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ABSTRACT

This report is devoted to the problem of controlling a class of linear time-invariant 

dynamic systems via controllers based on additive neural network models. In particu

lar, the tracking and stabilization problems are considered. First, we show how to 

transform the problem of tracking a reference signal by a control system into the stabil

ization problem. Then, some concepts from the variable structure control theory are 

utilized to construct stabilizing controllers. In order to facilitate the stability analysis of 

the closed-loop systems we employ a special state space transformation. This transfor

mation allows us also to reveal connections between the proposed controllers and the

additive neural network models.



1. INTRODUCTION

A neural network is a large-scale nonlinear circuit of interconnected simple circuits 

called cells or neurons. These networks resemble patterns of biological neural networks 

hence the term neural networks. In fact motivation for studying such circuits came 

from attempts "to understand how known biophysical properties and (the) architectural 

organization of neural systems can provide the immense computational power charac

teristic of the brains of higher animals" (Tank and Hopfield, [23], p. 533). Another rea

son of a recent resurgence of interest in neural networks is the low execution speed pf 

conventional computers which perform a program of instructions serially or sequen

tially. In contrast, neural networks operate in parallel. The ability to be intercon

nected in a regular fashion results in higher computation rates. Furthermore, regular 

interconnections of the same basic cells leads to easier design and testing of a chip.

Potential applications of neural networks are in such areas as speech and image 

recognition ([21], [27]), linear and nonlinear optimization ([3], [16], [23]), automatic con

trol ([l], [2], [15]), and in highly parallel computers ([17]) to mention but a few.

The subject of this report is an application of additive neural network models to 

the control of dynamic processes. We begin with a brief description of a neural network 

model used in the report. Then we formulate the tracking problem and show how the 

additive neural network model can be used as a controller. A variable structure systems 

approach ([7], [25]) is utilized to construct the proposed controllers. This approach 

allows us to circumvent analysis problems caused by the discontinuous nonlinearity 

which is used to described neurons. Finally, in the concluding Section we indicate 

directions for future research in the applications of neural networks to the control prob

lems.



2. A BRIEF DESCRIPTION OF THE HOPFIELD NET

There are many neural network models ([11], [17]). In this report we will be con

cerned with the simpler additive model, also known as the Hopfield model, in the con

text of a control system tracking a reference signal. "The additive model has continued 

to be a cornerstone of neural network research to the present day... Some physicists 

unfamiliar with the classical status of the additive model in neural network theory 

erroneously called it the Hopfield model after they became acquainted with Hopfield s 

first application of the additive model in Hopfield (1984)" [14] - see Grossberg ([11], P- 

23). The Hopfield neural network model is represented in Fig. 1.

n

Fig. 1. Hopfield type neural network model.

Nodes or neurons, represented by circles in Fig. 1, can be modeled as shown in Fig. 2.
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Fig. 2. Model of a neuron in the Hopfield net. .

The nonlinear amplifier’s input-output characteristic is described by the sigmoid func

tion. The, sigmoid function x = g(u) (g:lR—where 1R denotes the set of real 

numbers) is defihed by the properties:

(a) jg(u) [ < M, where 0 < M < c<D is a constant, a,hd

(b) :o. ■ : 1 
■ du

A possible circuit implementation of the Hopfield network proposed by Smith and 

Portmann [22] is presented in Fig. 3.



3. is given in Fig. 4



Fig. 4. Smith and Portmann’s [22] equivalent representation of the Hopfield network 

circuit realization.

dynamical behavior of the net in a straightforward manner. Indeed, applying the Kir-

current into the amplifier is negligible (high input impedance) we obtain

xldu; U;
CiTr + W R;

Ui Xo — Uj —+ ■ ? ■ +•■■ + Xn—Ui

ii Ri2 R; -f* Ij > i 1*2,.

n
£ Tij +
j=l R;

Utilizing the above notation we can represent equations (2.1) in the following form



du; U; n
'' Ci —- + — = S Tij Xj +1; , i = 1)2,...n , : (2.2)

■; dt ,r* j-i

where X; = g(uj). We can rewrite the equations (2.2) as

du; n
—— = -bjUi + Ay g(uj) +U; i = 1,2,...,n (2.3)
dt j-i

where ’

Tij TT TT j v 1A = c“ 1 u'=Ui(t) = -c“- and

The qualitative analysis of the neural network model represented by (2.3) was per

formed among others, by Hopfield [14] and Michel et al. [20], see also [10] and [11].

The primary goal of this report is to show how the Hopfield type of neural net

works can be applied to the control of dynamic processes, in particular to the tracking a 

reference signal by a control system.

The formulation of the tracking problem is the subject of the next Section.

3. FORMULATION OF THE TRACKING PROBLEM

Suppose we have a model of a dynamic process, plant, given by the following equa

tions

. x = Fx + Gu 
y = Hx

where FGlR11*11 , GQR11*111 , and H£lRmxn. We wish to design a controller so that the 

closed-loop system can
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r

Reference input 
desired output

Actual
output

-to-.— "
A.-■

error CONTROLLER PLANT

L n

Fig. 5. 1'racking system structure.

Let the referehce signals be described, as in Davison [5j, by the following differential 

equations

r[pJ(t) + ttpr[p-i)(t) -(- ... + «2fi(t) + ^ifi(t) = 0 y : i = (3.2)

where the initial conditions

are specified

Equations (3.2) can be rewritten in

^p)(t)Im + a'pr(p ^(t)Im + ... + a2f(t)Im + aq r(t)Im (3.3)

where Im is the mxm identify matrix, and r(*) is a scalar function.

The tracking error is defined as

’ r(t); (3-4)

The problem of tracking r(t) — [r1(t),...,rm(t)]T can be viewed as a designing exercise of 

a control strategy which provides regulation of the error (Franklin et al. [9], p. 390),
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that is, the error e(t) should tend to zero as time gets large.

One way to tackle this problem is to include the equations which are satisfied by 

the reference signal as a part of the control, (stabilization), problem in an error state 

space.

In particular, we differentiate the error equation p times and then introduce the 

error as a state. In what follows we extend results of Franklin et al. [9].

, We have

glp) y(p) -— p(P)

= Hx(p) + «pr(p_1)Im + <V-ir(p~2)Im +... + aqrlm .

We then replace the plant state vector by the following vector

£ = x(p) + + ... -r <qx

and define the new control vector as

/j, = u(p) + fVpU^’"1^ + ... + aq u

We now rewrite (3.5) as

e^ = apr^p_1^Im — apy(p_1) + apy^^ + •••

+ ... + aqrlm - oqy + oqy + Hx(p)

= _Qp'e(p-i) - ... - oqe+H[x(p) + apx(p_1) + ... + axx

Taking into account (3.6) yields

e(p) = - QfpJP-1) - ... — oqe + H£ •

Differentiating £ gives

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



^ Fx(W > Gu W + apFxtP"1) + ap -i)

k4- <%Fx 4- ai Gtt

=?; F(x^) + apx(p~^ + .... + aix)

4- G(uip) 4- Q-pU^p_1^ 4-... + a^u)

Hence, in view

:£=;F-£;4-G/4 (3.11)

Combining (3.9) and (3.11) yields

Let Z

bn 0 0 ...; Wo;-;:; b
; 40L4 o Tm 0 0 0

e^1) o 0 0 Im 0
eCp); bn ■ .. • ' «■ ■' • -:CTpIm H
04 0 0 0 o W F_

[eTeT , ... , £t],

0
0

0
G

fi . (3.12)

; Im :--P 0 0 0

[AM",
“OJp Im H , B =

o
0 F G

Then (3.12) can be represented a$

z = Az 4- B/z . (3.13)

We refertothe system modeled by (3.13) astheerror system. Thus the problem of the 

regulation of the error is reduced to the problem of the stabilization of the error system.
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exist. For example see DeCarlo [6] or Franklin et al. [9]. We propose two new 

approaches to designing stabilizing control strategies for (3.13) involving the Hopfield 

type neural networks. Prior to presenting these control laws we will introduce the 

necessary apparatus for further analysis. This is the subject of the following Section.

4. AUXILIARY RESULTS

In the following analysis we utilize certain concepts from the theory of variable 

structure control.

Variable structure control (VSC), the control of dynamical systems with discon

tinuous state feedback controllers, has been developed over the last 25 years. See [7], 

and [25] for surveys and [12], [24], [28] for applications. This theory rests on the con

cept of changing the structure of the controller in response to the changing states of the 

system to obtain a desired response. This is accomplished by the use of a high speed 

switching control law which forces the trajectories of the system onto a chosen mani

fold, where they are maintained thereafter. The system is insensitive to certain parame

ter variations and disturbances while the trajectories are on the manifold. If the state

vector is not accessible, then a suitable estimate must be used.

We use the following notation. If xEIR11, then ||x|| denotes the Euclidean norm, 

that is, ||x|| =(xf + ... + x2)1/2. If A is a matrix, then ||A|| is the spectral norm 

defined by

||A|| = max{||Ax|| j||x|| <l),
X

For any square matrix A, we let Xmin(A) be the minimum eigenvalue of A and ^max (A) 

be the maximum eigenvalue of A.
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With this notation,

l|A||2=Xm„(ATA).

Rayleigh principle states that if P is a real symmetric positive definite matrix, then

^min(P) l|x||2 <XTPx <Xmax(P) ||x||2 .

An important concept in variable structure control is that of an attractive mani

fold on which certain desired dynamical behavior is guaranteed. Trajectories of the sys- 

tem should be steered towards the manifold and subsequently constrained to remain on

it*. ■ '

Definition 4.1. ([25])

A domain A in the manifold {x | <r(x) = 0} is a sliding mode domain if for each. 

6 > 0 there exists a 8 > 0 such that any trajectory starting in the n-dimensional <5-- 

neighborhood of A may leave the n-dimensional 6-neighborhood of A only through the 

n-dimensional 6-neighborhood of the boundary of A. (see Fig. 6.)



e - neighborhood of 
boundary point of A

boundary point of A

is used in this paper. Suppose

mxn

where

We assume that S is of full rank

where
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(4.1)

Assumption 1: The matrix SB is nonsingular.

Assumption 2r The pair (A,B) is completely controllable.

Definition 4.2. ([25]) The solution of the alebraic equation in u of

Sx = SAx + SBu = 0

is called, the equivalent control and denoted by ueq, that is,

ueq =—(SB)-1 SAx .

Definition 4,3. The equivalent system is the system that is obtained when the Original 

control u is replaced by the equivalent control ueq, that is,

’ x = [In -B(SB)'1S]Ax. : ;

We assume that the control u in the system (4.1) is bounded and that

k | < /V , i = l,...,m , (4.2)

where m > 0.

and let

x eiRn,

0 = {x | o(x) = 0}

Consider the system

x = Ax + Bu , V

where xQRW AGIR11*11, B'GlRnxm':, uGIR111- We make the following assumptions:
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Our goal is to design a controller which satisfies the bounds (4.2) and which 

induces the sliding mode on 0 in the sense of Definition 4.1.

In general, the controller in VSC varies its structure depending on the position

relative to the switching surface and has the form:

/

•uj*' (x) if (Jj (x) > 0 
1 . uf(x) if Oi(x) <0.

V • .

It is easy to see that if <7T<t < 0, then the trajectory is tending towards the switching 

surface. Hence if crT b < 0 in a neighborhood of a region A of the switching surface, 

then A is a sliding domain ([25]). For example, let

—kjsgnoi
u =

-kmSgno-m

where

Sgn Oj =

1 if q > 0
0 if <Jj = 0

—1 if cXj < 0 ,

and kj > 0 for i = l,...,m. One can easily check that if

u = ueq + (SB) xu ,

then

crT u < 0 .

Hence with the above control u, we have a sliding mode.

Let us assume that the switching surface is chosen so that SB =Im; we will see how 

this can be accomplished Section 6 and 8. With this assumption, ueq = — SAx. We 

next give a sufficient condition for cr^ <7 <C 0 to hold. Note that



<jt<t — <rr(SAx + SBu)

= crT(-Ueq + u)

= E ^i(-(ueq)i + ^i) .
i i v;\.

Hence if

u+(x) < (ucq)i for aj(x) > 0

Uj~(x)' > (ueq)i for q(x) < 0 ,

then (7^b < 0. In this report, we use the control law

-/^SglKT]

-/imsgnam

u —

With this control law, we have aT<7 < 0 in the region

fl ■ 0 {x | j(ueq)i | f-l[ j*

X S;Ax <

Note that fi* is an open neighborhood of the origin. If A 

n = {x | cr(x) = 0}^ then A is a sliding domain.

Observe that a sliding domain is a region 

tern. ■ ^ '-V:' ■ ..v.

, where
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Example 4.1. Consider the dynamical system modeled by:

x = u ,

where u = — sgn <r(x), and <r(x) = x^ X2 == [1 l]x. In the state-space 

we have

xi 

x2

In this case

0 = {(x1}x2) | xi + x2 =0},
ft* = {(xi,x2) | |x2 | < 1}

and A = 0* 0 ft is the segment of the line + x2 = 0 with |x2 | < 1.

0 1 *1 0

G 0 x2 1
L . L J

representation

(See Fig. 7)



Fig. 7. Illustration of a sliding.ddraam;'HExample 4.1

There are two basic steps in the deMgn of VSC: ?

(1) The design of the switching surface (manifold) so that the behavior of the system 

has certain prescribed properties on the surface. For example, the switching sur

face will be designed so the systemis asymptotically stable on the surface.

to maintain it there

In this Section we consider a

Ax + bu

is completelyu£IR. We assume that the pair

controllable and hence (5.1) is



X =

- 20 -

0 i 0 0 0 0 0
o 0 1 o o 0 0
: . . : • x + •

0 0 ... 0 l 0
«i a2 ... ^n—1 ■ Otji 1

(5.2)

The mainfold we use has the form

n = {x jsx = 0} , SGK1^ . (5.3)

We can assume that s = [sx,...,sI1_1,1]. Observe that if the system is in the controller 

canonical form then sb = 1. When the system dynamics is given by the controller 

canonical form then the equivalent system is

0 1 0 ... 0 0
0 0 1 ... 0 0

x — :
0 0 ...

0 —Si —S2
0

'sa-2

X

1
—sn-l

(5.4)

The controller on which we will concentrate is

u = - //sgn(sx) ,

where p is a positive real number and

sgn(sx) = -
1 if 
0 if 

-1 if

sx > 0 
sx = 0 
sx < 0

(5.5)

Note that this controller is bounded by p.

We now choose the switching surface so that the system restricted to the surface 

has prescribed distinct negative eigenvalues —Xj,...,—Xn_lv If the system is in the con

troller canonical form then in sliding mode the system is described by (5.4) and sx = 0. 

The order of the system in sliding is n-1 and its characteristic equation is given by
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Xn * + sn--lXn 2 + ••• + Sj — 0 . (5*6)

The prescribed eigenvalues —Xi,...,—must satisfy (5.6) and hence we have the 

linear equations

1 Xji (-X,)2 ... (-XJn—1

i -x„-, (-V-02 -H-.)n—1

Sl

sn—1

1

= 0 (5.7)

Since are distinct, the coefficient matrix has full rank and S},sn_1 are

uniquely determined. This completes the design of the switching surface 

0 = {x j sx = 0}. Note that one does not have to have a model of a dynamic system to 

be controlled in the controller canonical form. We have used the canonical form to 

facilitate the analysis. From this point one can assume that our process to be controlled 

does not have any particular form.

To proceed further we introduce a state-variable transformation, 

integers, we let

For /,k positive

V,(ft, ■M =

i i ... l
A A

A A Pi
G \\l^ + ^xk .

I jet : ,

W- = Vn_i.(-X1:,.:.,-Xn^1)'diag (piv^Pn-O eiR^11-^ ,

"and.

wg = [{vn_2(—Xx,..., —X^!) diag (pi,...,Pn-i)}-1; I 0] ,'G Ft(n_1)xI1 .

Note that WgW = In_j. The pj’s are to be chosen so that the system matrix will have a 

desired form to be given.



M =

Let, as in [19],

Wg
s

Observe that M"1 = [W b] (see (5.7)). We introduce the new coordinates

z

y
= Mx = Wsx

sx.

where zGlRn_1, yElR. In these coordinates, the system (5.2) has the form

z = Anz + A12y 

y = A2i z + A22y + u ,

where An = diag (—X^-i). If we use the controller

u = — (X sgn(sx) = — fi sgn y ,

then the system is described by

z = Auz + A12y , 

y = A2lz + A22y - /t sgn y .

(5.8)

(5.9)

(5.10)

Remark 5.1.

One can interpret equations (5.10) as follows. We are given a dynamic system

z = Auz + Aj2y (5.1.1)

driven by a signal neuron type controller

y = A22y - M sgny + A2iz. (5.12)

This observation follows from the comparison of (2.3) and (5.12), where I = AgiZ.

Note that in order to arrive at the above conclusion we had to perform a state- 

space transformation (5.8) to reveal the implicit presence of the neural controller in the



closed-loop system (5.2), (5.5).

We now explicitly employ the neural type of controller to a given dynamic system. 

In particular suppose we are given a dynamic system modeled by (5.1). We propose a 

controller of the form (2.3)

u = — /3u — [i sgn <t(x,u) + U , (5.13)

where U = cTx, and <r(x,u) is a switching surface to be chosen. The equations of the 

closed-loop system can be represented as

{-ti sgn o(x,u)) . (5.14)

Observe that [xT, u]T G HtIlxl. In order to proceed further one has to decide what kind 

of dynamic behavior is to be ifiiposed on the closed-loop system. This then should be 

expressed in the form of n prescribed eigenvalues which will correspond to the eigen

values of the system while in sliding along o(x,u) = 0. Having chosen desired eigen

values we can determine the switching surface o(x,u) using (5.7). If one then transforms 

(5.14) into the new coordinates utilizing (5.8) then the resulting system will be in the 

form (5.10).

A b 
cT —fi

Consider the system given by

Xl

x2

0 1 
0 0

xi
x2

where u — — fx sgn a(x). We choose the switching surface so that the system restricted

is



We use the controller

SjXi + x2 = Xxxi +x2 = 0

n = - /* sgn(X1x1 + x2) (5.16)

V1

Fig. 8. Block diagram of the closed-loop system (5.15), (5.16) in Example 5.1 in the 

old coordinates.

Using the method described above we have

wg 1 0
s Xi i.

and the system in the new coordinates is

z = — Xxz + y

y = — Xfz + \XJ - H sgn y .

Consider again the system (5.15). This time we choose an explict neural controller

u = — 6u + cTx — sgn o(x,u) , (5*17)

where cT = [ci,c2]. The closed-loop system now has the form
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*1

x2

u

0
0
cl

1
0

C2

0
1
■p

xi
X2
u

+ \-fx sgn o(x,u))

A block diagram of this closed-loop system is depicted in Fig. 9.

L

(5.18)

Fig. 9. Block diagram of the closed-loop system (5.18). 

The switching surface is found from equation (5.7)

1 -X! (^Xr)2

1 -x2-(-x2)2

-

S1
S2
1

0, (5.19)

where — \\ and —X2 are the desired (distinct) eigenvalues. Solving (5.19) yields

Si _ 1 —X2 Xx

i

_
_̂_

1

XrX2
s2 x2 — xx -1 1 ^2 x2 + xx (5.20)

We how can construct the state-space transformation (5.8). We have
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M =
vr1 l o

^2 1 0
-Xi X2 — \

1 o Ws = V 1 0S
\ - X2 Xi — x2

s i
) X2 + X] 1

Note that

M-1 = [W b] = [V2 i b]

1 1 0
_ ——X2 0

In the new coordinates (5.18) has the form (5.10) where

Xl
-xl 0

1 s2 1]
1

All — 0 -X2;
and y = [s X2

u

' The results of Section 4 imply that the closed-loop system described by (5.10) is 

locally asymptotically stable. The goal of the next Section is to investigate regions of 

asymptotic stability for dynamic systems driven by a single neuron type controller. The 

closed-loop system then is modeled by (5.10).

6. A FIRST APPROXIMATION OF THE REGION OF ASYMPTOTIC 

STABILITY WITH SLIDING

In this Section we give a first approximation of the region of asymptotic stability 

(RAS) with sliding. The results of this Section are based on the paper by Madani- 

Esfahani et al. [19].
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Better approximation will be given in the following Section. We start with the fol

lowing lemma.

The system under consideration is modeled by (5.10).

Lemma 6.1. ([19]). For 0 < e < the region

A = {(z,0) | jA21 z | < fi-e} C H

is a sliding mode domain.

Proofs Let Ae = {(z,y) | |A21z | < /i—e , [y | < -i—-—r) . Then in
lA22 I

A\{(z>y) ! y = °}

y(y2) = y y = y(A2iz + A22y) -/i jy |

: r < |y| (/*-e.+ e - n)

■' < 0 ■■

Therefore a trajectory starting in Af can leave Ae only through the e/|A22 |- 

neighborhood of the boundary of A in fL

.. ,■ U

Observe that if the initial point is in A, then the system will be in sliding for some 

positive time. However, there is no guarantee that we stay in A for subsequent times. 

From the fact that An — diag (—,..., —Ari_1) we have the following. Let Br denote the 

ball centered at 0 with radius r.
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Proposition 6.2. ([19]). Let

R = sup {r | Br HOC A} ,

..and-

E = BR H 0 .

Then E is a RAS with sliding.

Proof: While in sliding the system is governed by z = diag (—Xi,...,—Xn_1)z. Hence 

Zi = Zi(0)e-Xit for i = l,...,n-l. Thus if zf(°) < R2, then zf(t) < R2 and by

Lemma 6.1 z(t) £ E for t > 0.
XxXXx,:;.: .XXl ' : ; ' ; Vx/;.. □

Note that E is the largest circular region that is contained in A. We can easily see 

that R = /i/a2i, where a2) = ||A2il|, the Euclidean norm of A2l.

7. IMPROVED ESTIMATES OF RAS WITH SLIDING

In the previous Section we obtained a RAS with sliding contained in the switching 

surface. We now use this information to obtain RAS’s that are not constrained to the 

switching surface. The method we use is that of finding RAS’s whose restriction to the 

switching surface is contained in E, and hence will be a RAS with sliding. Our main 

tool is a Lure-like Lyapunov function candidate

V(z,y;,6’,77,h) = (a21||z|!)2 + 2/?(A21z)y + hy2 +/if/ |y | , (7.1)

where /?, h, and r? are positive constants. When there is no ambiguity, we will write 

V(z,y) for Y(z,y;/?,r/,h). Observe that
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Hence if hA-A? S Oj then V is positive definite. If /?2 — h > 0 then V is positivein

{(^y) I |y I < m
ff -h

}. Since V contains a multiple of |y j, the Lyapunov derivative

V may not exist on a trajectory which intersects Ti — {(z,y) | y = 0}. However, when 

restricted to U the system takes the form z — AnZ = diag•(—-Xj,Xn_j)z. Therefore 

if the trajectory (z(t),y(t)) is in 0 for tx < t < t2, we must have ||z(t2)|| < ||z(ti)||. 

Since the restriction of level sets of Y to 0 are Circular regions, the trajectories of the 

system cannot leave a sublevel set {(z,y) | V(z,y) < a2} of Y through fi. Therefore if F 

is. a region such,that. .v: V- A v!

(i) ! V is positive in, F, .1 ,

(ii) ; y is, negative in 1 \0,

then the largest sublevel set of V contained in F is a HAS, If in addition we have

(iii) the restriction of F to 0 is Contained in E,

then the largest sublevel set of V contained in T is a RAS with sliding. Note that we do 

not need to Consider Y bn XL ; ,

Theorem 7.1. : ([19]). Suppose ^ -Then for each 0,< 8< p, there is an e > 0 so

that for h > —r- the region
A,',■■ A->... e. A v; .

{(z,y) | V(z,y;,5,?/,h) < (n - 8)

■is; a RAS vrith sliding. '



Proof: After some manipulations wc obtain

V = 2a!iZTAn7. + [2/?(A2iz)2 — ?/^2]

+ 2h;|y | [A2Iz sgn y - m] + - 2^] sSn Y

+ A22 ly | [2h |y | + 2/?(A21z) sgn y + /w/|

+ 2y [/?A2iA1xz + /5yA2iAi2 + a2jzTA12] .

We choose Kp > 0 so that E is contained in {(z,y) j IIAX1 z|| < K1} |zTA12 I < K4, 

y = o}. Therefore there is a fixed constant K 0 so that in 

©'== {(z,y) | ||Auz|| < K1} |zTA12 | < K1; |y | < e, e. > ()}

V < 2 aliz^A^z + 2,8 [(A2jz)2 /i2] .

+ 2h |y || |A21z | -./4 + K |y | .

Vw ' '■■■■ y? ■
In the above we used the assumption that 2/3 — rj. If |y | < e and h > —y then

V ^ 2a|1zTA1iZ H- 2/?[(A21z)2 /.i ]

.. +2-^-[|A21z|-Ai]+K<:.

Let 0 < S1 < <5. We can find £i "> 0 small so that + f3e1 < <3 and V < 0 in

e n {(z,y) | |a21z| < /x-Ay ly I < ex}.

Consider the sublevel set

S = {(z,y) I V(z,y) < {n - <5)2 } V

By choosing e small, hence h > /x2/e2 large, we can make |y | < ex using (7.2). Thus 

for (z,y)£S we have



IN! < f.t — 8 + fa-i < u — ^1 •

Since S n 0 is corLtamed ill E, we conclude that SC®- Hence S is a RAS with sliding.

. ■/% l. v-". v M::;;■ c-; ^

In the following sections we will extend the obtained results to multi-input systems, 

that is to dynamic systems driven by controllers whose structure is modeled by the 

additive neural network models. As in the single neuron type controllers we shall utilize 

ideas from the variable structure control. To proceed with the analysis we will need a 

method for designing a switching surface (hyperplane) for multi-input dynamic systems. 

This is the subject of the next Section,

It is important to we

are

which characterize neurons

arise

S^T^SIGIN OF :THE S WIT CHING RYPERPLANE FOR MULTI-INPUT

" In this Section we will briefly' discuss a method for designing; of the switching sur

face ■'foT','!iiitilti-mp‘Ut systems. The method is based on that of El-Ghezawi et al. [8]. 

Certain relations which come out during the analysis of this method are instrumental in 

the construction Of the.state transformation discussed in the following Section. •;

Consider the equivalent system

i = [ln — B(SB)_1SjAx .

It is easy to see that B(SB)_1S is a projector and has rank m. Hence In — B(SB)_1S is 

also a projector with rank n—m. Therefore the matrix Agq = [In — B(SB) 1S]A in the 

equivalent system can have at most n-m nonzero eigenvalues. Our .goal Is to choose S
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so that the nonzero eigenvalues of Aeq are prescribed negative real numbers and the 

corresponding eigenvectors are to be chosen. Let W = [wi...wn_m]; note

that WQRnx(n_m). In sliding mode, the system is described by

' X = AgqX

<j(x) = Sx = 0 .'

The order of the system is n—m and the solution must be in the null space of S, that is, 

SW = 0. It is well known that complete controllability of the pair (A,B) is equivalent to 

the existence of a controller of the form u — — Kx so that the eigenvalues of A — BK 

can be arbitrarily assigned [6]. Our equivalent system has the form

x =Ax -B[(SB)_1SA]x .

If we let K — (SB)-1SA, we need A — BK to have n—m prescribed negative eigenvalues 

{\1,...,XI1...rn} and n—m corresponding eigenvectors {w1,...,'wIl_m}. This is equivalent to

(A — BK)W = WJ (8.1)

where J = diag[X1}...,Xn.„m].

Denote by R(T) the range of the operator T. Since we requires SB to be nonsingu

lar and SW = 0, we must have : , v >

R(B) HR(W) = {0} . (8.2)

It then follows that we should choose the generalized inverses Bg, Ws of B, W so that

BgW = 0

and

WgB — 0 . (8.3b)

The above relations follow from the following identity
Wg

S
[W B] =

^n—m 0
0 Ln

.We

choose {w1,...,wn-m} so that (8.3b) holds. We can now construct S. Let W1 GlRm>ai be
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any full rank annihalator of W, that is W1 W = 0. Since a necessary condition for 

Sx = 0 to be a switching surface is SW = 0, we see that FW1 for any nonsingular 

FQRmxm is a candidate. We also require that SB - Im. Note that since 

R(W) PlR(B) = {()}, W1 B is invertible. We let 1' = (W~ B)_1 and let S — FW^ . It is 

easy to see that SB = Im and hence (W1 B^W1 is a generalized inverse of B. If we 

let BG = S in (8.3a), the condition is satisfied.

We will utilize the results of the Section to construct a state-space transformation

9. DECOUPLING THE NEURAL CONTROLLER FROM THE REST OF 

■ THE SYSTEM

In this Section we introduce a transformation which -brings the closed-loop system 

into the new coordinates in which the neural structure of the controller is revealed. 

This" transformation Will: also facilitate the task of estimating stability regions. The 

results of this Section are based bn the paper by Madani-Ttsfahani et al. [18]. r

Let ME]Rnxp be* defined by

where Wg is defined by (8.3b). Note that M is invertible with M-1 = [W B]. Introduce 

the new coordinates

x — Mx .

Let z = Wsx and y — Sx. Then x = In the new coordinates, the system becomes
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x = MAM~xx + MBu .

We write

MAM-1
An A12
A2i A22

where An , A22 £;lRmxm. Note that

MB =
Q

In, ‘

hence

z—Anz+Ai2y 

y = A2] z + A22v + u .

Observe that y = c and that A2iZ -(- A22y — SAM *x : SAx = ueq. 

be rewritten as

z = An'z + Ai2ct 

cr = - ueq + u .

From (8.1) we have

(A - BK)W = WJ .

Hence

WgAW = J

since WgB = 0 and WgW = In_m. We known that An = WgAW,

An = J.

(9.1)

Thus (9.1) can

(9.2)

and therefore



- 35

Example 9.1. Consider the following system:

x +x =.
0 1 
3 2

u

We would like to design the switching surface so that the system restricted to the sur

face is stable and has eigenvalue -1. Suppose we choose the corresponding eigenvector

for the equivalent system to be W = Wj
!

-1
. One can easily check that

Ws = [1 0] , Bs = S = [1 1] .

satisfy (8.3). Hence the switching surface is <r(x) = x* + X2 =0. The transformation

ws 1 0
s 1 1

matrix is

M =■

The system in the new coordinates is:

z = — z + cr
' V <7 — 3<r + u .

The system restricted to the switching surface is governed by

z = — z . ■

We analyze the closed-looped system (9.1) with the controller

Misgnai

/imsgn(Jm

where

u = (9.3)
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sgn q
1 if <Ti > 0
0 if q = 0

-1 if a < 0

For convenience, we let

: D = diag[^i,...,/imi

and

sgncr!
sgncr =

sgn<Tm

We can now write (9.3) as

u — — D sgn<j. (9.4)

Combining (9.1) and (9.4) yields

z = Anz + A12y 

y = A21z + A22y - D sgn a
(9.5)

Note that the subsystem

y = A21 z + A22y — D sgn <r

which can be interpreted as a dynamic controller driving the dynamic system

z = Anz + A12y

has a structure of an additive neural network model. Although we arrived at (9.5) 

starting with the controller (9.4) whose structure does not correspond to an additive 

neural network model, We can utilize the above analysis in the case when we explicitly 

apply a neural control strategy. We proceed as follows. Suppose we are given a 

dynamic system model



x = Ax + Bu

We apply an additive neural network control law

u — — D sgn <t(x, u) + cTx . (9.6)

The closed-loop system is

x

u

A B
c T/S

(-D sgn o{x,y)), (9.7)

where [xT,uT]T 6 JRn t m, and <r(x,u) is a switching surface to be chosen. Using the 

approach presented in Section 8 we design the switching hyperplane o(x,u) and then 

construct the transformation M following the development in Section 9. In the new 

coordinates (9.7) will havetheform (9.5), where nowA11GIRnxn,A22QRnixm> zGlRn and 

yElRm We know that the above procedure yields a stable closed-loop system (see Sec

tion 4). However, we are also interested in the extent of the stability properties of the 

closed-loop system. The next Section deals with this issue.

10. ESTIMATION OFST ABILITY REGIONS OF DYNAMIC SYSTEMS 

DRIVEN’BY THE NEURAL network CONTROLLERS

This Section is devoted to the problem of estimating sliding domains of a class of 

systems modeled by ;(9.5). The development of this Section follows closely the argu

ments of Madani-Esfahani et al. [18], In the analysis we shall use the following nota- 

■ ,:tion.';'r - ‘ v.';-, / ■ - , \ ; U-:; - M--': /'../;>■ V ■ ' '■

For i = 1,2, j = 1,2, we let

a;1J IKMjll >

where the Ay’s are from (9.5) and ||Ay|| W max{||Ayx||2 j 11x[j2: —;l}.
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Let

/.i = ,
X = min{ \\x [,..., |X11_m |} .

Note that the controllability of the pair (A,B) implies that A12 is not zero and hence 

3-12 5^ 0 -

We will consider the cases A2iis 0 and A21 not necessarily 0 separately in Subsec

tions 10.1 and 10.2. The case of A21 = 0 is simpler and gives a flavor of the argument 

used in the general case. We obtain explicit bounds on the time it takes to reach the 

switching surface for both cases. Here again, as in the single-input case, we utilize a 

variable structure approach. This will guard us against problems caused by the discon

tinuous nature of the nonlinearities which characterize neural network models.

10.1. A21 = 0.

We need the following lemma.

Lemma 10.1. Suppose </>(t) is real-valued and k ^ 0. If

.. 4> “k 4> < —p ,

then for t > t0,

m £ f +(#„)- £) et(,'W .

Proof, Note that (j) — k (j) < — /x is equivalent to — (e‘
dt

-kt, < _ fie—kt The conclu

sion is obtained by integration.

□
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The system to be considered in this Subsection has the form:

z = Anz + A12cr 

<r = A22cr — Dsgncr.
(10.1)

Suppose cr(t0) — <T0 E IRm. If cr ^ 0, then

&M
dt

T* 9C AoL22
1 m - £ Pi k\0\ i=l

in
Since |j > ||<r||, we have

i=l

dIMI
dt

=2 11A2211 Ikll — fi — a22||<j|| -p

Note that if 0 < ||oj| < , then < 0. Hence c^ti) = 0 implies that o{t) = 0
a22 dt

for t >; ti. Also ~ < 0 is equivalent to the condition <tt<t < 0 we have in Sec-
dt

tion 4. By Lemma-10.1,

Mt)n 11 + (Ikol! _ J£) ea22(t“to)
a22 a22

Therefore if 11 cr011 < > then <r(t) is 0 for some finite t with
, a22

t < t0 +
a22

log /U — log(/l — a22||cr0| (10.2)

Observe that if A22 is stable, then IRn is a region of asymptotic stability and the switch

ing surface is reached in finite time. Otherwise, a region of asymptotic stability is given

by {xGIR11 : ||Sx|| < In both cases, <J — 0 is a sliding domain.
' a22
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Example 9.1, (continued). Let u = — 10 sgn a. The closed-loop system in the new 

coordinates has the form: *

z = — z + <7

(j = 3<r — 10 sgn<7 .

In this case, A22 = 3 is unstable. The switching surface, is o(x) = Xj + x2 = 0. From 

the above, a region of asymptotic stability is given by:

= {(xi,x2) | |x1+x2| <^-}.

Actually £% is the region of asymptotic stability (see Fig. 10).
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d|I z|I ZTZ T * z zT .
,,... = TTTT 1 z An-r—r- + -77-77- An<T

- dt z z z

After some manipulations we obtain

dlkll
dt a21 !MI + a22 11'O’!I — m (10.3)

and

dllzj
dt

— — X ||z|| + a12.||cr|] (10.4)

Let

Ex = {(z,a) | ]| <r|| < X/Li
al2a22 ~b Xa

, iGR*-™ , aGKm} ,
22

E2 = {(z,<t) I a2il|z|| •+a22lMI < M > zGlRn m , crGlRm} ,

and

E = Ex ns2.

Theorem 10.2. A trajectory that starts in E stays in E and reaches the switching sur

face in finite time, which implies that E is a region of asymptotic stability (RAS).

Proof. Let

Ni={(z,a) | a121M|■ > X ||z||}

and

N2 ={(z,<7) | ai2lkll < X||z||} . .

(see Fig. 11)



Fig. 11.

By (10.3) 

for t

Thus we 

However

.v- f I! all

Illustration of regions used in the proof of Theorem 10.2.

we have AIML < 0 in E. Hence if (z(t0)), o(to))EE, we have (z(t), <j(t))GE1 
dt

t0. For (z(t),<r(t))GN1 PlECNi flEi, we have

a2lllzll ~+ a22 Ill’ll

a21 a12<

<

X
a22a12

x IKt0)i| + a221i <-5t^o)lI

< 1.1—e for some e ^ 0 

can conclude that a trajectory (z(t), o{t)) can leave E only through N2 P) E.

we have < 0 in E and ^[- — < 0 in N2, and hence a2]Jjz|| + a22|| <r|j is
■/. dt-:;-:; -VX/P/•. ;;dt,X..../
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a decreasing function in N2 0 2. Therefore a trajectory cannot leave N2 0 2. Hence a 

trajectory which starts in 2 stays in 2.

Suppose (z(t), oft^GN! Pi 2 for tx < t < t2. Then we have

dIM
dt — a2lllzll +a22ll(Jll ~P

< a12a21 ,
-----y-------- r a22

^ '
a|| - /i .

a12a21
Let k = —^-----r a22 Then by Lemma 10.1, we have

||o(t2)ll Wt,)ll ekfc-ll) E Jek(ta-t,) _ J

Therefore

11^)11 - ||a(t2)|| > £ - Ntoil
k

k(t2-t -1

IX 11^)11 k(t2 - tO

= (ix -k||a(t1)||) (t2.-tr) .

Suppose a(t0) = a0.

Since ||a(t)|| is decreasing in 2, we have

ll^tOII -||o(t2)|| > (M —k I|ct0||) (t2 -h) .

We conclude that a trajectory cannot spend an infinite amount of time in Ni 0 2 with

Mt)|l > 0.

We claim that if (z(ti), a(tj))GN2 02, (z(t2), a(t2))GN2 Pi 2, and tx < t2, then 

||z(t2)|| < ||z(t1)||. The claim is clear if (z(t), a(t))£N2 Pl2 for tx < t < t2.
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Otherwise, suppose (z(t), <j(t))GN2 Pi E for tx < t < Tx, T2 < t < t2, and 

(Z(TX), ct(Tx)), (z(T2)» <t(T2)) are on the boundary of N2PE. Therefore

11 Z'(Ti)11 I| z(T2)II '
IKT1)|| lk(T2)|! •

Since ||<r(t)|j decreases in E, we have ||z(T2)|| < ||z(Ti)|| and we can conclude that 

IIz(t2)l| < I] z(tx)|| as in the case where the whole segment is in N2 P E.

Hence if (z(t0), <j(t0))GN2 PlS, we have for t > t0,

< a21 ||z(t0)|| + a221|cr(t0)|| — ft < 0 . 
dt

Therefore, if (z(t), <^(t))£N2 0 S for tx — t ^ t2 then

||o(tx)|| — ||<r(t2)|| > (M-a2il|z(to)||-a22lk(t0)||)(t2 - tx).

We can conclude that a trajectory cannot spend an infinite amount of time in N2 Pi E 

with o(t)7^0.

Thus we must reach the switching surface er=0 in finite time if we start in E.

□

From the above, we can give explicit estimates of the; time it takes to reach the switch

ing surface starting in E.

Corollary 10.3. Let 

/3 — mur /z—(——y—— + a22)||<j(t0)||, /7 a21||z(t0)|| Ht0)||

Starting at (z(t0), o(t0)) € £, we must reach <J=0 in

lk(t0)ll
t ^ t0 +

P
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Example 10.1. Consider the following system:

3 1 1 o o’
X = -6 1 0 x + 1 1

0 0 3 0 1

with juj | < 10. Suppose the desired eigenvalue of the reduced order system is -3 with

corresponding eigenvector One can check that

Wg = wf = [l 0 0], S — Bs =
6 1 -1
0 0 1

satisfy (8.3). The transformation matrix is

M -
10 0 
6 1 -1
0 0 1

The system in the new coordinates has the form:

z = —3z T [1 2] (7

a —
-30
0

z +
7 10 
0 3

a — 10 sgn <x ,

In this case, fx—10, X=3, ai2—2.24, —30, a22 —12.46. Hence

E = {(z,y):||y|| < 10^°58'> 30IIZH + 12.46j|y|| < 10} .

Using a Lyapunov function argument, we can give another region of asymptotic 

stability.

Theorem 10.4. A region of asymptotic stability of the system is
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where 6 = — 
2

' ® = {(z,cr) ja||z|| +i3\\(7\\ < /i}

(a22—^0 T *\/(a22~bX)2 +4a12a2i | and ol = /?a2i A/^d'"'’'1)*

Proof. Let V be the positive definite function defined by

v(z,o-) ==.Qr||zj| -MMl.

The Lyapunov derivative is

T • T *• / \ Z Z . o <7 <7v(l><7) “ 1RT + p'ImT

From (10.3), (10.4) we get

V(z, o) < a(-X|| z|| +a1211 o)|) + 0(&2i 11 z|| +a2211 o\ \ —fx)

— (—Xcv+^a2i)11 z| | + (aa12 +9-22,/^)11 °\ I 1^/3 .

Using the values of a and 0, we have

Y[z,a) < 0[a\\z\\ + 0\\o\\ - fj]

The right hand side is less than 0 in 1%. This finishes the proof if z(t)^G and o(t)7^0.

Otherwise observe that 0 U &22 and ot iHk a2i- By (10.3) and (10.4) we have on 

£%,Pl{ Z — 0} :

dlkll
dt

< a22 Ikll - M < 0

and on 1% 0 {c = 0}

dllzj
dt

< - X ||z|j < 0

Hence V(z,<r) decreases on the critical surfaces also and we are done.

□
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As a consequence of Theorems 10.2 and 10.4 we give a new region of asymptotic 

stability with sliding.

Theorem 10,5. Let

W - v ; <3ix = {(z,o-) |a||z|| +/?||<7|| < fi, 1141- > —l|z|l} ;
&12

U {(z,cr) |a2J|!z|[ + a22H4I < ll> II41 ^ —INI}-
.... a12

Then is a region of asymptotic stability with sliding.

Proof. We use the same notation as in Theorems 10,2 and 10.4. Observe that

^ = sU {m fi'Ni).

For a trajectory that starts in S^flNi to reach the switching surface {<r=0}, it must 

pass through E, which is a region of asymptotic stability with sliding. See Fig. 12.
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Fig. 12.

Example 10.1. (continued). We have found

S: = {(z, cr);,|30| (z |.| ■ :-Fl2.4611 c| | < 10, ||<t|| < 0.287}

We havea=25i263 and /3=f 15,997. Therefore

^ = {(z,<r) l25.263ilz|i + 15.997H(J|| < 10}

= s u n Ni).

Recall that Ni - {(z,o) 1|| <t|| > l,34|| z|| }.
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II. CONCLUDING REMARKS

In this report we investigated viability of employing controllers based on additive 

neural network models to the problem of stabilization (tracking) of a class of dynamic 

systems. Two approaches to designing stabilizing controllers were proposed. Elements 

of the variable structure control theory were utilized to construct such controllers. The 

proposed controllers are characterized by robustness property which is inherent in the 

variable structure controllers. An important role in the analysis was played by a special 

state space transformation. This transformation not only facilitated the stability 

analysis but also helped to utilize additive neural network models in designing stabiliz

ing controllers. The proposed approach is promising in three ways. First, it results m 

robust controllers. Second, it has a potential to be employed in constructing fault 

tolerant controllers. Third, it allowed us to. circumvent stability analysis problems 

caused by the discontinuous nonlinearities which describe neurons. Also generalizations 

to the control of a more general class of dynamic systems are feasible. The proposed 

approach in this report and the results of Walcott and Zak [26] constitute a nice start

ing point to designing neural network based state estimators for dynamic systems.
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