2,241 research outputs found

    Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics

    Full text link
    Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties of the liquid/solid interface. Here we consider, using Molecular Dynamics simulations, the electric contribution to friction for charged surfaces, and the induced modification of the hydrodynamic boundary condition at the confining boundary. The consequences of liquid slippage for electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within the electric double layer, are explored. Strong amplification of electro-osmotic effects is revealed, and the non-trivial effect of surface charge is discussed. This work allows to reconsider existing experimental data, concerning Zeta potentials of hydrophobic surfaces and suggest the possibility to generate ``giant'' electro-osmotic and electrophoretic effects, with direct applications in microfluidics

    Substellar fragmentation in self-gravitating fluids with a major phase transition

    Full text link
    The existence of substellar cold H2 globules in planetary nebulae and the mere existence of comets suggest that the physics of cold interstellar gas might be much richer than usually envisioned. We study the case of a cold gaseous medium in ISM conditions which is subject to a gas-liquid/solid phase transition. First the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. Then the non-linear dynamics is studied by using simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state of the art molecular dynamics code (LAMMPS). The long-range gravitational forces can be taken into account with short-range molecular forces with finite limited computational resources by using super-molecules, provided the right scaling is followed. The concept of super-molecule is tested with simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of sub-stellar bodies, those dominated by gravity ("planetoids") and those dominated by molecular attractive force ("comets"). Observations, formal analysis and computer simulations suggest the possibility of the formation of substellar H2 clumps in cold molecular clouds due to the combination of phase transition and gravity. Fluids presenting a phase transition are gravitationally unstable, independent of the strength of the gravitational potential. Arbitrarily small H2 clumps may form even at relatively high temperatures up to 400 - 600K, according to virial analysis. The combination of phase transition and gravity may be relevant for a wider range of astrophysical situations, such as proto-planetary disks.Comment: 24 pages, 44 figures. accepted for publication in A&

    Free Energy Evaluation in Polymer Translocation via Jarzynski Equality

    Get PDF
    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide free energy estimates for unbiased three dimensional polymer translocation. We employ the Jarzynski equality in its rigorous setting, to compute the variation of the free energy in single monomer translocation events. In our three-dimensional Langevin simulations, the excluded-volume and van der Waals interactions between beads (monomers and membrane atoms) are modeled through a repulsive Lennard-Jones (LJ) potential and consecutive monomers are subject to the Finite-Extension Nonlinear Elastic (FENE) potential. Analysing data for polymers with different lengths, the free energy profile is noted to have interesting finite size scaling properties.Comment: 14 pages, 5 figures, Accepted for publication in Physics Letters

    Monte Carlo cluster algorithm for fluid phase transitions in highly size-asymmetrical binary mixtures

    Get PDF
    Highly size-asymmetrical fluid mixtures arise in a variety of physical contexts, notably in suspensions of colloidal particles to which much smaller particles have been added in the form of polymers or nanoparticles. Conventional schemes for simulating models of such systems are hamstrung by the difficulty of relaxing the large species in the presence of the small one. Here we describe how the rejection-free geometrical cluster algorithm (GCA) of Liu and Luijten [Phys. Rev. Lett 92, 035504 (2004)] can be embedded within a restricted Gibbs ensemble to facilitate efficient and accurate studies of fluid phase behavior of highly size-asymmetrical mixtures. After providing a detailed description of the algorithm, we summarize the bespoke analysis techniques of Ashton et al. [J. Chem. Phys. 132, 074111 (2010)] that permit accurate estimates of coexisting densities and critical-point parameters. We apply our methods to study the liquid--vapor phase diagram of a particular mixture of Lennard-Jones particles having a 10:1 size ratio. As the reservoir volume fraction of small particles is increased in the range 0--5%, the critical temperature decreases by approximately 50%, while the critical density drops by some 30%. These trends imply that in our system, adding small particles decreases the net attraction between large particles, a situation that contrasts with hard-sphere mixtures where an attractive depletion force occurs.Comment: 11 pages, 10 figure

    Neutron scattering and molecular correlations in a supercooled liquid

    Full text link
    We show that the intermediate scattering function Sn(q,t)S_n(q,t) for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the qq-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor Sn(q)S_n(q) is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic molecules. The comparison between the exact result for Sn(q)S_n(q) and different approximations that result from a truncation of the series representation demonstrates its good convergence for the given model system. On the other hand it shows explicitly that the coupling between translational (TDOF) and orientational degrees of freedom (ODOF) of each molecule and rotational motion of different molecules can not be neglected in the supercooled regime.Further we report the existence of a prepeak in the ns-static structure factor of the examined fragile glassformer, demonstrating that prepeaks can occur even in the most simple molecular liquids. Besides examining the dependence of the prepeak on the scattering length and the temperature we use the expansion of Sn(q)S_n(q) into molecular correlation functions to point out intermediate range orientational order as its principle origin.Comment: 13 pages, 7 figure

    Systematic Coarse-Graining in Nucleation Theory

    Full text link
    In this work we show that the standard method to obtain nucleation rate-predictions with the aid of atomistic Monte-Carlo simulations leads to nucleation rate predictions that deviate 353-5 orders of magnitude from the recent brute-force molecular dynamics simulations [J. Diemand, R. Ang\'{e}lil, K. K. Tanaka, and H. Tanaka, J. Chem. Phys. \textbf{139}, 074309 (2013)] conducted in the experimental accessible supersaturation regime for Lennard-Jones argon. We argue that this is due to the truncated state space literature mostly relies on, where the number of atoms in a nucleus is considered the only relevant order parameter. We here formulate the nonequilibrium statistical mechanics of nucleation in an extended state space, where the internal energy and momentum of the nuclei is additionally incorporated. We show that the extended model explains the lack in agreement between the molecular dynamics simulations by Diemand et al.\ and the truncated state space. We demonstrate additional benefits of using the extended state space; in particular, the definition of a nucleus temperature arrises very naturally and can be shown without further approximation to obey the fluctuation law of McGraw and Laviolette. In addition, we illustrate that our theory conveniently allows to extend existing theories to richer sets of order parameters

    Range separation: The divide between local structures and field theories

    Get PDF
    This work presents parallel histories of the development of two modern theories of condensed matter: the theory of electron structure in quantum mechanics, and the theory of liquid structure in statistical mechanics. Comparison shows that key revelations in both are not only remarkably similar, but even follow along a common thread of controversy that marks progress from antiquity through to the present. This theme appears as a creative tension between two competing philosophies, that of short range structure (atomistic models) on the one hand, and long range structure (continuum or density functional models) on the other. The timeline and technical content are designed to build up a set of key relations as guideposts for using density functional theories together with atomistic simulation.Comment: Expanded version of a 30 minute talk delivered at the 2018 TSRC workshop on Ions in Solution, to appear in the March, 2019 issue of Substantia (https://riviste.fupress.net/index.php/subs/index

    Polyelectrolytes in Solution - Recent Computer Simulations

    Full text link
    We present a short overview over recent MD simulations of systems of fully flexible polyelectrolyte chains with explicitly treated counter ions using the full Coulomb potential. The main emphasis is given on the conformational properties of the polymers, with a short discussion on counter ion condensation.Comment: 10 pages, including 5 figures, to appear in the proceedings of the 50th Yamada Conference on Polyelectrolytes, Inuyama, Japan (1998
    corecore