1,264 research outputs found

    An ambient assisted living solution for mobile environments

    Get PDF
    An Ambient Assisted Living (AAL) mobile health application solution with biofeedback based on body sensors is very useful to perform a data collection for diagnosis in patients whose clinical conditions are not favourable. This system allows comfort, mobility, and efficiency in all the process of data collection providing more confidence and operability. A physical fall may be considered something natural in the life span of a human being from birth to death. In a perfect scenario it would be possible to predict when a fall will occur in order to avoid it. Falls represent a high risk for senior people health. Those falls can cause fractures or injuries causing great dependence and debilitation to the elderly and even death in extreme cases. Falls can be detected by the accelerometer included in most of the available mobile phones or portable digital assistants (PDAs). To reverse this tendency, it can be obtained more accurate data for patients monitoring from the body sensors attached to the human body (such as, electrocardiogram (ECG), electromyography (EMG), blood volume pulse (BVP), electro dermal activity (EDA), and galvanic skin response (GSR)). Then, this dissertation reviews the related literature on this topic and introduces a mobile solution for falls prevention, detection, and biofeedback monitoring. The proposed system collects sensed data that is sent to a smartphone or tablet through Bluetooth. Mobile devices are used to process and display information graphically to users. The falls prevention system uses collected data from sensors in order to control and advice the patient or even to give instructions to treat an abnormal condition to reduce the falls risk. In cases of symptoms that last more time it can even detect a possible disease. The signal processing algorithms plays a key role in the fall prevention system. These algorithms in real time, through the capture of biofeedback data, are needed to extract relevant information from the signals detected to warn the patient. Monitoring and processing data from sensors is realized by a smartphone or tablet that will send warnings to users. All the process is performed in real time. These mobile devices are also used as a gateway to send the collected data to a Web service, which subsequently allows data storage and consultation. The proposed system is evaluated, demonstrated, and validated through a prototype and it is ready for use

    A Mobile Healthcare Solution for Ambient Assisted Living Environments

    Get PDF
    Elderly people need regular healthcare services and, several times, are dependent of physicians’ personal attendance. This dependence raises several issues to elders, such as, the need to travel and mobility support. Ambient Assisted Living (AAL) and Mobile Health (m-Health) services and applications offer good healthcare solutions that can be used both on indoor and in mobility environments. This dissertation presents an ambient assisted living (AAL) solution for mobile environments. It includes elderly biofeedback monitoring using body sensors for data collection offering support for remote monitoring. The used sensors are attached to the human body (such as the electrocardiogram, blood pressure, and temperature). They collect data providing comfort, mobility, and guaranteeing efficiency and data confidentiality. Periodic collection of patients’ data is important to gather more accurate measurements and to avoid common risky situations, like a physical fall may be considered something natural in life span and it is more dangerous for senior people. One fall can out a life in extreme cases or cause fractures, injuries, but when it is early detected through an accelerometer, for example, it can avoid a tragic outcome. The presented proposal monitors elderly people, storing collected data in a personal computer, tablet, or smartphone through Bluetooth. This application allows an analysis of possible health condition warnings based on the input of supporting charts, and real-time bio-signals monitoring and is able to warn users and the caretakers. These mobile devices are also used to collect data, which allow data storage and its possible consultation in the future. The proposed system is evaluated, demonstrated and validated through a prototype and it is ready for use. The watch Texas ez430-Chronos, which is capable to store information for later analysis and the sensors Shimmer who allow the creation of a personalized application that it is capable of measuring biosignals of the patient in real time is described throughout this dissertation

    A sudden death prevention system for babies

    Get PDF
    The growth of the smartphones market share has driven the entry of a large number of new opportunities to launch new applications/mobile tools both by companies but also by individuals’ entities. The prototype solution presented here fits in the increasing emerging of smartphones applications for the health sector. This dissertation presents a solution to prevent a sudden infant death syndrome. It includes biofeedback monitoring of babies, using body sensors to collect data that will be presented in two different mobile applications: the Main Application and the Client Application. Breathing, temperature, position, and heart rate are used, and placed to the baby’s body. The Main Application will receive the data collected by the sensors via Bluetooth. This contains a monitoring tool, which parses and transforms raw data to be readable and understandable for users. This application will send the data to a Web service to be stored in a database that supports the entire created solution. The Client Application will consume the data stored in the database every previous second. Both applications have an important functionality that allows the trigger of alert notifications when an error occurs with the data collected by the sensors and the caregiver is informed with an alert in a short time. This document describes in detail the whole process done to deploy a prototype that demonstrates and validates the proposed solution and is ready for use

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Current Challenges and Barriers to the Wider Adoption of Wearable Sensor Applications and Internet-of-Things in Health and Well-being

    Get PDF
    The aim of this review is to investigate barriers and challenges of Wearable Sensors (WS) and Internet-of-Things (IoT) solutions in healthcare. This work specifically focuses on falls and Activity of Daily Life (ADLs) for ageing population and independent living for older adults. The majority of the studies focussed on the system aspects of WS and IoT solutions including advanced sensors, wireless data collection, communication platforms and usability. The current studies are focused on a single use-case/health area using non-scalable and ‘silo’ solutions. Moderate to low usability/ userfriendly approach is reported in most of the current studies. Other issues found were, inaccurate sensors, battery/power issues, restricting the users within the monitoring area/space and lack of interoperability. The advancement of wearable technology and possibilities of using advanced technology to support ageing population is a concept that has been investigated by many studies. We believe, WS and IoT monitoring plays a critical role towards support of a world-wide goal of tackling ageing population and efficient independent living. Consequently, in this study we focus on identifying three main challenges regarding data collection and processing, techniques for risk assessment, usability and acceptability of WS and IoT in wider healthcare settings

    Personalised mobile services supporting the implementation of clinical guidelines

    Get PDF
    Telemonitoring is emerging as a compelling application of Body Area Networks (BANs). We describe two health BAN systems developed respectively by a European team and an Australian team and discuss some issues encountered relating to formalization of clinical knowledge to support real-time analysis and interpretation of BAN data. Our example application is an evidence-based telemonitoring and teletreatment application for home-based rehabilitation. The application is intended to support implementation of a clinical guideline for cardiac rehabilitation following myocardial infarction. In addition to this the proposal is to establish the patient’s individual baseline risk profile and, by real-time analysis of BAN data, continually re-assess the current risk level in order to give timely personalised feedback. Static and dynamic risk factors are derived from literature. Many sources express evidence probabilistically, suggesting a requirement for reasoning with uncertainty; elsewhere evidence requires qualitative reasoning: both familiar modes of reasoning in KBSs. However even at this knowledge acquisition stage some issues arise concerning how best to apply the clinical evidence. Furthermore, in cases where insufficient clinical evidence is currently available, telemonitoring can yield large collections of clinical data with the potential for data mining in order to furnish more statistically powerful and accurate clinical evidence

    Comparison and Characterization of Android-Based Fall Detection Systems

    Get PDF
    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones’ potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.Ministerio de Economía y Competitividad TEC2009-13763-C02-0

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    Mobile Stress Recognition and Relaxation Support with SmartCoping: User-Adaptive Interpretation of Physiological Stress Parameters

    Get PDF
    The paper describes a mobile solution for the early recognition and management of stress based on continuous monitoring of heart rate variability (HRV) and contextual data (activity, location, etc.). A central contribution is the automatic calibration of measured HRV values to perceived stress levels during an initial learning phase where the user provides feedback when prompted by the system. This is crucial as HRV varies greatly among people. A data mining component identifies recurrent stress situations so that people can develop appropriate stress avoidance and coping strategies. A biofeedback component based on breathing exercises helps users relax. The solution is being tested by healthy volunteers before conducting a clinical study with patients after alcohol detoxification

    Enhancing Proprioception and Regulating Cognitive Load in Neurodiverse Populations through Biometric Monitoring with Wearable Technologies

    Get PDF
    This paper considers the realm of wearable technologies and their prospective applications for individuals with neurodivergent conditions, specifically Autism Spectrum Disorders (ASDs). The study undertakes a multifaceted analysis that encompasses biomarker sensing technologies, AI-driven biofeedback mechanisms, and haptic devices, focusing on their implications for enhancing proprioception and social interaction among neurodivergent populations. While wearables offer a range of opportunities for societal advancement, a discernable gap remains: a scarcity of consumer-oriented applications tailored to the unique physiological and psychological needs of these individuals. Key takeaways underscore the emergent promise of tailored auditory stimuli in workplace dynamics and the efficacy of haptic feedback in sensory substitution. The investigation concludes with an urgent call for multidisciplinary research aimed at the development of specific consumer applications, rigorous empirical validation, and an ethical framework encompassing data privacy and user consent. As the pervasiveness of technology in daily life continues to expand, the article posits that there is an imperative for future research to shift from generalized solutions to individualized applications, thereby ensuring that the spectrum of wearable technology truly accommodates the full scope of human neurodiversity
    • 

    corecore