1,611 research outputs found

    Control of Proton Exchange Membrane Fuel Cell System

    Get PDF
    265 p.In the era of sustainable development, proton exchange membrane (PEM) fuel cell technology has shown significant potential as a renewable energy source. This thesis focuses on improving the performance of the PEM fuel cell system through the use of appropriate algorithms for controlling the power interface. The main objective is to find an effective and optimal algorithm or control law for keeping the stack operating at an adequate power point. Add to this, it is intended to apply the artificial intelligence approach for studying the effect of temperature and humidity on the stack performance. The main points addressed in this study are : modeling of a PEM fuel cell system, studying the effect of temperature and humidity on the PEM fuel cell stack, studying the most common used power converters in renewable energy systems, studying the most common algorithms applied on fuel cell systems, design and implementation of a new MPPT control method for the PEM fuel cell system

    The BrightEyes-TTM: an open-source time-tagging module for fluorescence lifetime imaging microscopy applications

    Get PDF
    The aim of this Ph.D. work is to reason and show how an open-source multi-channel and standalone time-tagging device was developed, validated and used in combination with a new generation of single-photon array detectors to pursue super-resolved time-resolved fluorescence lifetime imaging measurements. Within the compound of time-resolved fluorescence laser scanning microscopy (LSM) techniques, fluorescence lifetime imaging microscopy (FLIM) plays a relevant role in the life-sciences field, thanks to its ability of detecting functional changes within the cellular micro-environment. The recent advancements in photon detection technologies, such as the introduction of asynchronous read-out single-photon avalanche diode (SPAD) array detectors, allow to image a fluorescent sample with spatial resolution below the diffraction limit, at the same time, yield the possibility of accessing the single-photon information content allowing for time-resolved FLIM measurements. Thus, super-resolved FLIM experiments can be accomplished using SPAD array detectors in combination with pulsed laser sources and special data acquisition systems (DAQs), capable of handling a multiplicity of inputs and dealing with the single-photons readouts generated by SPAD array detectors. Nowadays, the commercial market lacks a true standalone, multi-channel, single-board, time-tagging and affordable DAQ device specifically designed for super-resolved FLIM experiments. Moreover, in the scientific community, no-efforts have been placed yet in building a device that can compensate such absence. That is why, within this Ph.D. project, an open-source and low-cost device, the so-called BrightEyes-TTM (time tagging module), was developed and validated both for fluorescence lifetime and time-resolved measurements in general. The BrightEyes-TTM belongs to a niche of DAQ devices called time-to-digital converters (TDCs). The field-gate programmable array (FPGA) technology was chosen for implementing the BrightEyes-TTM thanks to its reprogrammability and low cost features. The literature reports several different FPGA-based TDC architectures. Particularly, the differential delay-line TDC architecture turned out to be the most suitable for this Ph.D. project as it offers an optimal trade-off between temporal precision, temporal range, temporal resolution, dead-time, linearity, and FPGA resources, which are all crucial characteristics for a TDC device. The goal of the project of pursuing a cost-effective and further-upgradable open-source time-tagging device was achieved as the BrigthEyes-TTM was developed and assembled using low-cost commercially available electronic development kits, thus allowing for the architecture to be easily reproduced. BrightEyes-TTM was deployed on a FPGA development board which was equipped with a USB 3.0 chip for communicating with a host-processing unit and a multi-input/output custom-built interface card for interconnecting the TTM with the outside world. Licence-free softwares were used for acquiring, reconstructing and analyzing the BrightEyes-TTM time-resolved data. In order to characterize the BrightEyes-TTM performances and, at the same time, validate the developed multi-channel TDC architecture, the TTM was firstly tested on a bench and then integrated into a fluorescent LSM system. Yielding a 30 ps single-shot precision and linearity performances that allows to be employed for actual FLIM measurements, the BrightEyes-TTM, which also proved to acquire data from many channels in parallel, was ultimately used with a SPAD array detector to perform fluorescence imaging and spectroscopy on biological systems. As output of the Ph.D. work, the BrightEyes-TTM was released on GitHub as a fully open-source project with two aims. The principal aim is to give to any microscopy and life science laboratory the possibility to implement and further develop single-photon-based time-resolved microscopy techniques. The second aim is to trigger the interest of the microscopy community, and establish the BrigthEyes-TTM as a new standard for single-photon FLSM and FLIM experiments

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above

    Synchronizing of Stabilizing Platform Mounted on a Two-Wheeled Robot

    Get PDF
    This paper represents the designing, building, and testing of a self-stabilizing platform mounted on a self-balancing robot. For the self-stabilizing platform, a servo motor is used and for the self-balancing robot, two dc motors are used with an encoder, inertial measurement unit, motor driver, an Arduino UNO microcontroller board. A PID controller is used to control the balancing of the system. The PID controller gains (Kp, Ki, and Kd) were evaluated experimentally. The value of the tilted angle from IMU was fed to the PID controller to control the actuated motors for balancing the system. For the self-stabilizing control part, whenever the robot tilted, it maintained the horizontal position by rotating that much in the opposite direction

    Design Optimization of Inductive Power Transfer Systems for Contactless Electric Vehicle Charging Applications

    Get PDF
    Contactless Electric Vehicle (EV) charging based on magnetic resonant induction is an emerging technology that can revolutionize the future of the EV industry and transportation systems by enabling an automated and convenient charging process. However, in order to make this technology an acceptable alternative for conventional plug-in charging systems it needs to be optimized for different design measures. Specifically, the efficiency of an inductive EV charging system is of a great importance and should be comparable to the efficiency of conventional plug-in EV chargers. The aim of this study is to develop solutions that contribute to the design enhancement of inductive EV charging systems. Specifically, generalized physics-based design optimization methods that address the trade-off problem between several key objectives including efficiency, power density, misalignment tolerance, and cost efficiency considering critical constraints are developed. Using the developed design methodology, a 3.7kW inductive charging system with square magnetic structures is investigated as a case study and a prototype is built to validate the optimization results. The developed prototype achieves 93.65% efficiency (DC-to-DC) and a power density of 1.65kW/dm3. Also, self-tuning power transfer control methods with resonance frequency tracking capability and bidirectional power transfer control are presented. The proposed control methods enhance the efficiency of power converters and reduce the Electromagnetic Interference (EMI) by enabling soft-switching operations. Several simplified digital controllers are developed and experimentally implemented. The controllers are implemented without the use of DSP/FPGA solutions. Experimental tests show that of the developed simplified controllers can effectively regulate the power transfer around the desired value. Moreover, the experiments show that compared to conventional converters, the developed converters can achieve 4% higher efficiency at low power levels. Moreover, enhanced matrix converter topologies that can achieve bidirectional power transfer and high efficiency with a reduced number of switching elements are introduced. The self-tuning controllers are utilized to design and develop control schemes for bidirectional power transfer regulation. The simulation analyses and experimental results show that the developed matrix converters can effectively establish bidirectional power transfer at the desired power levels with soft-switching operations and resonance frequency tracking capability. Specifically, a direct three-phase AC-AC matrix converter with a reduced number of switches (only seven) is developed and built. It is shown that the developed converters can achieve efficiencies as high as 98.54% at high power levels and outperform conventional two-stage converters

    Control of Dynamic Systems via Neural Networks

    Get PDF
    This report is devoted to the problem of controlling a class of linear time-invariant dynamic systems via controllers based on additive neural network models. In particular, the tracking and stabilization problems are considered. First, we show how to transform the problem of tracking a reference signal by a control system into the stabilization problem. Then, some concepts from the variable structure control theory are utilized to construct stabilizing controllers. In order to facilitate the stability analysis of the closed-loop systems we employ a special state space transformation. This transformation allows us also to reveal connections between the proposed controllers and the additive neural network models

    Survey of FPGA applications in the period 2000 – 2015 (Technical Report)

    Get PDF
    Romoth J, Porrmann M, Rückert U. Survey of FPGA applications in the period 2000 – 2015 (Technical Report).; 2017.Since their introduction, FPGAs can be seen in more and more different fields of applications. The key advantage is the combination of software-like flexibility with the performance otherwise common to hardware. Nevertheless, every application field introduces special requirements to the used computational architecture. This paper provides an overview of the different topics FPGAs have been used for in the last 15 years of research and why they have been chosen over other processing units like e.g. CPUs

    Low Power DC-DC Converters and a Low Quiescent Power High PSRR Class-D Audio Amplifier

    Get PDF
    High-performance DC-DC voltage converters and high-efficient class-D audio amplifiers are required to extend battery life and reduce cost in portable electronics. This dissertation focuses on new system architectures and design techniques to reduce area and minimize quiescent power while achieving high performance. Experimental results from prototype circuits to verify theory are shown. Firstly, basics on low drop-out (LDO) voltage regulators are provided. Demand for system-on-chip solutions has increased the interest in LDO voltage regulators that do not require a bulky off-chip capacitor to achieve stability, also called capacitor- less LDO (CL-LDO) regulators. Several architectures have been proposed; however, comparing these reported architectures proves difficult, as each has a distinct process technology and specifications. This dissertation compares CL-LDOs in a unified manner. Five CL-LDO regulator topologies were designed, fabricated, and tested under common design conditions. Secondly, fundamentals on DC-DC buck converters are presented and area reduction techniques for the external output filter, power stage, and compensator are proposed. A fully integrated buck converter using standard CMOS technology is presented. The external output filter has been fully-integrated by increasing the switching frequency up to 45 MHz. Moreover, a monolithic single-input dual-output buck converter is proposed. This architecture implements only three switches instead of the four switches used in conventional solutions, thus potentially reducing area in the power stage through proper design of the power switches. Lastly, a monolithic PWM voltage mode buck converter with compact Type-III compensation is proposed. This compensation scheme employs a combination of Gm-RC and Active-RC techniques to reduce the area of the compensator, while maintaining low quiescent power consumption and fast transient response. The proposed compensator reduces area by more than 45% when compared to an equivalent conventional Type-III compensator. Finally, basics on class-D audio amplifiers are presented and a clock-free current controlled class-D audio amplifier using integral sliding mode control is proposed. The proposed amplifier achieves up to 82 dB of power supply rejection ratio and a total harmonic distortion plus noise as low as 0.02%. The IC prototype’s controller consumes 30% less power than those featured in recently published works

    Advanced Modeling, Control, and Optimization Methods in Power Hybrid Systems - 2021

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications such as hybrid and microgrid power systems based on the Energy Internet, blockchain technology and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    • …
    corecore