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Abstract 
The motivation for this thesis is idea that abstract, adaptive, hardware efficient, inter-neuronal transfer 
functions (or kernels) which carry information in the form of postsynaptic membrane potentials, are the 
most important (and erstwhile missing) element in neuromorphic implementations of Spiking Neural 
Networks (SNN). In the absence of such abstract kernels, spiking neuromorphic systems must realize 
very large numbers of synapses and their associated connectivity. The resultant hardware and 
bandwidth limitations create difficult tradeoffs which diminish the usefulness of such systems. 

In this thesis a novel model of spiking neurons is proposed. The proposed Synapto-dendritic Kernel 
Adapting Neuron (SKAN) uses the adaptation of their synapto-dendritic kernels in conjunction with an 
adaptive threshold to perform unsupervised learning and inference on spatio-temporal spike patterns. 
The hardware and connectivity requirements of the neuron model are minimized through the use of 
simple accumulator-based kernels as well as through the use of timing information to perform a winner 
take all operation between the neurons. The learning and inference operations of SKAN are 
characterized and shown to be robust across a range of noise environments. 

Next, the SKAN model is augmented with a simplified hardware-efficient model of Spike Timing 
Dependent Plasticity (STDP).  In biology STDP is the mechanism which allows neurons to learn spatio-
temporal spike patterns. However when the proposed SKAN model is augmented with a simplified STDP 
rule, where the synaptic kernel is used as a binary flag that enable synaptic potentiation, the result is a 
synaptic encoding of afferent Signal to Noise Ratio (SNR). In this combined model the neuron not only 
learns the target spatio-temporal spike patterns but also weighs each channel independently according 
to its signal to noise ratio. Additionally a novel approach is presented to achieving homeostatic plasticity 
in digital hardware which reduces hardware cost by eliminating the need for multipliers. 

Finally the behavior and potential utility of this combined model is investigated in a range of noise 
conditions and the digital hardware resource utilization of SKAN and SKAN + STDP is detailed using Field 
Programmable Gate Arrays (FPGA). 
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Chapter 1: Introduction 

Neuromorphic implementation of Spiking Neural Networks 
Real neurons, the electrically excitable cells of the Eumetazoan, constitute an extremely diverse 
intractably complex community whose dynamic structures and functions defy all but the broadest 
generalizations [1][2]. In order to minimize this complexity, the field of Artificial Neural Networks (ANN) 
has traditionally modeled neurons as deterministic, centrally clocked elements which operate on real 
valued signals [3][4]. These signals represent neuronal rate coding where the spiking rate of a neuron 
encodes useful information and the adjustment of synaptic weights results in learning. This scheme, 
while mathematically amenable incurs a significant energy cost by discarding the rich temporal 
information available in the real signals used by neurons to communicate, since many more spikes per 
input channel are required to transmit a real valued rate value as opposed to a single spike per channel 
needed for transmission of temporally encoded inter-spike interval information[5][6][7]. In contrast to 
the standard ANN model, the highly optimized, low power, portable signal processing and control 
system that is the brain, readily uses temporal information embedded in the input signals and internal 
dynamics of its stochastic heterogeneous elements to process information [8].  

 
Figure 1. Using weighted synaptic kernels to learn spatio-temporal spike patterns. a) Typical functional model of a spiking 
neuron with synapses whose transfer functions or kernels do not adapt as a result of learning. These static synaptic transfer 
function act as memory elements providing information about recent spikes to the soma. While the adaptation of the synaptic 
strength or weight of the kernels allows learning of input spike patterns. b) Biological representation of the neuron showing the 
learnt input spike pattern, the resultant Excitatory Post-Synaptic Potentiation (EPSP) and the output spike indicating pattern 
recognition. c) Presentation of a non-target pattern results in an EPSP that does not cross the threshold producing no output 
spike. Figure from [9]. 

More recently, the greater efficiency, higher performance and biologically realistic dynamics of temporal 
coding neural networks has motivated the development of novel Spiking Neural Networks (SNN). These 
include unsupervised neural network algorithms such as polychronous networks [10], echo state 
machines [11] liquid state machines [12], sparse coding models [13] and spike-based Radial Basis 
Function (RBF) networks [14] which combine feedback, axonal or dendritic delays or synaptic kernels 
with STDP or related learning rules to learn particular input spike patterns. Supervised algorithms such 
as the online learning algorithms, spikeProp [15], ReSuMe [16] and the tempotron [17] use STDP in 
combination with a supervisory spiking signal to learn mappings from input spike trains to output spike 
trains, whereas the Synaptic Kernel Inverse Method [18] performs the same mapping through 
calculating a linear solution to a higher dimensional hidden layer projection. In addition some learning 
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algorithms such as the deSNN which combines rank order learning with spike time learning operate in 
both supervised and unsupervised modes [19]. At a higher level of analysis models such the Hierarchical 
Temporal Memory attempt to replicate the complexity of the neocortex by combining spatio-temporal 
pooling coincidence detection and Bayesian networks [20]. As shown in Figure 1 these models typically 
adapt the value of synaptic weights with static synaptic kernels to learn a particular spatio-temporal 
pattern. Many of the neuron models proposed by computational neuroscientist are later implemented 
in neuromorphic hardware [19][21][22][23][24][25][26]. However these algorithms are almost always 
initially designed not for their suitability in hardware but for performance in a constraint free 
mathematical context with numerous all-to-all connected neurons and/or to satisfy some biological 
realism criteria. This disassociation between algorithm design and the hardware design can result in 
difficulties in the hardware implementation phase where the original full-scale model is typically 
simplified to the point where it can be implemented in hardware while still retaining its functionality. 

Neuromorphic implementations of spiking neural networks can be broadly be divided by whether the 
system performs learning on-chip or offline, whether synapses are implemented using digital or analog 
circuits and whether the learning is supervised or unsupervised [27]. Neuromorphic platforms such as 
IBM’s true north chip [28] can train large scale neural networks offline on predefined datasets . These 
trained networks are then used for inference on new data. This offline learning approach can greatly 
simplify hardware implementation through removal of all learning circuits however it also results in a 
system that cannot train on new real world data after system deployment which may be necessary in 
some applications. Among platforms with on-chip learning the choice between analog, digital or mixed 
signal implementations offers a variety of tradeoffs including design simplicity, power-efficiency and 
scalability. See [24] for a detailed review. Additionally recent advances in the field of memristive devices 
has allowed the development of memristor-based crossbar architectures which promise high density 
low power implementation of complex synaptic dynamics [29]. While all synaptic models and update 
rules including the SKAN model presented in this thesis can potentially be realized using digital, analog, 
memristive or mixed implementations, this thesis focuses primarily on digital implementations.  

Finally the use of supervisory signals such as those used in spikeProp, ReSuMe and the tempotron allows 
these models to generate mappings from prescribed inputs to prescribed outputs. While the supervised 
learning approach taken in these models together with the rise of the deep learning paradigm has been 
the central driver for recent advances in machine learning, unsupervised learning rules such as the SKAN 
model presented in this thesis are likely to be a key component in future developments since many 
biological neuronal systems are hypothesized to operate in this mode [30]. 

The last decade has seen significant progress in the implementation of unsupervised spiking neural 
networks. In [31] a simplified RBF-based spiking neural network proposed in [14] is implemented in 
FPGA hardware which uses an unsupervised delay adaptation learning rule with 10-bit synapses and an 
integrate and fire somatic model. In this system new neurons are added as novel patterns are presented 
to the system. Here novel patterns are defined as those which do not generate activity in the network 
within a predefined time interval. This RBF-based model has been used in a range of applications such as 
control and visual processing [31][32].  In [33] and [34], transposable crossbar SRAM arrays are used to 
implement high density binary synapses for use in classification and associative memory tasks. While 
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implementation of the synapse as a simple binary latch enables the realization of large numbers of 
synapses in hardware, the reduced synaptic resolution also reduces overall network capacity [33]. In 
[21] a sparse coding spiking neural network is presented and demonstrated as an image feature 
extractor. This implementation uses 13-bit synapses during learning, and 8-bit synapses for inference. 
This system leverages the low spike rate generated through the sparse coding algorithm to implement 
efficient inter-neuronal communication while keeping spike collision rates low enough so as not to 
affect inference. Of these previously proposed models implemented in digital hardware, the system in 
[31] is most comparable to the proposed SKAN model in that it is also designed to operate primarily in 
the temporal coding domain. However this system uses standard integrate and fire neurons with preset 
threshold levels, and timing windows and as such does not exhibit the complex set of behaviors and 
functionalities exhibited by the SKAN systems. 

Neurons as spiking, distributed processors  
One of the motivations of this thesis is to attempt to bridge the gap between neuron model and 
hardware design, making hardware constraints considerations central during the algorithm design stage. 
In this context the goal of computational performance in hardware motivates a change in focus from 
claims of accurate modeling of computation in biological neurons to exploiting the computational power 
of artificial but biologically inspired neurons.  These are herein defined as a set of simple distributed 
informational processing units that communicate through binary valued pulses (spikes), receive inputs 
from multiple input channels (synapses and dendrites), and have a single output channel (axon).  

  

Figure 2. Information flow schemes in unsupervised spiking neural network algorithms and their impact on hardware 
implementation. Black indicates the fundamental elements and information paths of a spiking neural network. Red indicates 
added features and information paths that can cause difficulties in hardware, or limit algorithm utility. Figure from [9]. 
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Figure 2 illustrates the basic elements of spiking neural network algorithms as well as some useful 
information flow and storage restrictions (red), which, if adhered to at the neuron model design stage, 
prove helpful during the hardware implementation stage. These restrictions include: 

1. Self-contained: In a self-contained system, no external controlling system is required for the 
system to function. Examples of systems that are not self-contained include synapses that 
require adjustment via an external controller. 

2. Scalable connectivity: Systems that require all-to-all connectivity between the neurons or where 
the synapses or dendrites directly communicate their weights or potentials to each other are 
not hardware scalable or biologically possible. All-to-all connected neurons require a 
quadratically increasing number of connections, which is prohibitive both in hardware and in the 
brain [35][36]. 

3. Storage of time series data: Systems whose processing units require large segments of their time 
series data to be stored and be accessible for later processing in the fashion of standard 
processors require a significant amount of on-site memory not possible in biological systems 
and would add significant complexity to neuromorphic hardware. Furthermore, such systems 
overlap with the domain of distributed processors such as GPUs and fall outside the 
neuromorphic scope. 

4. Multiplication: Multipliers are typically inefficient to implement in digital hardware and are 
limited in standard digital solutions such as Field Programmable Gate Arrays (FPGAs) and Digital 
Signal Processors (DSPs). Their computational inefficiency and their limited  availability on 
hardware platforms result in neural networks being implemented using time-multiplexing 
techniques. This, in turn, limits the system scale and the applications where this hardware is 
viable or the speed at which the system can operate [37][38]. 

While the algorithm restrictions listed above can simplify hardware implementation the central limiting 
factor in the realization of neuromorphic systems is the need for the realization of large numbers of 
interconnected synapses. 

Too many synapses 
Synapses are by far the most numerous computational elements in the brain and in neuromorphic 
systems. Due to their large numbers, the return on investment on synapses, i.e., how much functional 
computation they perform versus how much hardware resources they take up, becomes a defining 
feature of any neural system whether evolved or engineered [39][40][41]. Thus the extraction of the 
most functionality from the fewest, simplest synapses is often a central focus for the neuromorphic 
engineer [42][43]. 

In the context of spiking neuromorphic systems the synapse serves three essential functions. The first is 
simply to form a connection from one neuron to the next. The second is to generate a memory of the 
input spike via the synaptic kernel and the third is to weigh this kernel such that when it is added to 
other similarly weighted synaptic kernels, the resulting summation, called the somatic membrane 
potential, is a useful signal, encoding functionally relevant information such as how well an input spatio-
temporal pattern matches those commonly seen in the past.  
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While the realization and use of these distributed kernel-based processing units has evidently been 
mastered by evolution, despite significant recent progress, our best engineered systems still find the 
large-scale realization of these three functions challenging. The first and simplest function of the 
synapse, that of acting as the connection between neurons represents the greatest hardware challenge. 
Limitations in network bandwidth or connectivity are often the most serious obstacles restricting full 
utilization of neuromorphic hardware resources. Innovative approaches such as time multiplexing [41] 
and Address Event Representation (AER) [44][45] can create virtual all-to-all connected networks, 
however, these advantages come at the expense of reduced operating speed. 

 
Figure 3. Comparison of neuromorphic implementations of synapto-dendritic kernels. The characteristics of realized 
Excitatory Post-Synaptic Potential (EPSP) kernels are computationally important just prior to being summed at the soma. These 
kernels represent the cost function used to translate the temporal error in spatiotemporal spike patterns at the synapse to the 
somatic membrane potential. Due to the large number of synapses neural network systems require, the complexity, 
functionality, and hardware cost of these kernels is a critical feature of neuromorphic spiking networks. a) An exponentially 
decaying kernel typically used for modelling synapses. Here the kernel response and thus the delay to the peak of the kernel is 
non adaptive (static) in response to inputs while the strength or weight of the kernel adapts as a result of learning. b) A 
simplified synaptic model with the kernel modelled as a binary delayed window. Here w is a binary zero or one weight. c) The 
SKAN model described in this thesis. Figure from [46]. 

The second function of the synapse, that of spreading an input spike’s energy over time can be realized 
via a range of synaptic kernels with varying levels of complexity, hardware cost and computational 
utility. Two extremes include an exponentially decaying kernel shown in Figure 3 (a) which is typically 
used to model biological synapses [24], and the simple delay learning approach with a binary kernel and 
a temporal tolerance window shown in Figure 3 (b) [47]. In the ideal synaptic model, a real-valued 
synaptic alpha function is multiplied by a real-valued synaptic weight with the later adapting to input 
spikes to model synaptic weight adaptation. However the cost of implementing this synaptic kernel in 
large numbers in digital hardware is substantial as it requires the realization of a multiplier at each 
synapse. In addition, the alpha function does not model the computationally useful peak delay 
adaptation effects observed in biology [48] which necessitates the realization of multiple synapses for 
learning arbitrary delays. 
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The third function of the synapse, that of weighing the kernel, requires another multiplication operation 
between the synaptic weight and the instantaneous value of the EPSP kernel. For real-valued synapses 
and kernels the hardware cost of this multiplication operation can be prohibitive [42]. At the other end 
of the spectrum, rather than implement complex synaptic weight adaptation, other neuromorphic 
implementations of spiking networks have focused on the adjustment of explicit propagation delays 
along the neural signal path to encode memory [47][49][50]. Here the energy of the spike is spread via a 
binary valued tolerance window as shown Figure 3 (b). This discarding of synaptic weights significantly 
simplifies implementation and allows more synapses to be realized. The down side is that explicit 
window-based delay learning schemes can produce “sharp” systems with lower tolerance for the 
dynamically changing temporal variance they inevitably encounter in applications where neuronal 
systems are expected to excel: noisy, dynamic and unpredictable environments [51]. In addition while 
use of these simplified kernels allow more synapses to be realized, limited network bandwidth can 
sometimes mean that these larger numbers cannot actually be fully utilized. 

The feature shared by all previously proposed neuromorphic models of spiking neural networks is that 
the synaptic kernels used for encoding temporal information are static. However recent advances in 
neurophysiology have revealed that synapto-dendritic structures which include the synapse, dendritic 
tree and dendritic trunk and their associated transfer functions are highly complex and adapt during 
learning in response to the statistics their stimulus environment [52]. Some of the earliest investigations 
of the input-output behavior of dendritic trees revealed them to be active computational elements 
exhibiting complex nonlinear operations such as ‘dendritic cluster sensitivity’ where excitatory synaptic 
inputs concentrated on particular regions of dendritic trees generate stronger neuronal response 
relative to diffuse excitation [53]. Over the next two decades advances in imaging and 
neurophysiological recoding techniques have enabled detailed investigation of dendritic spines which 
are small outgrowths residing on dendritic trees. Due to their critical position between synaptic inputs 
and the soma they are considered to be integral to neuronal processing and come in a variety of shapes, 
sizes and population densities suggesting a high level of functional diversity [54]. Dendritic spines have 
been shown to enhance cooperative interaction among multiple inputs, by enhancing interaction among 
co-active spines and increasing nonlinear integration at the dendritic tree [55]. Furthermore through 
NMDAR regulation of potassium channels dendritic spines enable localized modification of dendritic 
nonlinearities in response to correlated inputs  at the dendrite in a branch-specific manner [56]. The 
plasticity of dendritic spines in terms of density and shape has not only been shown to modify the 
transfer function from synapse to soma but also affect long and short term synaptic plasticity, as well as 
affect high level memory and cognition. In addition disorders in dendritic spine functioning have been 
implicated in psychiatric disorders [57]. 

These discoveries are significant in the context of the computational power of even single biological 
neurons. Whereas in the traditional neuron model synapto-dendritic structures functioned as simple 
weights and cables connecting one soma to the next, the recent findings have demonstrated a wide 
range of signal integration and processing occurring along the signal path, which confers considerable 
computational power to single neurons [58][59]. These effects represent novel dynamics with as yet 
unexplored emergent computational properties, which may potentially solve currently intractable 

13 
 



problems in computational neuroscience [60][61]. These dendritic adaptation effects have recently been 
modelled through large rule sets [62][63][64] and in the neuromorphic field the use of dendrites for 
computation is beginning to be explored [65][66][67][68]. However with biological realism as a major 
focus, many of the models carry significant extra complexity which can impede scalibity. In contrast 
while this work does not attempt to model the recently discovered neurophysiological mechanism 
underlying synaptic and dendritic adaptation mechanisms, it does utillize the underlying principle that 
when combined these effects can realize an arbitrary inter-neuronal transfer function with many 
degrees of freedom and that this adaptability can be leveraged for the implementation of more 
computationally efficient neuron designs.   
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Figure 4. The inter-neuronal transfer function is made up of many dynamic synaptic and dendritic couplings yet these 
couplings can be abstracted to a single adaptable transfer function or kernel which can be implemented efficiently in 
hardware. The simplification of inter-neuronal coupling as a single kernel significantly reduces hardware and connectivity 
requirements in comparison to modelling every synapse and dendritic tree. Although such a simple model discards a large 
amount of detail, the functionality of the neuron to learn and recognize spatio-temporal spike patterns is preserved. 

In this context, the Synapto-dendritic Kernel Adapting Neuron (SKAN) model, which is the focus of this 
thesis and is shown Figure 3 (c), uses fully adaptable yet simple accumulator based kernels.  Here it 
should be noted that the kernels of SKAN do not directly model individual synapses, which have kernels 
that are approximately static i.e. do not adapt their transfer functions. Prior to the recent discoveries of 
dendritic kernel adaptation, the standard neurophysiological model of spike pattern detection has been 
primarily that of synaptic efficacy adaptation through STDP in combination with random synaptic 
propagation delays, where the temporal relation of pre- and postsynaptic spikes determines the change 
in synaptic efficacy [69]. There have been many proposed STDP models such as the early models by 
Gerstner et al in the auditory system [70] as well as more complex triplet spike STDP [71]. These models 
and others have revealed important neuro-computational principles which arise as a result of STDP such 
as the tuning of neurons to the earliest spikes in a spike train [72]. As shown in Figure 4, the kernels of 
SKAN can be interpreted as simplified models of multiple synapses as well as the dendritic tree on which 
they reside, with the assumption that the function of the whole system is to create a mapping from the 
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afferents to the soma such that commonly presented spatio-temporal patterns are preferentially 
transmitted. While the kernel adaptation modelled in SKAN could potentially be approximated by a 
biologically realistic model of multiple synapses and dendrites under conventional STDP rules,  the SKAN 
model is an attempt to model the entire synapse to soma coupling system in as simplified and hardware 
amenable way possible while still preserving its functionality. The investigation of the SKAN model and 
its extension which form the basis of this thesis have been presented in [9] and [46] respectively. 

Chapter 2: SKAN at the single neuron scale 
The elements of SKAN and its learning rule are defined in this chapter. In the next chapter, the 
dynamical behaviors of SKAN are described. 

SKAN building blocks 
At the single neuron level, SKAN consists of a combined synapto-dendritic kernel adaptation and a 
homeostatic soma with an adapting threshold as shown in Figure 5. 

 

Figure 5. Schematic of the elements and information paths in a SKAN neuron. The input spikes (blue) trigger adaptable 
synapto-dendritic kernels (magenta) which are summed to form the neuron’s somatic membrane potential (cyan). This is then 
compared to an adaptive somatic threshold (red) which, if exceeded, results in an output pulse (green). The output pulse also 
feeds back to adapt the kernels. Note that in this chapter the synaptic weights (orange) are held constant and equal for all 
synapses. Also note that the back propagating signal does not travel beyond the synapto-dendritic structures of the neuron to 
previous neural layers. Figure from [9]. 

Synapse/Dendrite: 
An incoming input spike initiates a simplified synapto-dendritic kernel at each input channel i. This 
kernel is controlled by a physiological process, pi, and for simplicity is modeled as a ramp up and a ramp 
down sequence generated via an accumulator ri with step size ∆ri. An input spike triggers pi, starting the 
first phase where the accumulator ramps up at each time step ∆t by ∆ri until it reaches a maximum value 
wi which represents the synaptic weight, and which is kept constant throughout this chapter to simplify 
the algorithm. Note that in this work only positively weighted synapses are considered. After ri reaches 
wi, the process switches from the ramp up phase, pi=1, to a ramp down phase, pi=-1, which causes the 
accumulator to count down at each time step towards zero with the same step size ∆ri, until it reaches 
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zero, turning off the physiological process, pi=0. It will stay in this state until a new incoming spike re-
initiates the sequence. This simple conceptual sequence, which is analogous to a dendritically filtered 
neuronal EPSP, is illustrated in Figure 6. 

 

Figure 6. The simplified adaptable synapto-dendritic kernel of SKAN. An input spike (blue) triggers the kernel’s ramp up ramp 
down sequence. The input spike sets a flag pi representing a physical process to one (green). The flag causes an accumulator 
(magenta) to count up from zero by ∆ri at each time step until it reaches wi (constant orange dotted line), after which the flag is 
set to negative one, which causes the accumulator to count back down to zero, at which point the flag returns to zero 
completing the sequence. The value of the accumulator represents the synapto-dendritic kernel, i.e., the post-synaptic 
potential, which travels to the soma and is summed with other kernels to produce the somatic membrane potential. Figure 
from [9]. 

The state of the ramp up ramp down flag sequence is described by Equation 1: 

Equation 1: 

 

The w parameter in SKAN has similarities to the weight by which a synaptic kernel is multiplied in 
standard synaptic STDP neuron models and neuromorphic circuits, but with the advantage of not 
requiring any multipliers, which are otherwise required at every synapse in hardware implementations. 
The adjustment of w in SKAN, via standard synaptic STDP schemes would allow synaptic prioritization 
and/or the closing off of inactive or noisy channels. The combined effects of dendritic structure and 
synaptic weight plasticity has only recently begun to be explored, but early evidence points to significant 
computational power of such a combined system [73]. In this chapter, however, in order to clearly 
demonstrate the stand-alone capabilities of SKAN’s synapto-dendritic kernel adaptation mechanism, the 
synaptic weight parameter of w is held constant and is identical for all synapses. In chapter 4, we 
explore the consequences of allowing w to be learned. 
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Soma: 
At the soma the synapto-dendritic kernels are summed together. This summed term is analogous to the 
membrane potential of a biological neuron. Along with the membrane potential the soma uses a 
dynamic threshold voltage parameter Θ(t) and as long as the membrane potential exceeds threshold, 
the soma spikes, setting the binary s(t) from 0 to 1 as described in Equation 2: 

Equation 2 

 

SKAN differs from most previous spiking neuron models in not resetting the membrane potential after 
spiking (see [18], [74] for exceptions). This permits wide pulse widths at the neuron output s(t). While 
such wide pulses do not resemble the canonical form of the single spike, they are analogous to 
concentrated spike bursts and play a significant part in the functioning of SKAN. The wide pulses which 
result from not resetting the membrane potential allow multiple learning events per input spatio-
temporal pattern as opposed to the single learning event which would occur if the membrane potential 
was reset at the onset of the output spike.  

Kernel and threshold adaptation: 

Synapto-dendritic kernel slope adaption 
One of the central elements of SKAN is the feedback effect of the output pulse s(t) on each of the 
synapto-dendritic kernels. Here s(t) is analogous to the back propagating spike signal in biological 
neurons which travels back up the dendrites toward the synapses and is responsible for synaptic STDP. 

The logic of the kernel adaptation rule is simple; if a particular dendrite is in the ramp up phase pi =1 and 
the back propagation signal s(t) is active, the soma has spiked and this particular kernel is late to reach 
its peak, meaning that the other kernels have cooperatively forced the membrane potential above the 
threshold while this kernel has yet to reach its maximum value wi. In response, the ramp’s step size ∆ri is 
increased by some small positive value ddr for as long as the output pulse is high (s(t)=1) and the kernel 
is in the ramp up phase. Similarly if a kernel is in the ramp down phase pi =-1 when the back propagation 
signal is high, then the kernel peaked too early, having reached wi and ramping down before the 
neuron’s other kernels. In this case the ramp step size ∆ri is decreased by ddr. Equation 3 describes this 
simple kernel adaptation rule: 

Equation 3 

 

The use of indirect evidence about the dynamic state of other dendrites in the form of the back 
propagating spike is a central feature in the operation of SKAN and enables the synchronization of all the 
neuron’s dendritic kernel peaks as shown in Figure 7. 
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Figure 7. The adaptation of SKAN. The kernels and the threshold of SKAN adapt in response to repeated spatio-temporal 
pattern presentations. For visual clarity the pattern only consists of the Inter-Spike Interval (ISI) across two input channels ui(t) 
such that the pattern width (PW) is equivalent to the ISI. By the third presentation of the pattern the kernels have captured the 
ISI information. With each subsequent presentation the threshold Θ(t) increases making the neuron more selective as the 
kernel step sizes ∆ri(t) increase making the kernels narrower. As a result each pattern presentation increases the neuron’s 
confidence about the underlying process producing the ISI’s, narrowing the neuron’s receptive field around the target ISI and 
producing a smaller output pulse s(t) until, by the 11th presentation (t=2300 ∆t), the Θrise during the output spike and Θfall 
balance each other such that the Θbefore ≈ Θafter. The soma output spike s(t) is now a finely tuned unit delta pulse which indicates 
high certainty. When the membrane potential returns to zero, the neuron’s threshold falls as indicated by the grey circle at the 
top left of the figure. Figure from [9]. 

Threshold adaptation 
The threshold of SKAN is adaptive and changes under two conditions: when the neuron outputs a spike 
and when the membrane potential returns to zero. 

At every time step during an output pulse s(t)=1 the threshold increases by Θrise. This increase in the 
threshold is analogous to the frequency adaptation effect seen in neurons, which creates a feedback 
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loop reducing the ability of the neuron to spike. Similarly in SKAN, the higher threshold reduces the 
likelihood and duration of an output pulse. This effect is shown in Figure 7 and is described in the first 
line of Equation 4. 

Equation 4 

 

The post spike decrease in threshold Θfall operates in opposition to the Θrise term. The returning of the 
membrane potential Σri (t) to zero causes a decrease in the threshold by Θfall as described by the second 
line of Equation 4 and shown in Figure 7. The counter balancing effect produced by the Θfall and Θrise in 
SKAN is a highly simplified version of the complex mechanisms underlying spike-threshold and 
frequency adaption in biological neurons [75], [76], where excited neurons eventually reach an 
equilibrium state through homeostatic processes such that the average spike frequency of neurons with 
a constant input tends asymptotically toward a non-zero value as t→∞.  

This simple rule set describes all the elements of a single SKAN. 

 

Single SKAN Dynamics 
In this section the dynamics emerging from SKAN’s rule are discussed for the single neuron case.  

 Detecting the onset of a spike or burstAs described in the first line of Equation 1 the ramp up phase of 
the kernel at channel i is only initiated if a spike arrives at the channel (ui=1) while and the kernel is 
inactive (pi=0). As a result while the ith kernel is active no further input spikes are observed. This has the 
effect that each input channel adapts its kernel to the leading spike in a spike train or burst. For the case 
where the spike train or burst is of shorter duration than the total duration of the kernel, the behavior 
of the neuron is identical to one where the burst is replaced by a single input spike arriving at the start 
of the burst. The effect of more general Poisson noise spikes is described later in this section. 

Selecting to learn the commonest spatio-temporal patterns 
As a single neuron, SKAN has previously been shown to select and learn the most common spatio-
pattern presented in a random sequence containing multiple patterns [77]. This effect has been 
demonstrated in the context of visual processing where hand gestures were transformed to spatio-
temporal patterns via a neuronal transform operation [78] and processed by SKAN [79]. Figure 8 shows 
the performance of a four input neuron as a function of spatio-temporal pattern probability. The graph 
shows that the neuron’s selection of commonest pattern is significantly above chance such that for 
sequences with P(x)>0.85 only the more common pattern will selected. 
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Figure 8. Commonest pattern selection as a function of pattern presentation probability. The inset illustrates one simulation 
of a 5 pattern long sequence where each pattern is sampled from two randomly initialized spatio-temporal patterns x and y, 
with probability P(x)=0.6. In this particular simulation pattern x was selected by the neuron. The plot shows the percentage of 
simulations where the neuron selected pattern x, as a function of its presentation probability P(x)=0.5 to 1. The result shows 
that the likelihood of a pattern being selected rises with increasing presentation probability. For each simulations the neuron 
received a sequence of 300 pattern presentation and the output of the neuron for the second half of the sequence (150th - 300th 
pattern) was recorded. If during the second half of the sequence the neuron spiked if and only if pattern x was presented the 
neuron was deemed to have selected the pattern. Figure from [9]. 

SKAN response time improves with adaptation without information loss 
In addition to the kernel adaptation and increasing threshold effect, the response time of SKAN, i.e., the 
time from the last arriving input spike in a pattern to the neuron’s output spike, decreases with every 
pattern presentation as shown in Figure 9. In STDP schemes the earliest spikes in a spatio-temporal 
pattern tend to be highly weighted while the later spikes have little effect on recognition [84]. This 
behavior can be seen as advantageous if an assumption is made that the later input spikes carry less 
information however in this is an assumption that cannot be made in general. For spatio-temporal spike 
patterns where late spikes carry relevant information the exponential decay of the STDP curve means 
this later information acquires a lower synaptic weight and is in effect ignored regardless of information 
content. In contrast SKAN’s adaptable kernels reduce output spike latency with adaptation while still 
enabling every spike to affect the output equally. This effect proves critical in the context of a multi-
SKAN competitive network, where the best-adapted neuron is also always the fastest neuron to spike. 
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Figure 9. Narrowing of kernels leads to improved response time during neuronal adaptation in a two input neuron. For visual 
clarity the neuron is presented with an ISI=0∆t pattern and the two kernels start with identical initial slopes (∆r1(0) = ∆r2(0) = 
∆rbefore). In the region under the output pulse, r(t) is the second integral of the constant ddr and therefore follows time 
symmetric parabolic paths (a) and (b) as it rises and falls. However due to the threshold rise which also occurs during the output 
pulse, the output pulse is not symmetric around the r(t) peak, such that the parabolic ramp down phase (b) is shorter than the 
parabolic ramp up phase (a). As a result of this asymmetry ∆rafter is larger than ∆rbefore. This effect increases the kernel’s slope ∆r 
with each pattern presentation, narrowing the kernels until ∆r reaches ∆rmax. As a result of this narrowing, the response time of 
the neuron from last arriving input spike to the rising edge of the output, which is T1 in the first presentation, improves until it 
reaches its minimal possible value T∞ ≈ w /∆rmax. Figure from [9]. 

As shown in Figure 9, the combination of the kernel and threshold adaptation rules of SKAN increases ∆r 
and decreases the response time between the last arriving input spike and the rising edge of the output 
spike with each presentation.  If this increase is left unchecked ∆r will increase until it equals w at which 
point the kernels take the shape of a single pulse such that T∞ =1∆t. To prevent this ∆r must saturate at 
∆rmax as shown in Figure 9 with ∆rmax limited by Equation 5. This restriction ensures that the kernel of the 
first spike in an input pattern cannot return to zero before the last spike in the pattern arrives enabling 
all kernels to converge due to feedback from the same output signal. 

 

Equation 5 

∆rmax < w / PW 
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where PW is the maximal pattern width of the target pattern. 

Evolution of the temporal receptive field in SKAN 
Recent work has demonstrated the connection between synaptic weight adaptation and approximate 
probabilistic inference in the context of rate coding and spiking networks [80], [81], [82], [83], [84], [85], 

[86], [87], where typically the state of binary hidden variables are inferred from noisy observations using 
a large number of neurons. In this section we show that synapto-dendritic kernel adaptation enables a 
single neuron to make statistical inferences not about binary hidden variables but about hidden inter-
spike interval (ISI) generating processes. Note that in this context the inter-spike intervals may be 
negative indicating a reversed spike order.  Figure 10 illustrates the evolution of the temporal receptive 
field of a neuron with two inputs as the neuron attempts to learn the statistics of an underlying process 
that produces ISIs with linearly increasingly temporal jitter i.e. an ISI generating process with a Gaussian 
spike time probability distribution function whose variance increases linearly over time. The receptive 
field of the neuron describes the amount by which the membrane potential Σri (t) exceeds the threshold 
Θ(t) as a function of the input spike pattern times of ui(t). For the simple two input case illustrated, the 
receptive field is a scalar function of the one-dimensional ISI. In order to calculate the receptive field, 
following each pattern presentation the neuron’s new parameters (∆ri and Θ) were saved and the 
neuron was simulated repeatedly using these saved parameters for every possible ISI given the 
maximum pattern width PW. For each simulation the summation in Equation 6 was calculated at the end 
of the simulation resulting in the receptive fields shown in Figure 10. 

 
Equation 6 

 

where τ is the ISI being simulated. 

The ISI at which the receptive field expression above is at its maximum (RF Max) indicates the ISI for 
which the neuron is most receptive and may be interpreted as the ISI expected by the neuron. Similarly 
the ISI boundary where the receptive field expression goes to zero is the limit to the range of ISI’s 
expected by the neuron. An ISI falling outside the receptive field boundaries results in no spike and no 
adaptation but simply reduces the neuron’s confidence and can be viewed as outlier. 
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Figure 10. Tracking a hidden ISI producing process and its variance. All three panels (a, b and c) show different aspects of the 
same simulation where a single SKAN learns statistics of a dynamic ISI across two input channels. a) A hidden process (blue) 
moves from ISI=-20 ∆t to ISI=0 ∆t. The process begins with no temporal jitter noise, such that the observed ISI’s (black dots) 
equal the hidden process (σ=0 ∆t) and the blue hidden process is covered by the observed black dots. At t=0, the sum of the 
neuron’s randomly initialized kernels peak at ISI=6 ∆t. As the kernels adapt and capture the ISI information, the receptive field 
maximum (red line) converges on to the observed ISIs. This causes the threshold to rise shrinking the receptive field to a 
minimum size (left inset t = 9.9 k∆t). At this stage receptive field boundaries (pink lines) lie very close on either side of the 
hidden process’ mean value. As the simulation continues the noise in the ISI producing process is deliberately increased linearly 
with time. The neuron continues to follow the process but with every spike that doesn’t land on the receptive field maximum 
the threshold falls slightly which increases the receptive field size and increases the neuron’s receptivity to ever more unlikely 
observations (right inset t=138.9 k∆t). b) Variables and behavior of the neuron throughout the simulation: after a rapid initial 
increase the threshold Θ(t) settles near the peak of the membrane potential Σri(t). As the noise increases linearly the threshold 
begins to fall gradually. Missing output spikes in the s(t) spike train correspond to input spikes that have landed outside the 
receptive field boundaries. c) The output pulse width (green = observed, red = running average) increases with increasing signal 
noise. As with the receptive field size, the output pulse width is initially large. As more patterns are observed, the threshold 
rises and settles just below the peak of the membrane potential and the pulse width reaches a minimum width of 1-2 ∆t. At this 
low noise level (σ ≈ 0.5 ∆t) there are no missing outputs, such that all pulse widths are above zero. As the noise increases, more 
ISIs land away from the receptive field maximum and some fall completely outside the receptive field, decreasing the threshold, 
which results in wider output pulse width whenever observed ISI’s do land near the receptive field maximum. The dashed 
magenta line tracks the mean spike width, which also increases with noise. This illustrates that the mean output pulse width of 
SKAN is a reliable correlate of input noise level. Figure from [9]. 

Figure 10 a) shows SKAN’s receptive fields tracking the statistics of a moving ISI generating process with 
dynamic noise levels with a high level of accuracy such that the blue line indicating the hidden process is 
barely visible from under the red line marking the receptive field maximum. Figure 10 c) shows the 
neuron transmitting wider output or bursts with increasing noise. In addition, increasing ISI noise causes 
a growing gap between the envelope of the pulse widths and the running average of the pulse widths. 
This increasing gap is critical to the operation of the neuron, as it is caused by missed pattern 
presentations, i.e., patterns that produce no output pulse because of the presented noisy pattern being 
too dissimilar to the one the neuron has learnt and expects. The effect of a missed pattern is a fall in the 
neuron’s threshold by Θfall. When presented with noiseless patterns this fall would be balanced almost 
exactly by the threshold rise due to the Θrise term in Equation 4 during the output pulse. However, 
without the output spike there is a net drop in threshold. Yet this lower threshold also makes the 
neuron more receptive to noisier patterns creating a feedback system with two opposing tendencies 
which: 

1. Progressively narrows kernels around the observed input pattern while shrinking the neuron’s 
receptive field by raising the threshold.  

2. Expands the receptive field in response to missed patterns by reducing the threshold while 
allowing the kernels to learn by incorporating ever less likely patterns. 

The balance between these two opposing tendencies is determined by the ratio Θrise:Θfall, which controls 
how responsive the neuron is to changing statistics. With a stable noise level SKAN’s dynamics always 
move toward an equilibrium state where the neuron’s tendency to contract its receptive field is 
precisely balanced by the number of noisy patterns not falling at the receptive field maximum. This 
heuristic strategy results in the receptive field’s maximum and extent tracking the expected value of the 
input ISI’s and their variance respectively as shown in Figure 11. 
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Figure 11. Evolution of SKAN’s receptive field in response to input. a) Total resultant change in SKAN’s receptive field after 
multiple pattern presentations. b) SKAN with a small initial receptive field which does not match the ISI distribution. The input 
spike lands outside the receptive field boundaries. c) As more ISI’s fall outside the small receptive field the threshold falls and 
the receptive field expands, but without shifting the position of its maximum value. d) An ISI just falls on to the greatly 
expanded receptive field producing an output spike. e) The output spike causes the SKAN kernels to adapt shifting the receptive 
field toward the true position of the underlying process. f) As more and more ISI’s fall closer to the receptive field maximum 
wider output pulses are produced which adapt the kernels faster shifting the receptive field more rapidly while the resultant 
rise in the threshold contracts the receptive field. With enough observations the receptive field would eventually become 
centered on the input ISI distribution with the receptive field boundaries tracking the ISI’s distribution. Figure from [9]. 

Learning in the presence of Poisson spike noise and missing target spikes  
In addition to robustness to temporal jitter in the input pattern an important feature of neural systems 
is their performance in the presence of Poisson spike noise. Recent work has highlighted that unlike 
most engineered systems where noise is assumed to degrade performance, biological neural networks 
can often utilize such noise as a resource [88], [89], [90]. In the neuromorphic context the performance 
of neural network architectures in the presence of noise is well documented [51], [91], [92]. To test 
SKAN’s potential performance in stochastic real world environments, the combined effects of extra 
noise spikes as well as missing target spikes needs to be tested. Figure 12 illustrates how different signal 
to noise ratios can affect SKAN’s ability to learn an embedded spatio-temporal spike pattern. 
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Figure 12. Learning spatio-temporal spike patterns in the presence of both Poisson spike noise and missing target spikes. 
Panel (a) shows the presentation of seven patterns in the middle of a simulation sequence with a noiseless environment. The 
kernels are highly adapted (∆r2 = ∆rmax), the threshold is high and the output spikes are narrow indicating high certainty. Panel 
(b) shows the result of a final noiseless test pattern at the end of the simulation showing in detail that the kernels resulting 
from the test pattern peak at the same time. Panel (c) shows the same interval of the same simulation as panel (a) but with a 
1:1 signal to noise ratio where the probability of a target spike being deleted is half or P(signal)=0.5 and the Poisson rate is also 
half such that P(noise) = 0.5/T. Panel (d) shows the result of a noiseless test pattern presentation at the end of the simulation. 
The increased level of noise has resulted in an incorrect ramp step (∆r2) such that the r2 kernel peaks slightly late (black arrow). 
Panel (e) shows a simulation with a 1:2 signal to noise ratio. Panel (f) shows that the high noise level has resulted in slight 
misalignment of all four kernels. Figure from [9]. 
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To quantify the performance of SKAN in the presence of Poisson noise and missing target spikes a series 
of simulations each comprising of two thousand pattern presentations were performed. At the end of 
each simulation the RMS error between the neuron’s receptive field maxima and the random target 
pattern was measured and is shown in Figure 13.  

 

Figure 13. RMS error between receptive field maxima and target spike patterns as a function of spike signal to noise ratio. 
The three bottom panels show the spike probability distributions at three points along the SNR axis. The signal spikes (blue), 
missed spikes (grey), and noise spikes (red) are illustrated for the three cases of 1:0, 1:1 and 1:2 signal to noise ratios. The mean 
spike rate was maintained at 1 spike per channel per time period between pattern presentations T. At the completion of a 
simulation with one thousand pattern presentations the RMS error between the resulting receptive field maxima and the target 
spatio-temporal pattern was calculated. As the plot illustrates the error increases with noise and simulations of neurons with 
more input channels resulted in higher error. Figure from [9]. 

These results in this chapter show that even with the presence of significant corruptive environmental 
noise (additive noise spikes as well as non-target patterns), and noise in the signal (temporal noise in the 
signal as well as missing spikes), the neuron is able to develop a robust model of the target spatio-
temporal spike pattern. 
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Chapter 3: SKAN at the network scale 

Multi-SKAN classifier 
In order to extend a single learning neuron to a classifier network it is important that different neurons 
learn different patterns. Ideally a neuron in a layer should not be in anyway affected by the presentation 
of a pattern that another neuron in the same layer has already learnt or is better placed to learn. 

As outlined in Equation 3, SKAN adapts its kernels only during an output pulse. This rule is particularly 
conducive to competitive learning such that the simple disabling of the neuron’s spiking ability disables 
all learning. Whereas previously proposed algorithms utilize multi neuron Winner-Take-All layers with 
real valued rate based inhibitory signals to prevent correlated spiking and maximize the network 
learning capacity [93], [94], in a SKAN network a simple global inhibitory OR gate serves the same 
function. The reason a simple binary signal can be used here is that in a SKAN network the best-placed 
neuron for any pattern will be the fastest neuron to spike. This allows a layer of neurons with shared 
inputs to learn to recognize mutually exclusive spatio-temporal patterns. To this end, Equation 2, 
describing the neuron’s output, is replaced by Equation 7 (underlined terms added). The addition of a 
global decaying inhibitory signal as described in Equation 8, act on all neurons to disable any rising edge 
at the output. This means that neuron n can only initiate an output spike sn if no other neuron has 
recently spiked, i.e., the inhibitory signal is inactive (inh(t-1)=0) and it can only continue spiking if it was 
already spiking in the last time step (sn(t-1)=0). 

Equation 7 

 

Equation 8 

 

As shown in Figure 14 and described in Equation 8, the inhibitory signal is realized via an OR operation 
on the output of all neurons, and a decaying behavior which keeps the inhibitory signal active for a 
period of time after a neuron has spiked to prevent spiking by other neurons. After the output spike 
ends, this feedback loop decays from inhmax by inhdecay at each time step until reaching zero at which 
point the global inhibitory signal turns off allowing any neuron to spike. As shown in Figure 14 the decay 
only begins at the end of the pulse making the inhibitory signal operate as a global peak detector which 
stays at inhmax for the duration of the pulse, ensuring that the inhibitory signal robustly suppresses 
spiking activity for a wide range of potential output pulse widths. 
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Figure 14. A single global decaying inhibitory signal suffices to push apart the neurons’ receptive fields and decorrelate the 
spiking of the SKAN network. Left panel shows the network diagram of four neurons with an inhibitory signal. The decay 
feedback loop extends the duration of the inhibitory signal beyond the initial triggering spike via the inh(t) signal using a 
counter and a comparator in the decay block. The right panel shows the simulation results from a two input two neuron 
network learning to classify two ISI’s x and y. The sum of the randomly initialized kernels of neuron one (dashed) happen to 
peak earlier than neuron two (solid) so that neuron one fires first in response to the first pattern (x with ISI=0 ∆t). During this 
first output pulse neuron one’s threshold rises sharply reducing its receptivity, while its kernel step sizes adapt towards each 
other such that ∆r1,1 ≈ ∆r1,2. Meanwhile the inhibitory signal blocks neuron two from spiking when its kernel sum exceeds its 
threshold only a few time steps after neuron one, which means the neuron is prevented from adapting to pattern x. At the 
second pattern presentation pattern y is shown (ISI=10 ∆t).  For this pattern the sum of the kernels of the second neuron, still 
unchanged from their random initialization, reach that neuron’s threshold slightly earlier than neuron one and so neuron two 
spikes and begins adapting to pattern y. A subsequent presentation of pattern x again triggers neuron one and the kernels of 
the two neurons increasingly fine tune themselves to their respectively chosen pattern as with each presentation their 
thresholds rise.  This fine-tuning process reduces the receptivity of the neurons to each other’s patterns. Figure from [9]. 

As with the single neuron output rule, the single neuron threshold adaptation rule of Equation 4 can be 
modified to Equation 9 (underlined terms added) to utilize the global inhibitory signal for the multi-
neuron case. This modification prevents a neuron’s threshold being affected by the presentation of 
patterns that another neuron is better adapted to. The addition of the underlined terms in the first line 
of Equation 9 means that a neuron’s threshold can only rise when its membrane potential exceeds its 
threshold and the inhibitory signal is not already active, or if the neuron itself spiked in the previous 
time step. The fall in the threshold is similarly conditioned on the neuron having spiked before the global 
inhibitory signal was activated, such that only the very best adapted neuron, i.e., the one that generated 
the inhibitory signal in the first place, adapts its threshold.  

Equation 9 
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Such a global inhibitory signal has been utilized in LIF neurons [95], [96] and synaptic weight STDP 
neurons  as a means of decorrelating neuronal firing patterns [97], [98]. Here, however, its use is subtly 
different from both. Although in LIF and synaptic STDP architectures and in SKAN a global inhibitory 
signal results in the decorrelation of output spikes, in the purely synaptic weight adapting schemes the 
neuron’s response time remains static and does not improve with adaptation and in the LIF networks 
[95], [96] there is no lasting adaptation at all. SKAN’s improved response time due to kernel adaptation 
and the global inhibitory signal realize a positive feedback mechanism absent in previous models. In a 
SKAN network a neuron’s small initial advantage for a pattern results in a slightly earlier output spike. 
This output spike globally inhibits all other neurons, which in turn results in exclusive adaptation to the 
pattern by the first spiking neuron. This further improves that neuron’s response time for the pattern 
and increases the likelihood of the neuron being the first to spike due to a subsequent presentation of 
the same pattern, even in the presence of temporal jitter. Thus, the adaptation of SKAN’s kernels and 
thresholds, together with the global inhibitory network, mean that the neuron whose initial state is 
closest to the presented pattern will be the first to respond and prevent all other neurons adapting to 
this pattern. This effectively “hides” the pattern from the other neurons and allows unsupervised spike 
pattern classification by the network as whole as demonstrated in the proceeding results sections. 

There are two important constraints adhered to by the preceding modification of the SKAN rules. The 
first constraint is that the required connectivity does not increase combinatorially with the number of 
neurons as described in Equation 10 since the only feedback path is from the single global inhibitory 
signal. 

Equation 10 

total connections = (number of input channels + 2) × number of neurons 

 The second constraint is that no complex central controller is required for arbitration between the 
neurons. In competitive neural network schemes where a neuron’s fitness is expressed as a real value 
from each neuron to a Winner-Take-All network, multiple bits (connections in hardware) are required to 
transport this information. Alternatively rate based systems encode such real valued signal over time in 
their spike rate which are then utilized by a corresponding rate based Winner-Take-All system. But in 
SKAN these requirements are reduced. Since a neuron’s latencies correlates with its adaptation to a 
target pattern, the neurons do not need to report a real value but only a single bit. This mode of 
operation can be interpreted as either a connectivity saving or as a speed saving with respect to 
alternative multi-bit or rate based systems respectively. Furthermore because of the robustness of the 
system, checking for, or prevention of, simultaneous output spikes is not necessary. Random initial 
heterogeneities in the neurons’ parameters and/or noise in their signals is enough to eliminate the need 
for central control by pushing the neurons away from input space saddle points toward their stable non-
overlapping receptive fields.  

Online unsupervised spatio-temporal spike pattern classification 
In the following sections the classification performance of SKAN is tested in several ways. For these tests 
equally likely spatio-temporal spike patterns, each with one spike per channel per presentation were 
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presented in random sequences to the SKAN network. Table 1 details the parameters used in all the 
tests. These parameters were deliberately chosen for non-optimized performance so as to try to mimic 
the use of the system in the wild by a non-expert user. Examples of available optimizations include: 
higher ddr values which result in faster converging systems, reduced Θrise /Θfall ratio for improved 
robustness to noise, increased ∆rmax /∆ri,n(t=0) ratio and increased pattern widths for enhanced pattern 
selectivity.  

Parameter Value Description 
ddr 1 Change in the kernel step size. Higher value results in 

faster adaptation; lower values are more robust to noise. 
w(rmax) 10000 Maximum kernel height (Synaptic weight). 
rmin 0 The kernel signal r(t) saturates at zero. 
∆ri,n(t=0) 100×(1+ rand) Initial kernel step size (For each input i to each neuron n). 

The randomized initialization allows different neurons to 
learn different patterns. 

∆rmax 400 Maximum kernel step size. 
ri,n(t=0) 0 Initial kernel value. 
Θrise 40 × inputs Rise in threshold during output spike, where inputs is the 

number of input channels per neuron. 
Θfall 100× inputs Fall in threshold due to input spikes, where inputs is the 

number of input channels per neuron. 
inhmax 100 Initial value of the inhibitory countdown . 
inhdecay 1 Step size of the inhibitory countdown. As a rule of thumb 

use: inhmax/inhdecay= min(∆ri , n (t=0)). 
T 400 ∆t Time between pattern presentations 

Table 1. Parameter values used for all SKAN results. 

1-to-1 neuron to pattern allocation 
Through temporal competition a local network of mutually inhibiting SKANs can efficiently distribute 
limited neural resources in a hardware implementation to observed spatio-temporal patterns as is 
demonstrated in Figure 15.  
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Figure 15. Convergence toward a stable one to one neuron to pattern allocation as a function of neuron/pattern numbers 
and number of pattern presentations for a 1-to-1 two input neuron to pattern allocating network. As the number of 
patterns/neurons increases the system requires longer pattern sequences to correctly allocate exactly one unique pattern to 
each neuron. The inset shows the five consecutive correct classifications of four patterns by four neurons. Figure from [9]. 

Similar to biological systems, in a SKAN network there is no supervisor switching the network from a 
training mode to a testing mode so there is no distinction between learning and recognition. Thus to 
test the network’s performance 1000 simulations were generated for each instance of the network, with 
up to 800 pattern presentations each. The network was considered to have converged to a stable 
solution when twenty consecutive patterns were correctly classified by the network, i.e., with a single 
neuron responding per spatiotemporal pattern. This is illustrated in the inset of Figure 15. Correct 
classification was defined as the case where a neuron spikes if and only if its target pattern is presented 
and where the neurons consistently spike for the same learnt target pattern. Also, a single neuron 
should spike once for each input pattern and no extra output spikes occur. The percentage of 
simulations that had not converged to correct classification was recorded as a function of the number of 
patterns presented, and is shown in Figure 15. Simulations were terminated once a network had 
converged. The number of consecutive patterns was chosen as twenty to reduce the likelihood that the 
observed “correct” response of the network was due to chance. 

Classification performance as a function of spatio-temporal pattern dimension. 
The problem of coordinating multiple synapses for unsupervised neuronal classification in spiking neural 
network models, whether through simply learning synaptic weights or through more complex pathways, 
is difficult [99]. In SKAN the hybrid synapto-dendritic kernel adaptation produces convergence profiles 
shown in Figure 16. These results show how the convergence profiles of SKAN change with the number 
of active input channels. Additionally, the right panel in Figure 16 shows the effect of increasing the 
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resolution of the spatio-temporal pattern. Doubling the number of time steps in the maximal width of 
the target pattern PW, results in improved convergence profiles. 

 

Figure 16. Convergence rates as a function of input channel dimension and pattern width. Left panel: two random target 
patterns (light and dark bars) of maximal pattern width PW = 20 ∆t and of dimensions 2, 4, 8 and 16, were presented at random 
to a two neuron network, with the convergence of simulations plotted over the number of presentations. Right panel: the same 
test with maximal pattern width PW = 40 ∆t. Figure from [9]. 

Classification in the presence of temporal noise 
In order for SKAN to operate as an effective classifier competing neurons must balance the 
requirements of selectivity and generalization. In the spatio-temporal context, generalization takes the 
form of temporal jitter noise. In this context neurons must recognize patterns closest to their learnt 
target pattern despite the presence of temporal noise, while not recognizing other similarly noise 
corrupted patterns that are closer to the target patterns learnt by other neurons. Furthermore, the 
neurons should not expect the learning phase to be any less noisy than the testing phase or even for 
there to be any such distinct separation between learning and recognition. As well the neurons should 
maintain their correct learning and recognition behavior across a wide range of noise levels and they 
should ideally do so without the requirement for external adjustment of their parameters. SKAN satisfies 
all these requirements. The classification performance of SKAN is robust to temporal jitter noise as 
illustrated in Figure 17 where two neurons with shared inputs attempt to learn the statistics of two 
noisy but distinct ISI generating processes. 
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Figure 17. Convergence as a function of temporal noise and pattern presentations in a two neuron network with two input 
channels. The insets illustrate selected noise distributions relative to the maximal pattern width (PW = 20 ∆t). The left panel 
shows convergence profiles due to temporal noise distribution with standard deviation σ = 0-1 ∆t. At lower noise levels the 
convergence profile is approximately the same or faster (red) than the zero noise case. The right panel shows the same for σ ≈ 
1-3 ∆t. Figure from [9]. 

Because of the constant adaptation of the neurons, moderate levels of temporal noise with standard 
deviation up to σ =0.25 ∆t, which is 1/80th of the pattern width, either do not affect or actually improve 
SKAN performance. With high temporal noise levels, i.e., with a standard deviation that is 1/20th the 
width of the pattern (σ=1 ∆t), the convergence profile is still similar to that of the noiseless case. Such 
levels of temporal noise can disable a conventional processor and even some neural networks. Even at 
the extreme, with noise that has a standard deviation more than 1/7th of the pattern width, some 
simulations still result in the neurons correctly classifying the separate ISI sources. 

As a temporal coding neuron model, the robustness of SKAN to temporal noise shown in the previous 
results is critical for potential real-world applications, where the ability to operate (and degrade 
gracefully) in noisy, dynamic environments is favored over ideal performance in ideal noise free 
circumstances. Furthermore the fact that the model maps neurons and spatio-temporal patterns in a 
one to one manner allows implementation of small yet robust single layer spiking networks in hardware.  
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Chapter 4: SKAN and STDP 

Synaptic weights as independent encoders of input noise 
As detailed in the previous chapter in addition to SKAN’s kernel adaptation, which captures the temporal 
information of input spatio-temporal spike patterns, the neuron’s threshold also adapts: At every time 
step during an output pulse the threshold rises and every time the membrane potential returns to zero 
the threshold falls. As the neuron spikes more, its threshold rises, making the neuron ever more 
selective for the pattern that triggered it and narrowing its spatio-temporal receptive field. Conversely, 
unrecognized input patterns, which do not cause an output spike, reduce the threshold, making the 
neuron more receptive to new patterns. Through this feedback mechanism the neuron automatically 
maintains a balance between selectivity and generalization in response to the statistics of its 
environment.  

In this way the threshold level of SKAN is an encoding of the overall input noise. However this means 
that the neuron model has only a single measure for the noisiness of its inputs and thus implicitly 
assumes that all its inputs have an equal noise level. This assumption can indeed be made in many 
applications yet there are also circumstances where the heterogeneity of input noise is significant. An 
illustrative example is an event based neuromorphic experimental camera such as the event based 
Dynamic Vision Sensor (DVS) camera [100] where a very small number of pixels  <1% can have a very 
high rate of Poisson corrupted spikes. These noisy inputs and their erroneous high activity can play 
havoc with downstream event based tracking and recognition algorithms. In such an application an 
unsupervised feature extractor that was also able to weigh its input channels based on their signal to 
noise ratio is useful. This serves as a motivation for and test of the augmentation of SKAN with a 
simplified Spike Timing Dependent Plasticity (STDP) rule. By augmenting SKAN with STDP the neuron 
model is enhanced so that each synapse adapts independently to its own noise environment with 
noisier input channels acquiring a lower synaptic weights and noiseless inputs acquiring higher synaptic 
weights. Results show that this system significantly outperforms the statically weighted SKAN model in 
environments where the inputs have different noise levels. 
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Simplified weight update rule 
 

 

Figure 18. Comparison of the classical STDP synaptic weight update curve with simplified kernel based STDP. a) In the 
classical STDP update rule, a synapse has its highest weight increase if it receives a presynaptic input spike just prior to a 
postsynaptic output spike. Conversely a postsynaptic output spike that precedes a presynaptic input spike causes the greatest 
decrease in synaptic weight. Both effects decay with longer inter-spike intervals. b) In the simplified model used in this thesis, 
the adaptable EPSP kernel not only learns the commonest pre/post synaptic spike interval, but also doubles as a flag that 
enables the increase in synaptic weights in the event of a postsynaptic spike. Figure from [46]. 

In biology the rules governing synaptic weight adaptation vary enormously both in degree and in type 
across species, brain regions, synapse types, cell types, within individual cells, over short time scales, 
and as a function of organism development [101]. However, the STDP rule shown in Figure 18 (a) is by 
far the best studied synaptic plasticity rule in neuroscience today due to its reproducibility and 
neurocomputational utility in selectively strengthening synapses such that given a large enough number 
of heterogeneous synapses with different intrinsic delays, any arbitrary spatio-temporal pattern can be 
learnt by a single neuron [102]. As a consequence, the faithful modeling of this rule in hardware is now a 
major focus in neuromorphic engineering [24]. In this model of synaptic plasticity the strengthening or 
weakening of synaptic transmission efficiency is typically modelled by an exponential decaying function 
of the inter-spike interval between the pre- and post- synaptic spikes as shown Figure 18 (a). As with the 
smooth synaptic alpha function, such accurate modelling of neurobiological processes can incur 
additional hardware costs while providing little computational improvement compared to even highly 
simplified models [93]. Therefore, as was the case with SKANs simplified kernels, in this chapter, the 
classic STDP rule is replaced with the simplified weight update rule shown in Figure 18 (b). The rule is 
designed so that it reuses the same signals and flags that are already present in the static weight SKAN 
system, such that the presynaptic input spike 𝑢𝑢𝑖𝑖(𝑡𝑡), which triggers the EPSP kernel 𝑟𝑟𝑖𝑖(𝑡𝑡), also triggers a 
binary weight adjustment flag 𝑑𝑑𝑖𝑖(𝑡𝑡). If a back-propagating postsynaptic output spike, s(t), arrives while 
this flag is high, then the synaptic weight wi(t) is increased by wrise and the flag is reset to zero. 
Alternatively if the membrane potential Σ𝑟𝑟𝑖𝑖(𝑡𝑡), returns to zero before an output spike arrives, then the 
synaptic weight is decreased by wfall and the flag is returned to zero. These two rules are described in 
Equation 11 and Equation 12. 
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Equation 11 

𝒘𝒘𝒊𝒊(𝒕𝒕) = �
𝒘𝒘𝒊𝒊(𝒕𝒕 − 𝟏𝟏) + 𝒘𝒘𝒓𝒓𝒊𝒊𝒓𝒓𝒓𝒓,          𝐢𝐢𝐢𝐢             𝒅𝒅𝒊𝒊(𝒕𝒕 − 𝟏𝟏) ∧ ↓ 𝒓𝒓(𝒕𝒕)

 
𝒘𝒘𝒊𝒊(𝒕𝒕 − 𝟏𝟏) −𝒘𝒘𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇,           𝐢𝐢𝐢𝐢        𝒅𝒅𝒊𝒊(𝒕𝒕 − 𝟏𝟏)  ∧ ↓ 𝚺𝚺𝒓𝒓𝒊𝒊(𝒕𝒕)

 

Equation 12 

𝒅𝒅𝒊𝒊(𝒕𝒕) = �
𝟏𝟏,     𝐢𝐢𝐢𝐢                                𝒖𝒖𝒊𝒊(𝒕𝒕) 

 
𝟎𝟎,    𝐢𝐢𝐢𝐢           ↓ 𝚺𝚺𝒓𝒓𝒊𝒊(𝒕𝒕) ∨ ↓ 𝒓𝒓(𝒕𝒕)

 

Where ↓ 𝑠𝑠(𝑡𝑡) is the falling edge of the postsynaptic output spike, ↓ Σ𝑟𝑟𝑖𝑖(𝑡𝑡) is the return of the membrane 
potential to zero (Σ𝑟𝑟𝑖𝑖(𝑡𝑡 − 1) > 0 ∧ Σ𝑟𝑟𝑖𝑖(𝑡𝑡) = 0) and 𝑢𝑢𝑖𝑖(𝑡𝑡) is the presynaptic input spike. 

As a result of Equation 11 and Equation 12, every time the membrane potential rises due to input spikes, 
the synaptic weights of the activated inputs either rise in response to the resultant output spike or they 
fall when the membrane potential returns to zero. 

This simplification of the STDP model significantly reduces hardware costs. By using the EPSP kernel as a 
binary flag of adaptable duration, the need for realization of the exponentially decaying function of 
Figure 18 (a) is eliminated and the use of the constant update terms wrise and wfall replaces the addition 
of two arbitrary values, wi(t) and ∆wi(t), which would otherwise be required at each synapse and which 
is significantly more costly in terms of hardware resources in comparison to constant terms which can 
be hardwired. 

Additionally unlike in classical STDP, in the proposed model, if an output spike were to be triggered just 
after the membrane had returned to zero (say by an external stimulator) there would be no change to 
the synaptic weight, but in the normal operation of the neuron, this simplification of the model does not 
affect the overall behavior. Similarly, in the SKAN model multiple input spikes that arrive within a short 
time or in bursts are covered by the EPSP kernel of the leading spike and are invisible to the system. This 
reduction is arguably desirable as it correlates well to real world event driven stimuli where relative 
stimulus onset times across afferents carry salient information. 

Synaptic weight normalization without division 
An additional layer of complexity arises through the need for synaptic homeostasis which is required to 
keep the synaptic weights within some limited dynamic range while preserving their relative strengths. 
In the biological context a number of homeostasis models have been proposed [103][104]. The common 
feature of these models is divisive normalization where the strength of all synapses in a neuron are 
rescaled via division by a global signal which keeps all synaptic weights within their physiological 
dynamic range while preserving their  relative transmission efficiency. The implementation of this 
normalization operation in digital hardware again involves multiplication operation at each synapse. 
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In this section we propose a novel digital approach to this problem that eliminates the need for this 
multiplication. The synaptic weights and other variables in the neuron all of which are implemented 
using unsigned integers are normalized not via multiplication but bit shift operations. Here, instead of 
normalizing the synaptic weights such that the max of the weights, max(wi (t)), or the sum of the 
weights, Σwi (t),  is clamped to a specific value, the max signal is allowed to vary within the top half of a 
digital range, updated by the weight update rule of equation 1 and equation 2. When the update rule 
pushes the max(wi (t))  signal beyond this digital range such that the 𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜�𝑜𝑜𝑖𝑖(𝑡𝑡)� signal goes high for 
any of the synapses, then all the neuron’s signals, i.e., the weights wi(t), EPSP kernels ri (t), EPSP kernel 
step-sizes ∆ri (t) and the threshold Θ (t), are right shifted, (division by 2). Conversely if the signal falls 
below half its range such that the most significant bit of all the synapses is zero, then all the signals of 
the neuron are left shifted (multiplication by 2).  These two conditions simplify to Equation 13 and 
Equation 14. 

Equation 13 

⋃ 𝒐𝒐𝒐𝒐𝒓𝒓𝒓𝒓𝒇𝒇𝒇𝒇𝒐𝒐𝒘𝒘�𝒘𝒘𝒊𝒊(𝒕𝒕)� → 𝒓𝒓𝒊𝒊𝒈𝒈𝒈𝒈𝒕𝒕 𝒓𝒓𝒈𝒈𝒊𝒊𝒇𝒇𝒕𝒕  (𝒊𝒊 𝒘𝒘𝒊𝒊(𝒕𝒕), 𝒓𝒓𝒊𝒊(𝒕𝒕), ∆𝒓𝒓𝒊𝒊(𝒕𝒕), 𝜣𝜣(𝒕𝒕)) 

 

Equation 14 

⋂  𝑴𝑴𝑴𝑴𝑴𝑴�𝒘𝒘𝒊𝒊(𝒕𝒕)� = 𝟎𝟎 → 𝒇𝒇𝒓𝒓𝒇𝒇𝒕𝒕 𝒓𝒓𝒈𝒈𝒊𝒊𝒇𝒇𝒕𝒕 𝒊𝒊  (𝒘𝒘𝒊𝒊(𝒕𝒕), 𝒓𝒓𝒊𝒊(𝒕𝒕), ∆𝒓𝒓𝒊𝒊(𝒕𝒕), 𝜣𝜣(𝒕𝒕)) 
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Figure 19. Comparison of fixed point division and shift based normalization for encoding the relative strengths of synaptic 
weights within an 8-bit dynamic range. The two synapses with weights w1 and w2 are updated by two independent non-zero 
mean stochastic processes. The panels on the left show the encoded weights while the panels on the right show the relative 
weights with the strongest synapse normalized to 1 (calculated via floating point division). a) The original weights of w1 and w2 
with no bound on their dynamic range: wi(t+1)= wi(t)+ ∆wi(t). b) The true relative strengths of the original synaptic weights. c) 
Limiting the two weights to between 0-255 (8-bit unsigned integer) via fixed point division: wi(t+1)= wi(t)+ ∆wi(t)/ maxi(wi(t)+ 
∆wi(t)). The black and white bars indicate the top and bottom half of the digital range (0-127 and 128-255). d) Relative strength 
of the bounded 8-bit synaptic weights. The error plot shows RMS error with respect to the original relative strengths shown in 
b). e) 8-bit Shift based normalization showing the stronger signal w1 triggering shifts in both synapses as it exceeds the bounds 
of the top half of its digital range: wi(t+1)=f(wi(t)+ ∆wi(t)). Where f() denotes equations 3 and 4. f) The relative synaptic 
strengths encoded via shift based normalization and the associated error. Figure from [46]. 

The fact that all neuronal parameters, wi (t), ri (t) and Θ (t) are also shifted means that the neuron is 
essentially not affected by the shift operations. As demonstrated in Figure 19 for a two synapse neuron, 
the overall effect of the shifting operations described is to continuously generate more dynamic range 
such that all weights become normalized while the max signal remains within the range described by 
Equation 15: 

Equation 15 

2𝑏𝑏−1 ≤ max (𝑜𝑜𝑖𝑖(𝑡𝑡)) ≤ 2𝑏𝑏 − 1 

where b is the number of bits used to represent the synaptic weights.  
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Figure 20. RMS error of shift based normalization with respect to normalization via double-precision floating-point division. 
Random synaptic weight updates with P(wrise) = P(wfall) were performed on a simulated 16 synapse neuron with synaptic bit-
width of 8 to 16. The RMS error of the relative weights of the shift based synapses was calculated against synapses which were 
normalized via double-precision division. Increasing bit-width in the shift based synapses resulted in lower error but even at the 
lower bit-lengths the relative order of the synaptic weights followed the floating-point implementation. Figure from [46]. 

Figure 20 shows the error introduced in the relative strength of synaptic weights through the use of shift 
based normalization with varying bit-widths. In addition to the quantization noise introduced, an 
important edge case occurs in the ‘right shift neuron values’ operation, which requires a design decision 
in terms of any weak synapses which go to zero. One option is to not allow any weights to go to zero. 
This can be implemented either by checking all bits of every synapse and setting to 1 any that go to zero 
or simply by assuming the LSB of all synapses is set to high without any zero checking. Another option in 
dealing with synaptic weights that go to zero is to disable them completely. This can potentially allow re-
allocation of the synapses to other neurons. An application of this option is discussed in chapter 5. 
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STDP and SKAN combine to produce synaptic encoding of afferent Signal to Noise 
Ratio (SNR) 
Given static synaptic weights wi(t)=wi(t0), the simple kernel adaptation of SKAN can perform 
unsupervised learning of common spatio-temporal patterns in noisy environments as detailed in chapter 
2 and 3. When this static weight model of SKAN is combined with the synaptic weight update and the 
normalization operation of the previous section, the neuron not only finds and learns the most common 
spatio-temporal pattern, but additionally adjusts its synaptic weights independently to compensate for 
the signal-to-noise ratio of individual afferents and thus improves recognition performance. In this 
section the corruptive noise is defined as additive noise spikes generated by a homogeneous Poisson 
process with rate λ/T. The signal represents spatio-temporal spike patterns which are presented every T 
time steps as shown in Figure 21. The SNR is thus defined as the ratio of the target pattern presentation 
rate 1/T, and the noise process rate λ/T which results in Equation 16: 

Equation 16 

𝑴𝑴𝑺𝑺𝑺𝑺 = 𝟏𝟏 ∶ 𝛌𝛌 

To demonstrate the SNR encoding effect, consider the case where the neuron is presented with 
repeated spatio-temporal spike patterns that are received via noise corrupted afferents. After several 
pattern presentations the neuron’s kernels ‘see through’ this noise and adapt their slopes ∆ri(t) so that 
they align with the pattern. This is because the noise is uncorrelated with the pattern and it is just as 
likely to increase the slopes as it is to decrease them such that the noise is averaged out, leaving only 
the target pattern for the kernels to train on. Figure 21 shows what happens next for a case where one 
of the three afferents is corrupted by SNR=1:1, that is, where the probability of the presence of a 
Poisson noise spike during any time period equals the probability of a target spike belonging to the 
target spatio-temporal pattern.  
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Figure 21. Synaptic weight adaptation in a neuron with three synaptic inputs. The first input channel (afferent1) is noisy 
(SNR=1:1) while the other two input channels (afferent2:3)  are noise free. Input spikes trigger both the kernel ri(t) and the 
weight update flag di(t). The output spike s(t) causes a rise in the synaptic weight of all synapses by wrise, while the return of the 
membrane potential to zero induces a fall by wfall, in the activated synapses with di(t)=1. During the time interval shown the 
noisy afferent with weight w1 experiences two weight falls and one weight rise while the two noise free afferents  experience 
only one weight fall and one weight rise. As a result of many such adjustments w1 falls to its steady state value of approximately 
half of w2 and w3. The lower weighted synapses contribute less and less to the membrane potential. The full dynamic ranges of 
the synapses are indicated by the grey regions marked afferent1:3. Figure from [46]. 

Noise spikes, being uncorrelated with the target pattern and with each other, typically arrive on their 
own or in such a way that their EPSPs are not enough to push the membrane potential Σri(t) past the 
threshold Θ(t) to cause a postsynaptic output spike. Such noise spikes do however reduce their 
respective synaptic weight by wfall. In the case where a clean target spatio-temporal pattern arrives 
without any neighboring noise, all the synaptic weights are increased equally by wrise.  The combined 
result of these changes is that synapses that receive target input spikes more often accumulate higher 
and higher weights while synapses with greater noise spikes have their weights pushed down. Over time 
the forces pushing a synaptic weight up (postsynaptic spikes following presynaptic spikes), and down 
(presynaptic noise spikes without a postsynaptic output spike) come into balance with each other and 
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the weight normalization produced by the neuron’s shift operations. If the Poisson processes generating 
the noise spikes is homogeneous, i.e. constant over time, then the synaptic weights converge to a 
steady state value which encodes (and compensates for) the relative signal to noise ratio of each 
afferent as shown in Figure 22. 

 

 

Figure 22. Mean normalized synaptic weights wi as a function of noise spike rate showing the synaptic weights of a three 
synapse neuron encoding the relative level of input SNR such that the noisier afferents receive a lower weighting than less 
noisy afferents. Here SNR=1:λi and λi is the noise spike generation rate at the ith input. The neuron was receiving a random 
spatio-temporal target pattern corrupted with varying levels of Poisson noise for each of the three input channels. In all panels 
the Poisson noise rate across the first two channels, λ1 and λ2, was kept constant while λ3 was swept from SNR=0 to SNR=1 and 
the average steady state value of the synaptic weights, w1, w2 and w3 are plotted. Figure from [46]. 

To demonstrate how the synaptic weights of a neuron evolve to their steady state over time, a sixteen 
input neuron with half its afferents corrupted with noise is shown in Figure 23. Here, the neuron’s input 
and kernel signals have been removed to more clearly show the relative synaptic weight encoding over 
time. Additionally the plot shows the neuron’s membrane potential Σri(t) leveling off at a low steady 
state value with lower noise and more consistent output spikes S(t). 
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Figure 23. Time series plot showing the evolution of synaptic weights of a sixteen input neuron from an initial equal value 
their steady state. Half the inputs have a noise spike rate λ9:16=1/2, (SNR=1:1/2) while the other half are noise free λ1:8=0. The 
equally sized rectangles indicate the equal normalized dynamic range of the synaptic weights while the sixteen indexed plots 
show the weight of each synapse wi(t). The noise free synapses, w1:8(t) are all nearly equal and at the top of the normalized 
dynamic range. The weight of the noisy synapses w9:16(t) fall to approximately half that of the noise free synapses where they 
remain in a steady state in response to the noise environment. By lowering the synaptic weight of the noisy afferents the 
neuron reduces their contribution to the somatic membrane potential making the later a less noisy and thus more useful signal 
during recognition. Figure from [46]. 

Recognition performance on noise corrupted spatio-temporal patterns 
To quantify the recognition performance of the neuron under various noise regimes, the recognition 
error of the synaptic weight adapting neuron was measured against a neuron without synaptic weigh 
adaptation.  Both neurons were presented with a random sequence one thousand patterns populated 
by two random spatio-temporal patterns. For each test some of the input channels were noise 
corrupted at varying levels in the same manner as illustrated in Figure 23. The neurons were given one 
hundred presentations of this noisy randomized data stream within which to perform unsupervised 
learning of one of the two random patterns after which the pattern for which the neuron spiked most 
was designated as its target pattern. In the following nine hundred presentations the error in 
recognition was measured, defined as the number of missed target patterns plus false positive output 
spikes divided by the total number of target presentations. Figure 24 demonstrates the effect of the SNR 
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encoding synapse, where over a wide range of noise environments the neuron effectively removes all 
corrupting input noise and delivers near perfect unsupervised learning and recognition performance. An 
interesting feature of the neuron is the initial increase in error at the low noise level for the weight 
adapting neuron, where a minimum noise threshold must be reached to trigger the weight adaptation 
system. For these tests the wrise /wfall ratio was deliberately chosen to clearly illustrate this behavior. This 
initial rise can be brought down by choosing a larger wfall term making the neuron more aggressive in 
terms of shutting down noisy afferents. 

 
Figure 24. Enhanced recognition performance via synaptic signal to noise ratio encoding. (top) Recognition error as a 
function of increasing noise in a kernel adapting neuron with static synaptic weights. The four plots demonstrate increasing 
recognition error rate both as the number of noisy channels increase and as the SNR per noisy channel deteriorates. Note that 
as long as the noise corrupted channels are few in number the static SKAN can provide a moderate level of unsupervised 
recognition performance. (bottom) The same noise regime being applied to the same neuron this time with the dynamically 
adaptive synaptic weights (note the change in scale for the vertical axis).  After perfect performance in the noiseless 
environments the error rates raise rapidly (SNR = 1:0 – 1:0.25). The reason for this initial rise in error is that the relative level of 
noise is simply too low to trigger the neuron’s weight adaptation system such that the recognition profile is almost the same as 
for the static weighted neuron. As the noise level increases the neuron’s SNR encoding system switches off the noisy channels 
and the recognition performance returns to near perfect. At very high noise levels (SNR < 1:3), the error rate begins to rise 
again, this time because the neuron’s learning of its “target pattern” during the unsupervised learning period begins to 
deteriorate. Figure from [46]. 
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Chapter 5: Hardware implementation and application 
In this chapter the FPGA resource usage of SKAN and the combined SKAN + STDP models are detailed 
and results from an example application of the combined model is presented.  

Implementation in FPGA hardware 
To evaluate the hardware requirements of the proposed combined SKAN-STDP system. The system was 
implemented in an Altera Cyclone-V GX FPGA, a low-end FPGA containing 77,000 programmable logic 
elements (LEs) in Verilog hardware description language which was generated using Mathworks 
Simulink HDL coder. There were no approximations used in the FPGA implementation as the ideal 
neuron model is deterministic and was designed using unsigned integer operation. Accordingly all 
signals in the FPGA and software implementations were determined to be identical. Figures in this thesis 
were generated using software simulations of the model which was identical to that realized in 
hardware. The model’s synaptic and somatic parameters were implemented using 12-bit and 20-bit 
unsigned integers respectively which is at the high end of synaptic signal  precision [42]. The hardware 
usage of the two proposed models is presented in Table 2 for the one neuron case. 

Synapses/Neuron  1 2 4 8 16 
Single bit 
Registers 

SKAN 38 62 110 206 398 
SKAN + 
STDP 

62 102 182 342 662 

Logic utilization 
(in ALM) 

SKAN 69 102 179 358 693 
SKAN + 
STDP 

136 285 521 1004 2030 

Table 2. Altera Cyclone V FPGA resource usage for the static weight SKAN and dynamic weight SKAN models, with varying 
number of synapses. Table from [46] 

 *An Adaptive Logic Module (ALM) is equivalent to 2.65 logic elements. 

For the static weighted SKAN system additional synapses require 24 single bit registers and 
approximately 50 ALMs each. For the combined SKAN-STDP system additional synapses require 40 single 
bit registers and approximately 150 ALMs each. To provide a comparison to the resource usage of the 
12-bit SKAN and SKAN-STDP synapses, a single 12-bit unsigned multiplier and its input registers were 
synthesized on the same device. The resource usage of the multiplier consisted of 24 single bit registers 
and 65 ALMs. While utilizing approximately twice the hardware resources of a single multiplier of the 
same precision, the SKAN-STDP synapse is capable of learning an arbitrary spike delay, generating a 
membrane potential at the soma, encoding its input signal to noise ratio in its synaptic weight and 
normalizing the dynamic range of its signals. 

In this context of hardware resource efficiency, a direct comparison of SKAN to other neuromorphic 
hardware solutions is complicated by the multi-subsystem nature of such systems where the resource 
requirements for the unsupervised feature extractor subsystem is difficult to establish in isolation. In 
addition the computational tasks performed by the feature extractor subsystem tends to vary for each 
solution and is difficult to quantify. Even in closed loop, supervised neuromorphic systems where the 
need for comparison has motivated recent progress on hardware performance benchmarking, the 
development of unbiased results is challenging [105]. Here the digital multiplier serves as an indirect 
method of comparison of the presented SKAN implementation to other digital implementations of 
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online synaptic learning in spiking neuromorphic systems. Since the realization of fixed point synaptic 
kernels weighted by fixed point synaptic weights would require at least a synaptic multiplication 
operation, the resource requirements of the digital multiplier serves as an approximate lower bound on 
the resources required to achieve the same synaptic resolution. 

Example application: Unsupervised feature learning using a camera with noise 
corrupted pixels 
Cameras can often suffer from noisy pixels and experimental or neuromorphic cameras are especially 
prone to this problem. Cameras such as the event based DVS camera [100] can suffer from faulty pixels 
which generate noisy streams of pulses where there should be no activation and this can have a 
detrimental effect on upstream recognition systems. Such faults can require on-going examination of 
the camera by an expert user in order to detect and remove such noise corrupted pixels. Here a synaptic 
SNR encoding neuron is particularly useful in being able to simultaneously perform both the noise 
removal and the online unsupervised feature learning task. 

To demonstrate the concurrent learning of common features in a sequence of spatio-temporal patterns 
and block noisy inputs, the neuron was presented with a subset of the zero images in the MNIST 
handwritten digit dataset which is commonly used for training image processing systems [106]. The 
pixels in the dataset images were directly mapped to the synaptic inputs of the neuron. However since 
the neuron receives spikes as inputs, the pixel values needed to be converted to spikes. The simplest 
approach, which was used here, involved mapping intensity to spike latency, with the brightest pixels 
arriving first and the darkest arriving last. This transformation was performed by a simple one to one 
mapping, however, neuromorphic approaches such as use of distributed integrate and fire neurons can 
also be used to convert real value signals to spike times [95]. 

To simulate the faulty camera a group of pixel in the central region of the image were corrupted with 
random levels of noise (1:1 < SNR < 1:3) as shown in Figure 25 (a). Here the design choice regarding zero 
weights referred to in chapter 4 was implemented, where once a synaptic weight reached zero value, 
the synapse, and therefore the pixel, was disabled. This resulted in a system where the noise corrupted 
pixels were all disabled after at most 189 training images as shown in Figure 25 (d), leaving only the 
noise free channels for the kernels to train on and generating the receptive field of the neuron shown in 
Figure 11 (b). Note that the aggressiveness of pixel removal system can be controlled via the wrise /wfall 
ratio.  
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Figure 25. Unsupervised learning of common features concurrent with SNR encoding synaptic weights on noise corrupted 
spatio-temporal patterns encoding handwritten zero digits from the MNIST dataset using a single neuron. (a) The input space 
with corrupted pixels highlighted. (b) The final receptive field of the neuron after exposure to the MNIST zeros. Pixels with 
higher probability of being dark are more likely to generate late spikes which a correctly trained neuron should encode in the 
form of narrow kernels or high kernel slopes ∆ri(t). Conversely, pixels more likely to be bright should be encoded by lower 
kernel slopes, as is seen. As a result, the further an input image is from this ‘model’ of a zero, the weaker the response of the 
neuron to the image. (c) The final synaptic weights of the neuron showing the disabled pixels. (d) The evolution of the synaptic 
weights over time. The neuron correctly weighted all the equally noiseless pixels equally high while weakening the weight of 
the noisy channels until they reached their minimum value at which point they are disabled. Figure from [46]. 

The disabled synapses shown in Figure 25 can potentially be reused, making SNR encoding synapses not 
only useful in terms of enhancing the performance of downstream signal processing systems as 
demonstrated in Figure 24, but in reconfigurable systems could also enable the potential reallocation of 
hardware resources to other tasks. This would allow more efficient hardware use in the context of the 
noise present in the sensors and in the environment.  
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Discussion 
In the work presented in this thesis the neurons operate continuously without a mechanism to 
terminate learning. While this combined learning and recognition mode of operation can be useful in 
some real world environments it contrasts to most machine learning approaches where learning and 
recognition are separate tasks and where an external arbiter is typically tasked with halting the learning 
process after a satisfactory solution has been found. As demonstrated empirically in the Chapter 2, given 
an ergodic input the dynamics of the kernels and somatic threshold are sufficient to allow a network to 
learn most common spatio-temporal patterns in their environment while the adaptable threshold 
ensures that the output spike rate and spike width moves toward a stable solution over time. However 
for applications where a non-adaptive or static solution is required the addition of external supervisory 
controllers would be required to halt kernel and threshold adaptation.  In future work the conditions 
under which learning and adaptation should be halted will be investigated. 

While in this thesis the behavior SKAN model has been tested using a range of synthetically generated 
spatio-temporal spike pattern tests, it is difficult to compare these behaviors to results from standard 
machine learning approaches which are benchmarked using numerical datasets and not spatio-temporal 
spike patterns. In addition, as an unsupervised learning algorithm, SKAN is best suited to operate as a 
feature extraction subsystem in a larger multilayer recognition system together with downstream 
supervised learning algorithms. Future work will focus on the development and benchmarking of 
multilayer hardware implemented spiking neural networks in which SKAN operates as a feature 
extractor. This larger multilayer unsupervised-supervised network can more readily be compared in 
performance to traditional machine learning methods on new spike-based benchmark datasets 
developed by the neuromorphic community. 

The SKAN model implemented here in digital hardware is potentially also suitable for implementation in 
analog VLSI neuromorphic systems. Although the SKAN model attempts to collapse the functionality of 
multiple synapses into single smart adaptive synaptic kernels using digital accumulators, these 
accumulators would still constitute the most hardware resource intensive elements of the system simply 
by virtue of their numbers in most network applications. As such the replacement of these digital 
elements with simple RC circuits can potentially drastically reduce hardware requirements. 

Conclusion 

In this thesis we have presented the SKAN, a neuromorphic implementation of a spiking neuron that 
performs unsupervised learning and inference on spatio-temporal spike pattern classification. The use of 
simple adaptable kernels was shown to represent an effective solution to hardware realized neural 
networks without the need for multipliers while SKAN operation was shown to be robust in the 
presence of noise allowing potential applications in noisy real-world environments.  

Next an extended model of the synapto-dendritic kernel adapting neuron, with a simplified STDP 
synaptic weight update rule was presented and shown to perform concurrent unsupervised learning of 
commonly presented spatio-temporal patterns and synaptic encoding of afferent signal to noise ratio. In 
addition a novel shift based digital normalization algorithm was introduced which allowed synaptic 
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homeostasis or weight normalization without the need for a fixed-point division operation. While the 
neuron model is a simplified abstraction of highly complex synaptic, dendritic and somatic processes, its 
adaptive kernels permit the efficient functional modeling of neurons learning of spatio-temporal spike 
patterns in the presence of varying levels of noise. The signal to noise encoding synapses were shown to 
compensate for afferents corrupted with noise spikes resulting in improved learning and recognition 
performance across a range of noise environments with relevance to neuromorphic engineering 
applications such as bio-inspired visual processors.  The proposed neuron models were shown to be 
hardware efficient and suitable for implementation on FPGA. The implementation of the neuron model 
in digital hardware showed that neuron’s synapses have hardware usage requirements comparable to a 
single digital multiplier while being able to generate complex computationally useful behaviors.  
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