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Abstract. This work presents parallel histories of the development of two modern 
theories of condensed matter: the theory of electron structure in quantum mechanics, 
and the theory of liquid structure in statistical mechanics. Comparison shows that key 
revelations in both are not only remarkably similar, but even follow along a common 
thread of controversy that marks progress from antiquity through to the present. This 
theme appears as a creative tension between two competing philosophies, that of short 
range structure (atomistic models) on the one hand, and long range structure (contin-
uum or density functional models) on the other. The timeline and technical content are 
designed to build up a set of key relations as guideposts for using density functional 
theories together with atomistic simulation.

Keywords. Electronic structure, liquid state structure, density functional theory, 
Bayes’ theorem, vapor interface, molecular dynamics.

Many of the most important scientific theories were forged out of con-
troversy – like particles vs. waves, for which Democritus claimed (with his 
teacher, Leucippus of 5th century BC) that all things, including the soul, 
were made of particles, while Aristotle held to the Greek notion that there 
were continuous distributions of four or five elements.1 It is telling to note 
that Aristotle’s objection was strongly biased by his notion that the con-
tinuum theory was elegant and beautiful, and does not require any regions 
of vacuum. In addition, his conception of kinetic equations were first order 
– like Brownian motion, Navier-Stokes, or the Dirac equation, but not sec-
ond order like Newton’s or Schrödinger’s. Newton sided with Democritus. 
In 1738, Daniel Bernoulli first explained thermodynamic pressure using a 
model of independent atomic collisions. That theory was not scheduled to 
be widely adopted until the caloric theory (which postulated conservation 
of heat) was overthrown by James Joule in the 1850s. Wilhelm Ostwald was 
famously stubborn for refusing to accept the atomic nature of matter until 
the early 1900s, after Einstein’s theory of Brownian motion was confirmed by 
Jean Perrin’s experiment.

The working out of gas dynamics by Maxwell and Boltzmann in the 
1860s depended critically on switching between a physical picture of a 
2-atom collision and a continuum picture of a probability distribution over 
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particle velocities and locations (Fig. 4a). Collision 
events drawn at random from a Boltzmann distribution 
were useful for predicting pressures and reaction rates. 
Whether that distribution represented a probability or 
an actual average over a well-enough defined physical 
system was left open to interpretation. Five decades later, 
Gibbs would argue with Ehrenfest2 over this issue. Gibbs 
seemed to understand the continuous phase space den-
sity as any probability distribution that met the require-
ments of stationarity under time evolution. An observer 
with no means of gathering further information would 
have to accept it as representing reality. Ehrenfest argued 
that a well-defined physical system is exact, mechanical, 
and objective. The controversy was only resolved by the 
advent of the age of computation,3 since we forgot about 
it. Three decades on, the physicist Jaynes championed 
the (subjective) maximum entropy viewpoint,4 while 
mathematicians like Sinai and Ruelle5-8 moved to do 
away with the whole subjectivity business by using only 
exact dynamical systems as starting assumptions.

Maxwell described light propagation by filling the 
continuum with ‘idler wheels,’ and the resulting partial 
differential equations inspired much of 20th century 
mathematics. Planck saw his own condition on quan-
tized transfer of light energy as a regrettable, but neces-
sary refinement of Maxwell’s theory. Planck believed so 
strongly in that theory that he at first rejected Einstein’s 
1905 concept of the photon.9 It was also five decades 
later, around 1955, when a field theory of the electron 
(quantum electrodynamics) was gaining acceptance 

from precise calculations of experimental details like 
the gyromagnetic ratio, radiation-field drag (spontane-
ous emission) and the Lamb shift. This quantum field 
theory is not a completely smooth continuum, since it 
incorporates particles using ‘second quantization.’ It 
understands particles as wavelike disturbances that pop 
in and out of existence in an otherwise continuous field. 
The technical foundations of that theory are derived by 
‘path-integrals’ over all possible motions of Maxwell’s 
idler wheels. As a consequence, infinities characterize 
the theory,10 so that the mathematical status of many 
path integrals is still not settled11 except in the Gaussian 
case,12,13 and where time-sliced limits are well-behaved.14

This article discusses some well-known histori-
cal developments in the theory of electronic and liquid 
structure. As its topic is physical chemistry, this history 
vacillates without warning between experimental facts 
and technical details of the mathematical models con-
jured to describe them. The topics, outlined in Table 1, 
have been chosen specifically to highlight the debate 
between local structural and field theoretical models. 
Note that we have also presented the two topics in an 
idiosyncratic way to highlight their similarities. Differ-
ences between electronic and liquid structure theories 
are easy to find. By the nature of this type of article, we 
could not hope to be comprehensive. There has not been 
space to include many significant historical works, while 
it is likely several offshoots and recent developments 
have been unknowingly overlooked. Both histories trace 
their roots to the Herapath/Maxwell/Boltzmann concep-

Table 1. Contrasting long-range (LR) and short-range (SR) ideas showing stages of debate over atoms and electrons (top sections), along 
with concepts from hybrid theories (lower section).

SR/Discrete LR/Continuous

(Democritus) atoms elements (Aristotle)
(Ehrenfest) microstate ensemble (Gibbs)
(Einstein) particle wave (Ostwald) 
(Boltzmann) distribution function 1-body probability density (Jaynes)

(Wein) n(ν) ν2dν (Rayleigh-Jeans)
n̂(r, p) n(r), V ext(r)

Jellium (Sommerfeld)
(Mott) insulator conductor (Pauli) 
(Hartree-Fock) Slater determinant Electron density (Hohenberg-Kohn-Sham)

(Born- Oppenheimer) nucleii electrons
correlation hole polarization response

(Bohm-Pines) ←−−−−Quasiparticle
Phonon−−−−→
←−−−−Cooper Pair

Hybrid DFT−−−−→
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tion of a continuous density (or probability distribution) 
of discrete molecules, and both remain active research 
areas that are even in communication on several points. 
We will find that, like Democritus and Aristotle, not 
only are there are strong opinions on both sides, but 
progress continues to be made by researchers regard-
less of whether they adopt discrete or continuum world-
views.

ELECTRONIC STRUCTURE THEORIES

Between the lines of the history above, we find 
Bose’s famous 1924 Z. Physik paper describing the sta-
tistics of bosons, which Einstein noted ‘also yields the 
quantum theory of the ideal gas,’ and the Thomas-Fer-
mi theory of 1927-28 for a gas of electrons under a fixed 
applied voltage. Their basic conception was to model the 
6-dimensional space of particle locations, r and momen-
ta, p with the volume element,

g(p')dp' = dp' ∫ δ(|p| − p')h−3 dr3 dp3 = 4πV h−3p'2dp' (1)

Using p' = hν/c for photons of frequency ν provides 
g(ν), the number of available states for photons near fre-
quency ν. Applying Bose counting statistics to n(ν) pho-
tons occupying 2g(ν) possible states for each frequency 
gives Bose’s derivation of Planck’s law. In the Thomas-
Fermi (TF) model, p' is electron momentum. Applying 
Fermi statistics to the occupancy number N = 2∫0

h- kFg(kh- )
d(kh- ) now gives a Fermi distribution for an ideal gas 
of electrons under a constant external potential (elec-
trostatic voltage). In both cases the number of states is 
doubled – counting 2 polarizations for photons or 2 spin 
states for electrons. The result of the first procedure is a 
free energy expression for the vacuum. The result of the 
second is a free energy for electrons under a constant 
voltage.

This idea of a gas with uniform properties uses a 
long-range field to guess at local structure. Quantitative-
ly, if the voltage at point r is ϕ(r), then the theory pre-
dicts electrons will fill states up to maximum momen-
tum of kF = √(2mee0ϕ(r))/h- , (where the kinetic energy is 
EF = h- 2k2

F/2me and e0 is the electron charge) so the local 
density is,

n(r) = k3
F/3π2. (2)

The resulting model is then usually found to predict 
long-range properties of metals relatively well. Fig. 1a 
and b show plots of free energy vs number of electrons 
in an independent electron solution of the Schrödinger 

equation for a well of positive potential.15 Panel b shows 
a simple adaptation of that model where electrons bind 
in pairs. The states of the electrons in these exact solu-
tions still represent momentum levels, and are thus 
qualitatively very close to those of the Thomas-Fermi 
theory.

The free electron gas evolved into the famous ‘jel-
lium’ model of electron motion rather quickly, as can 
be seen by the earliest references in a discussion of that 
model from the late 20th Century.20 The term jellium 
was coined by Conyers Herring in 1952 to describe the 
model of a metal used by Ewald21 and others consist-
ing of a uniform background density of positive charge. 
The electrons are therefore free to move about in gas-
like motion. At high density, the electrons actually do 
act like a free gas, so it was possible to use the Thom-
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Reprinted figures with permission from Ref. [19]
Copyright 1994 by American Physical Society. 

Reprinted figures with permission from [16]
Copyright 1930 by American Physical
Society. 

Reprinted figures with permission from [18]
Copyright 2014 by American Physical
Society. 

Reprinted by permission from Springer: "Fundamentals of DFT" by H. Eschrig, Copyright 1996.

Figure 1. Long-range (left) and short-range (right) theories of elec-
tronic structure. (a) and (b) show free energy vs. electron num-
ber for a potential well.15 (c) shows ‘Epstein’ profile of dielectric 
response16,17 at a metal/vacuum interface. Numbers for each curve 
give the surface/bulk conductivity ratio. (d) shows surfaces of con-
stant voltage at a water/vacuum interface, (e) and (f) show the cor-
relation function of jellium from accurate calculations.19



46 David M. Rogers

as-Fermi theory to qualitatively describe the electronic 
contribution to specific heat, Cv = π2k2

BT/2EF, as well as 
the spin susceptibility and width of the conduction band 
(after re-scaling the electron mass).22

These are long-range properties from the collec-
tive motion of many electrons. The predictions become 
poor for semi-metals and transition metals. It also rather 
poorly described the cohesive energy of the metal itself. 
Those cases fail because of the importance of short-
range interactions that a free electron theory just doesn’t 
have.23

The contrast becomes important at interfaces, as is 
visible when comparing Fig. 1c,d. On the left is an early 
model of local charge density response due to placing an 
external voltage at a point near a metal surface. On the 
right is a map of the local voltage for one surface con-
figuration of an electrolyte solution computed using an 
accurate quantum density functional theory. Chloride 
ions are green, and sodium ions are blue. Treating one of 
the sodium ions as a test charge, the material response 
comes from rearrangement of waters (red and white 
spheres) and Cl− ions within a nuanced voltage field 
(colored surfaces).

It turns out that the electron gas in ‘real’ jellium 
behaves rather differently at low and high density. At low 
density, the electron positions are dominated by pairwise 
repulsion, and organize themselves into a lattice (of plane 
waves) with low conductivity.24 This low-density state is 
named the ‘Wigner lattice’ after E. P. Wigner, who com-
puted energetics of an electron distribution based on 
the lattice symmetry of its host metal.25 At higher densi-
ties, collective motions of electrons screen out the pair-
wise repulsion at long range. This gives rise to a nearly 
‘free,’ continuous distribution of electrons with higher 
conductivity more like we would picture for a metal. Fig. 
2a, from a well-known particle-based simulation of Cep-
erly and Alder,26 shows the Wigner lattice as well as both 
spin-polarized and unpolarized high-density states.

Taking the opposing side, early applications of self-
consistent field (Hartree-Fock or HF) theory to mol-
ecules and oxides noticed that the long-range, collective 
‘correlated’ behavior of the electrons was usually irrel-
evant to the short-range structure of electronic orbitals. 
Getting the short-range orbital structures right allowed 
HF theory to do well describing the shapes of mole-
cules and the cohesive energy of metal oxides,27 as well 
as magnetic properties.28 More recent work has shown 
explicitly that a model that altogether omits the long-
range tail of the 1/r potential still allows accurate calcu-
lations of the lattice energy of salt crystals.29

Although both theories worked well for their respec-
tive problems, the transition from insulating to conduct-

ing metals (as electron density increases) also proved 
to be difficult because it involved a cross-over between 
both short- and long-range effects. Because of this mix-
ture of size scales required, relying exclusively on a 
theory appropriate for either short- or long-range pro-
duces results that increasingly depend on cancellation of 
errors. This sort of error cancellation is illustrated by the 
phenomenology of ‘overdelocalization’.

Well known to density functional theorists, ‘over-
delocalization’ is the tendency of continuum models 
for electron densities (having their roots in the long-
range TF theory) to spread electrons out too far away 
from the nucleus of atoms. The result is that electron 
clouds appear ‘softer’ in these theories, and polarization 
of the charge cloud by the charge density of a far mol-
ecules contributes too much energy. On the other hand, 
induced-dipole induced-dipole dispersion forces are not 
modeled by simple density functionals, and so their sta-
bilizing effect is not present. It has been found that the 
over-delocalization can be fixed by making a physical 
distinction between short and long-range forces. Howev-
er, the resulting binding energies are not strong enough. 
After the correction, they need a separate addition of a 
dispersion energy to bring them back into agreement 
with more accurate calculations.30 Thus, a bit of sloppi-
ness on modeling short-range structure can compensate 
for the missing, collective long-range effects.

HYBRID THEORIES IN ELECTRONIC STRUCTURE

When looking at properties like the cross-over 
between conducting and insulating behavior of elec-
trons, it’s not surprising that successful theories strike 
a balance between short-range, discrete structure 
and long-range continuum effects. Even in the vener-
able Born-Oppenheimer approximation from 1927, we 
see that atomic nucleii are treated as atoms (immov-
able point charges), while electrons are described using 
the wave theory. The separation in time-scales of their 
motion makes this work. By the time the atoms in a 
molecule have even slightly moved, the electrons have 
zipped back and forth between them many times over.

Correlation functions are a central physical con-
cept in the debate between long and short range ideas. 
The distance-dependent correlation function, g(r), meas-
ures the relative likelihood of finding an electron at the 
point, r, given that one sits at the origin. One of the 
first attempts at accounting for electron-electron inter-
action was to use perturbation theory to add electron 
interactions back into the uniform gas model (g(r) = 1). 
The first order perturbation modifies this by looking at 
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interactions between electrons of the same spin. This 
interaction is termed the exchange energy, since it comes 
from pairs of electrons with the same spin exchanging 
momentum.22 After the correction, electrons with paral-
lel spin now have smaller density at contact, g(r) = 1 − 
⁹/₂(sin(kFr) − kFr cos(kFr))2/(kFr).6

The correlation function between infinite periodic 
structures is S(k), the long-range analogue of g(r) (in 
fact its Fourier transform). The function S(k) is called 
the structure factor by crystallographers. If the system 
consisted only of electrons, the structure factor could be 
measured directly by light or electron scattering experi-
ments. There, S(k) is the intensity scattered out at angle 
θ = 2 arcsin(λk/4π) when the material is placed into 
a weak beam of photons or electrons of wavelength λ 
pointed in the θ = 0 direction. This function has been 
computed using an accurate particle simulation tech-
nique and shown in Fig. 1e,f.19 The curves are labeled by 
rs = (3/4πn)1/3, measured in units of Bohr radii.

There is a duality between short and long range 
perspectives inherent in g(r) and S(k) as well. Long-
range behavior appears at large r when g(r) approaches 
1. At small r, the geometry of inter-particle interactions 
determines the shape of g(r). Because particle dynamics 
is carried out in real-space, g(r) tends to be used by its 
practitioners to characterize short and long-range struc-
ture. Analytical solutions of many models, and espe-
cially those aiding experimental measurements, are sim-

pler in Fourier space. There, S(0) is the integral of g(r). 
It provides information on the total fluctuations in the 
number of particles, and is a long-range quantity from 
which the compressibility, partial molar volumes, and 
other properties can be computed.31 Short-range struc-
tures that repeat with length d show up as peaks in S(k) 
at correspondingly large k = 2π/d.

Back to the metallic/insulator problem, between 
1950 and 1953 Bohm and Pines pioneered the idea of 
explicitly splitting the energy function (Hamiltonian) 
governing electron motion into local and long-range 
degrees of freedom.32-34 Using the intuition that long-
range collective motions of electrons should look like the 
continuous plane-wave solutions to Maxwell’s theory, 
they added and subtracted those terms and called them 
‘plasmons’ (Fig. 4d). Just like photons, the plasmons are 
continuous waves when treated classically, but are quan-
tized particles when understood quantum mechanically.

What remained after the subtraction was a Ham-
iltonian whose interactions were only short-ranged, 
but could not be treated with a continuum description. 
Instead, the short-range part describes interactions be- 
tween effective discrete particles which Bohm and Pines 
dubbed ‘quasiparticles’. The quasiparticles were like 
packs of electrons surrounded by empty space, ‘holes.’ 
The quasiparticles thus have larger mass and softer, 
screened, pair interactions (explaining why the mass 
has to be fixed when applying the free electron theory 

Figure 2. Comparing phase diagrams of the electron gas dissolved ions. Both show an insulating phase at low density (labeled Wigner crys-
tal in (a)) and a conducting phase at high density separated by a minimum. The corresponding transition in an electron gas has not been 
well studied, but critical temperatures feature in the phase diagram of superconducting cuprates (where n is percent of solid impurities).36

(b) Phase diagram of a z:z electrolyte like NaCl where n is the 
cation concentration. Lines show the position of the spinodal 
using methods appropriate for each theory, and the minimum 
indicates a critical point for fluctuation in ionic concentration. 
Note the temperature axis is reversed by β = z2/dkBT and η = 
πnd3/6, d is the ion diameter. Reprinted from Ref. 35, with the 
permission of AIP publishing.

(a) Ground state energy vs. density for the uniform electron gas.26 
Four separate phases were observed (at zero temperature). Note 
that the density axis is reversed by the transformation 1/n = 4πrs

3/3. 
Reprinted figure with permission from Ref. 26. Copyright 1980 by the 
American Physical Society.
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to metals). These new ‘renormalized’ electron quasipar-
ticles could even have effective pairwise attraction. This 
latter effect was a central component to the BCS model 
of superconductivity, where the quasiparticles are known 
as ‘Cooper pairs.’ Because of its dual representation, the 
Bohm-Pines model gave good answers for both cohesive 
energies and conductivities – and described the cross-
over between insulating and metallic regimes as electron 
density is increased.24

For all its descriptive power, the Bohm-Pines 
approach was often lamented for its requirement for 
a specific set of approximations. Most damningly, it 
required inventing a continuum of plasmons to describe 
the long-range interactions of a finite set of electrons. 
This adds infinite degrees of freedom to a system with 
an initially finite number. It also required the plasmons 
to stop and the particles to commence at some cut-
off wavelength. These troubles lead us into the problem 
of renormalization group theory, which is beyond the 
scope of the present article.

In fact, in 1954, just after the publication of the last 
article in the Bohm and Pines series above, Lindhard 
provided a model for collective electronic response of a 
metal that involved only the metal’s correlation func-
tion (by means of its dielectric coefficient, ε).34 Follow-
ing a decade later in 1964-65 was Hohenberg, Kohn and 
Sham’s density functional theory.37-39 Both developments 
rephrased the description of electronic structure in terms 
of a continuous field of electron density. Linear response 
(perturbation) theory says that an initially homogeneous 
density n0 responds to an applied field, ϕ as,

∆n(r) = n0 ∫ χ(r, r')ϕ(r'), (3)

where χ(r, r') is the Fourier transform of the structure 
factor above. Their defining characteristic is the focus 
on continuous response of that density to a continuous 
external field, ρ(r) = ρ[ϕ(r')](r).

The theory may be understood as a fully long-
ranged point of view that includes short-range effects 
indirectly through S(k). It shows how to use integration 
to calculate all thermodynamic quantities from structure 
factor. The only problem is that it does not broach the 
issue of how to predict the structure factor. One well-
known method is to assume the probability of n(r) is a 
Gaussian on function space (so the exponent depends 
on ∫n(k)2/χ(k)dk3, and χ(k) is just slightly different from 
S(k)). In that case, the inverse of the correlation func-
tion (1/χ(k)) is a self-energy term plus the inter-particle 
energy function. This assumption is known as the ran-
dom phase approximation (RPA), named because of its 
historical discovery by Bohm and Pines following from 

neglecting couplings between a set of linearly independ-
ent (Fourier) modes, n(k). This ends up excluding all 
non-Gaussian fluctuations.

The ‘dielectric’ ideas encapsulated in the linear 
response theory of Eq. 3 can be combined with the free 
electron model of Eq. 2 (T [n] proportional to n5/3), or a 
wavefunction calculation of the kinetic energy, T[n], to 
synthesize modern density functional theory (DFT).20;40 
It writes the electron configuration energy as,

.

 (4)

Now the (long-range) correlation function of the 
electron, χ, is obtained from the curvature of A[ϕ]. 
Mathematically, the unknown structure factor has been 
migrated into an unknown functional, EXC[n]. The ini-
tials stand for exchange and correlation, its two major 
components. The principle advantage gained by this 
rephrasing is that new, accurately known (usually short-
range) terms like T[n] can be added to A[ϕ] in order to 
decrease the burden on EXC to model ‘everything else.’ 
The disconnect between short and long-range energies 
can be shoveled into some fitting parameters.

Again moving forward 40 years, the relative unim-
portance of long-range Coulomb interactions for local 
structuring noticed by Lang and Perdew29,41 lead to the 
suggestion that the density functional method itself 
should also distinguish between short and long range 
structural effects. Implementation of this idea was per-
haps first carried out by Toulouse, Colonna and Savin in 
2004.42 There, the local density approximation deriving 
its roots in the TF theory is applied to describe short-
range interactions, while the HF theory is used to ensure 
proper electron-pair repulsion (exchange) energies at 
long-range. The association of HF with long-range and 
density functional (DF) with short-range apparently 
runs counter to our association between continuum, 
density-based, models for long-range interactions vs. 
discrete, particle-based models for short-range interac-
tions. A major complication with our association is that 
it is known that the HF method describes the long-range 
(asymptotic) electronic interactions well, whereas the DF 
method does not. DF methods were historically used 
to describe the ‘entire’ energy function, and have thus 
been tailored to describe quasi-particles (the so-called 
exchange hole), rather than asymptotics. This associa-
tion was put to the test shortly after by Vydrov and co. 
43 using an earlier DF called LSDA that is not strongly 
tailored in this way. They separately averaged the short- 
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Reprinted from [49], with the
permission of AIP Publishing.
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Reprinted from [48], with the
permission of AIP Publishing.

Ref. [47], Fig 2, Copyright (1998)
National Academy of Sciences.

Ref. [47], Fig. 1, Copyright (1998)
National Academy of Sciences.

Reprinted from [50], with the
permission of AIP Publishing.

Reprinted from [50], with the
permission of AIP Publishing.

Figure 3. Short- and long-range theories of solvent dipole and electrolyte structure. (a) and (b) show free energies and number occupancy 
distribution for spherical cavities in water.47 (c) shows the dielectric response in a spherical geometry48 and (d) shows the dielectric permit-
tivity computed in a slab geometry.49 (e) and (f) show the correlation function of a supercritical Lennard-Jones fluid near n = 0.52/σ3, T = 
1.34ε/kB.50
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and long-range components of HF and DF and checked 
their ability to predict the cohesive, formation ener-
gies of small molecules. Doing so, they discovered that 
models with no HF at long range had similar descrip-
tive power to those that used only DF at short range and 
only HF at long range. Split-range functionals are still 
an evolving research topic.

LIQUID-STATE THEORIES

The divide between short and long-range, discrete, 
and continuous distributions also plays a key role in the 
development of thermodynamic theories for gasses and 
liquids. In the 1860s, Boltzmann proposed his transport 
equation for the motion of gas density over space and 
time. The model employed the famous stoßzahlansatz, 
which states that the initial positions of molecules before 
each collision is chosen ‘at random.’ (Fig. 4a) In the orig-
inal theory, the probability distribution over such ran-
dom positions was often confused with their statistical 
averages44 – a point which lead to enormous confusion 
and controversy persisting even until 1960.45

This history very nearly parallels the development 
of electronic density theories. After electromagnetism 
and gas dynamics had been worked out at the end of the 
19th century, Gibbs’ treatise on statistical mechanics laid 
out the classical foundations of the relationship between 
statistics and dynamics of molecular systems. Neverthe-
less, there were contemporary arguments with Ehren-
fest and others about the need for introducing statistical 
hypotheses into an exact dynamical theory.2 Early on, it 
had been hoped that an exact study of the motion of the 
molecules themselves could predict the appropriate ‘sta-
tistical ensemble’ by finding long-time limiting distribu-
tions. However, that hope was spoiled by the notice that 
initial conditions must be described statistically. The idea 
persists even at present, though it has been tempered by 
the recognition that sustaining nonequilibrium situations 
requires an infinitely extended environment, which has 
to be represented in an essentially statistical way.46

The resolution, according to Jaynes,4 is to under-
stand the Boltzmann transport equation as governing 
the 1-particle probability distribution, NP(r|C), rath-
er than the average amount of mass, n(r), at point r. It 
turns out that this switch in perspective from exact 
knowledge of all particle positions to probability distri-
butions is one of the key ways of separating short and 
long-range effects. Two of the oldest and most widely 
known uses of this method are in the dielectric contin-
uum theory dating from before Maxwell’s 1870 treatise, 
even to Sommerfeld (Fig. 4c), and the Debye model of 

ionic screening from 1923. For both, a spatial field E(r − 
r0), emanating from a discrete molecule at r0, is put to 
a bulk thermodynamic system whose average properties 
are well-defined using, for example, P(r|E) for the dipole 
density μ(r) at point r, due to a field, E or n(r; ϕ) for the 
ion density at point r due to a voltage, ϕ. Treating ϕ and 
E as weak perturbations and looping µ(r) (or n(r)) back 
in as additional sources gives a self-consistent equation 
for the response of a continuum.

As was the case for electronic structure theory, the 
most concise description of this type of self-consistent 
loop is provided by a density functional equation for the 
Helmholtz free energy (with β = 1/kBT),

.

 (5)

The curvature of A with changing applied field, E, 
gives the response function which is related to the con-
ventional dielectric. Consider first a case where µ con-
tains enough information to exactly assign a dipole to 
every one of N molecules. An example would be a sin-
gle molecule with twice as many ways to create a small 
dipole as a large one, g(4 D) = 2 and g(2 D) = 4 (1D = 1 
Debye). Then g(µ) is a product over counting factors. The 
free energy, A, will have jump discontinuities in its slope 
as the field, E is varied because the solution jumps from 
one assignment (µ = 2 D) to another (µ = 4 D at βE ≥ 
(ln 2)/(2 D)). Its graph is very much like Fig. 1a. In a dis-
crete function space, density functional theory equations 
yield solutions exhibiting a discrete nature.

On the other hand, if g(µ) varies continuously with 
µ in some range of allowed average densities, then the 
solution will describe a smooth field free energy. Inter-
estingly, starting from the first situation and computing

 (6)

leads to such a continuous version of log g(µ) ≈ S(µ) (in 
fact its concave hull). This concave function allows den-
sities that are intermediate between discrete possibilities 
for the system’s state. Such intermediate densities could 
only be reached physically by averaging, so that µ̄ is an 
average polarization over possible absolute assignments 
of dipoles to molecules, µ.

After the theory of self-consistent response to a 
long-range field had been worked out, further devel-
opment of liquid-state theory had to wait 40 years for 
developments in quantum-mechanical interpretation of 
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light absorption and scattering experiments. Some early 
history is given in Ref. 51 and Debye’s 1936 lecture52 in 
which he explains how electronic and dipole orienta-
tional polarization could be clearly distinguished from 
measurements of the dielectric capacitance of gasses 
along with the great advancements made in the 1920s 
(which Debye credits to von Lau in 1912) of using x-ray 
and electron scattering to confirm molecular structures 
already adduced by chemists from symmetry and chemi-
cal formulas alone. Thus, the long-range theory gave a 
comprehensive enough description of macroscopic elec-
trical and density response that it could be used as a 
basis to experimentally determine local structure.

With statistical mechanics, quantum mechanics, and 
molecular structure in hand, liquid-state theories devel-
oped in the 1930s-50s through testing hypotheses about 
the partition function against experimental results for 
heat capacities. One of the earliest models was the ‘free 
volume’ (also known as cell model) theory, developed by 
Eyring and colleagues and independently by Lennard-
Jones and Devonshire in 1937. The theory was put on a 
statistical mechanical basis by Kirkwood in 1950,53 as 
essentially expressing the free energy of a fluid in terms 
of the free energy of a solid composed of freely moving 
molecules trapped, one each, in cages exactly the size of 
the molecular volume, plus the free energy cost for trap-
ping all the molecules in those cages in the first place. It 
competed54 with the ‘significant structure’ theory of liq-
uids (also proffered by Eyring and colleagues55,56). In the 
significant structure theory (Fig. 4f), the partition func-
tion for the fluid is described as an average of gas-like 
and solid-like partition functions to account for the dif-
ference in properties between highly ordered and more 
disordered regions (which contain vacancies).

Scaled Particle vs Integral Equations

Also around that time, a competition emerged 
between the scaled particle theory57 and the ‘integral 
equation’ approach based on (and now lumped together 
with) Percus and Yevick’s58,59 closure of a theory created 
by Ornstein and Zernike in 1914 to calculate the effect 
of correlated density fluctuations on the intensity of light 
scattered by critically opalescent fluids.60 This connection 
was significant, since theories of the correlation function 
prior to 1958 applied the superposition approximation 
due to Kirkwood, Yvon, Born, and Green (ca. 1935).61,62

The scaled particle theory (SPT) approach takes the 
viewpoint that the number, sizes and shapes of mol-
ecules in a fluid are determined by integrating the work 
of ‘growing’ a new solute particle in the middle of a flu-
id. Its organizing idea is that the chemical potential of 

a hydrophobic solute is equal to the work of forming a 
nanobubble in solvent. For simple hard spheres, the 
work is PdV , where P = kBTn0G(d), n0 is the bulk solvent 
density, and G(d) (Fig. 4b), the density of solvent mole-
cules on the surface of the solute of diameter d. Hence, 
knowing the contact density for any shape of solute mol-
ecule provides complete information on the chemical 
potentials of those molecules. This very local idea can be 
related to counting principles at very small sizes,63 and 
continued through to macroscopic ideas about surface 
tension at very large sizes – creating a way to interpolate 
between the two scales.

On the other hand, the integral equation approach 
expresses the idea that long-range fluctuations in density 
are well described by a multivariate Gaussian distribu-
tion. If the probability distribution of the density, n(r), 
was actually Gaussian, its probability would be,64

P [n(r)] = P [n0] exp (−β/2∫∫drdr'(n(r)−n0)G(r,r')(n(r')−n0))/
Z[βG], (7)

where G(r, r') ≡ const · δ(r−r')−c(r−r')/β. In the RPA, 
−c(r)/β is energy for placing a pair of molecules at posi-
tions r and r'. 65

When they are not Gaussian distributed, the correla-
tions in instantaneous densities, n(r), provide a means of 
estimating c, the direct correlation function.66 This long-
range idea has been used to show that G degenerates to 
the pairwise energy for very large separations (G(r) → 
U (r) as r → ∞). For simple hard spheres, it can also be 
related to counting principles at short separations, since 
there the correlations must drop to -1, expressing per-
fect exclusion. Assuming both limits hold right up to the 
discrete boundary of a solute yields the mean spherical 
approximation (MSA, Fig. 4b).

These two theories thus express, in pure form, the 
divide between short-range and long-range viewpoints 
on molecular structure. Integral equation theories are 
most correct for describing continuum densities and 
smooth interactions. Theories that, like SPT, are based 
on occupancy probabilities of particles in well-defined 
local structures and geometries are most correct for 
describing short-range interactions that can contain 
large energies and discontinuous jumps.

Fig. 3b shows P (n|d), the probability that a random-
ly chosen sphere of radius d contains exactly n discrete 
water molecules. Each curve is marked by its value of d 
in nanometers. The free energy for creating an empty 
nanobubble of size d in water is shown in its counter-
part, Fig. 3a. Both computations are very closely related, 
and easiest to do from the local picture of scaled particle 
theory. The cavity formation free energy (Fig. 3a) is, in 
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principle, also able to be computed from a density func-
tional based on relating the logarithm of Eq. 7 with the 
entropy.64 However, when the calculation is done in the 
usual density functional way the cavity formation free 
energy is surprisingly difficult to reproduce.67,68 This dif-
ficulty is related to the abrupt decrease in solvent density 
to zero at the cavity surface. In addition to mathemati-
cal difficulties,69 this complicates creating a physically 
consistent functional from bulk properties alone. From 
scaled particle theory, we know the free energy should 
scale with the logarithm of the volume for small cavities, 
but later switch over to scale with the surface area. The 
transition distance is determined by the size of discrete 
solvent molecules.

Perturbation Theories

Slowly but surely during the same time period as 
integral equation theories were being developed the 
method of molecular dynamics emerged.70 Its primary 
limitations of small, fixed, particle numbers, large num-
bers of parameters, finite sizes and short timescale simu-
lations weigh heavy on the minds of its practitioners.71 
Early models of water needed several iterations before 
reproducing densities, vaporization enthalpies and radial 
distribution functions from experiment. Initial radial 
distributions from experiment were wrong, and the 
models had to be corrected and then un-corrected to 
chase after them.72 Surprisingly, early calculations took 
the time and effort to calculate scattering functions and 
frequency-dependent dielectrics to compare to experi-
ment.73-75 By contrast, the bulk of ‘modern’ simulations 
report only the data that can be readily calculated with-
out building new software.

By checking data from integral equations against 
molecular dynamics (MD) and scattering experiments 
it was clear by 1976 that many powerful and predictive 
methods had been created to describe the theory of liq-
uids.76,77 Nevertheless, there remained even then linger-
ing questions about the applicability of integral methods 
to fluids where molecules contained dipole moments, 
and the treatment of long-range electrostatics in MD. 
Some difficulties in modeling phase transitions and 
interfaces were anticipated, but it was hardly expect-
ed that bulk molecular dynamics methods themselves 
would stall and eventually break down when simulating 
liquid/vapor and liquid/solid surfaces.

This trouble is illustrated by the simulation com- 
munity’s reception of the work leading to Fig. 3b,c. Both 
show the dielectric response function for water dipoles 
at the interface with a large spherical particle (left) or 
vacuum (right). The latter shows a correlation function 

computed from all-atom molecular dynamics by Balle-
negger.49 This full computation was preceded two years 
earlier by less well-cited theoretical work from the same 
author.78 As of writing, the citations counts are 140 and 
19, respectively. Even after its publication, the technical 
difficulties caused by simulating collective dipole cor-
relations inside a finite size box cast a cloud over the 
interpretation that drove Ballenegger back into those 
fine details for the following nine years.79,80 On the left 
(Fig. 3c) is a simulation of water’s dipolar response next 
to a large sphere.48 The finite-size effects are less severe, 
and a comparison (not common in contemporary litera-
ture) is made to analytical theories that apply to infinite 
systems. However, those analytical theories work best at 
long-range, and disagree on the short-range order. The 
disagreement is jarring because energetic contributions 
of long and short-range order are on the same order of 
magnitude.

Figure 4. Hybrid discrete/continuum theories. (a) Boltzmann pic-
ture of scattering by one particle chosen ‘at random’ from the con-
tinuum. (b) Mean spherical approximation for the hard sphere fluid 
of diameter σ. g(r) and c(r) are known at r << σ and r >> σ, but 
the central region is a guess. (c) Sommerfield conception of a dipole 
above a continuous polarizable medium. (d) Bohm-Pines concep-
tion of a quasiparticle (purple, central peak) and two long-range 
plasmons (blue). (e) Dressed ion, quasichemical, or Lorenz- Lor-
entz-Mossotti-Clausius51 cavity models of a discrete molecule in a 
continuum solvent, (f) significant / inherent structure theory of a 
coexisting mixture of ordered and disordered regions making up an 
overall homogeneous phase.
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It was also beginning to be recognized that there 
were two complementary approaches to the theory of 
fluid structure. The short-range viewpoint stated that the 
radial distribution function should be reproduced well at 
small intermolecular separations (small distance in real-
space as in Fig. 3f). This leads to good agreement with 
interaction energies and pressures so that the virial and 
energy routes to the equation of state work well.50 The 
long-range viewpoint instead emphasizes reproducing 
the structure factor at small wavevectors (as in Fig. 3e). 
Because of this, it favors using the compressibility route 
to the equation of state and leads to good agreement 
with fluctuation quantities.81

Inherent structures

Water proved to be a major challenge to molecular 
models because of its mixture of short-range hydrogen 
bonding and long-range dipole order.82 One successful 
physical picture of water was provided by the Stillinger-
Weber ‘inherent structure’ model introduced in the early 
1980s.83 It represented a cross between the ‘significant 
structure’ theory and the free volume theory. In it, mol-
ecules are fixed to volumes defined by their energetic 
basins, rather than by a rigid crystal lattice. Where the 
free volume theory had only one reference structure, the 
inherent structure (like the significant structure theo-
ry) had many. One for each basin. Each energetic basin 
looks, on an intermediate scale, like a distortion of one 
of the crystalline phases of ice. Thermodynamic quan-
tities can be predicted using the energies and entropies 
associated to each basin – by virtue of the minimum 
energy structure and the number of thermal configura-
tions mapping to that minimum.

HYBRID THEORIES IN LIQUID-STATE STRUCTURE

The Lennard-Jones fluid presented a challenge to 
the integral equation and scaled particle theories above 
because it contains both short-range repulsion and long-
range attraction. At high densities, however, it was found 
that the radial distribution function was almost identi-
cal to the radial distribution for hard spheres (compare 
Fig. 3e and Fig. 4b). The transition from liquid to solid 
was also described fairly well using the hard-sphere 
model. On the other hand, at low densities the distribu-
tion function could be described by perturbation from 
the ideal gas. These two discoveries justify the use of a 
perturbation theory to calculate the effect of long-range 
interactions at very low and very high densities.84 A 
comparison of molecular dynamics with integral equa-

tion plus correction theories is shown in Figs. 3e,f.50

At intermediate densities, however, a liquid-to-gas 
phase transition occurs that can be qualitatively under-
stood, but not explained well as a perturbation from 
either limit. Instead, the integral equation method turns 
out to hold the best answer in the supercritical region.85 
It is often encountered in the form of a perturbation 
theory from the critical point.86 It is no accident that the 
integral equation method works well here. Supercritical 
fluids are characterized by long-range correlations that 
can take maximum advantage of that theory. For the 
same reason, integral equations describe the compress-
ibility well, but do poorly on the intermolecular energy.

Comparing to developments in electronic structure 
raises the question of whether perturbation theory could 
fix the short-range correlations in high and low den-
sity fluids. This approach was popularized by Widom’s 
potential distribution theory.87 Its central idea is to drop 
a spherical void into a continuum of solvent, and then to 
drop a solute into its center. This divides the new mol-
ecule’s chemical potential into a structural part (due to 
cavity formation) and a long-range part (due to response 
of solvent to the molecule). Originally, the former were 
based on a local density approximation from the hard 
sphere fluid and the latter from a pairwise term that 
amounted to a van der Waals theory.

Around 1999, this basic idea had been combined 
with older notions about working with clusters of mole-
cules to create a new ‘quasi-chemical’ theory.88 It refined 
the simple process of creating an empty sphere devoid of 
solvent into that of creating a locally well-defined cluster 
of solvent molecules. The free energy required for this 
process is still local and structural, but now the entire 
cluster of solute plus solvent can be regarded as one, 
local, chemical entity. In order to work with molecules 
that have ‘loose’ solvent clusters, a third step was also 
added. After pulling solvent molecules into a local struc-
ture and adding the long-range interactions between sol-
ute and solvent, the third step releases the solvent clus-
ter, liberating any energy that might have been trapped 
by freezing them.89

The opposite of this short-range-first approach could 
be an inverse perturbation theory – first deciding on the 
long-range shape of correlation functions and second 
correcting them for packing interactions at short-range. 
This kind of correction would look like an adjustment 
to the solution of the Poisson-Boltzmann equation. Such 
an approach may first have been presented in Refs. 90;91, 
and followed with interesting modifications of the Debye 
theory.92-94 Even more recently, the basic idea was rigor-
ously applied to molecular simulation models by Rem-
sing and Weeks. Their scheme eliminates a hard discon-
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tinuity between short and long-range in the first step by 
splitting the Coulomb pair potential into smooth, long-
range and sharp, short-range parts. The long-range forc-
es (from the smooth part of the potential) are used to 
compute a ‘starting’ density using RPA-like perturbation 
from a uniform fluid. Although it seems a lot like the 
molecular density functional method,62,95,96 the density 
after the first step remains smooth at the origin, lacking 
any hard edges. It has previously been considered under 
the title ‘ultrasoft restricted primitive model’.97 Remsing 
and Weeks added a final step to this model to create a 
cavity at the origin and compared the results to MD 
simulations.

Detailed molecular simulations have been used to 
compare the two approaches with exact simulations 
by brute force calculation of all the energetic contribu-
tions. Focusing on the short-range structure leads to 
a model whose first step is to form an empty cavity in 
solution (blue curve in Fig. 5a, labeled ‘Packing’). Fig. 
5a shows the free energies of the next step (Na+ and Cl− 
ions) divided into ‘long-range’ and ‘inner-shell’ parts 
of the re-structuring.99 All points come from MD. If, 
instead, the long-range interaction between an ion and 
solvent occurs first, we are lead to couple the solvent to 
the smooth electric field of a Gaussian charge distribu-
tion. Fig. 5b shows the free energy of that first step as a 
function of charge for a variety of Gaussian (smoothing) 
widths. The lines show continuum predictions, and the 
points show MD.

Integral equation approaches to the dipolar solva-
tion process have also continued independently. Maty-
ushov developed a model for predicting the barrier to 
charge transfer reactions.100 In that work, the dipole den-
sity response to the electric field of a dipole is worked 
out in linear approximation. A sharp cutoff is used 
to set the field to zero inside the solute, resulting in a 
hybrid short/long range theory. The approach succeeds 
because the linear response approximation (stating den-
sity changes are proportional to applied field) is correct 
at long range, where the largest contributions to the sol-
vation energy of a dipole originate. Other authors have 
expanded on numerical and practical aspects of correla-
tion functions.101-103

The theme of separating long-range, continuous 
vs. short-range, discrete interactions runs throughout 
numerous other molecular-scale models. Models in this 
category include the ‘dressed’ ion theory, which pos-
its that ions in solution always go in clad with strongly 
bound, first shell, water molecules so that their radius 
is larger than would be suggested from a perfect crys-
tal (Fig. 4e). These enlarged radii appear in the Stokes-
Einstein equation to describe the effect of molecular 
shape on continuous water velocity fields when com-
puting the diffusion coefficients for ions.104 They should 
also appear to describe how excluded volume of ions 
will affect the continuous charge distribution predicted 
by the primitive model of electrolytes. This modification 
is not common, and so would yield some nonstandard 
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Figure 5. Comparing components of the SR-first (left) and LR-first (right) calculations of the free energy gained on dissolving a charged 
ionic species in water.

(a) Ion solvation free energy components for the short-range (empty cav-
ity first) model computed from an MD model of NaCl in SPC/E water. R is 
the cavity radius, ‘HS’ denotes the cavity formation cost, ‘LR’ is the full ion-
SPC/E water interaction after a cavity is present, and ‘IS’ is the free energy 
of removing the cavity constraint.

(b) Interaction free energy of SPC/E water with a Gaussian 
charge distribution, Q exp(−r2/l2)/(l√π)3. Points correspond 
to simulation data, while lines assume a constant dielectric 
model. Adapted with permission from Ref. 98, Copyright 
2016 American Chemical Society.
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plots of hydration free energy as a function of ion con-
centration.105 Solvent orientational order changes form 
again beyond about 1.5 micrometers due to the finite 
speed of light.106 The Marcus theory of electron trans-
port describes two separate, localized structural states 
of a charged molecule that interact with a continuously 
movable, long-range, Gaussian, field. Larger magnitude 
f luctuations in the solvent structure lead to broader 
Gaussians, which in turn are the cause of more frequent 
arrival at favorable conditions for the electron to jump. 
It is common practice in quantum calculations to explic-
itly model all atoms and electrons of a central molecule 
quantum-mechanically while representing the entirety 
of the solvent with a continuous dielectric field.107-109

The theories above are not perfect. They show issues 
precisely at the point where short- and long-range forc-
es are crossing over. At high ionic concentrations, the 
dressed ion theory breaks down due to competition 
between ion-water and ion-ion pairing. When solvent 
molecules are strongly bound, the use of a continu-
ous density field cannot fully capture their influence 
on thermodynamic properties. Even without strongly 
bound solvent, dielectric solvation models leave open the 
important question of whether electrons from the fully 
modeled molecule are more or less likely to ‘spill out’ 
into the surrounding solvent. Returning back to Aristot-
le’s objection to discrete objects, it is known that density 
based models don’t accurately capture the free energy of 
forming a empty cavity.67,68 Thousands of years on, we 
are still vexed by the question of how to understand the 
interface between material objects and vacuums.

THE FUTURE: A MIDDLE WAY

Early Eastern thought tends to place opposing ideas 
next to one another in an attempt to understand them 
as parts of a whole picture. Written around the begin-
ning of the Middle ages, in 400 AD, the Lankavatara 
Sutra relates Buddha’s view that this unity applies to 
atoms and ‘the elements’ (which refer to something like 
the classical Greek elements). Taking liberties, we can 
say he is discussing a process like instantaneous disap-
pearance (annihilation) of a quantum particle in saying, 
“even when closely examined until atoms are reached, it 
is [only the destruction of] external forms whereby the 
elements assume different appearances as short or long; 
but, in fact, nothing is destroyed in the elemental atoms. 
What is seen as ceased to exist is the external forma-
tion of the elements.” Bohr was well-known for his view 
on the ‘complementarity’ principle, stating in this con-
text that the act of removing a particle makes its num-

ber more definite, while making the amount of energy 
it exchanged with an external observer undefined.110 
Perhaps inspiring to Bohr sixteen centuries later,111 the 
quote concludes, “I am neither for permanency nor for 
impermanency … there is no rising of the elements, nor 
their disappearance, nor their continuation, nor their 
differentiation; there are no such things as the elements 
primary and secondary; because of discrimination there 
evolve the dualistic indications of perceived and per-
ceiving; when it is recognised that because of discrimi-
nation there is a duality, the discussion concerning the 
existence and non-existence of the external world ceases 
because Mind-only is understood.” Bohr’s complemen-
tarity could be contrasted with physicist John Wheeler. 
He advocated, as a working hypothesis, that participants 
elicit yes/no answers from the universe. Replies come as 
discrete ‘bits,’ and are ultimately the reason that discrete 
structures emerge whenever continuum models try to 
become precise.112 Wheeler, in turn, could be contrasted 
with Hugh Everett, whose working hypothesis was that 
the universe operates by pure wave mechanics.113,114 A 
modern resolution of those debates invokes small ran-
dom, gravitational forces to explain how quantum par-
ticles could become tied to definite locations.115 It is does 
not appear that there will be a resolution allowing us to 
do away with either continuum or discrete notions.

Of course, it is impossible to deduce scientific prin-
ciples if we include any elements of mysticism in a the-
ory. Nevertheless, the debate on the separation between 
short and long-range seems to permeate history. This 
idea that a meaningful understanding of collective phe-
nomena should be sought by combining physical models 
appropriate to atomic and macroscopic length scales was 
taken up even recently by Laughlin, Pines, and co-work-
ers.36 They state, “The search for the existence and uni-
versality of such rules, the proof or disproof of organiz-
ing principles appropriate to the mesoscopic domain, is 
called the middle way.”

On one account it is clearly possible to set the record 
straight. There are well-known ways of converting local 
structural theories into macroscopic predictions and as 
vice-versa. Bayes’ theorem states that, for three pieces of 
information, A, B, and C,

                  P (B|AC)P (A|C)P (A|BC) =
         P (B|C)       

. (8)

If ‘C’ represents a set of fixed conditions for an 
experiment, ‘B’ represents the outcome of a measure-
ment, and ‘A’ represents a detailed description of the 
underlying physical mechanism (for example complete 
atomic coordinates), then Bayes’ theorem explains how 
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to assign a probability to atomic coordinates for any 
given measurement, ‘B’. Of course, in a reproducible 
experiment, C will completely determine B, so B = B(C). 
Thus, the probability distribution over the coordinates is 
a function only of the experimental conditions, P (A|BC) 
= P (A|C). This summarizes the process of assigning a 
local structural theory from exactly reproducible experi-
ments.

On the other hand, a local structural theory pro-
vides an obvious method for macroscopic prediction. 
Given a complete description, ‘A,’ simply follow the laws 
of motion when interacting with a macroscopic measur-
ing device, ‘B.’ This would properly be expressed in the 
language above as P (B|AC) = P (B|A), since the experi-
mental conditions are irrelevant. Bayes’ theorem then 
gives us a conundrum, P (B|C) = P (B|A), stating that 
every microscopic realization of an experiment must 
yield an identical macroscopic outcome.

The solution to the puzzle is to realize that unless an 
experiment is exactly reproducible, BC is always more 
informative than the conditions, C, alone and P (A|BC) 
≠ P (A|C). This explains why studying exactly integrable 
dynamical systems is such a thorny issue, and is the cen-
tral conceptual hurdle passed when transitioning from 
classical to quantum mechanics. Now identifying ‘B’ 
with a partial measurement that provides a coarse scale 
observation of some long-range properties, P (A|BC) 
describes a distribution over the short-range, atomistic, 
and discrete degrees of freedom. Because of experimen-
tal uncertainty, the exact location of those atoms is evi-
dently subjective and unknowable (since it is based on 
measurement of B). Nevertheless, it can in many cases 
be known to a high degree of accuracy.

Density functional theory traditionally focuses on 
P (B|C), where ‘B’ is the average density of particles in 
a fluid and ‘C’ is the experiment where a bulk material 
is perturbed by placing an atom at the origin. However, 
with a minor shift in focus, P (B A'C) can also be found, 
representing the average density under conditions where 
a particle is placed at the origin and some atomic infor-
mation, A' is also known. The objective of such a density 
functional theory would be to more accurately know the 
long-range structure by including some explicit infor-
mation on the short-range structure. The dual problem 
is to predict P (A|B'C), the distribution over coordinates 
when we are provided with some known information on 
the long-range structure. In a complete generalization, 
we might focus instead on P (AB|A'B'C), representing 
the average density and particle distribution under con-
ditions where density and particle positions are known 
only in part. Bayes’ theorem shows us that such a gener-
alization would just be the result of weaving the primal 

and dual problems together, since (given the redundan-
cies, B' = B'(B) and A' = A'(A)), P (A|A'B'C) = P (A|B'C)/P 
(A'|B'C), and P (B|A'B'C) = P (B|A'C)/P (B'|A'C).

The arguments above can be repeated for each of 
the elements in Table 1 – replacing SR with A and LR 
with B. What emerges is a persistent pattern of logical 
controversy, where a problem can be apparently solved 
entirely from either perspective. In some areas, one or 
the other approach is more expedient. In every case, 
however, recognizing and using both sides has proved to 
be profitable. Comparing these two perspectives, we find 
that the discussion concerning the existence of long and 
short-range theories ceases, leaving only different ways 
to phrase probability distributions.

We have now arrived at a point in the history of 
molecular science where these two great foundations, 
short-range, discrete structures and long-range, con-
tinuum fields are at odds with one another. Molecu-
lar dynamical models are fundamentally limited by the 
world view that all forces must be computed from dis-
crete particle locations. Computational methods treat-
ing continuum situations focus their attention on solv-
ing partial differential equations for situation-specific 
boundary conditions. Connecting the two, or even refer-
ring back to simple analytical models, requires time and 
effort that is seen as scientifically unproductive. What’s 
worse, it reminds us that many, lucidly detailed, broad-
ranging, and general answers were already presented 
in the lengthy manuscripts which set forth those older, 
unfashionable models.

Indeed, local and continuum theories are hardly 
on speaking terms. In molecular dynamics, the math- 
ematics of the Ewald method for using a Fourier-space 
sum to compute long-range interactions are widely con-
sidered esoteric numerical details. Much effort has been 
wasted debating different schemes for avoiding it by 
truncating and neglecting the long-range terms.116-118 
On the positive side, the central issue of simulating 
charged particles in an infinite hall of mirrors has been 
addressed by a few works.119-121 Much greater effort has 
been devoted to adding increasingly detailed param-
eters, such as polarizability and advanced functional 
forms for conformation and dispersion energies, to those 
atomic models. Apparently, automating the parameteri-
zation process 122 is unfundable. In the case of polariza-
tion and dispersion, the goal of these atomic parameters 
is, somewhat paradoxically, to more accurately model 
the long-range interactions. The problem of coupling 
molecular simulations to stochastic radiation fields has, 
apparently, never been considered as such. Instead, we 
can find comparisons of numerical time integration 
methods intended to enforce constant temperature on 
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computed correlation functions.123 In continuum models 
based on partial differential equations, actual molecular 
information that should go into determining boundary 
conditions, like surface charge and slip length (or, more 
accurately, boundary friction124), are replaced by ‘fitting 
parameters’ that are, quite often, never compared with 
atomic models. Indeed, studies in the literature that even 
contain a model detailed enough to connect the two 
scales are few and far between.

We are also at a loss for combining models of dif-
ferent scales with one another. Of the many proposed 
methods for coupling quantum mechanical wavefunc-
tion calculations to continuous solvent, essentially all 
of them neglect explicit first-shell water structure that 
could be experimentally measured with neutron scatter-
ing, diffusion measurements, and IR and Raman spec-
troscopy. Jumping directly into applications is a disease 
infecting much of contemporary science. Rather than 
attempting to faithfully reproduce the underlying phys-
ics, many models are compared by directly checking 
against experimentally measured energies – and no clear 
winner has emerged (nor can it). To be correct, models 
must be checked for consistency with experiments at 
neighboring length scales. Similar remarks can be made 
for implicit solvent models coupling molecular mechan-
ics to continuum. Even Marcus theory is not untouched. 
There is currently debate on the proper way to conceptu-
alize its parameter that sets the ‘stiffness’ of the solvent 
linear response.125

In order to make progress, we must apparently work 
as if we had one hand tied behind our back. Used cor-
rectly, simulations provide a precise tool to answer a 
well-posed question within a known theory, or as a 
method of experimentation to discover ideas. However, 
when used absent a general theory, simply as a tool to 
reproduce or predict a benchmark set of experimental 
data, simulation is not capable of providing any detailed 
insight or understanding of molecular science.

ACKNOWLEDGEMENTS

I thank the anonymous reviewers for their com-
ments and suggestions.

REFERENCES

1. George F. Bertsch and James Trefil et. al. Atom. In 
Encyclopaedia Britannica. Encyclopaedia Britan- 
nica, Inc., 2018.

2. Paul Ehrenfest and Tatiana Ehrenfest. The Con-

ceptual Foundations of the Statistical Approach in 
Mechanics. Cornell Univ. Press, Ithaca, NY, 1959. 
Translation of Begriffliche Grundlagen der statis-
tichen Auffassung in der Mechanik, 1912, by 
Michael J. Moravcsik.

3. Barry W. Ninham. The biological/physical sciences 
divide, and the age of unreason. Substantia, 1(1): 
7–24, 2017. doi: 10.13128/Substantia-6.

4. E. T. Jaynes. Where do we stand on maxi-
mum entropy? In R. D. Levine and M. Tri-
bus, editors, The Maximum Entropy Formalism, 
page 498. M.I.T Press, Cambridge, 1979. ISBN 
0262120801,9780262120807.

5. David Ruelle. Is there a unified theory of nonequi-
librium statistical mechanics? In Int. Conf. Theor. 
Phys., volume 4 of Ann. Henri Poincaré, pages 
S489–95. Birkhäuser Verlag, Basel, 2003.

6. G. Gallavotti. Heat and fluctuations from order to 
chaos. Eur. Phys. J. B, 61:1–24, 2008. doi: 10.1140/
epjb/e2008-00041-1.

7. S. R. S. Varadhan. Large deviations. Ann. Prob., 
36(2):397–419, 2008. doi: 10.1214/07-AOP348.

8. Hugo Touchette. The large deviation approach to 
statistical mechanics. Phys. Rep., 478(1–3):1–69, 
2009. doi: 10.1016/j.physrep.2009.05.002.

9. S. Toulmin. The evolutionary development of natu-
ral science. American Scientist, 55(4):456–471, 1967. 
URL http://www.jstor.org/stable/27837039.

10. E. Jaynes. Probability in quantum theory. In W. H. 
Zurek, editor, Complexity, Entropy, and the Physics 
of Information. AddisonWesley, Reading MA, 1990.

11. Freeman J. Dyson. Missed opportunities. Bull. 
Amer. Math. Soc., 78(5):635–652, 1972.

12. C. M. De Witt. Feynman’s path integral: definition 
without limiting procedure. Commun. Math. Phys., 
28:47–67, 1972.

13. Maurice M. Mizrahi. Phase space path integrals, 
without limiting procedure. J. Math. Phys., 19:298, 
1978. doi: 10.1063/1.523504.

14. Hagen Kleinert. Path Integrals in Quantum Mechan-
ics, Statistics, Polymer Physics, and Financial Mar-
kets. World Scientific, Singapore, 2009. ISBN 981-
270-008-0. 5th edition.

15. H. Eschrig. The Fundamentals of Density Functional 
Theory. B. G. Teubner Verlagsgesellschaft, Leipzig, 
1996.

16. Carl Eckart. The penetration of a potential barrier 
by electrons. Phys. Rev., 35:1303–1309, Jun 1930. 
doi: 10.1103/PhysRev.35.1303. URL https://link.aps.
org/doi/10.1103/PhysRev.35.1303.

17. Stuart A. Rice, Daniel Guidotti, Howard L. Lemberg, 
William C. Murphy, and Aaron N. Bloch. Some 



58 David M. Rogers

comments on the electronic properties of liquid 
metal surfaces. In Aspects of The Study of Surfaces, 
volume 27 of Advances in Chemical Physics, pages 
543–634. John Wiley & Sons, New York, 1974.

18. Bernhard Sellner and Shawn M. Kathmann. A mat-
ter of quantum voltages. J. Chem. Phys., 141(18): 
18C534, 2014. doi: 10.1063/1.4898797.

19. G. Ortiz and P. Ballone. Correlation energy, struc-
ture factor, radial distribution function, and mo- 
mentum distribution of the spin-polarized uniform 
electron gas. Phys. Rev. B, 50:1391–1405, Jul 1994. 
doi: 10.1103/PhysRevB.50.1391. URL https://link.
aps.org/doi/10.1103/PhysRevB.50.1391.

20. N. D. Lang and W. Kohn. Theory of metal sur-
faces: Charge density and surface energy. Phys. 
Rev. B, 1:4555–4568, Jun 1970. doi: 10.1103/Phys-
RevB.1.4555. URL https://link.aps.org/doi/10.1103/ 
PhysRevB.1.4555.

21. P. Ewald and H. Juretschke. Atomic theory of sur-
face energy. In R. Gomer and C. Smith, editors, 
Structure and Properties of Solid Surfaces: A Con-
ference Arranged by the National Research Council, 
page 117. U. Chicago Press, 1952.

22. David Pines. Electrons and plasmons. In Elemen-
tary Excitations in Solids, pages 56–167. CRC Press, 
Boca Raton, FL, 1999. ISBN 978-0-7382-0115-3.

23. J. C. Slater and H. M. Krutter. The Thomas-Fermi 
method for metals. Phys. Rev., 47:559–568, 1935.

24. P. Nozières and D. Pines. Correlation energy of a 
free electron gas. Phys. Rev., 111(2):442–454, 1958.

25. E. Wigner and F. Seitz. On the constitution of 
metallic sodium. II. Phys. Rev., 46:509–524, 1934.

26. D. M. Ceperley and B. J. Alder. Ground state of 
the electron gas by a stochastic method. Phys. Rev. 
Lett., 45:566–569, Aug 1980. doi: 10.1103/PhysRev-
Lett.45.566. URL https://link.aps.org/doi/ 10.1103/
PhysRevLett.45.566.

27. N. F. Mott. The basis of the electron theory of met-
als, with special reference to the transition met- 
als. Proceedings of the Physical Society. Section A, 
62(7):416, 1949. URL http://stacks.iop.org/0370-
1298/62/i=7/a=303.

28. E. P. Wigner. Effects of the electron interaction 
on the energy levels of electrons in metals. Trans. 
Faraday Soc., 34:678–685, 1938. doi: 10.1039/
TF9383400678.

29. Peter M. W. Gill and Ross D. Adamson. A fam-
ily of attenuated coulomb operators. Chem. 
Phys. Lett., 261(1):105–110, 1996. ISSN 0009-
2614. doi: 10.1016/0009-2614(96)00931-1. URL 
http://www.sciencedirect.com/science/article/pii/ 
0009261496009311.

30. Marielle Soniat, David M. Rogers, and Susan 
Rempe. Dispersion- and exchange-corrected den-
sity functional theory for sodium ion hydration. J. 
Chem. Theory. Comput., 142:074101, 2015.

31. Pablo G. Debenedetti. The statistical mechanical 
theory of concentration fluctuations in mixtures. J. 
Chem. Phys., 87(2):1256–1260, 1987.

32. David Bohm and David Pines. Screening of elec-
tronic interactions in a metal. Phys. Rev., 80:903–
904, Dec 1950. doi: 10.1103/PhysRev.80.903.2. URL 
https://link.aps.org/doi/10.1103/PhysRev.80. 903.2.

33. David Bohm and David Pines. A collective descrip-
tion of electron interactions. I-III. Phys. Rev., 82: 
625, 1951. 85 (1952), 338; 92 (1953), 609.

34. R. I. G. Hughes. Theoretical practice: the Bohm-
Pines quartet. Perspectives on Science, 14:457–524, 
2006.

35. E. González-Tovar, M. Lozada-Cassou, L. Mier y 
Terán, and M. Medina-Noyola. Thermodynamics 
and structure of the primitive model near its gasliq-
uid transition. J. Chem. Phys., 95:6784, 1991. doi: 
10.1063/1.461516.

36. R. B. Laughlin, David Pines, Joerg Schmalian, 
Branko P. Stojković, and Peter Wolynes. The middle 
way. Proc. Nat. Acad. Sci. USA, 97(1):32–37, 2000. 
ISSN 0027-8424. doi: 10.1073/pnas.97.1.32. URL 
http://www.pnas.org/content/97/1/32.

37. P. Hohenberg and W. Kohn. Inhomogeneous elec-
tron gas. Phys. Rev., 136:B864–B871, Nov 1964. doi: 
10.1103/PhysRev.136.B864. URL https://link.aps.
org/doi/10.1103/PhysRev.136.B864.

38. W. Kohn and L. J. Sham. Self-consistent equations 
including exchange and correlation effects. Phys. 
Rev., 140:A1133–A1138, Nov 1965. doi: 10.1103/
PhysRev.140.A1133. URL https://link.aps.org/ 
doi/10.1103/PhysRev.140.A1133.

39. P. C. Hohenberg, Walter Kohn, and L. J. Sham. The 
beginnings and some thoughts on the future. In 
Samuel B. Trickey, editor, Advances in Quantum 
Chemistry, volume 21, pages 7–26. Academic Press, 
San Diego California, 1990.

40. von Helmut Eschrig. Legendre transformation. In 
The Fundamentals of Density Functional Theory, vol-
ume 32 of Teubner-Texte zur Physik, pages 99–126. 
B. G. Teubner Verlagsgesellschaft, Leipzig, 1996.

41. David C. Langreth and John P. Perdew. Exchange-
correlation energy of a metallic surface: Wavevector 
analysis. Phys. Rev. B, 15:2884–2901, Mar 1977. doi: 
10.1103/PhysRevB.15.2884. URL https://link.aps.
org/doi/10.1103/PhysRevB.15.2884.

42. Julien Toulouse, Francois Colonna, and Andreas 
Savin. Long-range–short-range separation of the 



59Range separation: the divide between local structures and field theories

electron-electron interaction in density-functional 
theory. Phys. Rev. A, 70:062505, 2004.

43. Oleg A. Vydrov, Jochen Heyd, Aliaksandr V. 
Krukau, and Gustavo E. Scuseria. Importance 
of short-range versus long-range Hartree-Fock 
exchange for the performance of hybrid density 
functionals. J. Chem. Phys., 125(7):074106, 2006. 
doi: 10.1063/1.2244560. URL http://link.aip.org/
link/?JCP/125/074106/1.

44. P. and T. Ehrenfest. Begriffliche grundlagen der 
statistischen auffassung in der mechanik. Encykl. 
Math. Wiss., (IV 2, II, Heft 6):90 S, 1912. Reprinted 
in ‘Paul Ehrenfest, Collected Scientific Papers’ (M. 
J. Klein, ed.), North-Holland, Amsterdam, 1959. 
(English translation by M. J. Moravcsik, Cornell 
Univ. Press, Ithaca, New York).

45. E. Jaynes. Gibbs vs Boltzmann entropies. American 
J. Phys., 33:391, 1965. doi: 10.1119/1.1971557.

46. Giovanni Gallavotti. Ergodicity: a historical per-
spective. equilibrium and nonequilibrium. Eur. 
Phys. J. H, 41(3):181–259, 2016.

47. G Hummer, S Garde, A E Garca, A Pohorille, and 
L R Pratt. An information theory model of hydro-
phobic interactions. Proc. Nat. Acad. Sci. USA, 
93(17):8951–8955, 1996. URL http://www. pnas.org/
content/93/17/8951.abstract.

48. Mohammadhasan Dinpajooh and Dmitry V. 
Matyushov. Free energy of ion hydration: Inter-
face susceptibility and scaling with the ion 
size. J. Chem. Phys., 143(4):044511, 2015. doi: 
10.1063/1.4927570.

49. V. Ballenegger and J.-P. Hansen. Dielectric per-
mittivity profiles of confined polar fluids. J. Chem. 
Phys., 122:114711, 2005. doi: 10.1063/1.1845431.

50. J. D. Weeks, D. Chandler, and J. C. Andersen. Role 
of repulsive forces in determining the equilibrium 
structure of simple liquids. J. Phys. Chem., 54:5237–
5247, 1971.

51. H. Kragh. The Lorenz-Lorentz formula: Origin 
and early history. Substantia, 2(2):7–18, 2018. doi: 
10.13128/substantia-56.

52. Peter Debye. Methods to determine the electrical 
and geometrical structure of molecules. In Nobel 
Lectures in Chemistry, Dec 1936.

53. John G. Kirkwood. Critique of the free volume the-
ory of the liquid state. J. Chem. Phys., 18(3), 1950.

54. Donald A. McQuarrie. Theory of fused salts. J. 
Phys. Chem., 66(8):1508–13, 1962. doi: 10.1021/ 
j100814a030.

55. H. Eyring, T. Ree, and N. Hirai. Significant struc-
tures in the liquid state. Proc. Nat. Acad. Sci. USA, 
44(7):683–91, 1958.

56. Henry Eyring and R. P. Marchi. Significant struc-
ture theory of liquids. J. Chem. Educ., 40(11):562, 
1963. doi: 10.1021/ed040p562.

57. H. Reiss, H. L. Frisch, and J. L. Lebowitz. Statistical 
mechanics of rigid spheres. J. Chem. Phys, 31: 369, 
1959. doi: 10.1063/1.1730361.

58. Jerome K. Percus and George J. Yevick. Analysis of 
classical statistical mechanics by means of collec-
tive coordinates. Phys. Rev., 110(1):1–13, 1958. doi: 
10.1103/PhysRev.110.1. URL https://link.aps.org/
doi/10.1103/PhysRev.110.1.

59. J. K. Percus. Approximation methods in classical 
statistical mechanics. Phys. Rev. Lett., 8(11):462–3, 
1962.

60. L. S. Ornstein and F. Zernike. Accidental deviations 
of density and opalescence at the critical point of 
a single substance. Proc. R. Neth. Acad. Arts Sci., 
17:793–806, 1914. URL http://www.dwc.knaw.nl/
DL/publications/PU00012643.pdf.

61. H. Ted Davis. Statistical Mechanics of Phases. VCH 
Publishers, New York, 1996.

62. Arieh Ben-Naim. Molecular Theory of Solu-
tions. Oxford Univ. Press, Oxford, 2006. ISBN 
0199299692.

63. Henry S. Ashbaugh and Lawrence R. Pratt. Collo-
quium: Scaled particle theory and the length scales 
of hydrophobicity. Rev. Mod. Phys., 78:159–178, Jan 
2006. doi: 10.1103/RevModPhys.78.159. URL htt-
ps://link.aps.org/doi/10.1103/RevModPhys.78.159.

64. David J. E. Calloway. Surface tension, hydrophobic-
ity, and black holes: The entropic connection. Phys. 
Rev. E, 53(4):3738–3744, 1996.

65. Derek Frydel and Manman Ma. Density func-
tional formulation of the random-phase approxi-
mation for inhomogeneous fluids: Applica-
tion to the gaussian core and coulomb particles. 
Phys. Rev. E, 93: 062112, Jun 2016. doi: 10.1103/
PhysRevE.93.062112. URL https://link.aps.org/
doi/10.1103/ PhysRevE.93.062112.

66. Kenneth E. Newman. Kirkwood–Buff solution the-
ory: derivation and applications. Chem. Soc. Rev., 
23:31–40, 1994. doi: 10.1039/CS9942300031.

67. Guillaume Jeanmairet, Maximilien Levesque, and 
Daniel Borgis. Molecular density functional theory 
of water describing hydrophobicity at short and 
long length scales. J. Chem. Phys., 139(15):154101, 
2013. doi: 10.1063/1.4824737.

68. Guillaume Jeanmairet, Maximilien Levesque, Volo-
dymyr Sergiievskyi, and Daniel Borgis. Molecular 
density functional theory for water with liquid-gas 
coexistence and correct pressure. J. Chem. Phys., 
142(15):154112, 2015. doi: 10.1063/1.4917485.



60 David M. Rogers

69. J. T. Chayes, L. Chayes I, and Elliott H. Lieb. The 
inverse problem in classical statistical mechanics. 
Commun. Math. Phys., 93:57–121, 1984.

70. Loup Verlet. Computer “Experiments” on classical 
fluids. I. thermodynamical properties of Lennard- 
Jones molecules. Phys. Rev., 159(1):98–103, 1967.

71. J. Karl Johnson, John A. Zollweg, and Keith E. Gub-
bins. The Lennard-Jones equation of state revis-
ited. Molecular Physics, 78(3):591–618, 1993. doi: 
10.1080/00268979300100411.

72. A. K. Soper. The radial distribution functions of 
water as derived from radiation total scattering 
experiments: Is there anything we can say for sure. 
ISRN Physical Chemistry, 2013:279463, 2013. doi: 
10.1155/2013/279463.

73. A. Rahman and F. H. Stillinger. Molecular dynamics 
study of liquid water. J. Chem. Phys., 55: 3336–3359, 
1971. doi: 10.1063/1.1676585.

74. F. H. Stillinger. Low frequency dielectric properties 
of liquid and solid water. In E. W. Montroll and J. 
L. Lebowitz, editors, The Liquid State of Matter: Flu-
ids Simple and Complex, pages 341–431. North-Hol-
land, New York, 1982.

75. H. L. Friedman and C. V. Krishnan. Thermodynam-
ics of ion hydration. In F. Franks, editor, Water: A 
Comprehensive Treatise. Plenum Press, New York, 
1973.

76. J. A. Barker and D. Henderson. What is “liquid”? 
understanding the states of matter. Rev. Mod. Phys., 
48(4):587–671, 1976.

77. H. B. Singh and A. Holz. Structure factor of liquid 
alkali metals. Phys. Rev. A, 28:1108–1113, Aug 1983. 
doi: 10.1103/PhysRevA.28.1108. URL https://link.
aps.org/doi/10.1103/PhysRevA.28.1108.

78. V. Ballenegger and J.-P. Hansen. Local dielectric 
permittivity near an interface. Europhys. Lett., 63: 
381–387, 2003.

79. V. Ballenegger, A. Arnold, and J. J. Cerdá. Simula-
tions of non-neutral slab systems with long-range 
electrostatic interactions in two-dimensional 
periodic boundary conditions. J. Chem. Phys., 
131:094107, 2009. doi: 10.1063/1.3216473.

80. V. Ballenegger. Communication: On the origin of 
the surface term in the Ewald formula. J. Chem. 
Phys., 140:161102, 2014. doi: 10.1063/1.4872019.

81. R. L. Perry, J. D. Massie, and P. T. Cummings. An 
analytic model for aqueous electrolyte solutions 
based on fluctuation solution theory. Fluid Phase 
Equil., 39:227–266, 1988.

82. Jhon Mu Shik and Henry Eyring. Liquid theory 
and the structure of water. Ann. Rev. Phys. Chem., 
27:45–57, 1976.

83. F. H. Stillinger and T. A. Weber. Inherent structure 
in water. J. Phys. Chem., 87:2833–40, 1983.

84. L. Verlet and J. Weis. Perturbation theory for the 
thermodynamic properties of simple liquids. Mol. 
Phys., 24(5):1013–1024, 1972.

85. C. Caccamo. Integral equation theory description of 
phase equilibria in classical fluids. Physics Reports, 
274:1–105, 1996.

86. L. Reatto. Phase separation and critical phenom-
ena in simple fluids and in binary mixtures. In 
Carlo Caccamo, Jean-Pierre Hansen, and George 
Stell, editors, New Approaches to Problems in Liq-
uid State Theory, volume 529 of NATO Science 
Series C: Math. and Phys. Sci., pages 31–46. Klu-
wer Academic, 1998. ISBN 978-0-7923-5671-4. doi: 
10.1007/978-94-011-4564-0.

87. B. Widom. Potential-distribution theory and the 
statistical mechanics of fluids. J. Phys. Chem., 86: 
869–872, 1982.

88. L. R. Pratt and S. B. Rempe. Quasi-chemical theory 
and implicit solvent models for simulations. In L. 
R. Pratt and G. Hummer, editors, Simulation and 
theory of electrostatic interactions in solution, pages 
172–201. ALP, New York, 1999.

89. David M. Rogers and Susan B. Rempe. Probing 
the thermodynamics of competitive ion binding 
using minimum energy structures. J. Phys. Chem. B, 
115(29):9116–9129, 2011.

90. Benjamin P. Lee and Michael E. Fisher. Density 
fluctuations in an electrolyte from generalized 
Debye-Hückel theory. Phys. Rev. Lett., 76(16):2906–
2909, 1996.

91. Itamar Borukhov, David Andelman, and Hen-
ri Orland. Steric effects in electrolytes: A modi-
fied Poisson-Boltzmann equation. Phys. Rev. Lett., 
79:435–438, Jul 1997. doi: 10.1103/PhysRev-
Lett.79.435. URL https://link.aps.org/doi/10.1103/
PhysRevLett.79.435.

92. Phil Attard. Asymptotic analysis of primitive mod-
el electrolytes and the electrical double layer. Phys. 
Rev. E, 48:3604–3621, Nov 1993. doi: 10.1103/
PhysRevE.48.3604. URL https://link.aps.org/doi/ 
10.1103/PhysRevE.48.3604.

93. Roland Kjellander. Decay behavior of screened 
electrostatic surface forces in ionic liquids: the 
vital role of non-local electrostatics. Phys. Chem. 
Chem. Phys., 18:18985–19000, 2016. doi: 10.1039/ 
C6CP02418A.

94. Roland Kjellander. Focus article: Oscillatory and 
long-range monotonic exponential decays of elec- 
trostatic interactions in ionic liquids and other 
electrolytes: The significance of dielectric permit-



61Range separation: the divide between local structures and field theories

tivity and renormalized charges. J. Chem. Phys., 
148(19):193701, 2018. doi: 10.1063/1.5010024.

95. T. J. Sluckin. Density functional theory for simple 
molecular fluids. Mol. Phys., 43(4):817–849, 1981. 
doi: 10.1080/00268978100101711.

96. Shuangliang Zhao, Rosa Ramirez, Rodolphe Vuille-
umier, and Daniel Borgis. Molecular density func-
tional theory of solvation: From polar solvents to 
water. J. Chem. Phys., 134(19):194102, 2011. doi: 
10.1063/1.3589142.

97. Arash Nikoubashman, Jean-Pierre Hansen, and 
Gerhard Kahl. Mean-field theory of the phase dia-
gram of ultrasoft, oppositely charged polyions in 
solution. J. Chem. Phys., 137:094905, 2012. doi: 
10.1063/ 1.4748378.

98. Richard C. Remsing and John D. Weeks. Role of 
local response in ion solvation: Born theory and 
beyond. J. Phys. Chem. B, 120(26):6238–6249, 2016. 
doi: 10.1021/acs.jpcb.6b02238.

99. David M. Rogers and Thomas L. Beck. Modeling 
molecular and ionic absolute solvation free energies 
with quasichemical theory bounds. J. Chem. Phys., 
129(13):134505, 2008. doi: 10.1063/1.2985613.

100. Dmitry V. Matyushov. Solvent reorganization 
energy of electron-transfer reactions in polar 
solvents. J. Chem. Phys., 120:7532, 2004. doi: 
10.1063/1.1676122.

101. Lu Ding, Maximilien Levesque, Daniel Borgis, and 
Luc Belloni. Efficient molecular density function-
al theory using generalized spherical harmonics 
expansions. J. Chem. Phys., 147:094107, 2017. doi: 
10.1063/1.4994281.

102. David M. Rogers. Extension of Kirkwood-Buff the-
ory to the canonical ensemble. J. Chem. Phys., 148: 
054102, 2018. doi: 10.1063/1.5011696.

103. Mikhail A. Vorotyntsev and Andrey A. Rubashkin. 
Uniformity ansatz for inverse dielectric function of 
spatially restricted nonlocal polar medium as a nov-
el approach for calculation of electric characteristics 
of ion-solvent system. Chemical Physics, 521:14–24, 
2019. ISSN 0301–0104. doi: 10.1016/j.chemphys. 
2019.01.003. URL http://www.sciencedirect.com/
science/article/pii/S0301010418309108.

104. S. Koneshan, R. M. Lynden-Bell, and Jayen-
dran C. Rasaiah. Friction coefficients of ions 
in aqueous solution at 25°C. J. Amer. Chem. 
Soc., 120(46):12041–12050, 1998. doi: 10.1021/
ja981997x. 

105. L. Blum and Yaakov Rosenfeld. Relation between 
the free energy and the direct correlation function 
in the mean spherical approximation. J. Stat. Phys., 
63(5–6):1177–1190, 1991.

106. Gunnar Karlström and Per Linse. Retardation 
effects breaking long-range orientational order-
ing in dipolar fluids. J. Chem. Phys., 132(5):054505, 
2010. doi: 10.1063/1.3305325.

107. Pengyu Ren, Jaehun Chun, Dennis G. Thomas, 
Michael J. Schnieders, Marcelo Marucho, Jiajing 
Zhang, and Nathan A. Baker. Biomolecular elec-
trostatics and solvation: a computational perspec-
tive. Quart. Rev. Biophys., 45(4):427–491, 2012. doi: 
10.1017/S003358351200011X.

108. B. Mennucci, E. Cancès, and J. Tomasi. Evaluation 
of solvent effects in isotropic and anisotropic die-
lectrics and in ionic solutions with a unified inte-
gral equation method: theoretical bases, computa-
tional implementation, and numerical applications. 
J. Phys. Chem. B, 101(49):10506–10517, 1997. doi: 
10.1021/jp971959k.

109. Timothy T. Duignan, Drew F. Parsons, and Barry 
W. Ninham. A continuum solvent model of the 
multipolar dispersion solvation energy. J. Phys. 
Chem. B, 117(32):9412–9420, 2013. doi: 10.1021/ 
jp403595x.

110. David M. Rogers. The Einstein-Podolsky-Rosen 
paradox implies a minimum achievable tempera-
ture. Phys. Rev. E, 95:012149, 2017. doi: 10.1103/
PhysRevE.95.012149.

111. Niels Bohr. Atomic Physics & Human Knowledge. 
Chapman & Hall, London, 1958. page 20.

112. John A. Wheeler. Information, physics, quantum: 
The search for links. In Shun’ichi Kobaysahi and 
Nihon Butsuri Gakkai, editors, Proc. 3rd Inter-
national Symposium on Foundations of Quantum 
Mechanics, pages 354–368. Physical Society of 
Japan, Tokyo, Japan, 1989.

113. H. Everett. The Many-Worlds Interpretation of 
Quantum Mechanics. Princeton University Press, 
Princeton NJ, 1973.

114. Lev Vaidman. Many-worlds interpretation of quan-
tum mechanics. In Edward N. Zalta, editor, The 
Stanford Encyclopedia of Philosophy. Metaphysics 
Research Lab, Stanford University, fall 2018 edition, 
2018.

115. Lajos Diósi. How to teach and think about spon-
taneous wave function collapse theories: Not like 
before. In S. Gao, editor, Collapse of the Wave Func-
tion: Models, Ontology, Origin, and Implications, 
pages 3–11. Cambridge Univ. Press, Cambridge UK, 
2018. doi: 10.1017/9781316995457.002.

116. Robert H. Wood. Continuum electrostatics in a 
computational universe with finite cutoff radii 
and periodic boundary conditions: Correc-
tion to computed free energies of ionic solva-



62 David M. Rogers

tion. J. Chem. Phys., 103(14):6177–6187, 1995. doi: 
10.1063/1.470445.

117. Henry S. Ashbaugh and Robert H. Wood. Effects 
of long-range electrostatic potential truncation on 
the free energy of ionic hydration. J. Chem. Phys., 
106(19):8135–8139, 1997. doi: 10.1063/1.473800.

118. Billy W. McCann and Orlando Acevedo. Pairwise 
alternatives to ewald summation for calculating 
long-range electrostatics in ionic liquids. J. Chem. 
Theory Comput., 9(2):944–950, 2013. doi: 10.1021/ 
ct300961e.

119. Shinichi Sakane, Henry S. Ashbaugh, and Robert H. 
Wood. Continuum corrections to the polarization 
and thermodynamic properties of Ewald sum simu-
lations for ions and ion pairs at infinite dilution. J. 
Phys. Chem. B, 102(29):5673–5682, 1998.

120. Philippe H. Hünenberger and J. Andrew McCam-
mon. Ewald artifacts in computer simulations of 
ionic solvation and ionion interaction: A con-
tinuum electrostatics study. J. Chem. Phys., 
110(4):1856–1872, 1999. doi: 10.1063/1.477873.

121. Luc Belloni and Joel Puibasset. Finite-size correc-
tions in simulation of dipolar fluids. J. Chem. Phys., 
147(22):224110, 2017.

122. Phillip S. Hudson, Stefan Boresch, David M. Rog-
ers, and H. Lee Woodcock. Accelerating QM/MM 
free energy computations via intramolecular force 
matching. JCTC, 14(12):6327–6335, 2018. doi: 
10.1021/acs.jctc.8b00517.

123. Joseph E. Basconi and Michael R. Shirts. Effects of 
temperature control algorithms on transport prop-
erties and kinetics in molecular dynamics simula-
tions. J. Chem. Theory Comput., 9(7):2887–2899, 
2013. doi: 10.1021/ct400109a. URL http://pubs.acs.
org/doi/abs/10.1021/ct400109a.

124. Benjamin Cross, Chloé Barraud, Cyril Picard, Lili-
ane Léger, Frédéric Restagno, and Élisabeth Char-
laix. Wall slip of complex fluids: Interfacial friction 
versus slip length. Phys. Rev. Fluids, 3: 062001, Jun 
2018. doi: 10.1103/PhysRevFluids.3.062001.

125. Richard C. Remsing, Ian G. McKendry, Daniel R. 
Strongin, Michael L. Klein, and Michael J. Zdilla. 
Frustrated solvation structures can enhance elec-
tron transfer rates. J. Phys. Chem. Lett., 6(23): 4804–
4808, 2015. doi: 10.1021/acs.jpclett.5b02277.


	Substantia
	An International Journal of the History of Chemistry
	Vol. 3, n. 1 - March 2019
	Firenze University Press
	I won a project!
	Juan Manuel García-Ruiz
	Similarities and contrasts in the structure and function of the calcium transporter ATP2A1 and the copper transporter ATP7B
	Giuseppe Inesi
	Finding Na,K-ATPase 
II - From fluxes to ion movements
	Hans-Jürgen Apell
	Range separation: the divide between local structures and field theories
	David M. Rogers
	Hydration of silica and its role 
in the formation of quartz veins - Part 2 
	John Elliston
	Chuckles and Wacky Ideas
	Carl Safina
	The increased anthropogenic gas emissions in the atmosphere and the rising of the Earth’s temperature: are there actions to mitigate the global warming?
	Francesco Barzagli1,2, Fabrizio Mani2
	The ‘Consciousness-Brain’ relationship
	Jean-Pierre Gerbaulet1, Pr. Marc Henry2
	Dmitry I. Mendeleev and his time
	Dmitry Pushcharovsky
	Early contributions of crystallography to the atomic theory of matter
	Giovanni Ferraris
	Bringing Together Academic and Industrial Chemistry: Edmund Ronalds’ Contribution
	Beverley F. Ronalds

