9 research outputs found

    Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems

    Full text link
    Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a `basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.Comment: submitted to Scientific Repor

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware

    Stochastic Learning in Neuromorphic Hardware via Spike Timing Dependent Plasticity with RRAM Synapses

    Get PDF
    Hardware processors for neuromorphic computing are gaining significant interest as they offer the possibility of real in-memory computing, thus by-passing the limitations of speed and energy consumption of the von Neumann architecture. One of the major limitations of current neuromorphic technology is the lack of bio-realistic and scalable devices to improve the current design of artificial synapses and neurons. To overcome these limitations, the emerging technology of resistive switching memory has attracted wide interest as a nano-scaled synaptic element. This paper describes the implementation of a perceptron-like neuromorphic hardware capable of spike-timing dependent plasticity (STDP), and its operation under stochastic learning conditions. The learning algorithm of a single or multiple patterns, consisting of either static or dynamic visual input data, is described. The impact of noise is studied with respect to learning efficiency (false fire, true fire) and learning time. Finally, the impact of stochastic learning rule, such as the inversion of the time dependence of potentiation and depression in STDP, is considered. Overall, the work provides a proof of concept for unsupervised learning by STDP in memristive networks, providing insight into the dynamics of stochastic learning and supporting the understanding and design of neuromorphic networks with emerging memory devices

    Investigation of Event-Based Surfaces for High-Speed Detection, Unsupervised Feature Extraction, and Object Recognition

    Get PDF
    In this work, we investigate event-based feature extraction through a rigorous framework of testing. We test a hardware efficient variant of Spike Timing Dependent Plasticity (STDP) on a range of spatio-temporal kernels with different surface decaying methods, decay functions, receptive field sizes, feature numbers, and back end classifiers. This detailed investigation can provide helpful insights and rules of thumb for performance vs. complexity trade-offs in more generalized networks, especially in the context of hardware implementation, where design choices can incur significant resource costs. The investigation is performed using a new dataset consisting of model airplanes being dropped free-hand close to the sensor. The target objects exhibit a wide range of relative orientations and velocities. This range of target velocities, analyzed in multiple configurations, allows a rigorous comparison of time-based decaying surfaces (time surfaces) vs. event index-based decaying surface (index surfaces), which are used to perform unsupervised feature extraction, followed by target detection and recognition. We examine each processing stage by comparison to the use of raw events, as well as a range of alternative layer structures, and the use of random features. By comparing results from a linear classifier and an ELM classifier, we evaluate how each element of the system affects accuracy. To generate time and index surfaces, the most commonly used kernels, namely event binning kernels, linearly, and exponentially decaying kernels, are investigated. Index surfaces were found to outperform time surfaces in recognition when invariance to target velocity was made a requirement. In the investigation of network structure, larger networks of neurons with large receptive field sizes were found to perform best. We find that a small number of event-based feature extractors can project the complex spatio-temporal event patterns of the dataset to an almost linearly separable representation in feature space, with best performing linear classifier achieving 98.75% recognition accuracy, using only 25 feature extracting neurons

    Investigation of Synapto-dendritic Kernel Adapting Neuron models and their use in spiking neuromorphic architectures

    Get PDF
    The motivation for this thesis is idea that abstract, adaptive, hardware efficient, inter-neuronal transfer functions (or kernels) which carry information in the form of postsynaptic membrane potentials, are the most important (and erstwhile missing) element in neuromorphic implementations of Spiking Neural Networks (SNN). In the absence of such abstract kernels, spiking neuromorphic systems must realize very large numbers of synapses and their associated connectivity. The resultant hardware and bandwidth limitations create difficult tradeoffs which diminish the usefulness of such systems. In this thesis a novel model of spiking neurons is proposed. The proposed Synapto-dendritic Kernel Adapting Neuron (SKAN) uses the adaptation of their synapto-dendritic kernels in conjunction with an adaptive threshold to perform unsupervised learning and inference on spatio-temporal spike patterns. The hardware and connectivity requirements of the neuron model are minimized through the use of simple accumulator-based kernels as well as through the use of timing information to perform a winner take all operation between the neurons. The learning and inference operations of SKAN are characterized and shown to be robust across a range of noise environments. Next, the SKAN model is augmented with a simplified hardware-efficient model of Spike Timing Dependent Plasticity (STDP). In biology STDP is the mechanism which allows neurons to learn spatio-temporal spike patterns. However when the proposed SKAN model is augmented with a simplified STDP rule, where the synaptic kernel is used as a binary flag that enable synaptic potentiation, the result is a synaptic encoding of afferent Signal to Noise Ratio (SNR). In this combined model the neuron not only learns the target spatio-temporal spike patterns but also weighs each channel independently according to its signal to noise ratio. Additionally a novel approach is presented to achieving homeostatic plasticity in digital hardware which reduces hardware cost by eliminating the need for multipliers. Finally the behavior and potential utility of this combined model is investigated in a range of noise conditions and the digital hardware resource utilization of SKAN and SKAN + STDP is detailed using Field Programmable Gate Arrays (FPGA)

    High speed event-based visual processing in the presence of noise

    Get PDF
    Standard machine vision approaches are challenged in applications where large amounts of noisy temporal data must be processed in real-time. This work aims to develop neuromorphic event-based processing systems for such challenging, high-noise environments. The novel event-based application-focused algorithms developed are primarily designed for implementation in digital neuromorphic hardware with a focus on noise robustness, ease of implementation, operationally useful ancillary signals and processing speed in embedded systems
    corecore