r1), t1
∂t2

]
×G(r1, t1|r2, t2)dt1d

3r1. (2.8)

Here, r2 is a receiver position, and r1 a scatterer position. Since p itself appears inside the integrand,

2.8 cannot be solved for p outright. It is a nonlinear inverse problem even though the wave equation

Eq. 2.7 is linear in p, and solution strictly requires a Born-Neumann expansion, where the convolution

is repeated iteratively. However, Jensen et al. argue that secondary scatters will be significantly

weaker than primary scatters and so substitute incident pi for p in the RHS of 2.8, i.e. use the

Born approximation. The heterogeneity quantities ∆ρ and ∆c are generated by first placing several

thousands of random point scatterers in the medium.

When the PDE to be solved is itself nonlinear in the field variable, a Green’s function may, for suf-

ficiently weak non-linearity, be iteratively convolved with a contrast source including, this time, the

nonlinearity term of the PDE. The lossless Westervelt Eq. (2.9) is a wave equation that can model

non-linear ultrasound beam distortion in a way that does not depend on propagation direction, i.e. it

can form the basis for a full-wave computation, as opposed to a (partial/forward)-wave computation,

as, say, the KZK Equation does.

(
∇2 − 1

c2e

∂2

∂t2

)
p = − β

ρec4e

∂2p2

∂t2
+∇ · f − ρe∂tq, (2.9)

An important difficulty with all full-wave methods of simulating non-linear ultrasound in the time do-

main, is the fine grid discretization needed to accommodate high frequencies. The Iterative Nonlinear

Contrast Source (INCS) method [87, 88, 89, 90] is designed primarily to solve Eq. 2.9 in a way that

addresses this difficulty, by performing iterative convolutions of the contrast source, Ŝ = − β
ρec4

e

∂2p2

∂t2

with the Green’s function for the left-hand side of Eq. 2.9, after both they and St have been filtered
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to a pre-determined maximum frequency of interest. The iterative process is formally equivalent to

Liouville-Neumann iteration, or the method of successive approximations [91],

(
∇2 − 1

c2e

∂2

∂t2

)
p = St + Ŝ(p)

p0 = G ∗ St

pi+1 = p0 +G ∗ Ŝ(pi)

This method converged to a p-field that agreed well with two partial-wave calculation methods and a

FD method in, typically, less than five iterations. It’s main drawback is the need to store the entire

pressure field p(x, t) at all iterations, which led [90] to large computation times on a desktop computer

with 2GB of RAM (up to 130hrs) due the need to repeatedly access the hard-disk.

2.4.3 Pseudo-spectral and k -space methods

Whether solving a linear or a non-linear equation, FD and FE methods suffer from the need to dis-

cretize spatial grids finely (typically 10-20 PPW) for waves at high frequencies, since they model the

waveform by fitting low order polynomial functions to adjacent grid points using only local information.

Two important branches of alternative methods fit a Fourier series to all grid points simultaneously,

enabling a coarser gridding down to 2 PPW. In a simple case this amounts to solving Eq. 3.13 after a

spatial Fourier transform,

(ck)2p̃k +
d

dt
p̃k = S̃k(t). (2.10)

Pseudospectral time domain (PSTD) methods and k-space methods differ in the way they handle the

temporal gradients [92, 93, 94]. Whereas PSTD methods use a FD time gradient, k -space methods

use an approximate analytical expression for the time derivative that allows larger time steps to be

used without loss of accuracy. The MATLAB k-Wave Toolbox is based on such a method, and now

incorporates the ability to model power law absorption and non-linearity [95, 96].

2.5 Image-based registration of ultrasound to images of oth er

modalities

The locations of interfaces between different organs are more precisely and accurately seen, provided

they are visible, in images of high resolution anatomical modalities, such as magnetic resonance (MR)

or computed tomography (CT) than in B-mode ultrasound (US), due to the characteristic artifacts

and relatively low spatial resolution of US and artifacts such as speckle and image aberrations. The

geometrical model needed to simulate ultrasound wave propagation, as will be described in Chapter 3,
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is therefore more accurately derived from segmenting an MR or CT image. An appropriate approach

to establishing spatial correspondence between this model and data from a B-mode US probe is then

to align, or register, the anatomical image to a B-mode US image acquired in the same orientation,

with respect to the patient, as the data of interest. Image registration is a wide field of research and

multi-modality registration is a particularly challenging area [97] [98]

An image may be modelled, mathematically, as an intensity-valued function of spatial position, where,

for example, an image I may have intensity I(xi) at a pixel or voxel whose spatial coordinates, in

some reference frame “native” to I are held in xi ∈ ΩI ⊂ R
n, where n = 2 or 3 for a 2D or 3D image,

respectively.

I : ΩI → R

Within a framework to register two images, a spatial transformation, T is typically sought which de-

forms one image in order to maximise its spatial correspondence to the other image. The image to be

deformed is often referred to as the template image, and the other the reference image. These roles

are denoted by T and R below, so that

T : R
n → R

n

and similarity between R(x) and T (T (x)) is maxmimised over x ∈ ΩR ∩ΩT◦T . The transformation T
may, in some cases, be parametrized by some finite vector of parameters ζ. For example, in the case

of a rigid transformation, a suitable ζ may comprise n displacements and n angles. The similarity

criterion is frequently a function of certain features obtained using T and R.

The simplest possible feature that may be extracted from an image is the unprocessed, grey-level

intensity. A registration method in which a similarity function, S (of raw intensity), is optimised, with

respect to the parameters, ζ, of a transformation, would usually be called a “voxel-based” method.

A method which required manual delination by an expert, of anatomical structures from images,

followed by similarity optimisation for a relatively simple functional form of S would usually be called

“feature-based”. Because of their ability to operate with minimal user interaction (other than choice of

initial parameters, ζ0, and region of interest (ROI)), voxel-based methods are preferred in principle for

time-critical applications such as procedural guidance [99].

Since the way that intensity represents anatomy in ultrasound is very different from that of other

modalities, the choices of feature and similarity metric are crucial for registration between an US im-

age and an image of a different, high-resolution anatomical modality. This application will be referred

to as “the US-MR/CT’ problem” from now on. Features are generally either chosen from the MR or CT

image so as to deliberately facilitate comparison with raw ultrasound intensity, or equivalent features
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(a) feature-based (b) voxel-based

Figure 2.13: Schematic representations of image registration approaches

derived from both US and MR/CT to enable comparison on a common feature. These choices allow

a further natural division of voxel-based methods, as shown in tables 2.2 and 2.3.

2.5.1 Methods driven by modality-independent features

The most obvious choice of registration basis is raw voxel intensity, I(xi). A similarity measure ca-

pable of handling the widely different intensity characteristics between the modalities is needed, and

mutual information [100] between a given pair of images X(xk) and Y (xk) has been a popular choice,

e.g. [101, 102].

I(X,Y ) =
∑

i∈X

∑

j∈Y

p(X = i, Y = j) log

(
p(X = i, Y = j)

p(X = i)p(Y = j)

)
(2.11)

Here, the p(·)s denote probability distributions over intensity values i and/or j. Mutual information

(MI) captures statistical dependence between the intensities of X and Y without assuming a func-

tional dependence. The assumption of the MI registration criterion is essentially that, at the correct

registration pose, a certain, relatively low number of intensity pairings (Y (xi), (X ◦ T )(xi)) will occur

with relatively high frequency.

Mutual information is affected by the size of the overlapping region ΩX◦T ∩ ΩR as well as on the

quality of the alignment within it, potentially introducing a bias toward strong overlap. Normalised

mutual information (NMI) ([100, 103]) is independent of this size, dealing with the problem. Equations

describing NMI appear in Sec. 5.2.3.

In [101], Pagoulatos et al. used an intensity NMI-driven registration as part of a hybrid scheme to

rigidly register small numbers of ultrasound slices to an MR volume of a phantom. Voxel-based reg-

istration was initialised from pertubations with respect to a ground truth pose from fiducial marker
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tracking. The mean registration error was (1.88 ± 0.42)mm, an impressive result for US-MR regis-

tration, but the phantom suffered no deformation between MR and US acquisitions and the size of

the perturbations was not given. In an interventional scenario, an initialisation based on tracking is

feasible, but non-invasive fiducial markers are unreliable due to skin motion, especially if the patient

is breathing [104, 97]. Blackall et al. ([102]) registered sets of ultrasound slices and an MR volume

of phantom, using NMI,as part of a novel US probe calibration scheme. Performance was slightly in-

ferior, to a well-known, point-based method, with calibration errors of just over 1mm, and the method

has not been pursued further to my knowledge.

The (normalised) mutual information criterion is robust with respect to modality differences, however,

it can produce ’false positive’ alignments by failing to apply constraints which human perception nat-

urally does. The characteristic artifacts and low signal-to-noise ratio of ultrasound images lead to

local similarity maxima on uninformed statistical comparison with other modalities. By imposing an

assumption of functional dependence between coincident intensities in the registered images, say

X and Y , the local maxima of MI can be avoided ([105]). If any functional dependence of the form

Y (xi) = f((X ◦T )(xi)) is assumed to exist for optimal ζ, then distance from the registration pose may

be quantified by

arg min
f

Var(Y − f((X ◦ T ))).

With no information about its functional form, the optimal choice for f is the conditional expectation of

Y given X , yielding the correlation ratio (CR),

η(Y |(X ◦ T )) =
Var[E(Y |(X ◦ T ))]

Var(Y )
= 1− Var[Y − E(Y |(X ◦ T ))]

Var(Y )
.

This measure performed well compared to MI, and other criteria in multimodality rigid registration

between MR, CT and PET brain images, and was robust with respect to sub-sampling of the images.

No results from the group have appeared on using CR for US-X registration, but [106] explains why

it wouldn’t work and puts forward a modification. The modified criterion, bivariate correlation ratio,

takes into account the superficial characteristics of ultrasound images [107].

The unique intensity characteristics of a B-mode ultrasound image challenges attempts to automat-

ically recognise corresponding anatomical features shared with another image. However, the local

phase of an image can parametrize the presence of different types of object features, e.g. edges,

blobs, independently of their intensity and orientation [108, 109, 110, 111, 112]. Applications to

multi-modal non-rigid registration with MR and synthetic ultrasound of brain [109, 110] performed well

compared to equivalent intensity-based techniques, but I am not aware of its use with real ultrasound.

By using the similarity measure constructed from both local phase and local orientation given by

Eq. 2.12 for spatio-temporal images I1 and I2, and transformation T , Grau et al. [113] have

rigidly registered apical and parasternal ultrasound heart sequences to within a TRE of 2mm in
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published author

(et al.)

feature similarity mea-

sure

search space search strategy

2009 Milko vessel prob. weighted product rigid Powell

2009 Legg multiscale

gradient

magnitude

MI rigid manual search (rotations),

Nelder-Mead simplex

(translations)

2007 Dalvi local phase MI rigid visual, followed by con-

strained manual search

2006 Haber normalised

gradient

dot product non-rigid Gauss-Newton

2005 Blackall vessel prob. cross-correlation rigid then B-spline dis-

placements constrained by

breathing to 1D

zeroth-order estimation

then 1D search

2005 Jian local freq. Gaussian den-

sity of differ-

ences

B-spline displacements nonlinear quasi-newton and

pre-conditioned gradient

descent

2004 Penney vessel prob. NCC rigid zeroth-order estimation

scheme

2000 Blackall intensity NMI semi-affine multi-resolution search

1998 Roche intensity CR rigid Powell

Table 2.2: Intensity-based registration approaches for US-MR/CT driven by intensity-derived features

which are modality-independent.

85% of trials, and 5mm for 100%. Though not a multi-modal problem, the presence of view-

dependent image artifacts makes this, nonetheless, an impressive result. In the expression,W (r, t) =

min(sin2(ζ(I1(r, t), s)), sin
2(ζ(I2(r, t), s))) and s is a wavelength characteristic of a filtering operation

involved in the calculation of the local phase, ζ(· ), of an image location I(r, t). See App. F for details

of this calculation and that of local orientation, o(· ). In Eq. 2.12, the voxel locations belong to the

image overlap region r ∈ ΩI1 ∩ ΩI2 , µ is a weighting scalar, and Nr = |ΩI1 ∩ ΩI2 |.

S(T ) =
∑

t

∑
rW (r, t)[1− o(I1(r, t), s) · o(I2(r, t), s)]∑

rW (r, t)
+µ

∑

t

∑
r[1− cos(ζ(I1(r, t), s)− ζ(I2(r, t), s))]

Nr

(2.12)

Pre-processing of the images to be registered may, of course, seek to extract an anatomical feature,

rather than an abstract one. In a rigid liver application, Penney et al. [114], process MR and US dif-

ferently to produce vessel probability maps. Similarity is computed between the maps for a particular

registration pose with the normalised cross-correlation (NCC) metric.
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published author

(et al.)

feature similarity mea-

sure

search space search strategy

2009 Gill (sim/real)

US intensity

BCLC2 rigid ×nvertebrae CMA-ES

2009 King (prob/real)

US intensity

likelihood rigid simple hill-climbing

2009 Kutter (sim/real)

US intensity

NCC rigid downhill simplex

2008 Wein (sim/real)

US intensity

LC2 semi affine amoeba simplex

2007 Wein (sim/real)

US intensity

LC2 rigid simple hill-climbing/Powell-

Brent/exhaustive hill-

climbing

2005 Wein edges re-

gions

correlation MI rigid simple hill-climbing/Powell-

Brent/exhaustive hill-

climbing

2001 King liver surface posterior prob. rigid with breathing prior MAP

Table 2.3: Intensity-based image registration approaches for US-MR/CT driven by intensity-drived

features which imitate ultrasound. Biomechanically-constrained linear Correlation of Linear Combi-

nation (BCLC2). Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Maximum A Posteriori

Probability (MAP)

2.5.2 Methods driven by ultrasound-imitating features

Since ultrasound image artifacts are highly dependent on the pose of the FOV with respect to

anatomy, which is the independent variable of any rigid registration algorithm, this dependence can

be exploited to enable a closer correspondence between intra-operative ultrasound and pre-operative

images in registration; essentially, US characteristics are simulated from the CT or MR to improve

similarity to the US image [115, 116, 117, 118, 119, 120].

Of particular interest for liver applications is the highly successful linear combination of linear cor-

relation (LC2) criterion adopted by Wein et al. [115, 116, 117]. A greatly simplified physical model

of ultrasound imaging is combined with, arguably, a “tri-variate” extension to the bivariate correlation

ratio of Roche et al. [107]. Refer to Sec. 5.2.3 for details of the method.

While this method achieved Target Registration Errors (TREs) of around 1mm in [116], there remain

methodological questions about the occlusion of regions behind strongly reflecting interfaces. The

echogenicity, p, is computed from µ, via a cubic polynomial mapping estimated from a few soft tissues,

and would be extremely high for bone if bony regions were not excluded from the computation. This

is dealt with in [115, 121], and later by Gill et al. for a spine application in [120], but not in [116].

Milko et al. have performed a comparison [122] of six criteria for rigid US-to-MR liver registration.
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The criteria were combinations of mutual information or correlation ratio measures with US intensity

and either MR intensity or gradient data, motivated by the broad observation that most B-mode US

information is contained in interface reflections. Correlation ratio between US intensity and MR gra-

dient norm outperformed the other metrics in terms of robustness, whilst maintaining good accuracy.

However, comparison with other approaches in the literature is not straightforward, since accuracy

was measured for each transformation parameter, rather than as a target registration error (TRE).

To the best of my knowledge, no comparison including the most popular registration criteria has been

done for abdominal US-MR/CT applications. Crucially, such a comparison should test different criteria

with the same data sets, and assess performance in the same manner.
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Chapter 3

Recovery of acoustic properties in

multi-compartment media

3.1 Introduction

3.1.1 Overview

Section ?? reviews the adjoint state method in a general setting, which is used in this chapter. Sec-

tion 3.2 begins by summarising the numerical phantom experiments presented and explaining the

rationale behind them, before giving full experimental details. The results are then discussed and

conclusions drawn.

3.1.2 Purpose

Acoustic properties of human tissues, such as sound speed, c, density, ρ, absorption coefficient,

µa, and non-linearity parameter, B/A, are of some interest for both diagnostic and engineering rea-

sons. While diagnostic B-mode ultrasound imaging indicates impedance changes in a complicated

and semi-quantitative fashion, the technique is not designed to quantitatively estimate any acoustic

parameter, and alternative ultrasound processing techniques have arisen for quantitative parameter

estimation or imaging in applications ex vivo and in vivo.

Conventional methods for measuring acoustic tissue properties, such as absorption, µa, attenuation

µ, sound speed c, backscatter µbs and nonlinearity B/A, involve delicate temperature, voltage or time-

of-flight (TOF) measurements on accurately prepared ex vivo tissue samples as described in Sec. ??

e.g. [56, 123, 124]. Several of these parameters have been shown to correlate with disease state of

tissue, notably in the liver, prompting interest in in vivo measurement methods.

To my knowledge, it is not yet known how accurate an estimate of sound speeds, densities, absorp-

tions, backscatters and non-linearities is needed for abdominal HIFU planning based on full-wave

simulations. Nor are results on the inter-patient variability of such tissue parameters widely doc-

umented. Though the current clinical standard for HIFU planning typically involves an attenuation



correction based on literature values, and no actual modelling, other scenarios where full-wave mod-

elling is highly desirable, such as trans-costal HIFU, are under development. For these applications,

the question of the superiority of patient-specific parameter estimatesover ex vivo literature values

merits investigation. In this work, I have investigated the prinicple of a non-invasive in vivo technique

using numerical phantom data. The reference, or “surrogate” data are obtained using a simulated

diagnostic ultrasound probe, spatially co-registered to the patient phantom.

3.1.3 Related work

This work is based in the full waveform inversion family of seismic tomography methods as described

in Chap. 2. The nearest published work is probably that of Liu et al. [125], Luo et al. [126] and

Tarantola [127].

3.1.4 Modelling Sound propagation

The propagation of sound, generally of multiple frequencies, in a fluid can be described by an appro-

priate wave equation. Two important field variables are the pressure, P and velocity, U of the fluid

medium, which depend on time and position as

P (x, t) = P0(x) + p(x, t) U(x, t) = U0(x) + u(x, t)

Here, P0 and U0 are the ambient pressure and velocity distributions that the medium would have in the

absence of any sound waves. The perturbations p and u are called acoustic variables. Density, ρ(x, t),

will also contain perturbations about some equilibrium value, ρ0(x), for a given medium location. In

this thesis, the acoustic media are assumed to be quiescent, i.e. to have background properties which

do not change in time. An acoustic wave equation is a partial differential equation that describes the

behaviour of an acoustic variable in the presence of a sound wave. One of the assumptions made in

this work was that, regions of the tissue media in which waves propagate which are homogeneous

are also isotropic, that is, sound propagates identically in all directions. Hence, the scalar acoustic

pressure, p, is the acoustic variable of interest in this thesis.

Ultrasound waves employed in medical imaging, as distinct from HIFU, may be assumed to be of small

amplitude, that is p ≪ P0. The wave equation describing small-amplitude pressure waves within a

homogeneous, lossless fluid medium can be derived by beginning with conservation equations for

mass and momentum (REFER TO APPENDIX):

Dρ

Dt
+ ρ (∇ ·U) = 0 (3.1)

D(ρU)

Dt
+ ρU (∇ ·U) = −∇P + gρ (3.2)

To obtain a combined equation in terms of pressure, the relationship between pressure and density

in the material is needed. This is provided by an equation of state, which, in a general form linking
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pressure, density and entropy, takes the form

P = P0 +
∂P

∂ρ

∣∣∣∣
s,ρ0

(ρ− ρ0) +
1

2!

∂2P

∂ρ2

∣∣∣∣
s,ρ0

(ρ− ρ0)
2 +

1

3!

∂3P

∂ρ3

∣∣∣∣
s,ρ0

(ρ− ρ0)
3 + . . . (3.3)

= P0 + ρ0
∂P

∂ρ

∣∣∣∣
s,ρ0

(
ρ− ρ0

ρ0

)
+

1

2!
ρ2
0

∂2P

∂ρ2

∣∣∣∣
s,ρ0

(
ρ− ρ0

ρ0

)2

+
1

3!
ρ3
0

∂3P

∂ρ3

∣∣∣∣
s,ρ0

(
ρ− ρ0

ρ0

)3

+ . . .

Conventionally ([128]) the coefficients in this expansion are named so that

P = P0 +A

(
ρ− ρ0

ρ0

)
+
B

2!

(
ρ− ρ0

ρ0

)2

+
C

3!

(
ρ− ρ0

ρ0

)3

+ . . . (3.4)

The speed of sound is defined by

c2 ≡ ∂P

∂ρ

∣∣∣∣
s

. (3.5)

If the waves are assumed to propagate adiabatically, i.e. without transfer of heat, then the entropy in

any part of the medium will remain constant, so that Eq. 3.1 becomes

∂ρ

∂P

DP

Dt
+ ρ∇ ·U = 0

DP

Dt
+ ρc2∇ ·U = 0. (3.6)

This can be linearlised in the acoustic perturbations as follows:

D(P0 + p)

Dt
+ (ρ0 + ρ′)(c0 + c′)2∇(U0 + u) = 0

∂(P0 + p)

∂t
+ (U0 + u) · ∇(P0 + p) + (ρ0 + ρ′)(c0 + c′)2∇(U0 + u) = 0

���������������:= 0[
∂P0

∂t
+ U0 · ∇ρ0 + ρ0c

2
0∇ ·U0

]
+
∂p

∂t
+ U0 · ∇p+ u · ∇P0 +

������������:= 0
[
(ρ′c20 + 2ρ0c0c

′)∇ ·U0

]
+ ρ0c

2
0∇ · u = 0,

so that

∂p

∂t
+ ρ0c

2
0∇ · u = 0, (3.7)

where the two cancellations are, respectively, due to the equation holding in the ambient state, and to

the absence of ambient flow, i.e. U0 = 0.

Meanwhile, the momentum conservation equation, Eq. 3.2, with the help Eq. 3.1, becomes Euler’s

equation:
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D(ρU)

Dt
+ ρU∇ ·U = −∇P + gρ

ρ
DU

Dt
+ U

Dρ

Dt
+ ρU∇ ·U = −∇P + gρ

ρ
DU

Dt
+ U

��������:= 0[
Dρ

Dt
+ ρ∇ ·U

]
= −∇P + gρ

ρ
DU

Dt
= −∇P + gρ. (3.8)

Neglecting the effects of gravity, this too can be linearised in the acoustic variables, as follows:

(ρ0 + ρ′)
D(U0 + u)

Dt
= −∇(P0 + p)

(ρ0 + ρ′)

[
∂(U0 + u)

∂t
+
(
(U0 + u) · ∇

)
(U0 + u)

]
= −∇(P0 + p)

�
�

��>
= 0

ρ′
∂U0

∂t
+

�������:= 0
ρ′(U0 · ∇)U0 + ρ0

∂u

∂t
+

������:= 0
ρ0(U0 · ∇)u +

������:= 0
ρ0(u · ∇)U0 =����:= 0−∇P0 −∇p.

In the last line above, only linear terms have been retained, and the cancellations are due to the

absence of ambient flow and of ambient pressure gradients, so that

ρ0
∂u

∂t
+∇p = 0. (3.9)

To combine this with Eq. 3.7 we divide by ρ0 and take the divergence

∇ · ∂u
∂t

+∇ ·
(

1

ρ0
∇p
)

= 0 (3.10)

while differentiating Eq. 3.7 with respect to time:

∂2p

∂t2
+ ρ0c

2
0

∂

∂t
∇ · u = 0. (3.11)

Finally, on substituting Eq. 3.10 into Eq. 3.11,

∂2p

∂t2
− ρ0c

2
0∇ ·

(
1

ρ0
∇p
)

= 0, (3.12)

and, if the medium is also homogeneous,

∂2p

∂t2
− c20∇2p = 0. (3.13)

If the wave amplitude is not small, i.e. if p is comparable in size to P0, and u is comparable in size to c0,

then the resulting wave equation is nonlinear in the acoustic variable or its derivatives, and the wave
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propagation it describes is also said to be nonlinear. The physical implications for the propagation

arise in two ways. First, still assuming that U0 = 0, and recalling that c is the speed with respect to a

stationary medium, the velocity of the wave at any point in space and instant in time varies according

to

∣∣∣∣
dx

dt

∣∣∣∣ = c+ u (3.14)

where u = |u|. This effect, where the wave begins to ’carry its own medium along’ is called convective

nonlinearity.

Additionally, if |ρ − ρ0| is an appreciable fraction of ρ, c itself will no longer be approximated by c0 =

∂p/∂ρ|s,ρ0 , and will begin to vary depending upon particle velocity. To derive an expression for this

dependence, consider Eq. 3.5 together with 3.4:

c2 =
A

ρ0
+
B

ρ0

(
ρ− ρ0

ρ0

)
+

C

2!ρ2
0

(
ρ− ρ0

ρ0

)2

+ . . . (3.15)

≈ A

ρ0

(
1 +

B

A

ρ− ρ0

ρ0

)
(3.16)

≈ A

ρ0

(
1 +

B

A

u

c

)
. (3.17)

(3.18)

Here I have used the relation u/c = |u|/c ≈ (ρ− ρ0/ρ0) from [129]. Since this relation is valid only for

ρ− ρ0 ≪ ρ0, where c ≈ c0, and noting, via Eq. 3.5 that A = ρ0c
2
0,

c = c0

(
1 +

B

A

u

c0

)1/2

≈ c0
(

1 +
B

2A

u

c0

)
= c0 +

B

2A
u = c0 + βu. (3.19)

Hence, to second order in the acoustic variables p and ρ′,

∣∣∣∣
dx

dt

∣∣∣∣ = c0 + (1 + β)u. (3.20)

3.1.5 The Adjoint State method

The adjoint state method for calculating the gradient of a summed-squared-residuals cost function

for acoustic tomography is presented here in a general format, following Plessix et al. [130]. Given

a vector of medium parameters, φ belonging to some space of possible parameters, Φ, and a field

variable (e.g. pressure, p) belonging to a function space, Q, we can write a model-to-data error

functional and a wave equation, respectively, as
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E(φ) = h(p(φ),φ) (3.21)

F (p(φ),φ) = 0. (3.22)

Here, E , F and h are functionals that map

F : Q×Φ→ Q

h : Q×Φ→ R

E : Φ→ R,

For example, in the case of a linear least-squares problem, we have, for data d,

F (p(φ),φ) = p−Aφ

h(p,φ) =
1

2
||p− d||2.

Suppose that Q is a Hilbert space of time-dependent square-integrable functions on a spatial domain

Ω ⊂ R
k, and that φ = (φ1, φ2, . . . , φn) where each φi is a square-integrable function defined on Ω.

Then Q = L2(Ω× [0, T ]) and Φ = (L2(Ω))n and they are equipped with the inner products

〈f, g〉Q :=

∫
f(r, t)g(r, t) d3r dt,

〈φ, ψ〉Φ :=
n∑

i=1

∫
φ(r, t)ψ(r, t) dkr

In the adjoint field method one finds, for some particular parameter φi(r) an expression for ∂E/∂φi(r)

in terms of a computed field, p, and another field variable, p̃, to be defined shortly. On perturbing the

medium parameters by an amount δφ , F becomes

F (p+ δp,φ + δφ) = 0

F (p,φ) + 〈∂pF (p,φ), δp〉Q + 〈∂φF (p,φ), δφ〉Φ +O(||(δp, δφ)||2) = 0, (3.23)

so that, with 3.22,

〈∂pF (p,φ), δp〉Q = −〈∂φF (p,φ), δφ〉Φ +O(||(δp, δφ)||2). (3.24)
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Also,

E(φ + δφ) = h(p+ δp,φ + δφ)

= h(p,φ) + 〈∂ph(p,φ), δp〉Q + 〈∂φh(p,φ)δφ〉Φ +O(||(δp, δφ)||2)

⇒

δE = 〈∂ph(p,φ), δp〉Q + 〈∂φh(p,φ)δφ〉+O(||(δp, δφ)||2) (3.25)

where || · || is a norm defined on Q× Φ. The space of highest dimension by far here is Q, so that, to

make a computation of δE tractable, one uses 3.24 to remove the dependence on δp from

δE = −
〈
∂ph(p,φ),

〈
(∂pF (p,φ))

−1
, 〈∂φF (p,φ), δφ〉Φ

〉
Q

〉

Q

+ 〈∂φh(p,φ), δφ〉Φ

Finally, to remove derivatives with respect to p, the adjoint field, p̃ is introduced as the solution to the

adjoint equation,

〈
(∂pF (p,φ))∗ , p̃

〉
Q

= ∂ph(p,φ) (3.26)

so that

δE = −
〈
〈p̃, ∂φF (p,φ)〉Q , δφ

〉
Φ

+ 〈∂φh(p,φ), δφ〉Φ

Equation 3.27 provides a template for calculating the derivative of E with respect to some φ. In the

case of a functional E that measures only the dissimilarity between measured and modelled signals,

which are restrictions of field variables like p onto suitable subsets of Ω× [0, T ], only the first term on

the right hand side of Eq. 3.25 contributes, so that

δE = −
〈
〈p̃, ∂φF (p,φ)〉Q , δφ

〉
Φ

+ 〈∂φh(p,φ), δφ〉Φ . (3.27)

3.1.6 Experimental summary and rationale

The experiments presented in this chapter were designed to investigate the feasibility of estimating

density and bulk modulus in media with multiple compartments using reflection data acquired from

a limited angular range. In some of the experiments, the aim was to examine the behaviour of rele-

vant cost functions in order to understand potential problems in minimising them, and to help choose

appropriate parameters for the optimisation algorithms. Table 3.2 summarizes the experiments per-

formed, and details of the methods are given in the subsections that follow.
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phantom array (Nj , Nk) PDE solver estimating minimising speed constraint optimiser described in results in

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K E – – Sec. 3.2.4 Fig. 3.4(a)

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K Eenv – – Sec. 3.2.4 Fig. 3.4(b)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K E – – Sec. 3.2.12 Fig. 3.6(a)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K E – – Sec. 3.2.12 Fig. 3.6(b)

1D profile end-point (1,1) Eq. 3.29 Alg. 1 ρ2, ρ3, ρ4 E no lsqnonlin Sec. 3.2.9 Tab. 3.7, Fig. 3.7

1D profile end-point (1,1) Eq. 3.29 Alg. 1 c2, c3, c4 E no lsqnonlin Sec. 3.2.9 Tab. 3.8, Fig. 3.8

1D profile end-point (1,1) Eq. 3.29 Alg. 1 ρ2, ρ3, ρ4, c2, c3, c4 E no lsqnonlin Sec. 3.2.9 Tab. 3.9, Fig. 3.9

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K E no Alg. 2 Sec. 3.2.11 Fig. 3.10(a)

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K Eenv no Alg. 2 Sec. 3.2.11 Fig. 3.10(b)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K E no Alg. 2 Sec. 3.2.11 Fig. 3.12(a)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K Eenv no Alg. 2 Sec. 3.2.11 Fig. 3.12(b)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K ENIM → Eenv → E no Alg. 2 Sec. 3.2.12 Fig. 3.13, Tab. 3.14

double stripe lines (1,2) Eq. 3.31 k-Wave ρ1, ρ2, K1, K2 Eenv no Alg. 2 Sec. 3.2.13 Fig. 3.15

stripe lines (1,1) Eq. 3.31 k-Wave ρ, K Eenv → E no fmincon→ Alg. 2 Sec. 3.2.12 Fig. 3.14, Tab. 3.15

double stripe lines (2,1) Eq. 3.31 k-Wave ρ1, ρ2, K1, K2 Eenv → E yes fmincon→ Alg. 2 Sec. 3.2.14 Tab. 3.17, Fig. 3.16

circle curvilinear (1,5) Eq. 3.31 k-Wave ρ, K ENIM → E yes fmincon→ Alg. 2 Sec. 3.2.15 Tab. 3.18, Fig. 3.17

split circle curvilinear (1,5) Eq. 3.31 k-Wave ρ1, ρ2, K1, K2 ENIM → E yes fmincon→ Alg. 2 Sec. 3.2.15 Tab. 3.19, Fig. 3.18

Table 3.1: Experiment list. In those entries above the horizontal dividing line, no estimation was done, and cost functions were plotted over parameter ranges

of interest without minimising them. The cost functions are given by Eq. 3.32 (E), Eq. 3.33 (Eenv) and Eq. 3.34 (ENIM). Arrows indicate changes from one

optimisation phase (procedure) to another during the progress of an experiment.
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3.2 Methods

3.2.1 Experimental summary and rationale

The experiments presented in this chapter were designed to investigate the feasibility of estimating

density and bulk modulus in media with multiple compartments using reflection data acquired from

a limited angular range. In some of the experiments, the aim was to examine the behaviour of rele-

vant cost functions in order to understand potential problems in minimising them, and to help choose

appropriate parameters for the optimisation algorithms. Table 3.2 summarizes the experiments per-

formed, and details of the methods are given in the subsections that follow.

3.2.2 Numerical phanta

As test media, I used four phantoms - a four-compartment one-dimensional profile medium, (Fig’s

3.1(a) and 3.1(b)), a “stripe” (Fig. 3.1(c)), a “double stripe” (Fig. 3.1(d)), a circle (Fig. 3.1(e)), and a

“split-cricle” 3.1(f). The density and bulk modulus of the circle phantom are, respectively, 900 kg m−3

and 1.9981×109 kg m−1s−2, against a background of 1000 kg m−3 and 2.3716×109 kg m−1s−2.
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Figure 3.1: Numerical phanta used in experiments. The “double stripe” phantom is labelled ’ds’. The

’stripe’ and ’double stripe’ phanta were 5mm × 2cm with pixel size 0.5mm2. The ’circle’ and ’split

circle’ phanta were 20cm×20cm with pixel size 2mm2

56



phantom array (Nj , Nk) PDE solver estimating minimising speed constraint optimiser described in results in

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K E – – Sec. 3.2.4 Fig. 3.4(a)

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K Eenv – – Sec. 3.2.4 Fig. 3.4(b)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K E – – Sec. 3.2.12 Fig. 3.6(a)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K E – – Sec. 3.2.12 Fig. 3.6(b)

1D profile end-point (1,1) Eq. 3.29 Alg. 1 ρ2, ρ3, ρ4 E no lsqnonlin Sec. 3.2.9 Tab. 3.7, Fig. 3.7

1D profile end-point (1,1) Eq. 3.29 Alg. 1 c2, c3, c4 E no lsqnonlin Sec. 3.2.9 Tab. 3.8, Fig. 3.8

1D profile end-point (1,1) Eq. 3.29 Alg. 1 ρ2, ρ3, ρ4, c2, c3, c4 E no lsqnonlin Sec. 3.2.9 Tab. 3.9, Fig. 3.9

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K E no Alg. 2 Sec. 3.2.11 Fig. 3.10(a)

stripe lines (1,2) Eq. 3.31 k-Wave ρ, K Eenv no Alg. 2 Sec. 3.2.11 Fig. 3.10(b)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K E no Alg. 2 Sec. 3.2.11 Fig. 3.12(a)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K Eenv no Alg. 2 Sec. 3.2.11 Fig. 3.12(b)

stripe lines (2,1) Eq. 3.31 k-Wave ρ, K ENIM → Eenv → E no Alg. 2 Sec. 3.2.12 Fig. 3.13, Tab. 3.14

double stripe lines (1,2) Eq. 3.31 k-Wave ρ1, ρ2, K1, K2 Eenv no Alg. 2 Sec. 3.2.13 Fig. 3.15

stripe lines (1,1) Eq. 3.31 k-Wave ρ, K Eenv → E no fmincon→ Alg. 2 Sec. 3.2.12 Fig. 3.14, Tab. 3.15

double stripe lines (2,1) Eq. 3.31 k-Wave ρ1, ρ2, K1, K2 Eenv → E yes fmincon→ Alg. 2 Sec. 3.2.14 Tab. 3.17, Fig. 3.16

circle curvilinear (1,5) Eq. 3.31 k-Wave ρ, K ENIM → E yes fmincon→ Alg. 2 Sec. 3.2.15 Tab. 3.18, Fig. 3.17

split circle curvilinear (1,5) Eq. 3.31 k-Wave ρ1, ρ2, K1, K2 ENIM → E yes fmincon→ Alg. 2 Sec. 3.2.15 Tab. 3.19, Fig. 3.18

Table 3.2: Experiment list. In those entries above the horizontal dividing line, no estimation was done, and cost functions were plotted over parameter ranges

of interest without minimising them. The cost functions are given by Eq. 3.32 (E), Eq. 3.33 (Eenv) and Eq. 3.34 (ENIM). Arrows indicate changes from one

optimisation phase (procedure) to another during the progress of an experiment.
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3.2.3 Data and forward models

Forward modelling is widely acknowledged to constitute the computing-time bottleneck in wave equa-

tion inversion. As a means of solving the wave equation with a given source term I initially imple-

mented the INCS method, described in Sec. 2.4. This method was initially chosen because of its

ability to converge in few iterations, and, looking forward, of its applicability to wave equations nonlin-

ear in the acoustic variable. Some results using this method are presented in Sec. 3.3.1. However,

the computation times turned out to be prohibitive in practice, due to the requirement to repeatedly

access large arrays containing pressure at all points in the spatial and temporal intervals concerned,

a point noted in [90]. The open-source k-Wave MATLAB toolbox uses a combined pseudo-spectral/k-

space method which is suitable for linear modelling at small amplitudes and allows fewer points-per-

wavelength for similar accuracy to more “traditional” methods such as finite-difference time domain

solution (FDTD), leading to sped-up computation compared with these methods. Additionally it does

not require storage of the acoustic variable across time points, conferring a practical speed advan-

tage over INCS. As the capability to solve non-linear wave equations was built into the newest version

of k-Wave, [95], it became a more viable choice of forward modelling technique, and was used for

all subsequent experiments. The application of these two forward modelling techniques is described

here.

In the experiments, numerical phantom media are interrogated using waves generated and received

at arrays of Nk transceiver elements. A transceiver array as a whole may be placed in any of Nj

positions. A receiving element has a position denoted by xr , and a transmitting, or source element

likewise has position xs where, in general, r = 1, . . . , NjNk and s = 1, . . . , NjNk.

3.2.3.1 INCS implementation

The first set of experiments used an implementation of the INCS method with the phantom shown in

Fig’s 3.1(a) and 3.1(b) to attempt to recover values of density and speed in each compartment from

reflection data. The propagation is linear and lossless, and described by the wave equation Eq. 3.29,

when the medium has small variations between compartments in density (a), and/or sound speed (b).

(
∂2

z −
1

c2
∂2

t

)
p = St + Ŝ(p) (3.28)

(
∂2

z −
1

c2
∂2

t

)
p = −ρ ∂t[∆V δz] +

(a)︷ ︸︸ ︷
1

ρ
∂zρ∂zp+

(b)︷ ︸︸ ︷(
1

c2
− 1

c20

)
∂2

t p . (3.29)

The delta function here confines the contribution of the transducer excitation, S, to the front of the

medium at zero depth, i.e. where z = 0. Under a plane wave assumption, as would hold at the

transducer face, acoustic pressure, and particle velocity are related by p = ρ0c0uz, where ρ0 and

c0 denote background values of density and speed. With the boundary conditions for a rigid baffle
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applied at z = 0, particle velocity is also related to the velocity increment above by ∆V = 2uz, so that

the excitation term, St, becomes

St = −2∂t[ (p/c)|z=0 δ(z)]. (3.30)

Gaussian pulses were chosen for the desired input pressure p|z=0.

The spatio-temporal filtering and windowing steps of the INCS method were applied to this source. I

used analytical expressions for the relevant derivatives and Fourier transforms as far as feasible so

as to avoid the need to perform numerical DFTs on large grids and sub-sample to smaller grids later.

Algorithm 1 was used to compute pressure profiles in model and reference media, and hence the

sum-of-squared-differences cost function E . To compute the reference data, pobs, which appear in the

expression for E given in Eq. 3.32, I used k-Wave, as a convenient method independent from INCS.

Algorithm 1 INCS sub-algorithm to compute E(ρ1, ρ2, . . . , ρNc , c1, c2, . . . , cNc)

1: set j = 0

2: repeat

3: set δpi
j+1 = G ∗ Ŝ(pi

j ; ζ
i)

4: set pi
j+1 = p0 + δpi

j+1

5: set j = j + 1

6: until δpi
j ≤ pTOL

7: E i = ‖pGT − pi
jfin‖2

3.2.3.2 k-Wave

For experiments using k-Wave as a forward model computation, a curvilinear source-receiver

(“Tx/Rx”) array of Nk elements, placed at varying positions and orientations in the ’0’ medium was

intended to represent a diagnostic ultrasound imaging probe. Eight equally-spaced positions for the

Tx/Rx array are shown, for Nk = 5, in Figure 3.2(c). For the stripe and double stripe phanta, a pair of

line elements were used (Fig. 3.2(a)).

The wave equation used to constrain the optimisation is given by Eq. 3.31,

[
∇ ·
(

1

ρ(x)
∇
)
− 1

K(x)
∂2

t

]
p = −S(x, t). (3.31)

Here, ρ is the density of the medium, and K = ρc2 is its bulk modulus, for sound speed c. For math-

ematical convenience, the two parameters recovered in the inversions described below are density

and bulk modulus, for each of several compartments.

Reference data were obtained using the same model. A typical source term, S(r, t) was a Gaussian-

modulated pulse at 500kHz, as pictured in Fig. 3.3. Dignostic pulse-echo imaging is normally carried

out at pulse centre frequencies between 1 MHz and 20 MHz. This, lower value was chosen for this
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(a)

lines

(b) ring (c) curvilinear

Figure 3.2: Available source/receiver element positions under different array geometries. There are

Nk elements in each ’probe’ and Nj positions the probe can occupy. For the above, (Nk, Nj) are: (a)

- (2,1), (b) - (1,8), (c) - (5,8).
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Figure 3.3: Input pressure pulse

concept demonstration work in order to reduce computation times. One of the anticipated challenges

of future work – and a well-known one – is forward computation at diagnostic frequencies, owing to

the large number of grid points and time steps required. However, there is not expected to be any

difference in the efficacy of the methods due to the use of a low frequency beyond their speed, so

that demonstration of the efficacy is still possible.

The k-Wave software accepts sources as additive pressure or velocity signals. For calculating the

adjoint field I used an additive pressure signal defined from a model-to-data misfit (see Sec. 3.2.7).

3.2.4 Objective function and nonlinear minimisation schem e

The model parameter vector, φ = {ρ1, . . . , ρNc ,K1, . . . ,KNc} contains one value each of density and

bulk modulus for each tissue compartment. Compartments are labelled with i = 1, . . . , Nc. In a

medium characterized by acoustic properties φ, the acoustic pressure recorded at tiem t and position

xr, resulting from an excitation at xs, is denoted p(t,xr ;xs,φ). This will usually be abbreviated to

psr(t; φ). Where φ takes the reference or true value φ∗, p becomes the reference or observed signal,

p∗, and psr(t; φ
∗) is usually (further) abbreviated to p∗sr(t).
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Figure 3.4: Cost functions in the “stripe” phantom using pressure signals in Eq. 3.32, (3.4(a)) and

their envelopes in Eq. 3.33 (3.4(b))

Least-squares cost functions, Eq. 3.32, 3.33 and 3.34 quantify model misfit.

ESSD(φ) =
1

2

∑

s

∑

r

∫ T

0

wsr

[
psr(t; φ)− p∗sr(xr , t)

]2
dt. (3.32)

There are Nj array positions and Nk transceiver elements in the array, as shown in Fig. 3.2(c) for

Nj = 8 and Nk = 5. Therefore there are Nr = NjNk element positions in total. The two sums in Eq.

3.32 are over sources and receivers (r, s), where r, s ∈ {1, 2, . . . , NjNk}, and a set of binary weights

{wsr} with |{wsr}| = (NjNk)2 may be used to restrict to a subset of combinations. Different choices

for {wsr} will result in different functional forms for E , but all with the same global minimum in φ. The
1
2 ’s are for mathematical convenience. Figure 3.4 shows plots of E and EENV with respect to medium

perturbations in the central inclusion of the stripe phantom, Fig. 3.1(c), where both of the lines in Fig.

3.2(a) have been used to transmit and receive, w11 = w12 = w21 = w22 = 1. The “envelope” cost

function, EENV is described by Eq. 3.33, following [125], where E[.] denotes a signal envelope, as

defined in App. C. The removal of the two local destructive interference maxima due to the use of the

signal envelopes is clear in Fig. 3.4(b).

EENV(φ) =
1

2

∑

s

∑

r

∫ T

0

wsr

[
E[psr](t; φ)− E[p∗sr](t)

]2
dt. (3.33)

Some results presented in later sections also make use of the full Normalised Integration Method

(NIM) of [125], based on the cost function of Eq. 3.34. The relative sizes of reference and model sig-

nals always affects ENIM irrespective of their temporal overlap, hence this cost function is not expected

to suffer from “plateaux” regions of zero gradient, away from its minimum, as EENV does. The need for

the integrated envelopes to be normalised arises from the initial and terminal boundary conditions of
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the adjoint method, and would appear to involve discarding useful amplitude information. However, if

transmitted pulses are included together with the received ones in p and p∗, normalising two traces

whose received echoes differ only in amplitude will not result in identical trances. Sections 3.3.2 and

3.3.7 present results in which this has been done, although I bear in mind that the amplitude contrast

between transmitted and received ultrasound signals may be too large for this to practicable with real

data.

ENIM(φ) =
1

2

∑

s

∑

r

∫ T

0

wsr

[
QNIM[psr](t; φ)−Q[p∗sr](t)

]2
dt. (3.34)

where

Q[p](t) =

∫ t

0
E[p](t′) dt′

∫ T

0
E[p](t′) dt′

(3.35)

For those experiments using the INCS method, minimisation of E was attempted using a trust-region

reflective optimiser implemented in MATLAB’s Optimisation Toolbox with the fminunc routine.

For later experiments using a k-Wave computation for both forward model and reference data, I im-

plemented a conjugate gradient algorithm to minimise E in three different ways, dependent on how

many of the source/receiver combinations are involved in each iteration. This report contains results

obtained using one of them. I denote by E(n) the version of the cost function resulting from the nth

restriction on E , {wsr}(n). Algorithm 2 shows how the total number, Nn of such restrictions are looped

over until convergence.

This algorithm was implemented in three ways, with the results presented in Sec’s 3.3.2 and 3.3.7

being produced from version iii.

i. Each iteration uses E(n) computed from one probe position and one Tx element, i.e. {wsr}(n) =

{δn,sδ⌊n/Nk⌋,⌊r/Nk⌋} and Nn = NkNj

ii. Each iteration uses E(n) computed from one probe position and all Tx elements on that position,

one after the other, i.e. {wsr}(n) = {δ⌊n/Nk⌋,⌊s/Nk⌋δ⌊n/Nk⌋,⌊r/Nk⌋} and Nn = Nj

iii. Each iteration uses E(n) computed from all probe positions and all Tx elements in each position,

one after the other, i.e. {wsr}(n) = {δ⌊r/Nk⌋,⌊s/Nk⌋}, where Nn = 1

In the above, Npars represents the number of quantities to be optimised, e.g. for all densities and bulk

moduli in three compartments, Npars = 6.

In order to choose suitable values for maxIter, the maximum number of iterations and maxLs, the

maximum number of steps in any line search, and initial values for α(dim), rapid test optimisations

were performed for each experiment in which the cost function gradient was interpolated cubically

from a pre-computed “landscape”.
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Algorithm 2 Conjugate Gradients Minimisation of E
n = 0

φ
(n) = φ0

search direction d(n) = ∇E(φ(n))

repeat

select nth set of weights, {wsr}(n)

dim = 1

φ(dim) ← φ(n)

repeat

compute α(dim) using E(dim), i.e. perform line-search

φ(dim+1) = φ(dim) + α(dim)d(dim)

compute β(dim) using E(dim)

d(dim+1) = −∇E(dim)(φ(n+1)) + β(dim)d(dim)

dim← dim+ 1

until dim > Npars

φ(n) ← φ(dim)

n← n+ 1 (mod Nn)

until ∃n : |E(n)(φ(n+1))− E(n−1)(φ(n))| < ǫE or |φ(n+1) − φ(n)| < ǫφ or n > maxIter

φ̂← φ
(n)

3.2.5 Model parameter scaling

In soft tissues, density and sound speed are typically on the same numerical order of magnitude

of 103. However, bulk modulus is typically on the order of 109. The large difference between the

numerical sizes of densities and bulk moduli made application of Alg. 2 difficult in early tests on

estimating these two quantities simultaneously. A scaling scheme was therefore introduced for the

update steps of Alg. 2 and used to appropriately modify the cost function gradient, computed as

described in the next subsection, just prior to use in 2. Hence, instead of operating with φ, Alg. 2

operated with φ̃, where, for upper and lower limits φU and φL,

φ̃ =
φ− φL

φU − φL

. (3.36)

In the density-bulk modulus estimation experiments presented in the rest of this chapter upper and

lower values used were ρU = 2000kg m-3, ρL = 500kg m-3, KU = 4.00×109 kg m−1s−2, KL = 5.0×108

kg m−1s−2.

3.2.6 Stopping criteria

All estimations were subject to a maximum number of iterations, and some, additionally, to a minimum

step size ǫφ̃. Values for this tolerance on the absolute value of |φ̃(n+1) − φ̃
(n)| were worked out so as
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to effectively give a tolerance on the relative value of |φ(n+1) − φ(n)| as follows.

If, for a single parameter with true value φ0, an estimated value less than φ0(1+ǫm) is desired, where,

for example, the relative error, ǫm is 0.01, for an overestimation less than 1%, then,

φ0(1 + ǫm)− φL

φU − φL
=
φ0 − φL

φU − φL
+

φ0ǫm
φU − φL

(3.37)

= φ̃0 +
φ0ǫm

φU − φL
. (3.38)

Hence the bound on absolute error for m̃ is less than

ǫm̃ =
φ0ǫm

φU − φL
. (3.39)

Since φ0 is unknown to the optimiser, the stricter value of φL may be used in the above expression

instead. For multiple parameters, we will have a relative increment in φ with modulus less than ǫφ if

|φ̃(n+1) − φ̃
(n)| < mini

mi
Lǫφ

mi
U −mi

L

. (3.40)

3.2.7 Objective functions gradient calculation

With the forward model given by Eq. 3.31, the adjoint pressure field, p†s corresponding to the forward

field from source point xs satisfies

[
∇ ·
(

1

ρ
∇
)
− 1

K
∂2

t

]
p†s = −

∑

r

(p(x, t) − p∗(x, t))δ(x − xr). (3.41)

Comparing model 3.31 with Eq. 3.22, Eq. 3.21 with Eq. 3.32, and Eq. 3.41 with Eq. 3.26, we

recognise

F (p,m) =

[
∇ ·
(

1

ρ(x)
∇
)
− 1

K(x)
∂2

t

]
p†s, h(p,m) =

1

2

∑

s

∑

r

∫ T

0

wrs

[
prs(t; φ)−p∗rs(t)

]2
dt.

With these choices, we have

∂F

∂K(x)
=

1

K(x)2
∂2

t p
∂F

∂ρ(x)
= −∇

(
1

ρ(x)2
∇p
)

and with φ = (ρ(x),K(x))T , Eq.3.27 yields, for ρ and K at a given x,

δE = −
〈
p†,

1

K2
∂2

t p

〉

Q

δK +

〈
p†,∇

(
1

ρ2
∇p
)〉

Q

δρ
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If the first bracket in Eq. ?? is integrated by parts once in time, the boundary terms will vanish due

the following conditions on p and p†,

∂tp(x, t)t=0 = 0,

p†(x, t)t=T = 0. (3.42)

Computationally, in order to realise the second condition in Eq. 3.42, p† is calculated by a numerical

solver from a time reversed source, with an equivalent initial condition imposed, then the resulting

field is itself time reversed to yield p†.

Meanwhile, if the second bracket in Eq. ?? is integrated by parts once in space, the boundary term

will vanish given the following boundary condition, made explicit in [?]

∂np(x, t)x∈δΩ = 0. (3.43)

This results in

δE =
1

K2

〈
∂tp

†, ∂tp
〉

Q
δK − 1

ρ2

〈
∇p†,∇p

〉
Q
δρ.

Expanding the notation, and defining a gradient function for E as

δE =

∫ ∫ ∫
∇mE(x) d3r

we have, for ρ and K at an explicit location,

(∇ρ(x)E)(x) = − 1

ρ(x)2

∑

s

∫ T

0

∇ps(x, t) · ∇p†s(x, t) dt (3.44)

(∇K(x)E)(x) =
1

K(x)2

∑

s

∫ T

0

∂tp
s(x, t)∂tp

†s(x, t) dt (3.45)

.

Following [131], the gradient with respect to the value of medium parameters in one region of a

piecewise homogeneous medium may be obtained by integrating the above expressions over this

region.

(∇KiE)(x) =

∫

Ci

(∇K(x)E)(x) dx (3.46)

.
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Figure 3.5: Analytical SSD gradient calculation in the ’stripe’ phantom using pobs (3.5(a)) compared

with a finite difference approximation (3.5(b)). Only first echoes are considered, so that three signals

are received (at the top and bottom edges) from each input pulse at the top edge.

Figure, 3.5 shows an analytical computation of ∇KE for one compartment of a one-dimensional

medium, compared with a finite difference gradient.

In the computation illustrated in Fig. 3.5, the source term playing the role of the right hand side of Eq.

3.26 was

S̃s(z, t) =
∂E

∂ps(z, t)

=
∑

r

δ(z − zr) (prs(z, t)− p∗rs(z, t))2. (3.47)

This was converted into a form usable as input to k-Wave using d’Alembert’s plane-wave solution to

Eq. 3.31

p†(z, t) =
ρ0c0
2

∫ t

0

∫ z+c(t−t′)

z−c(t−t′)

S̃s(z
′, t′) dz′ dt′ (3.48)

See App. B for the general derivation of this solution. Note that, because p† obeys a ternminal

condition whereas p obeys an initial conditio, the computationally practical way to generate p†(x, t) is

propagate Ss ’backwards’ in time, i.e. use the following integral instead of Eq. 3.48

p†(z, t) =
ρ0c0

2

∫ t

0

∫ z+c(t−t′)

z−c(t−t′)

S̃s(z
′, T − t′) dz′ dt′. (3.49)

Then, the above expression is propagated by k-Wave with initial conditions p†(z, 0) = ∂tp
†(z, 0) =

0, and the resulting full field time reversed in time to obtain a p† obeying the necessary terminal

conditions.
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Since S̃ is supported only at the receiver points, xr , the double integral is achieved by integrating the

second bracket in Eq. 3.47 with respect to time only. In two spatial dimensions, the same reasoning

was used, with a double delta function in Eq. 3.47. Then, since the physical source, S is a Gaussian-

modulated sinusoidal pulse, and propagation is linear, S̃ will consist of a superposition of such pulses,

with the same frequency support as S. The time integral of a Gaussian pulse is approximately another

Gaussian pulse, the approximation improving the greater the number of cycles the pulse contains (see

App. D),

∫
e−

t2

2σ2 eiωt dt ≈ 1

2
eitω

(
−2i

ω
e−

t2

2σ2

)
(3.50)

Equation 3.48 then gives, as the adjoint pressure field in the neighbourhood of the “adjoint source”

positions, xr ,

p†(z, t) ≈ −ρ0c0i

2ω
S̃s. (3.51)

For the “stripe” phantom medium described in Sec. 3.2.2, this pressure corresponds to the signal

assigned to the source.p field on running k-Wave to calculate the adjoint field.

In the case of the envelope-based cost function, Eq. 3.33, the adjoint source, Eq. 3.47, must be

replaced with an alternative, as in [125], [132], [130].

S̃ENV,s(z, t) =
∂EENV

∂ps(z, t)

=
∑

r

δ(z − zr)

∫ T

0

∂E[prs](τ ; φ))

∂prs(t; φ)

[
E[prs](τ ; φ)− E[p∗rs](τ)

]
dτ. (3.52)

where

∂E[p](τ)

∂p(t)
=





H[p](τ)
π(τ−t)E[p](τ) if t 6= τ ;

p(t)
E[p](t) if t = τ

For the “NIM” cost function, 3.34,

S̃NIM,s(z, t) =
∂ENIM

∂ps(z, t)

=
∑

r

δ(z − zr)

∫ T

0

∂ENIM[prs](τ ; φ)

∂prs(t; φ)

[
ENIM[prs](τ ; φ)− ENIM[p∗rs](τ)

]
dτ. (3.53)

where
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∂ENIM[p](τ)

∂p(t)
=

∫ τ

0
∂E[p](t′)

∂p(t) dt′ − ENIM[p](τ)
∫ T

0
∂E[p](t′)

∂p(t) dt′

∫ T

0 E[p](t′) dt′

3.2.8 Velocity model estimation

In the reflection-only case, recovery was expected to be more problematic, due to the relative weak-

ness of information arriving from behind the second layer. Since the arrival times of echoes from

behind the second compartment depend on sound speed in the first compartment, but not vice-

versa, I restricted both reference and model signals to the time interval [0, t1], where t1 was cho-

sen to be shortly after the arrival of the second echo in the reference signal. The reference sig-

nal truncated in this way, {p∗(xr, t) : t ∈ [0, t1]} contains only information about the first compart-

ment, C1. The speed in C1, denoted c1, can be estimated by minimising SSD between the en-

velopes of {p∗(xr, t) : t ∈ [0, t1]} and {p(xr, t) : t ∈ [0, t1]} with respect to ρ1, holding K1 fixed.

The resulting {ρ1,K1} are then held fixed in a similar minimisation to estimate ρ2, using signals

{p∗(xr , t) : t ∈ [0, t2]} and {p(xr, t) : t ∈ [0, t2]}. In this bootstrapping way, a velocity model is esti-

mated. It is similar to the “velocity spectrum” technique used in reflection seismology, [133], and only

applicable in this form for a layered medium. Optimisation of {ρi} and {Ki} can then be constrained

to this model, {ci}, reducing the likelihood that a model point become trapped in a local minimum or

region of weak variation in a certain direction.

3.2.9 Experiments in 1-D profile phanta

Four-compartment profile media were constructed from combinations of those shown in Fig. 3.1(a)

and Fig. 3.1(b) In these media, the compartments are labelled 1,2,3,4 from left to right, and the pres-

sure signals were both transmitted and received from the left-hand end. I performed three parameter

recovery experiments as follows.

i. With densities as in Fig. 3.1(a) and speeds homogeneous throughout, recovery of the densities

in compartment 2, 3 and 4 was attempted.

ii. With speeds as in Fig. 3.1(b) and densities homogeneous throughout, recovery of speeds in

compartment 2, 3 and 4 was attempted.

iii. With densities as in Fig. 3.1(a) and speeds as in Fig. 3.1(b), simultaneous recovery of both in

compartments 2, 3 and 4 was attempted.

In all cases, density and speed in compartment 1 was assumed known as a “background” value.

The transmitted pressure signal was a pulse of centre frequency 1.0 MHz, temporal envelope width

σ = 5.0× 10-7 s, and amplitude 5.0× 105 Pa. The medium was 4 cm long with grid spacing dz = 0.1

mm. In case i) temporal discretization was dt = 3 × 10-8 s, while in ii) and iii) it was dt = 6 × 10-8 s.

Cost function and parameter tolerances were set to zero, so that the estimations terminated on Niter.
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Fig. Nk envelope scheme maxIter maxLs ǫm ǫE α0

3.10(a) 2 no iii 40 20 0.01 0 1.0×103

3.10(b) 2 yes iii 20 20 0.01 0 1.0×105

3.12(a) 1 no iii 20 20 0.01 0 1.0×106

3.12(b) 1 yes iii 20 20 0.01 0 1.0×106

Table 3.3: Optimisation parameters for stripe phantom recovery tests

3.2.10 Experiments in “stripe” phanta

The numerical “stripe” phantom shown in Fig. 3.1(c) was used to develop and test the MATLAB im-

plementation of the adjoint-field cost function gradient. It allows visualisation of propagation in one

dimension only (plane waves). This can be done by setting the absorption coefficient in a perfectly-

matched layer (PML), surrounding the medium, to zero on the left and right hand sides. The periodic

boundary conditions inherent in k-Wave then cause the computed pressure field to “wrap” cylindri-

cally so that the lateral extent of the medium (and the transmitter/sensor array) is essentially infinite.

Outside the top and bottom edges, the PML is set to absorb perfectly. I have assumed that this is

sufficient to mimic a radiating boundary condition, so that the medium is longitudially infinite.

3.2.11 Single-compartment inclusion with transmission da ta

I used Algorithm 2 under “scheme iii” to attempt simultaneous recovery of density and bulk modulus

within the central stripe compartment, using two- and one-element “lines” arrays. The two-element

version is shown in Fig. 3.2(a). Reference values for the compartment were set to ρ∗ = 900 kg m−3

and K∗ = 2.0000×109 kg m−1s−2. The background values were 1000 kg m−1s−2 and 2.3716×109

kg m−1s−2. In minimising E , and EENV, twenty initial points φinit = (ρinit,Kinit)
T were selected from

a uniform random distribution within (ρ∗ ± 20%,K∗ ± 15%)T . Optimisation parameters for the four

cases are tabulated in Tab. 3.3.

To illustrate the benefit of the full NIM method over the “envelope-only” variant, I performed optimisa-

tions for each, initialised within (ρ∗±50%,K∗±50%)T , where ρ∗ = 1100 kg m−3 andK∗ = 2.0000×109

kg m−1s−2.

3.2.12 Single-compartment inclusion with reflection data o nly

The one-element version of the “lines” array retains only the upper of the two elements (shown in

Fig. 3.2(a)), so that only reflection data contribute to the cost function. In this case, the relationship

between physical parameters in the reference compartment and in the background have a strong

effect on the appearance of the cost function. Density, impedance, bulk modulus and small-signal

sound speed are related by the equations
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K = ρc2, Z = ρc, (3.54)

so that

ρK = Z2 (3.55)

Hence, the iso-speed curves on a ρ − K plot, for a given compartment, are straight lines through

the origin, whereas iso-impedance curves are rectangular hyperbolae. When echoes are small in

the reference data, the arrival time of model echoes has little influence on the cost function, so that

the effect of impedance change dominates that of speed change, leading to a hyperbolic valley, as

illustrated by Fig. 3.6.
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(a) EENV for Z∗ ≈ Zbkgd
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(b) EENV for Z∗ far from Zbkgd

Figure 3.6: The effect of impedance change in front of a compartment of interest upon EENV. The

influence of cmodel is weaker when the impedance change in the reference medium is small.

Some optimisation results are presented for a case where Z∗ ≪ Zbkgd, using the medium parameters

given in the first experiment of Sec. 3.2.11, but concentrate on the more problematic case where

Z∗ ≈ Zbkgd.

Early results obtained using “NIM”, “envelope” and classic versions of the adjoint state method sug-

gested a three-step approach exploiting the characteristics of each, to overcome the difficulty of using

reflection data only, with no signals received after transmission through the medium. I attempted ten

optimisations initialised within (ρ∗ ± 50%,K∗ ± 50%)T with ρ∗ = 1100 kg m−3 and K∗ = 2.0000×109

kg m−1s−2. In the first stage, ENIM is minimised, the a second optimisation is initialised from the model

points estimated from the first, to minimise EENV. Finally, a third optimisation is initialised from the end

points of the second, to minimise E .

The poor results of this experiment suggested that, when Z∗ ≈ Zbkgd, EENV is unable to determine

sound speed accurately, so that more of the available information should be exploited. This was done

by first obtaining estimates {c∗i } of the sound speeds as described in Sec. 3.2.14, then performing the

70



Fig. Nk envelope scheme maxIter maxLs ǫm ǫE α0

3.15 2 yes iii 20 20 0.001 0 1.0×106

Table 3.4: Optimisation parameters for double stripe phantom recovery

layer ρ / kg m−3 K / kg m−1s−2

1 900 2.0×109

2 1100 2.5×109

Table 3.5: Medium parameters for two-compartment reflection-based recovery

optimisation of {ρi,Ki} subjuect to the constraints Ki = ρic
∗2
i . Some results of applying this approach

are presented in Sec’s. 3.3.4 and 3.3.6.

3.2.13 Two-compartment inclusion with transmission data

Twenty density and bulk modulus recoveries were attempted in a two-stripe medium with reference

values ρ∗1 = 900 kg m−3, ρ∗2 = 1100 kg m−3, K∗1 = 2.0×109 kg m−1s−2, K∗2 = 2.5×109 kg m−1s−2,

with background values as in the one-stripe medium. The trials were initialised within 5% of reference

values and optimised using EENV with the parameters given in Tab. 3.4.

3.2.14 Two-compartment inclusion with reflection data only

The restriction to reflection data can quickly lead to ill-posedness even in simple cases. In order to

improve reduce the likelihood of optimisation trials leading to local minima of the objective function,

I adopted an approach where sound-speeds were initially estimated independently, then density and

bulk modulus were estimated while constraining to the speeds obtained in the first step. This method

exploited the arrival times of the received signals to estimate compartment speeds one at a time, as

explained in Sec. 3.2.8.

Forty optimisations were run on a two-compartment medium with a single transmitter/receiver. Ref-

erence values for the medium parameters were as given in Tab. 3.5. Twenty were constrained to a

velocity model obtained as above, and twenty were constrained to the reference (true) velocity values.

The optimiser for the constrained step was MATLAB’s fmincon, executing a Sequential Quadratic

Programming implementation. Termination tolerances were set to zero.

3.2.15 Experiments in circle phanta

The circular region in the medium shown in Fig. 3.1(e) was assigned properties of ρ∗ = 900 kg

m−3 and K∗ = 2.0×109 kg m−1s−2, Recovery from ten random initialisations within 10% of these

values was attempted, using a four-stage approach. After estimating speed in the circle as in 3.2.8.

Termination tolerances were set to zero.
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region ρ0 / kgm-3 K0 / kgm-1s-2

1 900 2.0×109

2 1100 2.5×109

0 1000 2.3716×109

Table 3.6: Medium parameters for the split circle

compartment 2 3 4

true ρ / kgm−3 900 1100 940

initialised ρ / kgm−3 850 1200 900

recovered ρ / kgm−3 887.9 1115.8 945.3

Table 3.7: Estimating ρ2, ρ3, ρ4 of ρ1, ρ2, ρ3, ρ4 in a 1D profile.

The same procedure was attempted for the “split circle” shown in Fig. 3.1(f), where reference acoustic

properties were as in Tab. 3.6. A source/receiver array of five elements was placed in the “twelve

o’clock” position of the eight positions shown in Fig. 3.2(c), so that Nk = 5 and Nj = 1. For phases 2

and 3, 0.002 and 0.01, respectively, were used for ǫm̃, with ǫE=0.

3.3 Results

3.3.1 Results in 1D profile phanta

Density recovery results, i.e. experiment i in Sec. 3.2.9 are summarized in Tab. 3.7 and Fig. 3.7.

Speed recovery results from experiment ii are summarized in Tab. 3.8 and Fig. 3.7. Simultaneous

recovery results from experiment iii are summarized in Tab. 3.9 and Fig. 3.9.

Figure 3.7: Estimating ρ2, ρ3, ρ4 of ρ1, ρ2, ρ3, ρ4 in a 1D profile.
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compartment 2 3 4

true c / ms−1 1540.0 1538.0 1541.0

initialised c / ms−1 1539.0 1539.0 1539.0

recovered c / ms−1 1540.0 1538.0 1540.9

Table 3.8: Estimating c2, c3, c4 of c1, c2, c3, c4 in a 1D profile.

Initialisation 1 Initialisation 2

Compartment 1 2 3 1 2 3

c0 / ms−1

true 1539 1540 1538 1539 1540 1538

initialised 1537 1525 1540 1541 1538 1540

recovered 1554.1 1539.2 1538.9 1554.8 1538.6 1539.2

ρ0 / kg m−3

true 1000 995 1010 1000 995 1010

initialised 1020 991 1012 998 999 1008

recovered 999.5 998.2 1012.7 995.9 995.6 1010.6

Z / kg m−2 s−1

true 1539000 1532300 1553380 1539000 1532300 1553380

initialised 1567740 1511275 1558480 1537918 1536462 1552320

recovered 1553300 1536400 1558400 1548400 1531800 1555500

Table 3.9: Results for simultaneous density/speed recovery
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Figure 3.8: Estimating c2, c3, c4 of c1, c2, c3, c4 in a 1D profile.
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Figure 3.9: simultaneous optimisation in compartments 2,3,4 of 1D profile. Initialisation 1

3.3.2 Results in stripe phanta

3.3.3 Single-compartment medium with transmission data

Figures 3.10 and 3.12 show the progress of the optimisations described in Sec. 3.2.11. Black cir-

cles represent initial points and green circles final points. The points are superimposed on a two-

dimensional cost function plot over model density and bulk modulus in the stripe compartment. The

reference (target) position is in the centre.

The results are summarised in Tabs. 3.10-3.11.

init. error / % fin. error / % ≤1%

ρ (6.43±5.19) (10.35±11.22) 3/20

K (7.81±4.57) (10.29±10.50) 3/20

Table 3.10: mimimising ESSD with Nk = 2,

(3.12±3.40) mins

init. error / % fin. error / % ≤1%

ρ (7.32±4.35) (0.00±0.00) 20/20

K (7.94±3.48) (0.00±0.00) 20/20

Table 3.11: mimimising EENV with Nk = 2,

(15.39±3.75) mins
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(a) minimising ESSD
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(b) minimising EENV

Figure 3.10: Simultaneous density, bulk modulus recovery for stripe phantom with “line” array and

transmission data available (Nk = 2).

Figure 3.11 illustrates the benefit of using normalised integrated signals in the cost function (in ENIM),

over using signal envelopes (in EENV). The integral of the modelled signal will always overlap with

some contribution to the integral of the reference signal, so that information about the arrival time of

the second echo, which informs us about the speed in the compartment, can be obtained even when

the modelled and reference second echoes do not overlap temporally. This eliminates the plateaux

regions seen in Fig. 3.11(a). The magenta-coloured point in Fig. 3.11(a) is the initial point for a trial

that went out of an acceptable (physical) range.
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(a) minimising EENV
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(b) minimising ENIM

Figure 3.11: Simultaneous density, bulk modulus recovery for stripe phantom with “line” array (Nk =

2).

3.3.4 Single-stripe medium with reflection data only

Optimisation results are shown in Fig. 3.12, Tab. 3.12 and Tab. 3.13 for a case where Z∗ ≪ Z0.

Results of three-step unconstrained optimisation for reflection-only data are illustrated in Fig. 3.13,
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(a) minimising ESSD
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(b) minimising EENV

Figure 3.12: Simultaneous density, bulk modulus recovery for stripe phantom with “line” array with

reflection data only (Nk = 1).

init. error / % fin. error / % ≤1%

ρ (10.35±6.19) (30.77±25.77) 5/20

K (8.12±4.95) (33.73±25.77) 5/20

Table 3.12: mimimising ESSD with Nk = 1, running time = (10.74±4.48) mins

and Tab. 3.14 for a case where Z∗ ≈ Z0.

Parameters for the same medium were recovered much more successfully by a constrained minimi-

sation of EENV, using a pre-estimated velocity model, followed by unconstrained minimisation of E .

The final stage of this is shown in Fig. 3.14, and summarised in Tab. 3.15

3.3.5 Two-stripe medium with transmission data

Figures 3.15 shows the progress of the optimisations described in Sec. 3.2.13, with results sum-

marised in Tab. 3.15(c) and Fig. 3.15(d).

3.3.6 Two-stripe medium with reflection data only

Figure 3.16 shows the progress of the recoveries described in Sec. 3.2.14. The speed-constrained

minimisation of EENV recovered all four parameters accurately within a few iterations in all but one

case. The subsequent, unconstrained minimisation of EtextsfSSD, shown to the right of the red line,

init. error / % fin. error / % ≤1%

ρ (9.49±5.92) (16.57±23.93) 12/20

K (11.26±5.59) (25.73±39.12) 12/20

Table 3.13: mimimising EENV with Nk = 1, running time = (7.45±1.73) mins
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init. error / % fin. error / % ≤1 % fin. error / % ≤1% fin. error / % ≤1%

ρ (23.46±16.02) (26.88±24.86) 3/20 (25.70±24.67) 5/20 (23.49±24.03) 6/20

K (22.31±14.56) (19.12±29.41) 2/20 (19.23±29.90) 5/20 (22.10±30.39) 7/20

Table 3.14: Simultaneous density and bulk modulus recovery in a single-stripe phantom with reflection

data only. Between columns 2 and 3, ENIM was minimised without constraint (14.1±5.6)mins, column

4 shows the result of minimising EENV without constraint (14.10±6.49)mins, and column 5 the result

of minimising ESSD without constraint (13.8±7.7)mins

init. error / % fin. error / % ≤1% init. error / % fin. error / % ≤1%

ρ1 (23.62±11.38) (3.69±4.04) 10/19 (3.69±4.04) (0.00±0.00) 18/19

K1 (23.55±11.34) (3.62±3.96) 10/19 (3.62±3.96) (0.00±0.00) 18/19

Table 3.15: Columns 2 and 3 show the speed-constrained minimisation of EENV with Nk = 1, running

time = (11.68±0.43) mins. Columns 4 and 5 show unconstrained minimisation of E , running time =

(4.67±0.01) mins.

init. error / % fin. error / % ≤1%

ρ (3.73±4.04) (0.08±0.00) 20/20

K (3.66±3.96) (0.06±0.02) 20/20

Table 3.16: mimimising E with Nk = 2, running time = (6.17±2.77) mins
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(a) minimising ENIM
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(b) minimising Eenv
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(c) overall ρ recovery
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(d) minimising E
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(e) minimising E , detail
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(f) overall K recovery

Figure 3.13: Attempted three-stage simultaneous recovery of density and bulk modulus for stripe

phantom with “line” array (Nk = 1). In the first phase (between vertical axis and left-hand red line)

ENIM was minimised; in the second phase (between red lines) EENV was minimised; in the third

phase (right of right-hand red line) E was minimised. The green dotted lines indicate the reference

(true) parameter values.

made little further progress, terminating with an unfinished line search after the first iteration.

Table 3.17 summarises the optimisations illustrated in Fig. 3.16.

3.3.7 Results in circle phanta

Table 3.18 and Fig. 3.17 summarize the results from four-stage recovery with the circle phantom with

Nk = 5 and Nj = 1.

Table 3.19 and Fig. 3.18 summarize recoveries on the split circle phantom where the last two stages

have been terminated on exceeding tolerances in parameter vector norm change and in cost function

change.

3.4 Discussion

The INCS method is applicable, in principle, to a possible extension of this work to acoustic parameter

estimation under nonlinear propagation. However, although some of the long computation times it

suffers from may be due to implementation, they are also due to the need to store and manipulate

large arrays holding the pressure field at every time point, since most of the running time was spent

performing convolution integrals, albeit using the Fast Fourier Transform. The relatively poor results
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init. error / % fin. error / % ≤1% init. error / % fin. error / % ≤1%

ρ1 (4.42±2.56) (0.33±1.01) 19/20 (0.33±1.01) (0.24±1.03) 19/20

ρ2 (5.31±3.15) (0.55±1.93) 19/20 (0.55±1.93) (0.45±1.95) 19/20

K1 (4.53±2.62) (0.32±0.97) 19/20 (0.32±0.97) (0.23±0.99) 19/20

K2 (5.36±3.11) (0.54±1.97) 19/20 (0.54±1.97) (0.46±1.99) 19/20

Table 3.17: Columns 2 and 3 show the speed-constrained minimisation of EENV with Nk = 2, running

time = (41.6±0.5) mins. Columns 4 and 5 show unconstrained minimisation of ESSD, running time =

(13.4 ±0.7) mins.

init. error / % fin. error / % ≤1 % fin. error / % ≤1% fin. error / % ≤1%

ρ (4.26±2.61) (1.01±0.00) 0/10 (0.09±0.00) 10/10 (0.00±0.00) 10/10

K (4.32±2.95) (0.33±0.00) 10/10 (0.02±0.00) 10/10 (0.00±0.00) 10/10

Table 3.18: Simultaneous density and bulk modulus recovery in a circle phantom with a “curvilinear”

array (Nk = 5). Between columns 2 and 3, ENIM was minimised with a constraint to a pre-estimated

velocity model (175±8)mins, column 4 shows the result of minimising ENIM without constraint

(105.34±0.16)mins, and column 5 the result of minimising E without constraint (102.73±1.41)mins

init. error / % fin. error / % ≤1 % fin. error / % ≤1% fin. error / % ≤1%

ρ1 (5.07±2.79) (6.63±0.00) 0/10 (0.55±0.23) 10/10 (0.26±0.21) 10/10

ρ2 (6.58±2.80) (5.19±2.12) 1/10 (0.87±0.51) 6/10 (0.21±0.14) 10/10

K1 (13.83±4.64) (9.80±0.00) 0/10 (0.36±0.31) 10/10 (0.22±0.15) 10/10

K2 (6.57±3.00) (5.15±2.12) 0/10 (0.31±0.23) 10/10 (0.22±0.16) 10/10

Table 3.19: Simultaneous density and bulk modulus recovery in the “split circle” phantom with a

“curvilinear” array (Nk = 5). Termination tolerances were used to reduce computation time. Be-

tween columns 2 and 3, ENIM was minimised with a constraint to a pre-estimated velocity model

(284.4±0.8)mins, column 4 shows the result of minimising ENIM without constraint (66.2±1.4)mins,

and column 5 the result of minimising E without constraint (35.6±1.12mins
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(b) estimating K

Figure 3.14: Simultaneous density and bulk modulus recovery for stripe phantom with “line” array

(Nk = 1). Using Eenv with velocity model constraint (left of red line), and using E unconstrained (right

of red line).

produced using this method for simultaneous estimation of ρ and K, shown in Tab. 3.9 and Fig.

3.9, was probably due to the same ill-posedness that affected the k-Wave recovery similarly in Fig.

3.13, even when ENIM and EENV had been previously used. The improvement shown when the first

(ρ,K) estimate is constrained to a pre-estimated speed is apparent between Tables 3.14 and 3.15.

In both of these experiments the reference values were the same: ρ∗ = 1100 kg m−3 and K∗ =

2.0000×109 kg m−1s−2, i.e. Z∗ bore the same relationship to Z0 in both cases. The improvement is

slightly surprising, since both the speed-constraint and the NIM cost function are designed to ensure

that measured and modelled signals overlap in time. The improvement due to a hard constraint is

immediate, however, so perhaps has a stronger effect. In two spatial dimensions, with more sensors,

more ray paths are available, so that the data contain signals with a wider spread of arrival times. This

too has the effect of widening the cost function global minimum, resulting in the successful recoveries

in Tables 3.15(c) and 3.17.

3.5 Conclusions

The results indicate that denstiy and bulk modulus estimation using reflection data alone is feasi-

ble, in principle, when combined with a novel technique from the seismology literature to regularise

the estimation by defining the cost function in terms of normalised, integrated signal envelopes. Of

great interest is the question of whether this remains possible in ill-posed cases made using compart-

ment models misaligned with reference media. That is, whether intra-organ mean tissue parameter

values can be successfully recovered using an organ-wise homogeneous model mis-aligned to an

extent comparable to target registration errors (TRE’s) produced by current multi-modal registration

algorithms. A possible computational speed-up when a Newton-type optimisation algorithm is used

together with a Hessian derived from the adjoint operator formulation as in [134] might also be inves-
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(b) bulk modulus

init. error / % fin. error / % ≤1%

ρ1 (2.58±1.57) (0.01±0.02) 20/20

ρ2 (2.22±1.59) (0.05±0.13) 20/20

K1 (2.84±1.16) (0.05±0.11) 20/20

K2 (2.80±1.56) (0.01±0.02) 20/20
(c) summary statistics

(d) stopping cond’ns

Figure 3.15: Simultaneous estimation of density and bulk modulus in the two-stripe medium with

transmission data included: estimation progress, (a), (b); summary statistics, (c); stopping conditions,

(d)
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(a) recovering ρ1, ρ2
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(b) recovering K1, K2

Figure 3.16: Density and bulk modulus recovery for two-stripe phantom with “line” array (Nk = 1).

Using EENV with velocity model constraint (left of red line), and using EENV unconstrained (right of red

line).

tigated.
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Figure 3.17: Simultaneous density and bulk modulus recovery in a circle phantom with a “curvilin-

ear” array (Nk = 5). Iterations 1-10 minimise ENIM constrained to a pre-estimated velocity model

(175±8)mins, 11-20 minimise ENIM without constraint (105.34±0.16)mins, and 21-30 minimise E with-

out constraint (102.73±1.41)mins
.

Figure 3.18: Simultaneous density and bulk modulus recovery in the split circle phantom with a “curvi-

linear” array (Nk = 5). Termination tolerances were used to reduce computation time
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Chapter 4

A signal dissimilarity criterion resistant to

coincident reflection arrivals

4.1 Introduction

4.1.1 Overview

Section 4.1 explains the motivation for this piece of work in terms of the main problem of the thesis,

and summarises other work in the literature that I have drawn on. On tackling the “main problem” in

a manner which is suited to its constraints of signal data, time and computing resources, and to the

availability of prior information, one may enounter a specific subproblem, which is explained in detail

in Section 4.2.1. The method developed for solving this subproblem, and experiments performed to

demonstrate it, are described in Sec’s 4.2.2 and 4.2.4. Results of these are presented and discussed

in Sec’s 4.3 and 4.4, concluding with Sec. 4.5.

4.1.2 Purpose

The problem of estimating acoustic properties of abdominal tissues in vivo, including speed-of-sound

and density, necessitates the interrogation of the anatomy with ultrasound waves without the ability to

isolate samples of single tissues of known size and position with respect to the transducer. A great

many geometric and acoustic properties of the medium combine to influence acquired ultrasound sig-

nals, so that some kind of comparison to signals containing responses to a model medium becomes

necessary. The property estimation goal is then converted to the surrogate goal of finding property

values that minimise some dissimilarity criterion between measured and modelled signals. Many

choices for such a criterion are generally possible. A criterion whose global minimum occurs very

close to the true property values may, on the other hand, have local minima elsewhere, in which an

optimisation algorithm could become trapped. The computation of model signals to evaluate a signal

dissimilarity criterion is generally a time-consuming process, so that it is preferable to evaluate it as

few times as possible. This means that gradient-based optimisation algorithms are preferred where



possible, but these are the kind most likely to become trapped in local minima. A local minimum will

always be accompanied by the presence of a local maximum between it and the global minimum, and

the cause of such a maximum is commonly both specific and comprehensible. A criterion which is a

convex function on the parameter space is guaranteed to be free of local maxima. Convexity means

that, between any two points in parameter space, the criterion has a value at most equal to the value

linearly interpolated from those at the two points, i.e. E is convex on a parameter space, Ω if, for any

two points (parameter vectors), φa,φb ∈ Ω,

∀t ∈ [0, 1] : E ((1− t)φa + tφb) ≤ (1 − t)E(φa) + tE(φb).

An ultrasound signal dissimilarity criterion with this property — for as many parameters as would be

practically considered for inclusion in the vector φ — is therefore desirable. Its use in optimisation

may be either as the sole criterion during minimisation, or in an early stage of an optimistion process,

in order to be confident of having moved to the “right side” of any local maxima of some faster-to-

compute and more accurate alternative. The purpose, and contribution, of this work in this chapter

was to develop a signal dissimilarity criterion which is convex both with respect to acoustic properties

and to parameters describing position and orientation of the medium with respect to an ultrasound

transducer array, where a prior model of medium geometry is available, but the only reflected signal

data (not transmitted ones) are available.

4.1.3 Related work

The dissimilarity criterion of the Normalised Integration Method was presented by Liu and Chauris et

al. for potential use in seismological surveys in which transmitted signals were available ([125]). The

potential applicability of the NIM to reflected signals was mentioned in [125], though I am not aware of

any subsequent publications in which this is done. However, With medium compartments largely pre-

determinable in medical applications, e.g. from MR or CT images — a crucial advantage in medical

ultrasound not so readily available in seismology — the dimensionality of the parameter space can

be reduced drastically, so that such usage becomes feasible, as was demonstrated in Chapter 3. The

method developed in this chapter, called the Echo-wise Normalised Integration Method, or ENIM,

goes further than NIM to meet the aim above. It does this by incorporating a sequence of additional

pre-processing steps, as described in Section .

One of these steps involves the detection of the arrival times of individual wave packets or “echoes” in

reference and modeled signals. This problem has been addressed for other ultrasound applications

in, e.g. medical imaging, non-destructive testing and underwater exploration e.g. [135], [136], [137].

Methods for doing this include

• locating the first peak in the signal using a threshold,

• locating the onset of support in, or maxima in the signal envelope,
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• locating maxima in the correlation of the signal with a reference waveform,

• locating maxima in the L1 or L2 norms of the signal with a shifted reference waveform,

• locating maxima in an “energy” function defined as the sum of the squared magnitude of the

cross-correlation of the signal with an ’expected signal’ reference waveform, and the squared

magnitude of the cross-correlation of the signal with the Hilbert transform of that reference

waveform.

Another step involves the simultaneous fitting of multiple surfaces to a set of points in a 3-D space,

without prior knowledge of which points should be fitted to each surface, and with omitted or erroneous

points. For this I have used a combination of the well-known RANdom SAmple Consensus (RANSAC)

algorithm, [138], and an adaptation of the Simultaneous Robust Multiple Fitting (SRMF or ”SMRF ”)

algorithm [139]. The latter was developed for the problem of automatically detecting road markings

for the steering of driverless cars, by fitting curves to segmentations of the road markings from video

images. Adaptating this method to the fitting of surfaces is computationally fairly straightforward.

4.2 Methods

From now on I set Nj = 1 and let Nr = Nk. Also, the transceiver array is a horizontal, linear array of

Nr receivers, Ns̃ of which act as sources. The Ns̃ sources are regularly spaced along the array with

s̃ = 1, . . . , Ns̃ so that

wsr = δs,(s̃−1)(Nr−1)/(Ns̃−1)+1.

4.2.1 Rationale

The simplest functional of measured and modelled signals whose global minimum occurs when true

and modelled values of medium parameters coincide, is the sum-of-squared-differences (SSD). It

suffers from “cycle-skipping” local maxima which give rise to local minima that frustrate gradient-

based optimisation schemes. An alternative functional known as the Normalised Integration Method

(NIM) overcomes the most important of the local maxima of SSD, but both SSD and NIM still suffer

from local maxima that arise in a different way, due to mutual interference between reflected signals.

4.2.1.1 “Cycle-skipping” local maxima

The simpler obstacle to convexity was illustrated for the function ESSD in Section 3.2.4. In the notation

of Chapter 3, if, for one or more r and s and for some φ, the signals prs(t; φ) and p∗sr(t) differ ap-

proximately by a time translation of half a period, then comparison in Eq. 3.32, may result in a local

maximum of ESSD. In seismology literature this phenomenon is commonly known as “cycle-skipping”.
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4.2.1.2 Mutual interference local maxima

Plots of ENIM, defined in Eq. 3.34, and its gradient, shown in [125], indicated that, with transmission

data, it could be used to locate a velocity perturbation more accurately and with fewer artifacts than

ESSD (Eq. 3.32) or either of two alternative versions of NIM that were presented, in which one of the

two quantities

Q1[p](t) =

∫ t

0 |p(t′)| dt′∫ T

0 |p(t′)| dt′
Q2[p](t) =

∫ t

0 p(t
′)2 dt′

∫ T

0 p(t′)2 dt′
.

was substituted for the ratio in Eq. 4.1,

QNIM[p](t) =

∫ t

0
E[p](t′) dt′

∫ T

0
E[p](t′) dt′

(4.1)

.

However, ENIM can suffer from local maxima arising in a different way, in a situation where a constraint

to a piece-wise constant medium is used, to reduce the dimensionality of the optimisation space, and

the reference and model media are misaligned :

ENIM(φ) =
1

2

Ns∑

s=1

Nr∑

r=1

∫ T

0

wrs

[
QNIM[psr](t; φ)−QNIM[p∗sr](t)

]2
dt, (4.2)

where

QNIM[p](t) =

∫ t

0 E[p](t′) dt′
∫ T

0 E[p](t′) dt′
.

For a given xs and xr, the signal measured at xr will be, in general, a sum of contributing signals

travelling along different ray-paths from xs to xr. Mutual interference between these contributions will

clearly occur before application of the functional QNIM. A simple demonstration shows the effect that

this can have on ENIM when considered as a function of misalignment between model and reference

media.

Figure 4.1 shows the set-up for the numerical demonstration. A line of source points send Gaussian

pulses of centre frequency 1MHz and envelope standard deviation 1µs into a lossless, homogeneous

medium. Reflections from two point scatterers, at depth d and spacing 2s are compared, for lateral

displacements, ∆x, to those for ∆x = 0. The six plots in Fig. 4.2 show that the NIM cost function

does not increase monotonically with deviation of ∆x about 0. This is due to interference between

echoes arriving at the same receiver from distinct reflection events. The envelope of the blue signal in

the top middle plot has a smaller integral than those in the top left and top right. The three scenarios

depicted in Fig. 4.2 correspond to the three points highlighted with black dots in Fig. 4.3.

To summarise, although ENIM is designed to be
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Figure 4.1: Geometry used to demonstrate the effect of mutual interference on the NIM

Figure 4.2: Top row: received echoes from two point scatterers at lateral displacement ∆x (blue) and

0 (green). Bottom row: normalised integrated envelopes of displaced (blue) and reference (green)

signals

(a) ESSD (b) ENIM

x

Figure 4.3: Model-reference misfit functions vs lateral displacement of scatterer pair. Left: summed-

squared differences, Right: envelope-based Normalised Integration Method showing the three points

corresponding to the three columns of Fig. 4.2
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• convex in some neighbourhood of the sought model parameters, φ∗, due to the squaring oper-

ation, as seen for both ENIM and ESSD around ∆x = 0 in both parts of Fig. 4.3,

• invariant with respect to changes in the phase of psr, due to the enveloping, which results in the

absence, in Fig. 4.3(b), of most of the local minima seen in Fig. 4.3(a), and

• sensitive to the difference between the arrival time of a given individual reflected pulse in psr,

and the corresponding pulse in p∗sr, even when these have no temporal overlap, due to the

integration, which results in the near-convexity seen in Fig. 4.3(b) for |∆x| > 12mm compared

to the corresponding near-plateaux seen in Fig. 4.3(a),

it is not convex with respect to deviations in model parameters (of the acoustic properties of the

medium, or of its geometry) from their optimal values where these cause, say, the amplitude of psr

to vary non-monotonically with respect to the deviations concerned. I show below how, by exploiting

information from all receivers simultaneously, a more ’nearly convex’ cost function can be constructed

by attempting to undo the mutual interference such as that in seen in the top middle plot of Fig. 4.2,

before the evaluation of a cost function similar to Eqn. 4.2.

4.2.2 The Echo-wise Normalised Integration Method

In this section, a mathematical definition of the ENIM signal dissimilarity criterion is given, and the

novel steps involved in its computation are described in detail.

4.2.2.1 Cost function

Throughtout this section I use p(t) to denote both p(t; φ) and p∗(t) where the point being discussed

applies equally to either. For source and receiver points as notated in Sec. 4.2.1, the ENIM signal

dissimilarity cost function is defined by

EENIM(φ) =
1

2

∑

r,s

M∑

m=1

∫ T

0

∣∣∣QNIM[psrπ(m)](t; φ)−QNIM[p∗srm](t)
∣∣∣
2

dt. (4.3)

Here, π is a permutation, to be described shortly, and I call psrm an echo signal received from one of

M distinct reflection events, where M is a small pre-determined integer such that

psr(t) ≈
M∑

m=1

psrm(t) (4.4)

By ’reflection event’ I mean a reflection of one or more acoustic rays from one side of a particular

compartment interface within the medium, after a particular (possibly empty) sequence of “down-

ward” transmissions of the ray(s) across a particular set of interfaces, and before a particular (possibly

empty) sequence of “upward” transmissions across another (possibly different) particular set of inter-

faces. Multiple reflections are not considered. The attempt to separate each received signal trace,
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psr(t) : t ∈ [0, T ] into such ’echoes’, with labels 1 ≤ m ≤M assigned so that the echoes labelled with

the same m, i.e.

{psrm(t) : s = 1, . . . , Ns, r = 1, . . . , Nr, t ∈ [0, T ]}

all contain information about the same reflection event, is central to the approach.

(a)(b)(c)(d)(e)(f) (g)(h) (i) (j)

Figure 4.4: Illustrative (idealised) signal decomposition for EENIM

Echo pulses are estimated, for a complete set of received signals, in two stages for reference sig-

nals, and in three stages for modelled signals. For reference (i.e. “observed”) signals, {p∗sr(t) : t ∈
[0, T ]}Ns,Nr

s=1,r=1, the first stage estimates the arrival times of reflections from each of M distinct inter-

faces in the medium. The second stage estimates the echo amplitudes using information from all sig-

nals at once. For the modelled signals, {psr(t; φ) : t ∈ [0, T ]}Ns,Nr

s=1,r=1, an intermediate stage attempts

to choose a permutation π so that, for each m, the sets of signals {psrπ(m)}Ns,Nr
s,r and {p∗srm}Ns,Nr

s,r

correspond to the same reflection event.

4.2.2.2 “Echo” arrival time estimation

The output of this stage is a set of initial estimates of times, {t̃srm} at which reflected signals either

are detected in psr(t), for each s and r, or would have been detected had not propagating wavefronts

contributing to {psr}Nr
r (for some s) interfered (constructively or destructively) at one or more of the

xr. Recalling that xs = (xs, 0) and xr = (xr, 0), I mostly label the transceiver positions by their lateral

co-ordinates in the following. Each {psr(t) : t ∈ [0, T ]} is referred to as a trace. The first step searches

for reflection arrival times trace-by-trace, i.e. (s, r)-by-(s, r). Since the arrival times estimated at this

step were to be refined subsequently, the following relatively simple and well-established method was

used to estimate them (see also [135] and Alg. 3). An “energy” function, W , is defined as the squared

modulus of the correlation of the signal psr(t) with the analytic version, qa(t), of a template pulse, q(t):

W (t) =

∣∣∣∣∣

∫ T

0

psr(t+ τ)qa(τ) dτ

∣∣∣∣∣

2

=

∣∣∣∣∣

∫ T

0

psr(t+ τ)(q + iH [q])(τ) dτ

∣∣∣∣∣

2

(4.5)

=

∣∣∣∣∣

∫ T

0

psr(t+ τ)q(τ) dτ

∣∣∣∣∣

2

+

∣∣∣∣∣

∫ T

0

psr(t+ τ)H [q](τ) dτ

∣∣∣∣∣

2

(4.6)

Figure 4.5: example signal plot
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where q is a Gaussian-modulated sinusoidal pulse, with a relatively simple Hilbert transform:

q(t) = e
(t−T/2)2

2σ2 sin[2πf0(t− T/2)], t ∈ [0, T ],

and

H [q](t) = −e
(t−T/2)2

2σ2 cos[2πf0(t− T/2)],

qa(t) = e
(t−T/2)2

2σ2 exp[(2πif0(t− T/2)− πi/2)], t ∈ [0, T ].

The analytical pulse is used in order to ensure that the point of maximum amplitude of a given pulse

within psr is identified independently of its phase: if psr contained a pulse which was an even function,

such as an enveloped cosine, translated to be centred on t = T/2, a correlation with q alone would

produce zero at the pulse centre:

∣∣∣∣∣

∫ T

0

psr(0 + τ)q(τ) dτ

∣∣∣∣∣

2

=

∣∣∣∣∣

∫ T

0

(
f+(0 + τ − T/2) cos[2πf0(0 + τ − T/2)]

)(
e

(τ−T/2)2

2σ2 sin[2πf0(τ − T/2)]
)
dτ

∣∣∣∣∣

2

= 0

for any f+ with f+(−t− T/2) = f+(t− T/2).
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Figure 4.6: Numerical signals comprising the sum of two pulses, with a template pulse and correla-

tions with that template. Plot sets (a) and (b) show two different values for the temporal separation of

the original pulses. Blue dots show maxima in envelopes and green dots show pulse centre times.

The times of the M highest peaks in W (t), for a pre-determined number M , estimate the arrival

times of the M maximal echo pulses at xr following transmission from xs. The echo arrival times

found in this way, {tsrm}Ns,Nr,M
s=1,r=1,m=1, may be corrupted where echoes arrive suffciently close together
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to interfere; they may omit some underlying but hidden arrival times, or include spurious ones. To

ameliorate this, they are refined by combining information across multiple traces.

4.2.2.3 Arrival time clustering and refinement

The output of this stage is a matrix of fitting coefficients, (ai,m)6,M
i=1,m=1, describing M surfaces in

(xs,xr, t)-space fitted to the squared travel times. These are denoted {t̃sq
srm}, for mathematical eti-

quette so as to provide a name, divorced from the squaring operation, for the image points of the

mapping below. Subsequent to this fitting, the {t̃sq
srm} themselves are re-estimated as the intersec-

tions of the NsNr lines {(xs,xr, t) : t ∈ [0, T ]} with the surfaces. The raw travel times are transformed

as

t̃sq
srm := t̃2srm = (tsrm − t0)2,

and a travel-time surface, Tm, is assumed to exist for each m with

Tm :R2 → R, (4.7)

Tm :(xs, xr) 7→ t̃sq
srm; (4.8)

that is, Tm maps transceiver co-ordinates to squared travel times. To a good approximation, each Tm

may be described as a linear combination of simple functions of xs and xr. I assume that:

• Each reflection event may be treated as having occurred at a point scatterer or a straight line

reflector

• Tm(xs, xr) = Tm(xr , xs), owing to the principle of acoustic reciprocity

The dependence of the two-way travel times, t̃, of reflected acoustic signals on source and receiver

co-ordinates, for ray-based propagation with constant speed and simple reflector geometries, are

given in introductory texts on reflection seismology, e.g. [140, 141, 142] and Appendix E. In the

present notation we have, for a horizontal reflecting interface at depth yD below xs and xr,

c2t̃2 = 4y2
D + |xr − xs|2. (4.9)

For a straight reflecting interface at an angle, ξ, to the horizontal (the line joining xs and xs), at a

normal distance yD from xs,

c2t̃2 = (2yD cos ξ)2 + (|xr − xs|+ 2yD sin ξ)2. (4.10)

Finally, considering a point scatterer with co-ordinates xD = (xD, yD)T ,
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t̃ =
1

c

√
|xD − xs|2 + y2

D +
1

c

√
|xr − xD|2 + y2

D

c2t̃2 = |xD − xs|2 + y2
D + |xr − xD|2 + y2

D+
√
|xD − xs|2 · |xr − xD|2 + y2

D

(
|xD − xs|2 + |xr − xD|2

)
+ y4

D (4.11)

I seek a relatively simple parametrization of the t̃sq from Eqn 4.7 that generalises all of Eqns 4.9, 4.10

and 4.11, noting that it must be symmetric with respect to the exchange s ↔ r. With the assumption

that |xr − xs| < yD, one may rewrite the square root of Eqn 4.11 and use a binomial approximation:

c2t̃2 = 2x2
D + 2y2

D − 2xD(xs + xr) + y2
D

(
1 +

(xD − xs)
2

y2
D

+
(xr − xD)2

y2
D

+
(xD − xs)

2(xr − xD)2

y4
D

)1/2

= 2x2
D + 2y2

D − 2xD(xs + xr) + y2
D


1 +

(xD − xs)
2

2y2
D

+
(xr − xD)2

2y2
D

+
�����������:≈ 0
(xD − xs)

2(xr − xD)2

2y4
D

+ . . .




≈ 2x2
D + 2y2

D − 2xD(xs + xr) + y2
D

(
1 +

(xD − xs)
2 + (xr − xD)2

2y2
D

)

= 2x2
D + 2y2

D − 2xD(xs + xr) + y2
D

(
1 +

1

2y2
D

(1

2

[
(xr + xs)

2 + (xr − xs)
2
]
− xD(xr + xs) + 2x2

D

))

(4.12)

On comparing the forms of 4.12 with those of Eqns 4.9 and 4.10, it will be seen that the following

linear combination of quadratic functions of |xr +xs| and |xr−xs| suffices to describe, to the quadratic

approximation in |xr − xs|/yD, any of the three arrival-time “surfaces”, for fixed xD, yD:

t̃sq
srm = a0,m + a1,m|xs − xr|+ a2,m|xs + xr|+ a3,m|xs − xr|2+

a4,m|xs − xr| · |xs + xr|+ a5,m|xs + xr|2. (4.13)

The estimation of the coefficients, {ak,m}5,M
k=0,m=1, is done in two stages. In the first stage, a set

of initial estimates is found by alternately fitting one surface using the Random Sample Consensus

Algorithm (RANSAC), and excluding the points deemed to lie in that surface from the remaining points

to be fitted until M surfaces have been fitted. The estimates are used to initialise an adaptation of

the Simultaneous Robust Multiple Fitting algorithm (SRMF or ’SMRF’) described in [139]. In early

tests, the SMRF algorithm was found to give highly reproducible {ak,m}5,M
k=0,m=1, but also to require a

close initialisation. The RANSAC algorithm, on the other hand, appeared to produce visually sensible

surface fits from poor starting estimates, but with less reproducibility (see Fig’s ?? and ?? ). Algorithms

4 (the RANSAC stage) and 5 (the SMRF stage) refer to X, a Vandermonde-type matrix for use in Eqn.

4.13:
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X ≡




1 |x1 − x1| |x1 + x1| |x1 − x1|2 |x1 − x1| · |x1 + x1| |x1 + x1|2

1 |x1 − x2| |x1 + x2| |x1 − x2|2 |x1 − x2| · |x1 + x2| |x1 + x2|2
...

...
...

...
...

...

1 |xs − xr| |xs + xr | |xs − xr|2 |xs − xr| · |xs + xr | |xs + xr|2
...

...
...

...
...

...

1 |xNs − xNr | |xNs + xNr | |xNs − xNr |2 |xNs − xNr | · |xNs + xNr | |xNs + xNr |2




.

(4.14)

Algorithm 3 Extraction of initial echo arrival times
define q and qa = q + iH [q]

for (s, r) ∈ {1, . . . , Ns} × {1, . . . , Nr} do

compute cross-correlation,Rsr(t), between psr(t)) and qa(t)

compute {W (t) = |Rsr(t)|2 : t ∈ [0, T ]}
identify the locations of the M highest maxima of W using MATLAB’s findpeaks routine

end for

In Alg. 5, the function φ is defined by

φ(·) =
1

a

((
1

·

)a

− 1

)

and F is a block-diagonal matrix whose M blocks are the 6×6 matrices
∑NsNr

i=1 λk
imXT

i,:Xi,:.

4.2.2.4 Echo amplitude and phase estimation

The ’echoes’ are pulses defined by

psrm(t) := xm p̂srm

= xm ψ(t̃srm) p̃srm, (4.15)

where, xm is a fitting parameter and the function ψ is a simple pulse amplitude model, to account

approximately for cylindrical spreading loss (i.e. ’spherical’ spreading in 2-D):

ψ(t) ≡





1/
√
t for t 6= 0

1 for t = 0

(4.16)

and p̃srm is a unit-amplitude Gaussian pulse centred on t̃srm given by

p̃srm(t) = e
(t−t̃srm)2

2σ2 e2πif0(t−t̃srm), t ∈ [0, T ] (4.17)
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Algorithm 4 Clustering of echo arrival times by linear least-squares paraboloid surface fitting
Let S be the set of correlation peaks found in Alg. 3: P = {(xr, xs, tsrm)}, and let N = |P |
transform the t-components of these points, so that P = {(xr, xs, t̃

sq
srm)}

Let X be as defined in Eq. 4.14

set maxIter, threshDist and num for RANSAC clustering/fitting

for m = 1, . . . ,M do

set RANSAC inlierRatio to 1/4(M −m+ 1)

set {ak,m}5k=0 to NaN

set bestInNum=0

for i = 1, . . . , maxIter do

select, at random, points, Pi = {(xr, xs, t̃srm)}, with Pi ⊂ S and |Pi| =num
define XPi as the submatrix of X corresponding the points in Pi

define t̃Pi as the vector of t̃-co-ordinates of the points in Pi

compute ã = (XT
Pi

XPi)
−1XT

Pi
t̃Pi

compute temporal distances of all points in P from the surface defined by ã as |Xã− t̃|
set P ′ = {(xr, xs, t̃srm) : |Xã− t̃| < threshDist}, with inlierNum= |P ′|
if inlierNum>inlierRatio·N and inlierNum>bestInNum and ã3,m > 0 and ã5,m > 0

then

set bestInNum = inlierNum

set {ak,m}5k=0 to the elements of ã

end if

end for

set t̃P ′ to the time co-ordinates of points in P ′, and recompute {ak,m}5k=0 as the elements of

a = (XT
P ′XP ′ )−1XT

P ′ t̃P ′

set P = P \ P ′

end for

compute {tsrm}Ns,Nr,M
s=1,r=1,m=1 as XA with A = (ak,m)
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Algorithm 5 Final estimation of echo arrival times using the Simultaneous Robust Multiple Fitting

algorithm, adapted from [139]
set maxIter, change, ǫ′, ǫ, σ, a

set A(0) to the A found by Alg. 4

for k = 1 : maxIter do

while change > ǫ′ do

for i = 1 : NsNr do

s = ⌊i/Nr⌋+ 1

r = i/Nr − ⌊i/Nr⌋
let yi = t̃srm

for m = 1 : M do

set wk
im =

(
Xi,:A

(k−1)
:,m −yi

σ

)2

set λk
im =

ǫ+exp(− 1
2φ(wk

im))

mǫ+
PM

m=1 exp(− 1
2φ(wk

im))
φ′(wk

im)

end for

end for

compute A(k) = F−1




∑NsNr

i=1 λk
i1yiXi,:

...
∑NsNr

i=1 λk
iMyiXi,:




set change= ‖A(k) −A(k−1)‖2
end while

end for
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From Eq’ns 4.15 and 4.4, we have

psr(t) =

M∑

m=1

xm p̂srm(t) (4.18)

=

M∑

m=1

xm ψ(t̃srm) p̃srm(t).

The ψ and p̃srm(t) having been determined via the fitted t̃srm for s, r, and m, the xm can be found by

a second fitting procedure. Since the m-label of each reflection event present in the signals is now

known from the fitting of their arrival times, t̃srm, no further clustering is needed, so that a relatively

simple linear least-squares fitting suffices for this step. Owing to residual inaccuracy in the t̃srm and

to phase differences between echoes present in the {psr}, this was found to work best in two stages,

fitting the echoes’ amplitudes in the first stage, and their phases in an independent second stage.

With the discretization tn = n∆t : n = 0, . . . , Nt, where (Nt − 1)∆t = T , and L = NsNrNt, the L×M
matrices T1, T2 and L × 1 vectors S1, S2 are defined as follows, with H [.] again, denoting the Hilbert

transform:

T1 ≡




↑ ↑ ↑
|p̂111| |p̂112| · · · |p̂11M |
↓ ↓ ↓
↑ ↑ ↑
|p̂121| |p̂122| · · · |p̂12M |
↓ ↓ ↓
...

...
...

...

↑ ↑ ↑
|p̂NsNr11| |p̂NsNr12| · · · |p̂NsNr1M |
↓ ↓ ↓




, T2 ≡




↑ ↑ ↑
x1

1p̂111 x1
2p̂112 · · · x1

M p̂11M

↓ ↓ ↓
↑ ↑ ↑

x1
1p̂121 x1

2p̂122 · · · x1
M p̂12M

↓ ↓ ↓
...

...
...

...

↑ ↑ ↑
x1

1p̂NsNr11 x1
2p̂NsNr12 · · · x1

M p̂NsNr1M

↓ ↓ ↓




,

S1 ≡




↑
|p11 + iH [p11]|

↓
↑

|p12 + iH [p12]|
↓
...

↑
|pNsNr + iH [pNsNr ]|

↓




, S2 ≡




↑
p11 + iH [p11]

↓
↑

p12 + iH [p12]

↓
...

↑
pNsNr + iH [pNsNr ]

↓




.
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Equation 4.19, over and above Eqn 4.18, though not valid in general, was found in early tests to yield

sensible values for the {xm} in Eqn 4.18, and was used to estimate echo amplitudes, in outline, via

Eqn 4.20

E[psr](t) =

M∑

m=1

xm ψ(t̃srm)E[p̃srm](t), (4.19)

T1x
1 = S1 as x1 = (T1

TT1 + αI)−1T1
TS1, (4.20)

where α≪ 1. Then echo phase information is incorported via Eqn 4.21:

T2x
2 = S2 as x2 = (T2

TT2 + αI)−1T2
TS2, (4.21)

with the {xm} in Eqn 4.18 finally estimated as the elements of

x =
x2

|x2|
. (4.22)

In practice, because 1/
√
t̃srm is undefined for r = s (where t̃srm = 0), ψ is given the second definition

in Eqn 4.16 for these cases, and Eqn’s 4.20 and 4.21 must be similarly split into “finite travel time” and

“zero travel time” cases. Submatrices Ti
ft and Ti

zt contain those rows of Ti where, respectively, r 6= s

and r = s. Assuming that the “zero travel time” pulse present in each pss overlaps negligibly with any

other pulse in the same pss, Eqn’s 4.20, 4.21 may be restated in the form

Ti
ftxift + Ti

ztxizt
= Si, (4.23)

where

Ti
ftxift = Si, and Ti

ztxizt
= Si (4.24)

give

xift = (Ti
ftTTi

ft + αI)−1Ti
ftTSi, and xizt

= (Ti
ztTTi

zt + αI)−1Ti
ztTSi. (4.25)

4.2.2.5 Arrival time surface matching

Even when the echo arrival times initially estimated, for the (s, r)-th trace, with a given set of model

parameters, correspond to the same M reflection events as those for the (s, r)-th trace with a dif-

ferent set of model parameters, the order in which they are recorded depends, in each case, upon

the size order of the M highest peaks in W (t), and so may differ if two or more reflection events

produce echoes which are close in amplitude. This fact, combined with the stochastic nature of Alg.
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4, means that modelled echoes, {psrm}, and reference/observed echoes, {p∗srm}, may not contain

information about the ’mth’ reflection event. Consider {Tm : m = 1, . . . ,M} to be the set of arrival

time surfaces extracted from the modeled pressure signals, and similarly for reference/observed sig-

nals {T ∗
m : m = 1, . . . ,M}. To correct any mis-ordering, I seek the permutation, π of {1, 2, . . . ,M} so

that the ordered set
(
Tπ(m)

)M
m=1

corresponds to (T ∗
m)

M
m=1 as well as possible: specifically, so that the

sum of absolute differences between the surfaces’ constant paraboloid coefficients be minimal. For a

small M it is computationally trivial to search the M ! permutations exhaustively:

π = argminπ′∈SM

M∑

m=1

∣∣a0,π′(m) − a∗0,m

∣∣. (4.26)

4.2.3 Computation of ∇EENIM by the adjoint field method

Working along similar lines to those of Section 3.2.7, I have attempted to compute the gradient of

the ENIM criterion with respect to density and bulk modulus using the adjoint method. To recap,

derivatives of the field computed for each source, p(x, t;xs,φ) are correlated in time with those of

another field, p†(x, t; {xr}Nr
r=1,φ) computed as the solution to an “adjoint” wave equation. Most of the

work involved is in the calculation of the correct source term for this equation:
∑Nr

r=1(xr , t;xs). An

expression for the rth summand is derived below.

S(xr , t;xs) =
∂EENIM

∂psr(t)

=
∑

s′

∑

r′

∑

m

∫ T

0

∂EENIM

∂ps′r′π(m)(t′)

∂ps′r′π(m)(t
′)

∂psr(t)
dt′

=
∑

s′

∑

r′

∑

m

∫ T

0

∫ T

0

C︷ ︸︸ ︷
∂EENIM

∂QNIM[ps′r′π(m)](t′′)

B︷ ︸︸ ︷
∂QNIM[ps′r′π(m)](t

′′)

∂ps′r′π(m)(t′)
dt′′

D︷ ︸︸ ︷
∂ps′r′π(m)(t

′)

∂psr(t)
dt′

(4.27)

Since echo is estimated using all traces, ps′r′m clearly depends, in practice, on psr for which s 6= s′

and r 6= r′. However, under the assumption that the echo fitting described in the previous sections

works perfectly, it can be shown that,

∂ps′r′π(m)(k
′∆t)

∂psr(k∆t)
= δss′δrr′δkk′ . (4.28)

To see this, consider that, with perfect echo fitting, the following relation holds.

(
M∑

m=1

psrm(t)

)
− psr(t) = 0, ∀1 ≤ s ≤ ns, 1 ≤ r ≤ nr, t = k∆t : 1 ≤ k ≤ nt.
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Also, considering the tuples of quantities (psrm(t))ns,nr,nt,M
s=1,r=1,k=1,m=1 and (psr(t))

ns,nr,nt

s=1,r=1,k=1 to be ele-

ments of the finite-dimensional vector spaces R
nsnrntM and R

nsnrnt , respectively, the following func-

tion can be defined:

F : R
nsnrntM × R

nsnrnt → R
nsnrnt

F : (x,y) 7→
(

M∑

m=1

xα

)
− yα,

where α is a multi-index representing (s, r, k), so that the output of F is nsnrnt-valued. Clearly F is

continuously differentiable with respect to its arguments. The implicit function theorem states that,

given a particular (a,b) for which F (a,b) = 0, if the Jacobian matrix,

JF,y(a,b) =
∂Fα

∂yβ (a,b)

,

is invertible, then there exists an open set U ⊂ R
nsnrntM containing a, and a unique continuously

differentiable function g : U → R
nsnrnt such that g(a) = b, and its partial derivatives are given by

∂g

∂xβ
(x) = −JF,y(x, g(x))−1 ∂F

∂xj
(x, g(x)).

With the F above,

∂Fα

∂yβ
= −δαβ

so that

−JF,y(x,y)−1 = δαβ .

Provided that this can be extended validly to infinite-dimensional spaces, Eq. 4.28 becomes

∂ps′r′π(m)(t
′)

∂psr(t)
= δss′δrr′δ(t− t′), (4.29)

so that, finally, from Eq. 4.27,

S(xr, t;xs) =
∑

m

∫ T

0

∂EENIM

∂QNIM[psrπ(m)](t′′)

∂QNIM[psrπ(m)](t
′′)

∂psrπ(m)(t)
dt′′ (4.30)

100



4.2.4 Experiments with simulated data

4.3 Results

4.4 Discussion

4.5 Conclusions
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Chapter 5

Image-based registration of US to CT/MR

abdominal images

5.1 Introduction

5.1.1 Overview

The work in this chapter is intended to address the subsidiary aim given in Chap. 1 in as well-

controlled an environment as possible. Section 5.2.1 explains the technique I have used to simulate

ultrasound images, and the rest of Sec. 5.2 describes two sets of experiments performed to evaluate

the accuracy and robustness of a registration algorithm based on this against others current in the

literature. This technique is based on the approach of Wein et al. [116] with two key stipulations in

mind: first, that the finished system be applicable for any available pre-operative imaging modality

that contains sufficient anatomical information to build a geometrical model of the organ(s) of interest

through which the US beam passes, and, secondly, that any (acoustic) model parameters be phys-

ically meaningful and explicit. I include, also, a generalisation of Grau and Noble’s local phase and

orientation image similarity criterion.

5.1.2 Purpose

Accurate and robust registration between ultrasound and either CT or MR images is an important

task in the guidance of abdominal soft tissue HIFU. The acoustic ray paths from any ultrasound trans-

ducer involved need to be localised within the planning anatomy. This includes both the therapeutic

transducer array and any device used to acquire reflection signals for use in a reflection tomography

scheme such as that outlined in the preceding two chapters. Multimodal image registration is a very

active field of research but, to my knowledge, there are few comparisons of the most popular methods

for US-CT or US-MR registration on the same task.



5.1.3 Related work

Perhaps the first proposal to address the problems discussed in 2.5 via a physically-based ultrasound

image simulation was presented by Wein et al. in [116]. Using a simple model of ultrasound beam

propagation based on diffuse reflection directly anti-parallel to the incidence direction at boundaries of

changing acoustic impedance, the authors generated simulations representing the components of B-

mode ultrasound sectors due to reflection and to the consequent attenuation (shadowing). The X-ray

attenuation coefficients given by CT data, are assumed to be proportional to density, and so, assuming

a constant sound speed, to acoustic impedance. Thus a sector-shaped re-sliced region from the CT

data is used as a surrogate acoustic impedance map for each required field-of-view, since only ratios

of these impedances are required in the physical equations. The assumption of constant sound speed

across tissues is not explicitly justified, although the fact that ultrasound machines assume a constant

speed of 1540ms−1 in soft tissues is mentioned. Additionally, the proportion of incident intensity that

is transmitted across a boundary is assumed to be independent of incidence direction, since refraction

is ignored. Ignoring refraction to assume straight-line propagation introduces spatial distortion in the

resulting simulated image, but justified for this purpose since real US image construction also makes

this assumption. After a log-compression step, the resulting image intensity, as a function of mapped

position within the sector field-of-view (FOV) and with respect to the CT volume, µ. is given by

equation 5.1. This mimics the transmission/reflection component of an ultrasound image that would

have resulted had the anatomy represented in the sliced CT sector been probed with a transducer in

B-mode. Equation 5.1 describes the log-compression step, for parameter a, where I(x) is the value

of a reflected intensity image at a point whose distance from the nearest point on simulated US probe

face, x0, is λx. The CT image, as mentioned, is µ, and the transmitting ray direction is d.

r(x) =
log(1 + aI(x))

log(1 + a)
(5.1)

I(x) = I0 exp

(
−
∫ λx

0

( |∇µ(x0 + λd)|
2µ(x0 + λd)

)2

dλ

)
(
dT∇µ(x)

) |∇µ(x)|
2µ(x)2

(5.2)

A great part of the intensity information present in a real ultrasound image derives from backscattered

signals from small structures, not just large interface reflections, as has been assumed in other work.

In addition to the log-compressed reflection component, the authors of [116] incorporated an addi-

tional intensity component, p(x), derived, again, from the CT data, to represent this tissue-specific

echogeneity. This derivation is based on the fitting of simple polynomials to plotted correspondences

between X-ray attenuation coefficient, in CT and CTA, and ultrasound intensity, p, for a few pieces of

anatomy, from a simple comparison of average typical image intensities.

To complete a particular B-mode slice simulation, a weighted sum of r(x), p(x) and an overall constant

intensity level, γ, is formed,
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f(x) = αp(x) + βr(x) + γ, (5.3)

where p depends on CT intensity at the mapped position only, pi = p(µ(T (x))).

While exploitation of the proportionality between X-ray attenuation coefficient and acoustic impedance

allows these impedances to be assigned on a voxel-wise basis, it is perhaps not clear that this fine

a degree of impedance discrimination is necessary for good registration, especially since the images

used in the experiments of [116] contain strong reflections from the diaphragm, whose relative contri-

bution to intensity in the simulated images, may well have dwarfed that from much smaller features.

A different approach to ultrasound image simulation developed during the 1990s is implemented in

the freely available Field II software of J. A. Jensen, [143, 81]. Linear-systems theory is used to

calculate the raw radio frequency (RF) pressure field received by a given transducer by convolving

its excitation function with impulse-response functions for its transmitting and receiving apertures,

where the latter are calculated from the scattering structures to be imaged. The simplifying concept

of impedance boundary reflections is not used, and all physical aspects of the ultrasound propagation

are treated as the consequences of scattering in the time domain. On a 64-bit PC with four 2.33GHz

processors and 8Gb of RAM, Field II takes around twenty minutes to produce an image simulation,

given a typical number of input scatterers ( 10000), for which reason alone it is not suitable for use in

the problem of registration for procedural guidance. However, in 2006, a newer linear-systems-based

model of backscattered RF trace appeared in [144] which may perhaps, if implemented as a method

of numerical image simulation, greatly outperform Field II in terms of computational speed, since it

operates, instead, in the frequency domain. I am not aware of any such implementation to date,

although the model has been applied to ultrasound image restoration and speckle removal, [145].

5.2 Methods

5.2.1 Ultrasound image simulation

The core component of the scheme outlined in Figure 5.1 is the simulation of ultrasound images, given

spatial and anatomical information. As in [116], the technique for this is based on a model of diffuse

reflection antiparallel to incident beam direction at interfaces between regions of differing acoustic

impedance, Z, though, here, values for Z are explicity assigned to different regions (tissues) of the

phantom (patient), rather than relying on the assumption of a simple relationship between anatomical

image intensity and acoustic impedance. This is done by pre-operatively segmenting the anatomical

image into a map of discrete tissues, and assigning a book value of acoustic impedance to each. As

numerical phantom data were used in some of this work, the ground-truth geometry of the anatomical

structure of interest was known here, but in the work involving real image data, delineation of the

organ interfaces (segmentation) was necessary, and a source of error.
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The fields-of-view (FOVs) for the simulated ultrasound images are shaped as truncated sectors, mim-

icking typical B-mode geometry. At each update of spatial parameters in the control loop shown in

Figure 5.1, a new rigid transformation is defined to transform the pixel coordinates of a reference

sector (see Figure 5.3) into the space of the ‘anatomical’ map of tissue regions (see Sections 5.2.2.2,

5.2.3.1), and this map is linearly interpolated at the transformed points to yield a sector of acoustic

impedances, absorption coefficients and ‘scatter’ coefficients. The radial beam geometry of a curvilin-

ear transducer is mimicked, as in [146], by warping the sectors into rectangles (see Section 5.2.2.2).

Synthetic ultrasound beams are then propagated vertically down the columns of the rectangular im-

age from the location of the artificial transducer head at the top, and the response of the anatomy

to the numerical beams is modelled as a source component together with depth-dependent atten-

uation due to both reflections and absorption. Refraction is neglected for simplicity, with the same

justification as was mentioned in [116].

First, the proportion of beam intensity which penetrates a boundary between regions with acoustic

impedance Z1 and Z2 is modelled by

∆t(Z1, Z2) = 1−
(
Z2 − Z1

Z2 + Z1

)2

, (5.4)

so that we may define a fractional transmission coefficient for each sector pixel location, x, as

∆t(x) = 1−
(
Z(x + ǫd)− Z(x− ǫd)

Z(x + ǫd) + Z(x− ǫd)

)2

, (5.5)

where ǫ is a small constant and d is the unit vector pointing in the beam propagation direction.

By integrating equation 5.5, in the same manner as was used in [116] to derive equation 5.2, the

proportion that transmits to the point x along a scanline originating from x0 can be modelled as

t(x) = exp

(
−
∫ λx

0

( |∇Z(x0 + λd)|
2Z(x0 + λd)

)2

dλ

)
, (5.6)

while an “image source” term is constructed, for each x, as a weighted sum of a reflection term and a

separate scatter term from that point (c.f. Eq. 5.32),

s(x) = wrr(x) + (1 − wr)p̃(x). (5.7)

Here, the reflection component is given by

r(x) =
(
dT∇Z(x)

) |∇Z(x)|
2Z(x)2

, (5.8)
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and p̃(x) is related by a simple function—to be described in Section 5.2.2.1—to a pre-assigned pa-

rameter, p(x), representing scattering strength, given at the anatomical location x, with 0 ≤ wr ≤ 1.

The total absorption factor of the tissue between x0 and x is given by an expression similar to Eq.

5.6,

A(x) = exp

(
−(ln 10)

∫ λx

0

0.1α(λd)dλ

)
, (5.9)

where α(x) is the power absorption coefficient of the tissue at x in dBcm−1.

The overall expression for received intensity, is, finally,

I(x) = I0A(x)2 t(x)2 s(x), (5.10)

where the squaring accounts for attenuation of the beam energy on both its outward and return

journeys.

For my implementation in MATLAB, I have discretised Eqs 5.5, 5.8 and 5.6 to the following forms, for

the nth pixel along a scanline:

∆t(xn) = 1−
(
Z(xn)− Z(xn−1)

Z(xn) + Z(xn−1)

)2

, (5.11)

r(xn, θ) = cos θ

(
Z(xn)− Z(xn−1)

Z(xn) + Z(xn−1)

)2

(5.12)

t(xn) =

n−1∏

k=1

∆t(xk) (5.13)

Eqn 5.9 is discretised as

A(xn) =

n∏

k=1

e−0.1(ln 10)α(xk)|xk−xk−1|, (5.14)

where the distance |xn − xk−1| is given in mm. The discrete version of 5.10 follows:

I(xn) = I0 A(xn)2 t(xn)2 s(xn), (5.15)

More realistically however, the echoes returned from a beam sent by a single element will be received

by an active group of elements, and the effect of this on the rectangular image can be modelled by
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applying a simple triangular horizontal line filter to the image ([146]). This was feature was imple-

mented, but not, in fact, used in the experiments (i.e. the group size was set to 1 throughout), as the

data used as surrogate ultrasound images did not involve the effect, and my aim was to keep the test

environment as simple as possible.

Finally, the received intensities are log-compressed with parameter a,as given by Eq 5.16. This is

done as the final step of the simulation, to mimic real B-mode image formation more closely, and

to interact with the contributions of the parameters Z,α, p in a clearer way. It may be thought that

performing a log-compression would only undo any attenuation that had already been simulated,

but, in fact, the effect is to make intensities that decay exponentially (with depth, for instance) decay

linearly instead.

S(x) = log(1 + aI(x))/ log(1 + a). (5.16)

Figure 5.1, below summarises the algorithm.

Figure 5.1: system block diagram

5.2.2 Data and geometry

5.2.2.1 Numerical phantom ‘anatomical’ data

These data were designed to represent a situation in which strong ultrasound-specific artefacts of

edge reflection and acoustic shadowing were present, while the second was designed to test the

technique where there were fewer artefacts, and neighbouring ‘anatomical’ structures were subtly —

and for many applications, more realistically — distinguished from one another.

Using MATLAB, a highly simplified two-dimensional representation of human abdominal anatomy, P

(see Figure 5.2(a)) was created, and from this, a representation of an anatomical image modality, X
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Table 5.1: Acoustic parameters for strong-artefact phantom (M1). Literature values of Z and α were

used for: human liver parenchyma (A); bone, to represent ’calcifications’ (B); kidney, to represent

’tumour’ (C); skeletal muscle, to represent ’stomach’ and ’pancreas’ (D and E); fat (F). Echogenicity

values are assigned arbitrarily.

‘tissue’ Z/106kgs−1m−2 α/dBcm−1 echogenicity/arb units

A 1.65 0.94 120

B 7.80 20.00 500

C 1.62 1.00 90

D 1.70 3.30 2000

E 1.70 3.30 2000

F 1.38 0.63 60

(see Fig. 5.2(b)) was derived by assigning new intensities arbitrarily to the six regions of P , which are

labelled A-F in Figure 5.2(a).

(a) P (b) X

Figure 5.2: Synthetic “patient”, P and “anatomical image”, X .

By assigning values to the three acoustic parameters mentioned in Section ?? in each of the six

regions, two anatomical map images, denoted M1 and M2 were derived , as shown in Tables 5.1 and

5.2

5.2.2.2 Numerical phantom ’ultrasound’ data and ground truth localisation

A smaller image, U which acts as a surrogate for a real B-mode ultrasound slice through the patient

(P ), was generated from each of M1 and M2 using an adapted version of Field II’s cyst phantom

example software ([147], [148]), together with components from my own simulation method presented

in Section ?? . The pixel coordinates within the field-of-view of each of the two Us were defined with

respect to the centre of a 2D reference slice, R after the polar-to-cartesian transformation of Eqs 5.18.

Figure 5.3 depicts a binary image of R, showing the sector pixels, at coordinates in ΩR, with respect

to the image centre, in white.
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Table 5.2: Acoustic parameters for subtle-artefact Phantom (M2). Literature values of Z and α were

used for: human liver parenchyma (A); blood, to represent vessels (B); kidney, to represent ’tumour’

(C); skeletal muscle, to represent ’stomach’ and ’pancreas’ (D and E); fat (F). Echogenicity values are

assigned arbitrarily.

‘tissue’ Z/106kgs−1m−2 α/dBcm−1 echogenicity/arb units

A 1.65 0.94 500

B 1.61 0.18 10

C 1.62 1.00 90

D 1.70 3.30 26

E 1.70 3.30 35

F 1.38 0.63 2

Figure 5.3: Reference sector, R, representing the shape of a B-mode US image obtained with a

typical curvilinear array transducer used for abdominal imaging

ΩPOL
R =



(r, θ) ∈ R

2 :





25.8421mm ≤ r ≤ 143.9671mm

−32.7474◦ ≤ θ ≤ 32.7474◦







 . (5.17)

ΩR := ΩCART
R (5.18)

=



(x, y) :





x = r sin θ

y = r cos θ − 128mm



 , (r, θ) ∈ ΩPOL

R



 (5.19)

The anatomical location of the FOV of U with respect to the centre of P was chosen by rigidly

transforming the cartesian coordinates of points in ΩR, the domain of R, into the appropriate lo-

cations as defined with respect to the coordinate system of X , with T GT : ΩR → ΩX . Parameters

ζGT = {θGT, xGT, yGT} defined the matrix representation, T(ζGT), of this transformation as follows, for

(xref , yref)
T ∈ ΩR:
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


x

y

1


 = T(ζGT)




xref

yref

1


 , (5.20)

where

T(ζGT) =




cos(θGT) − sin(θGT) 0

sin(θGT) cos(θGT) 0

0 0 1







1 0 xGT

0 1 yGT

0 0 1


 .

Each of M i
Z , M i

α and M i
p, having been assigned the same ‘anatomical’ coordinate system as P and

X , were sampled at the mapped locations with linear interpolation, yielding ‘map sectors’. These

were then warped ‘back’ into rectangles, essentially by inverting Eqs 5.18. Field II was then used to

place 10000 scatterering sources within each sector and generate scatter images using the values of

the p parameter at the scatterer locations as amplitudes. In some preliminary tests, the mean intensity

of such a scatter image within a region of constant p was found to vary approximately linearly with

the logarithm of p, and, by fitting a straight line to two regions appropriately spaced in intensity, the

following relationship was estimated for mean speckle intensity, p̃

p̃(x) ≈ 40.9216 log10(p(x)) − 35.0834. (5.21)

The surrogate ‘real’ ultrasound images U1 and U2 were completed by applying reflections, attenu-

ations and log-compression to the respective outputs from Field II, in the same way as has been

described for the simulated images in Sec. ?? . This was done by substituting these outputs for p̃ in

Eq. 5.7. By visual inspection, the values: a = 5000, wr = 0.965 were found to produce surrogate

ultrasound images with a useful variety of features, shown in Figure 5.4.

5.2.2.3 3D ’anatomical’ data sets

The CT data for these experiments were obtained from the Harvard Abdominal CT Atlas, Fig. 5.5(a),

while the MR data comprised a T1-weighted abdominal volume image from one volunteer, Fig 5.6(a).

.

The space inside the body was segmented into bone, liver, blood, muscle, kidney and fat for both

the CT and MR images, where all other tissues were labelled as fat. The atlas data provided this

information for the CT image, whereas the MR segmentation was done using itk-SNAP. In the MR

image, the inferior vena cava (IVC) and hepatic vasculature were segmented using a Hessian filter

and surface renderings generated in Slicer (Fig. 5.6(a)). An affine pre-warping step was also applied

to the MR image prior to use in registration, as explained in Sec. ?? .
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Figure 5.4: Strongly and subtly artifactual U images. Circular ’calcifications’ in 5.2.2.2 show strong

surface reflection and shadowing; ’vessel’ inclusions in 5.2.2.2 show weaker backscatter than the

surrounding ’liver’ parenchyma, but less reflection and shadowing.

(a) atlas segmentation (b) intercostal landmarks

Figure 5.5: 3D Slicer 3.2: Harvard abdominal CT Atlas

5.2.2.4 Intercostal US surrogate image data

Six synthetic US sector images were generated for intercostal FOV’s within the Harvard CT Atlas

using the technique of Sections 5.2.2.2 and ?? and the acoustic parameters given in Tab. 5.2.2.4.

Each FOV was selected so as to include liver parenchyma and overlying tissues using a set of three

points picked on the atlas using Slicer (Fig. 5.5(b)). For each set of three points, two points lay inside

one of the intercostal spaces and one was located deeper within the liver. This third ’liver point’ was

the same for all sets. To obtain the ith FOV, the Reference sector coordinates (Fig. 5.3) were mapped

rigidly into the CT space with map Ti so that the two intercostal points of a set lay along the top edge

of Ti(R), and the ’liver’ point also lay in Ti(R). In this way, the whole collection of points defined a

fan of mapped planes, {Ti(R) : i = 1, 2, . . . , 6} radiating from the ’liver point’ through six intercostal

spaces. Within each plane, the white truncated sector region of Ti(R) defined the ith FOV. The FOV’s

through segmented regions of the atlas were warped into rectangles by linearly interpolating their

points’ polar co-ordinates, (θ, r) onto rectangular grids. In this format, the anatomical FOV’s were

111



(a) MR (b) US

Figure 5.6: Slicer screenshots: corresponding MR and US volunteer images, with liver vessel render-

ings. The vessel surface renderings were obtained using a Hessian filtering technique.

tissue Z/106kgs−1m−2 α/dBcm−1 echogenicity/arb units

bone 7.80 20 1000

liver 1.65 0.94 500

blood 1.61 0.18 10

muscle 1.70 3.3 35

kidney 1.62 1.0 26

fat 1.38 0.63 2

Table 5.3: Acoustic Parameters for 3D Numerical Phantom

processed as described in Sec. 5.2.2.2,5.2.1 to produce synthetic US images U1, ..., U6.

Figure 5.7 shows these slices in the rectangular geometry in which they were also used during regis-

tration.

5.2.2.5 Sub-costal US surrogate image data

Ultrasound liver examinations are commonly performed via an acoustic window underneath the rib-

cage, imaging in a superior-posterior direction. I produced a second set of nine surrogate US images

in this orientation — referred to here as “sub-costal” images. To avoid inverse crime as far as possible,

these were generated using characteristics of real images alone, bypassing any of the modelling used

for the simulated “S” images, as follows. The process is illustrated by Fig. 5.8(a) and one of the images

by Fig. 5.8(b).

i. warp a real B-mode US liver image sector to a rectangle

ii. segment the liver region

iii. fit a quartic polynomial surface to the points within the liver region

iv. normalise (divide) the liver region intensities by the fitted polynomial values
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Figure 5.7: U1, ..., U6, warped into rectangles. The images were generated from slices through the

Harvard CT Atlas segmentations with the geometry of Fig. 5.3, which were warped by interpolating

polar co-ordinates onto a cartesian grid using Eq. 5.18

v. choose a representative patch of normalised liver texture and use it to synthesize a larger texture

image

vi. repeat steps 2-5 for kidney

vii. sample a 1D vertical profile across the diaphragm in the warped US image

viii. sample FOV’s through the CT segmentation similarly to Sec. 5.2.2.4, using a reference sector,

r measured from a real US image (rather than Fig. 5.3)

ix. apply the texture images to the relevant parts of the FOV’s

x. convolve the diaphragm profile with a one-pixel-thick binary image of the liver/lung border in

each FOV

The fitting function was a fourth-degree polynomial in the lateral (angular) co-ordinate and an eighth-

degree polynomial in the axial (radial) co-ordinate. This was chosen as the lowest degree polynomial

that appeared to capture the large-scale intensity variation across the liver, and for its lateral symmetry

(even degree). Its coefficients were found by a linear least squares fit.

Most liver FOV’s looking under the ribcage intersected a loop of colon, since the atlas remained

undeformed when selecting FOV’s, whereas a patient’s abdominal skin, fat and muscle would have

deformed under probe pressure in a real examination. This would be problematic for any US simula-

tion, owing to the very low impedance of bowel gas, but since it usually does not happen in suitable
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acquisitions with live subjects, I gave the tissue parameters of fat to the colon, effectively ignoring it.

(a) process (b) representative slice

Figure 5.8: Surrogate generation through texture/intensity synthesis. A volunteer US liver image was

warped to a rectangle by linear interpolation (5.8(a) top left), a polynomial function of cartesian co-

ordinates was fitted to the segmented liver parenchyma (5.8(a) top right), and used to normalise the

image. A sample of liver parenchyma texture was taken from the normalised parenchyma (5.8(a)

bottom right), and used to synthesize a larger patch (5.8(a) bottom left). Completed synthetic sub-

costal image, 5.8(b).

5.2.2.6 Volunteer US image data

The abdomen of a volunteer was scanned beneath the right-hand ribcage using a Philips X3-1 2D

xMATRIX phased array probe. The liver and kidney were segmented in itk-SNAP and all major vas-

culature were segmented and surface-triangulated as for the MR, as shown in Fig. 5.6(b). No attempt

was made to synchronise the breathing phase between the MR and US acquisitions, which occurred

on different days. I extracted nine equally-spaced 2D sector images from the reconstructed volume

for use in registration.

I determined a ground-truth global affine transformation (12 degrees-of-freedom (dof)) between the

nine US slices and corresponding MR volume corresponding anatomical landmarks using the follow-

ing procedure.

i. Choose five corresponding vessel bifurcations from the two renderings (Fig. 5.9)

ii. Choose a larger set of points from corresponding lines in the vessel renderings (Fig. 5.10), and

add to the five landmark points

iii. Use the Procrustes algorithm ([149, 97])to estimate the best rigid-plus-scaling (7 dof) transfor-

mation between the US bifurcation points onto the MR bifurcation points

iv. Use the Iterative Closest Point algorithm (ICP) to estimate the best rigid plus 3 scalings plus 3

shears (12 dof) transformation from

• the US bifurcation and vessel line points, after applying the result of step 2
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• the MR bifurcation and vessel line points

(a) MR (b) US

Figure 5.9: Slicer screenshots: corresponding vessel bifurcation points

(a) MR (b) US

Figure 5.10: Slicer screenshots: points chosen on corresponding vessel lines

The transformation obtained was applied to the voxel co-ordinates of nine US slices, and the MR

volume was sampled at the transformed points, producing the alignment shown in Fig. 5.11

The misregistration of the diaphragm visible in Fig. 5.11 was corrected by incorporating the liver

surface into the alignment. A number of points were chosen over regions of liver surface beneath the

diaphragm that approximately corresponded after the images were aligned as above (Fig. 5.12). Fig.

5.13 shows the ground-truth alignment obtained when these diaphragm points are amalgamated with

the bifurcation and vessel line points for the ICP stage of the procedure.

To focus on comparing the behaviour of the different registration criteria, I artificially simplified the

registration task so as to seek a rigid transformation, by pre-deforming the MR volume. If steps 3 and

4 above yield transformation matrices Trig and Taff, we may indicate the anatomical correspondence

by writing, for any spatial location with co-ordinates x in the US image frame,

MR(TaffTrigx) ∼ US(x). (5.22)

Then the deformed image, defined by M̃R(y) ≡MR(Taffy), Fig. 5.14 registers rigidly to the US, since
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Figure 5.11: 12 degree-of-freedom affine alignment (ground-truth) based vessel points and lines

M̃R(Trigx) = MR(TaffTrigx)

∼ US(x).

5.2.2.7 Rigid transformation geometry

The spatial relationships, true and estimated, between the sets of US slices detailed above and the

relevant anatomical co-ordinate systems, are described as follows.

The coordinates of the ith FOV in the atlas space are found by applying transformation Ti to the

coordinates of R. In order to determine six rigid transformation parameters for a set of FOVs, the

matrix of one of the Ti (I used no. 4 for one set) is decomposed as

T4 ≡ T(ζGT) = RGT
z RGT

x RGT
y ∆GT, (5.23)

where

RGT
z =

(
cos(θGT

z ) − sin(θGT
z ) 0 0

sin(θGT
z ) cos(θGT

z ) 0 0
0 0 1 0
0 0 0 1

)
, RGT

x =

(
1 0 0 0
0 cos(θGT

x ) − sin(θGT
x ) 0

0 sin(θGT
x ) cos(θGT

x ) 0
0 0 0 1

)
, (5.24)

RGT
y =

(
cos(θGT

y ) 0 sin(θGT
y ) 0

0 1 0 0
− sin(θGT

y ) 0 cos(θGT
y ) 0

0 0 0 1

)
, ∆GT =

(
1 0 0 xGT

0 1 0 yGT

0 0 1 zGT

0 0 0 1

)
. (5.25)
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(a) MR (b) US

Figure 5.12: Slicer screenshots: points chosen over a corresponding liver surface region on surface

renderings derived from the MR image volume (5.12(a)) and the US image volume (5.12(b)).

Values for the parameters ζGT = {θGT
z , θGT

x , θGT
y , xGT, yGT, zGT} were then found. Since these are not

uniquely defined, they were given the values of smallest modulus from possible combinations found

by solving a system of simultaneous equations. The rigid relations between the different sectors

themselves were found by simply computing, for each, an additional 4 × 4 “tracking” matrix, denoted

TTC
i .

TTC
i = (T(ζGT))−1Ti,

so that the anatomical points corresponding to the pixels of all slices in an US set, considered as a

stack of sectors, may be given by the one-to-many mapping

T GT(ΩR),

where T GT has a matrix representation given by the following (for a six-sector stack),




TGT . . . . . . 0

... TGT . . .
...

...
...

. . .
...

0 . . . . . . TGT







TTC
1

TTC
2

...

TTC
6



, (5.26)

and acts on coordinate column vectors xi of the N points in ΩR. The aim of rigid registration is then

to automatically recover ζGT from some initial (different) set of values. Under the current set-up, TTC

is the 4×4 identity matrix.
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Figure 5.13: 12 degree-of-freedom affine alignment (ground-truth) based on vessel points/lines, and

diaphragm points

5.2.3 Features and similarity measures

5.2.3.1 For use with 2D numerical phantom images

In general, for any choice of ζ = {θ, x, y}, a matrix may be assembled represent a rigid transformation,

T ζ , analogously with Equation 5.20, mapping the pixel coordinates of the reference sector to those of

an anatomical sector. For each of the two experiments (‘strongly artefactual’ and ‘subtly artefactual’),

I sought to recover the transformation mapping U i into anatomical space automatically, by optimising

an initial choice, ζ0, towards ζGS. Two different registrations were performed for each experiment,

which may be called ‘simulation based’ and ‘direct’. In the simulation-based procedure, an artificial

ultrasound image, Sζ was simulated at each ζ as in 5.2.1, and a similarity measure computed between

Sζ and U . Registration of U into anatomical space was then achieved by finding

ζ̃ = argmax
ζ

sim(U, Sζ).

So as to represent a situation where the acoustic parameters of tissue are accurately known in the

model, the values of impedance and absorption were taken from the same maps, M i
Z and M i

α, i =

1, 2, as were used to generate U , and the scatter term of Eq. 5.7, p̃(x) is given by Eq. 5.21. Figure

5.15 shows the simulations, for each experiment, at ζ = ζGS.

Squared normalised cross-correlation (NCC2) was used as the similarity measure:

118



Figure 5.14: Coronal section through M̃R

NCC2
U,S(ζ) =

(
∑

x∈ΩR

(
U(x)− Ū

) (
Sζ(x)− S̄ζ)

)
)2

∑

x∈ΩR

(
U(x)− Ū

)2 ∑

x∈ΩR

(
Sζ(x)− S̄ζ

)2 . (5.27)

At each iteration of the ‘direct’ registration, a sector region was sampled from X itself, at locations

given, again, by T : ΩR → ΩX , and similarity computed between this sample and U . Normalised

mutual information (NMI) is a similarity measure well suited to registration of images with widely

different intensity characteristics ([100], [103]), and was used for this direct comparison (Equation

5.28), as well as normalised cross-correlation (Equation 5.29). Twenty-two bins were used for the

joint histograms, which was judged to be a sensible number in early tests. Figures 5.16 and 5.17

show plots of these measures as cost functions after blurring the two images, in each case, with a

Gaussian filter. Denoting X(T ζ(ΩR)) by Xζ,

NMIU,X(ζ) =
H(U) +H(Xζ)

H(U,Xζ)
(5.28)
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Figure 5.15: Strongly and subtly artifactual SζGS

. Simulated US images generated for the ground-truth

FOV’s corresponding to Fig. 5.4.

NCC2
U,X(ζ) =

(
∑

x∈ΩR

(
U(x)− Ū

) (
Xζ(x) − X̄ζ)

)
)2

∑

x∈ΩR

(
U(x)− Ū

)2 ∑

x∈ΩR

(
Xζ(x) − X̄ζ

)2 . (5.29)
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Figure 5.16: Cost function landscapes for strong-artefact data with σ = 3 blurring: −NCC2
U,X (left),

−NMIU,X (middle), −NCC2
U,S (right). The green spheres show GS alignment.

5.2.3.2 For use with 3-D images

Normalised Mutual Information

The Normalised Mutual Information (NMI) between images U and X , considered as random variables

is

NMI(U,X) =
H(U) +H(X)

H(U,X)
, (5.30)

where the entropies and joint entropy are
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Figure 5.17: Cost function landscapes for subtle-artefact data with σ = 3 blurring: −NCC2
U,X (left),

−NMIU,X (middle), −NCC2
U,S (right). The green spheres show GS alignment.

H(U) =
∑

k

p(U = k) log

(
1

p(U = k)

)
, H(X) =

∑

l

p(X = l) log

(
1

p(X = l)

)

H(U,X) =
∑

k,l

p(U = k,X = l) log

(
1

p(U = k ∧X = l)

)
.

In the current work, the name U X NMI denotes -NMI between an ultrasound and a CT or MR image.

Probabilities are estimated with 256-bin histograms.

Ultrasound Simulation Correlation

Criterion U S NCC2 has already been described. I use the abbreviation U S LC2 to denote the

similarity criterion published by Wein et al. [116], closely re-implemented here in MATLAB.

U S LC2(ζ) = 1−
∑

x∈Ω(U(x)− f(µ(T ζ(x)))2

|Ω|V ar(U)
. (5.31)

In Eq. 5.31, U denotes an ultrasound image, and f(T (µ)) an ultrasound image simulation generated

in real time from a particular FOV through a 3D map of CT Hounsfield number, µ. Simulation f is

a linear combination of reflection, r, echogenicity, p and constant components. The integral in Eq.

5.2 represents the cumulative reduction of reflected (I) vs. transmitted (I0) wave intensity from depth

x. The well-known formula for reflected wave intensity at an interface between regions of different

acoustic impedance has been used, with µ serving as a surrogate for impedance, and the CT volume

as a continuum of such interfaces. Eq. 5.1 models the logarithmic dynamic range compression

performed by B-mode ultrasound machines for some constant a.
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f(xi) = αpi + βri + γ, (5.32)

where r is as given by Eq. 5.1.

The echogenicity p-parameter was derived from CT intensity by the same mapping as in [116].The

abbreviation U S LC2twh denotes the tissue-wise homogeneous version, presented in Sec. 5.2.1.

This version used the tissue parameter values given in Tab. 5.2.2.4.

Vessel Probability

Pr Pr NCCsoft denotes a re-implementation of the vessel probability method of Penney et al. [114],

which I used with the MR data. A vessel probability look-up table was generated for the MR volume

according to

pMR(I) =
no.vesselvoxelswithintensityI

no.livervoxelswithintensityI
(5.33)

and a similar pUS table made for the US image after processing to a ‘dip image’ and a mask was

generated to confine computation of the measure to the region above the diaphragm and below the

top 3cm of the US sectors, as detailed in [114]. The criterion computes the NCC between vessel

probability maps, VMR, VUS made by applying the look-up tables back to the MR and US dip images.

Denoting VMR(T ζ(ΩR)) as V ζ
MR,

Pr Pr NCC(ζ) =

(
∑

x∈ΩR

(
VUS(x) − ¯VUS

) (
V ζ

MR((x)) − ¯
V ζ

MR

))2

∑

x∈ΩR

(
VUS(x)− ¯VUS

)2 ∑

x∈ΩR

(
V ζ

MR((x))) − ¯
V ζ

MR

)2 . (5.34)

In a ”‘hard”’ version for use with CT, Pr Pr NCChard, VMR is replaced with a binary vessel segmenta-

tion, since CT vessel contrast is too weak to give a useful VCT map.

Local Phase/Orientation Mutual Information

Since, to my knowledge, results for the local phase mutual information criterion of [109, 110] have not

been published for use with real ultrasound, I have included it in the comparison using volunteer US

and MR data. With φ(X) denoting the local phase of an MR or CT image X , and X(T ζ(ΩR)) denoted

Xζ,

Ph Ph MI(ζ) = −NMI
(
φ(U), φ(Xζ)

)
. (5.35)
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In early tests with these I found that Grau and Noble’s phase/orientation measure [113], given by Eq.

2.12 suffered from many local minima, so a modified version (Eq. 5.36), for static images, intended

to be less sensitive to inter-modal differences, is included instead, where o(X) the local orientation of

X ,

Phor Phor(ζ) = −µNMI
(
φ(U), φ(Xζ)

)
+
∑

r

W (r)
(
1−

(
o(U(r)).o(Xζ (r))

)2)

∑
r W (r)

. (5.36)

The NMI term allows images whose phases don’t correlate simply to be considered similar, while the

squared orientation dot product allows, crudely speaking, both “parallel” and “antiparallel” features to

be matched.

5.2.3.3 Non-overlap penalty

To help deter the optimisation procedure from rigid parameter vectors far from the solution, A non-

overlap penalty term |T ζ(ΩR)|
|ΩR| was added to the above cost functions for some of the experiments.

Figures 5.18 and 5.19 show its effect on the U S NCC2 criterion at the three different levels of the

filtering scheme used for registration.

5.2.4 Initialisation and recovery of alignment (3-D data)

For the intercostal surrogate images I performed fifty registration trials with rigid parameters initialised

(uniformly) randomly within ζGS ± (10mm, 10mm, 10mm, 10◦, 10◦, 10◦)T. The ribcage was “removed”

from the atlas during registration, in a similar manner to the colon for the subcostal image. The justifi-

cation for this step is given in Sec. 5.2 of [150]. Each cost function was minimised using the steepest

descent method, after addition of the non-overlap penalty term. At each similarity computation step,

the 2D sector images (reference and sampled template) are warped into rectangles. Since the warp-

ing was done by linear interpolation, no new voxel intensities were introduced. For the volunteer data

I performed 250 registration trials initialised using the same method.

5.3 Results

5.3.1 Intercostal US surrogates and CT

Registration results are given for the surrogates generated from Field II with additional attenuation

and reflection in Tab. 5.4 and Fig. 5.20. The column heading NMI(U ,X) denotes trials in which

the surrogates were registered to the original, 54-compartment Harvard CT segmentation. Target

registration errors (TRE’s) were all measured over a 30mm-radius spherical region-of-interest chosen

within the liver to represent a tumour.
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Figure 5.18: Landscape plots of -NCC2(U ,S): Gaussian blur with σ = 0, 3, 15 and no penalty term
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Figure 5.19: Landscape plots of -NCC2(U ,S): Gaussian blur with σ = 0, 3, 15, and penalty term

NMI NMI NCC2

Initial (U,X) (U, CT ) (U, S)

mean TRE/mm 10.1 14.8 57.5 7.2

5th pctile. TRE/mm 4.1 0.7 6.2 1.0

median TRE/mm 10.4 3.8 67.1 4.8

95th pctile. TRE/mm 17.6 68.9 96.0 18.7

% successful - 54 0 54

capture range/mm - 2.0 n/a 2.0

mean total time/sec - 44 34 87

Table 5.4: Intercostal surrogates: summary statistics
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Figure 5.20: final vs. initial TRE’s
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U X NMI U S LC2 Phor Phor Pr Pr NCChard

acc./mm 4.4 9.5 6.1 14.8

prec./mm 25.6 7.6 8.1 20.3

% successful 74 90 86 76

cap. radius/mm 25.5 26.6 20.6 32.4

mean total time/sec 432 1035 1415 329

Table 5.5: Subcostal surrogates: summary statistics
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Figure 5.21: U S LC2 plots at

coarse level

5.3.2 Subcostal US surrogates and CT

Registration results for the sub-costal images are shown in Tab. 5.5. TRE’s are computed over the

same ROI as for the intercostal slices.

5.3.3 Volunteer US and MR

For the volunteer data, I again chose an ROI within the liver. TRE’s in Tab. 5.3.3 are quoted over

ROI/whole liver.

Pr Pr NCCsoft U S LC2twh Ph Ph MI

acc./mm 2.2/1.5 3.9/7.4 16.2/42.6

prec./mm 1.0/1.4 3.1/4.9 50.7/82.8

% successful 99/99 48/44 46/65

capture radius/mm 8.3/10.0 7.4/13.3 12.5/13.4

Table 5.6: Summary Statistics: volunteer US-to-MR registration computed over ROI/liver

5.4 Discussion

5.4.1 Intercostal US surrogates and CT

The results show that the simulation-based method performs more consistently and accurately in-

the-average than the direct method. The fact that the direct method sometimes performs remarkably

well, when it does succeed, is of some interest, though its lack of consistency would certainly make

it unsuitable for clinical use. These successes occur in the U -to-X trials, and not the U -to-CT trials,

indicating that NMI is finding a weak minimum as GS alignment, when the anatomical image consists

of discrete tissue compartments, even though these are more finely partitioned than in the model

used to generate the surrogate ultrasound, U . The simulation provides some overall benefit, but this

is much less clear than in Section ?? .
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5.4.2 Subcostal US surrogates and CT

The most surprising result here is how well NMI performed, especially when compared with the

simulation-based method. Additional landscape plots for U S LC2 at the coarse and medium pyramid

levels show that global minima generally lie at or near the ground truth locations, however, there is a

strong drop-off with increasing θ and φ - see Fig. 5.21. The simulated images contain an increasing

proportion of highly echogenic muscle and fat toward this region, which probably leads to the poor

registration.

5.4.3 Volunteer US and MR

The vessel probability method has worked remarkably well despite the poor performance of the “hard”

version reported on in Sec. 5.3.2. That the ground-truth alignment has also been determined from

the vessels may well account for the very low accuracy and precision figures here, but the robustness

figures are also good. Perhaps this is due to the simple nature of this criterion - as much of the

“work” it does is done before registration commences, to generate two like feature representations,

pUS and pMR, the actual similarity measure can be one that makes few assumptions, NCC2, so that

local minima will only appear by “ coincidence” (assuming good pUS and pMR). This is in contrast to

U X NMI above: a sometimes-over-accommodating similarity measure acting on raw and complicated

feature representations. Precisions are less than accuracies for the two criteria which worked better

(much less for U S LC2) suggesting a possible local minimum or ground truth error. Local phase MI

has done badly, perhaps predictably, from the lack of applications of this criterion to US-MR in the

literature.

5.5 Conclusions

A framework has been put in place for evaluating different US-MR and US-CT registration criteria.

The tesults obtained indicate that vessel probability is the strongest method overall for US-CT, and

that simulation correlation or local phase/orientation is the strongest for US-MR. However it is not

clear that the vessel probability criterion wasn’t unfairly advantaged by the origin of the ground truth

alignment. Ideally, this alignment would be found by identifying anatomical landmarks independently

of the vasculature, but vessels-based landmarks are by far the easiest to identify. Perhaps a more

serious problem with my implementation of Pr Pr NCC2 is that pMR and pUS were derived from the

images for which they were then used. With further data sets this can be corrected with a leave-one-

out scheme. Similar though not so serious, concerns apply to the CT no. - echogenicity mapping for

U S LC2.
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Chapter 6

Conclusions

6.1 Summary of findings

Recovery of densities and bulk moduli from compartments of a piecewise homogeneous medium

is possible in principle with limited-angle reflected ultrasound, given knowledge of the compartment

locations up to at least a spatial translation. Vessel probability appears to be a feature with which

to register anatomical compartments robustly and accurately from an MR image into physical space

using B-mode ultrasound. The best image-based method to register them from a CT image appears

to be to one which “extracts” ultrasound-like features from the CT via a simulation.

6.2 Limitations and future work

The results relating to recovery of densities and bulk moduli are restricted to two-dimensional numer-

ical phantom media which are piecewise homogeneous and lossless. The acoustic excitation signals

used are synthetic and assumed to take a Gaussian-modulated sinusoidal form and to be noiseless.

With these signals, the pressure response on solving the wave equations using k-Wave is known,

and transduction between physical pressures and voltages does not play a role. The transceivers are

treated as points. Future work in this area, including development of the ENIM technique of Chapter

4 should relax these assumptions.

The ENIM technique itself relies on a pre-determined number of simple parametric models of pulse

traveltime based on source and receiver co-ordinates which may break down for some reflector

shapes, e.g. concave ones with sufficiently small radii of curvature, which in seismology are known to

cause confounding features known as “bow-tie” artifacts in arrival time patterns []. The form of these

models additionally relies on the assumption that the sound speed in the medium overlying a given

reflection event (averaged over the traveltime of a ray) is further assumed to be approximately the

same for all rays participating in the event. The description given in Chapter 4 of the misalignment

between modelled organ locations and their physical locations is extremely limited: further work in

this area should include all rigid degrees of freedom and allow for deformation by parametrizing the



compartment interfaces in a higher dimensional fashion, with level sets being one example. The num-

ber of (squared) traveltime models present is assumed to be determinable from visual inspection of

the observed signals, and not to change throughout the minimisation of EENIM. With the assumptions

above removed, an important part of any future work on ENIM must be to determine how good an

initial (image-based) registration of anatomical compartments into physical (ultrasound) space is re-

quired for this last condition to hold, so that ENIM can successfully “complete” the registration while

recovering the tissue properties. Future work should also aim to determine the circumstances under

which the gradient of EENIM can be computed using the adjoint field method. Minimisation of any sig-

nal dissimilarity criterion might also benefit from speed gains if a Newton-type method can be used

instead of conjugate gradients, as mentioned in Chapter 5.

Although determination of densities and bulk moduli does not require the interrogating waves to prop-

agate nonlinearly, ENIM relies to some extent on linear propagation, since echoes contained in sig-

nals are assumed to retain profiles that correlate meaningfully with a template pulse. It may then be

unsuited to attempts to estimate B/A using a non-linear wave equation.

The multimodal image registration problem in Chapter 5 while not the main focus of the work, is

limited mainly in the small number of datasets used and the relative inefficiency of the MATLAB

implementations. Further work here should start with an implementational framework more suited

to speed and throughput of data based on C++, such as ITK. A considerably greater number of

image datasets should be used for the experiments. Any training needed to determine operational

parameters should be done in a way that does more to avoid bias in results.
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Appendix A

Conservation equations for a fluid

A.1 mass conservation

Consider a region D with boundary ∂D through which a fluid is free to flow. The rate of change of

the fluid mass inside D is equal to the mass flux through ∂D into D, i.e. with normal surface vector n̂

directed outwards we have,

d

dt

y

D

ρ(x, t) d3x = −
{

∂D

ρU · n̂ dS. (A.1)

Using the Divergence Theorem to turn the surface integral into a volume integral,

d

dt

y

D

ρ(x, t) d3x = −
y

D

∇ · (ρU) d3x. (A.2)

Since this holds for any arbitrary region D, we must have

dρ

dt
+∇ · (ρU) = 0. (A.3)

A.2 momentum conservation

Consider a small fluid element of mass m, momentarily contained inside the cubical region of volume

δxδyδz shown in Fig. A.1 and not subject to any external forces. Writing down Newton’s Second Law

for this element and following it on its motion path, we have, in cartesian co-ordinates




d(mUx)/dt

d(mUy)/dt

d(mUz)/dt


 =




(P (x) − P (x+ δx)δyδz)

(P (y)− P (y + δy)δzδx)

(P (z)− P (z + δz)δxδy),


 , (A.4)

i.e.



Figure A.1: Fluid element




d(ρδxδyδzUx)/dt

d(ρδxδyδzUy)/dt

d(ρδxδyδzUz)/dt


 =




(−∂P/∂x)δxδyδz)
(−∂P/∂y)δxδyδz)
(−∂P/∂z)δxδyδz),


 . (A.5)

Since the dimensions of the element are arbitrary, we have

d(ρU)

dt
= −∇P (A.6)

or, in fluid dynamics language, to emphasize that the derivative on the left is taken following the fluid,

D(ρU)

Dt
= −∇P. (A.7)

If the element is sufficiently small, changes in density will be of a much smaller size than changes in

velocity, so that the following approximation becomes valid.

D(U)

Dt
= −∇P

ρ
. (A.8)

Eq. 3.2 is equivalent to Eq. A.8 with its left hand side Lagrangian derivative written out in full using

the chain rule.
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Appendix B

d’Alembert’s solution to the 1D scalar wave

equation

Consider the inhomogeneous initial value problem, and a particular point in 1D space, xi, with refer-

ence to Fig. B.1. Only sources within the region R can influence the field u at the point in 1D space,

xi when a wave of speed c propagates.

c2uxx(x, t) − utt(x, t) = s(x, t)

u(x, 0) = f(x)

ut(x, 0) = g(x). (B.1)

Figure B.1: Influence region

D’Alembert’s solution to problem B.1 begins [151] by integrating the wave equation over R

∫ ∫

R

(
c2uxx(x, t) − utt(x, t)

)
dxdt =

∫ ∫

R

s(x, t) dxdt

Green’s theorem turns this into a line integral anticlockwise around the boundary of R

∫

L0∪L1∪L2

(
−c2ux(x, t)dt− ut(x, t)dx

)
=

∫ ∫

R

s(x, t) dxdt.

The part along L0 simplifies to

∫ xi+cti

xi−cti

−ut(x, 0) dx = −
∫ xi+cti

xi−cti

g(x) dx. (B.2)

Along L1, we have that x + ct is constant, i.e. that dx − cdt = 0 and the contribution to the integral

becomes



∫

L1

(
c2uxx(x, t)− utt(x, t)

)
dxdt

=

∫

L1

(
−c2ux(x, t)dt − ut(x, t)dx

)

=

∫

L1

(cux(x, t)dx + cut(x, t)dt)

= c

∫

L1

du(x, t)

= cu(xi, ti)− cf(xi + cti), (B.3)

and along L2,

∫

L1

(
c2uxx(x, t)− utt(x, t)

)
dxdt

=

∫

L1

(
−c2ux(x, t)dt− ut(x, t)dx

)

= −
∫

L1

(cux(x, t)dx + cut(x, t)dt)

= −c
∫

L1

du(x, t)

= − (cf(xi + cti)− cu(xi, ti))

= cu(xi, ti)− cf(xi − cti). (B.4)

Combining B.2, B.3 and B.4 finally gives

u(x, t) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct

g(x′) dx′ +
1

2c

∫ t

0

∫ x+c(t−t′)

x−c(t−t′)

s(x′, t′) dx′ dt′. (B.5)
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Appendix C

The Hilbert Transform of a signal

Hilbert Transform of a time-varying function f(t) is defined as

H [f ](t) =
1

π

∫ ∞

−∞

f(τ)

τ − t dτ.

The analytic signal and envelope of f are given, respectively, by

fa(t) = f(t) + iH [f ](t), E[f ](t) =
∥∥∥fa(t)

∥∥∥
2
. (C.1)

The derivative of E[f ] with respect to the value of f at any time is given by

∂E[f ](τ)

∂f(t)
=





f(t)
E[f ](t) for τ = t

H[f ](τ)
π(τ−t)E[f ](τ) for τ 6= t.

(C.2)



Appendix D

Time integral of a Gaussian-modulated pulse

The integral of a complex-valued Gaussian pulse with centre frequency ω and unit standard deviation

may be expressed as a series expansion for large ω [152]

∫
e−t2eiωt dt = eiωt

(
− ie

−t2

ω
− 2(e−t2t)

ω2
+

2ie−t2(2t2 − 1)

ω3
+O

((
1

ω

)4
))
− 1

2

√
πe−

ω2

4 i2⌊
arg(t(t−iω))

2π ⌋

(D.1)

Retaining only the first term of the right-hand side, gives an approximate result in the taking the form

of another Gaussian pulse, scaled down and phase-shifted,

∫
e−t2eiωt dt ≈ eitω

(
− ie

−t2

ω

)
. (D.2)

If the original pulse envelope has a width specified by σ, this result becomes

∫
e

−t2

2σ2 eiωt dt ≈ 1

2
eitω

(
−2i

ω
e

−t2

2σ2

)
. (D.3)



Appendix E

Seismic diffraction hyperbolae

Following [142], for a point scatterer at depth h and horizontal distance x from a collocated source

and receiver (xs = xr) with medium velocity V , the two-way travel time t is given by

V 2t2

4h2
− x2

h2
= 1.

Following [141], for a horizontal plane reflector at depth h, medium velocity V and horizontal “offset”

x = |xr − xs|,

V 2t2

4h2
− x2

4h2
= 1.

Further, for a plane reflector “dipped” at an angle ξ to the horizontal, at a normal distance h from the

source and with horizontal “offset” x = |xr − xs|,

V 2t2

(2h cos ξ)2
− (x+ 2h sin ξ)2

(2h cos ξ)2
= 1.

The first two of these are hyperbolae in x− t with the symmetry axis x = 0. The third is an hyperbola

with symmetry axis x = −2h sin ξ.



Appendix F

Local phase and orientation

The local phase, φ and local orientation o in an image, I, are calculated, for a 3D image, from the

outputs of filters

H1(u, v, w) =
u√

u2 + v2 + w2

H2(u, v, w) =
v√

u2 + v2 + w2

H3(u, v, w) =
w√

u2 + v2 + w2
,

where u, v, w are spatial frequency co-ordinates in Fourier space. By additionally applying a bandpass

filter, gs, such as a log-Gabor filter, φ and o can be found at multiple scales, labelled by s, as

o(I(r), s) =
((gs ⋆ h1 ⋆ I)(r), (gs ⋆ h2 ⋆ I)(r), (gs ⋆ h3 ⋆ I)(r), )∑3

i=1((gs ⋆ hi ⋆ I)(r))2
(F.1)

φ(I(r), s) = tan−1




√√√√
3∑

i=1

(gs ⋆ h1 ⋆ I)(r))2, (gs ⋆ I)(r)


 , (F.2)

where h1, h2, h3 are the spatial domain versions of H1, H2, H3.




