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- ABSTRACT

This report is devoted to the problem of controlling a class of linear t}ime-in_varia_nl;
dynamic systems via controllers based oﬁ aldlditive neural nefwork models. In pa.rticli_- :
lar, the'tracking and stabilization problems are considered. First, Wé s’how how to.
transfoi'm'the p-roblem of tracking a refei'enl:e signal by ;; control system into the stabil-
izaﬁion pfoblem. Then, some concepts from the variable structure control theory are
" utilized to vconstruct stabilizing controllers. In order to facilitate the stability_analysis o.f =
the closed-loop systems we employ a special state space transformation. This transfor—
‘matlon allows us also to reveal connections between the proposed controllers and the'

additive neural netwqu. models.



e INTRODUCTION -

A neural nietwork is a large-scale nonlmear circuit of 1nterconnected 31mple c1rcu1ts
called cells or neurons. These networks resemble patterns of blolog1cal neural networks
hence- ’the'term"neural"networks ‘In fact mot1vat1on for studying’ suchfclrcults came-’

from attempts "to understand how known ‘biophysical propertles -and: (the) arch1tectural.

- orgamzatlon of neural systems can prov1de ‘the immense computational power charac-

teristic of the brains of higher animals” (Tank and Hopfield, [23] P »533) Another rea- |

- son of a recent resurgence of interest in neural networks. is. the low executlon speed of o

conventlonal computers Whlch perform a program of 1nstruct10ns serlally or sequen—,'_
~tially: . In contrast neural networks operate in parallel The ab111ty to be 1ntercon—..
nected in a- regular fashion. results in hlgher computatlon rates. Furthermore, regular-_ :

' 1nterconnectlons of the same ba51c cells leads to easier de31gn and testlng of a chlp

- Potential appllcatlons .of neural networks are in such areas.as speech and - 1mage',.'
recognition ([21] [27]), linear and nonlinear opt1m1zat10n ([3], [16] [23]), automatlc con-

_trol ([ ], [2], [15]), and in hlghly parallel computers ([17]) to ment1on but a few.

The sub_]ect of this report is an appl1cat1on of additive neural network models to "
the control of dynamic processes We begin with a brief descr1pt10n of a neural network_
~model used in the report. Then we formulate the tracking problem and show how the

add1t1ve neural network model can be used as a controller A var1able structure systems' :
approach (171, [25]) is utlhzed to construct the proposed controllers This -approach'
‘allows us to c1rcumvent analysis problems caused by the d1scont1nuous nonhnearlty
wh1ch is used to described neurons. Finally, in the concluding Sectlon we 1nd1cate

dlrectlons for future research in the apphcatlons of neural networks to the control prob-. ‘

. ,lems. >



‘ | 2 A BRIEF DESCRIPTION OF THE HOPFIELD NET

There are many neural network models ([11], [17]). In this report we wi‘ll be. con—'
cerned Wlth the sunpler addltlve model also known as the Hopﬁeld model in the con— :
text of a control system tracklng a reference s1gnal The add1t1ve model has contlnued‘ .
to be a cornerstone of neural network research to the present day Some physwlsts'
unfamlhar Wlth the classwal status of the addltlve model in neural network theory
| erroneously called it the Hopﬁeld model after they became acquamted w1th Hopﬁeld’ s
first application of the additive model in Hopﬁeld (1984)" [14] - see Grossberg ([11]

23). The Hopﬁeld neural network model is represented in Frg 1.

Fig. 1. - Hopﬁeld type nenral network model.

Nodes or neurons, represented by circles in Fig. 1, can be modeled as shown in Fig. 2.



" ‘nonlinear . .

. amplifier
~- -
curreni S — = “current

By _through Ry = through Ci

Fig. 2 » Model of a neutqn_ 1n ‘t‘he Hépﬁ‘eld neﬁ.

The nénliné_af ampliﬁef’s ihpﬁf—ou.tip‘ut charaéteristié is déS'cfibed-By:the-sigjmoid fune-
tion. The sigmoid func‘t-';i-(:)n. x =g(u) (g:Rff]R,f Whére ]Rf._den’dtes ‘the set of real
numbers) is defined by the prop\e_r‘ti’ésiﬁ‘ - : | .

(a) lg(u) | < »M, where 0 <M <oo is'a iconstal‘l‘t,.'aiid

(b) di(;l) > 0

A poss1ble c1rcu1t 1mplementat10n of the Hopfield network proposed by Smlth and

Portmann [22] is presented in Flg 3.
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b_Fig.v3._ : _'CirCu.it réalizétioﬁ of the Hopfield nef. :

'An equivalent representation of 'vthe cir"cuitvf:l'om»F;lg.:’3. is.given in Fig. 4.



: Xi.

Fig. 4. Smith and POI‘tI?ilé.DD_’S .[22]'_equiVéient fepres“ent:ation of the Hopfield netwboirk
circuit realigatioﬁ; e | |

This equiValen}'tl rép'resehtati(‘m aliowé us to\ﬁvritie. down the g(iuations govel-'ningv the

ldynamical beh:-n‘rio‘r of the nef’in a straigl;{tforWard ima'{n‘ner.» In'deed.,‘ appl_y‘ingbthe:-Iz(irf

chéﬁ current law at the iﬁpu’c 11_obde: of "tile"'azhp_liﬁér.;i.nd ﬁﬁiliziné.the fact th‘a‘t the in'pu.t o

v Currenthinto fhe ‘émpliﬁer is negligible (hlgh -i»npl.it‘ impedance)’we obtain v
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Uti'lizing'__' thé-‘?ﬁdvé notatlon weca,n ‘represent eqﬁ@tiéns (2.1) in the following form -



i. 'u-, ..n : . » L '

where x; = g(u,) ‘We can rewr1te the equatlons (2.2) as

| du-

v — by + Z Ay gly) + U i=1,2,.,n - ‘ (2.3) :
S = - , s
Where '
Ty Tt 1
) Ai'j% c; Ui,::;_Ui(t) = G g and bi)_:_z’riCi :

The qu_al'rtattve arralysis -of the neura’l» »netyv_or:kv rnodel represerrted by (2.3) Was' p'erj ‘
i_'orrned among others,,by Hopfield [14] arld_ Michel,et el. [20],‘ see also ‘[10]‘ and [11] -

The primary goal of th1s report is to show how the Hopfield type of neural net-
~ works can be applied to the control of dynamrc processes, in partlcular to the trackmg a

reference s1gna1 by a control system

The formulatlon of the trackmg problem is the subject of the next Section.

3. FORMULATION OF THE TRACKING PROBLEM

Suppose we have a model of a dynamlc process, plant, given by the followmg equa-
tions |
k=Fx+Gu )
y=Hx o SRR IR
where FE]R’M1 GE]R’M_n , and HE]Rmxn. We wish to’desi»gvn a controller so that the

‘closed-loop system can '.



Reference input AL Do ' Actual -
—desiredoutput oo . output-”

Y

y<

- CONTROLLER [— PLANT

5 ” - x :

Y

Flg 5 'Trad‘{ing‘ eystemvsvtly't;etufé‘;_.v.:-
Let thé‘ ref»'ereec‘e‘gl-si-:gnals be (.i’escr‘fibedi,‘ as in DeQisen [5],by the fqlloWihg differeﬁtial
equations - ' ’ PR e | ‘
(e) +'apr_gp'_1')f'(;;)‘ Yy o;;;ﬁ;(t_)qr ozlr(t)=0 1: Lom (32)
where the initielkcqnd.it‘r,ions | e N | | |
HO), B0, s P I0)
are specified. S |
| Equatlons (32) caﬁ’, b.e. reﬁr:iﬁteﬁ 111 the .foﬁrm,v(;f the matrlxdlﬂerentlal ve(}lﬁaf#idn :
(t)I + ap 1o %)( )1 + + ozzr( )Im+a1r(t)1m= 0o (33
yWhel.‘e Imlsthe mxm 1dent1fy metbnx, and r( ) 1s. a scalar functloﬁ (RN P
The trackm‘g.error. is- deﬁned as T L
_The problem of trackmg r( ) [rltt) L ()]T can be V1eWed as a}de31gmng eﬁercxse of |

.-“a control strategy Whlch prov1des regulatlon of the error (Franklm et al [ ], p 390),
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that is, the error e(t) should tend to zero as time gets large.

One way to tackle this problem is to include the equations which are satisfied by

the reference signal as a part of the control, (stabilization), problem in an error state

space.

In particﬁlar, we differentiate the error equation p times and then introduce the

error as a state. In what follows we extend results of Franklin et al. [9].

We have
elP) = y(P) _ f(p) |

= HX(p) + Ofpr(p_l)Im + Olp_lr(P_z)Im + ...+ Olll'Im .

We then replace the plant state vector by the following vector
£ =xP 4 osz(P_l) + .+ oyx
and deﬁne the new control;vector as
p=ulP + cvpu(p‘l) + .+ qu

We now rewrite (3.5) as -

el?) = P, — apy®Y + ozpy(P_l) + ..

4ot ogrly — oy + oqy + HxlP)

= — dp P~ — | —oe+ H[x(p) + Osz(p_l) + ..+ Ozlx] .

Taking into account (3.6) yields

elP) = — dpe(p_l) ——— age + HE .

Differentiating € gives

(3.6)

)

(3.8)



EER
n ‘ 5 (p+1) + % X( ) + alx ;
g F"xf(b) + Gu( ) ko, FX(P 1) tap Gu(p D
+ olex + 011 Gu
Héfncé; in view of (3.7),
B T C=F)
Combining (3.9) and (3.11) yields

ol=l s s e e e (3a2)

e | fmaln - - o ol HI|T | |0

O '....‘ 'A Vo . .

L D - { [ ,

Then (3.12) C?n..be b‘rep‘reseﬁte‘d‘ as ’
mArtBa. vﬁi *?; xms*

| . We refer to the system modeled by - (3 13) as the error system Thus the problem of the

e regulatlon of the error is reduced to the problem of the stablllzatlon of the error system’ :

'leferent approaches to the stablhzatlon problem of dynamlc systems modeled by (3 13) -
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exist. For example see DeCarlo [6] or Franklin et al. [9]. We propose two new
approaches to designing stabilizing control strategies for (3.13) involving the Hopfield
type neural networks. Prior to presenting these control laws we will introduce the

necessary apparatus for further analysis. This is the subject of the following Section.

4. AUXILIARY RESULTS
In the following analysis we utilize certain concepts from:the theory of variable

~structure control.

Variable structure control (VSC), the control of dynamical systems with discon-
tinuous state feedback controllers, has been developed over the last 25 years. Séé‘['?]‘,'
and [25] for surveys and [12], [24], [28] for applications. This theory rests on the con-
cept of changing the structure of the controller in response to the changing states of the
system to obtain a desired resbonse._ This is accomplished by the use of a high speed
switching control law which forces the trajectories of the system onto a chosen mani-
fold, where they are ma'intaibne‘d thereafter. The system is insensitive to certain parame-
ter variations and disturbances while the trajectories are on the manifold. If the state

vector is not accessible, then a suitable estimate must be used.

We use the following notation. If x€IR", then ||x|| denotes the Euclidean norm,
that is, ||x|| = (x} + ... +x121)1/2. If A is a matrix, then ||A|| is the spectral norm

defined by

|| Al =m3X{HAXH [Ixl| =1}.

TFor any square matrix A, we let A\pip(A) be the minimum eigenvalue of A and Amax (A)

be the maximum eigenvaiue of A.
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With this notation,
A1 = Apax(ATA) .
Rayleigh principle states that if P is a real symmetric positive definite matrix, then -

Amin(P) 11¥1? =xTPx <X\ (P) IIx]1% .

An important concept in variable structure control is that of an attractive mani--
fold on which certain desired dynamical behavior is guaranteed. Trajectories of the sys-
temn should be steered towards the manifold and subsequently constrained to remain on

it.

Definition 4.1. ([25])

A domain A in the manifold {x |ox) = 0} is a sliding_mdde domain if for each
€ > 0 there exists a 6 > 0 such that any-t.rajectory starting in the n-dimensional &
neighborhood of A may leave tiié n—dimen.sional e-neighborhood of A only through the

n-dimensional e-neighborhood of the boundary of A. (see Fig. 6.)
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.'A‘xz : N | e g o

- heighborhdod of
\+~ boundary point of A

boundary point of A

Fig. 6. Two-dimensional illustr'aﬁion of sliding mode d’omain.v' '
' We_ next describe the manifold which 1s used in this paper. Suppose
s=|:|eRrR™®,
_ 5y o
 where
s ERY® .
We assume that S is of full rank.

‘where -
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o xe€ IR™  , _
and let | | |
| COn}s-i‘d'er" the SyStem o et :
x=Ax+Bu, S )

where x€EIR®, AEB“X’J,, BER™™, ﬁE]Rm. We make the fdllowing 'ass’,umptions:
iA‘ssu’mptiovnb 1 The matrix SB is nonsingular.
' Y.Assbumpti_on 2: The pair (A,B) is completely cvont‘rollable'. o

" Definition 4.2. ([25]) The solution of th_é alebraic ‘eq‘uatio'nvin u'of
Sk =SAx +SBu=0 -
is called the equivalen_t control and denoted by uéq, that is,

g =~ (SB)'SAx.

"];)gﬁn»it;ion?i.‘:’}. The eQuiw.ralent system is »the'éystém that,‘is ob.tainé.‘d‘whgn‘the original
control :;u. is __replacé& ‘by the vquivalenyt_ control iieq,lthgt‘ais,‘ - |
| o i —'B(SB)fls]A x iv
' We assume thatthecontrol u 1ntheSYSteIIl (41) lsbounded ia‘nd ’that
K | T | =w, 1 '='1,‘...,1vn', B | | (42 :

where g > 0.
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" Our goal is to-design a controller Which‘s‘atisﬁes the bounds (4.2) and which
induces the sliding mode on ) in the sense of Definition 4.1. |
- In general, the controller in VSC Varies its structure depending on the position

- relative to the switchihg surface and has the form:

It is easy to see that it oL < 0, then the trajectory is tendmg towards the switching
surface Hence if ol < 0 1n a 11e1ghborhood of a reglon A of the SW1tch1ng surface,'}

then' A isa shdmg domam ([25]) For example let

—k;sgnoy
u = _
—kysgnoy
Where .
1-if o >0
sgn g; = 0 if Gi =0

__1 if | ‘ai‘ <0,
and k1 > 0 fori=1,..,m. One .can easily eheek that if
| | U= Ueg - +(SB)ta,
the.n‘
To=0cTi<0.
Hence with the above control u, we have a sliding mode.

Let us assume that the sw1tchmg surface is chosen so that SB =1p,; we Wlll see how
thls can be accomphshed Sectlon 6 and 8. With this assumption, Ueq = SAX We »

next give a sufﬁclent cond1t10n for oY & < 0 to hold. Note that



RIS T

o Mo=c(sAx+SBy)

‘ =§13 Ul(_(ue q)l+ul) BT

then OTJ<0 In thls report,We usethecontrollaw . : ». "
: —Mlsgnal 1

B _ Mmsgndm Y

Wit tis control law, e have aa < Ointhe region

*

=
JLDE*‘

{X | l ueq)l I < :U“x} -

{x | Islel < u»l}

—

-.::-4&.:)5:-,,

NOte that Q is aﬂ Open nelghborhood of the orlgln If A Qﬂﬂ where L
Q {X IU(X) —-0} then A 1sashd1ng domaln B e S

Observe that a shdmg domaln is. a reglon of a,symptottc stablhty (RAS) for the sys—

| it,eﬁil e
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Example 4.1. Consider thé dynamical system modeled by:
X =u .

where u = — sgn o(x), and o(x) =x; +%; = [l 1Jx. In the state-space representation,

Xy 0 1} [x 0 ,
= — sgn o .
% [0 0] % 1

Ql= {(XI?XZ) ‘Xi +x9 = 0} )
Q= {(x1,%2) | Ixz | <1}

we have

In this case

and A = Q" N is the segment of the line x; + x, = 0 with Ixo | < 1. (See Fig. 7)



B F1g 7 Illustratlon of a shdmg domam 111 Example 4. 1.

5 CONTROL OF SINGLE—INPUT SYSTEMS o

- There are two baS1c steps in the des1gn" of VSC

() _‘The des1gn of the sw1tch1ng surface (mamfold) s0. that the behav1or of the system» o
: ,has certam prescrlbed propertles on the surface For example, the swutchmg sur- :

) face w1ll be de31gned 80 the system 1s asymptotlcally stable on the surface

(2) 5 The des1gn.of the control strategyto steer the system to the SW1tch1ng surface and
: '--_j-to mamtam 1t there | e | o

. -_I}n,_“th_vis_;Se'ctiOnlwef consider'a, classof smgle-rnputdynamlc _:sj"rstem'modeled_by" ‘

| :Where‘XEIRn 'AE]R”XI‘ bEIRDXI, uEIR We assume that the palr (A b) 1s completely

vcontrollable and hence (5 1) 1s equlvalent to the controller canomcal form " N
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o 100 o o] o
000 10 0 O 0
x=|i % G x4,
0 0 .. 0 1 0
hozl,- 67 SN Qp_ 1 ;ozn_ Ll_

The mainfold we use has the form

0= {x |sx=0} ,. scRV® .

(5.2)

(5.3)

We can assume that s = [sy,..,S,_1,1]. Observe that if the system is in the controller

canonical form then sb'=1. When the system dynamics is given by the controller

canonical form then the equivalent system is

0 1 0 0 0

0 1 0 0
x = | X.
oo . .0 1

-0 81 —Sp o+ TSn—g —Sp—1]

" 'The controller on which we will concentrate is
u = — psgn(sx) ,
where 1 is a positive real number and

1 if sx >0
sgn(sx) =1 0 if sx=0
—1 if sx < 0.

Note that this controller is bounded by u.

(5.4)

(5.5)

We now choose the switching surface so that the system restricted to the surface

has prescribed distinct negative eigenvalues ~Npyery=Ap_1. If the system is in the con-

troller canonical form then in sliding mode the system is described by (5.4) and sx = 0.

The order of the system in sliding is n-1 and its characteristic equation is given by
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)xn*{lﬂv- Sp N T2 ks =0 ' (5.6)

The prescribed eigenvalues —\;,...,—\,_; must satisfy (5.6) and hence we have the

linear equations

1 _)\1 | (_)\1 )2 . (_)\1 )n—1 | S-l
P F =0 67
Sp— ,
i '—>\n—1, ("">\'11—1)2 (_>\11~—1)n_1 1 '

Sinéé A,--Ap—p are. distinct, the coeficient matrix has full rank and.sl,...,sn_l- are
uniquelyv determined. - This completes the design - of fhe switching surface
0 =v{x | sx = 0} Note that one does not have to have a model of a dynamic system to
be conﬁrolled in the controller canonical form. We have used the canonical form to
faci‘litate the analysis. From this point oﬁe can assume that our process to be contrql-léd

does not have any.particular form.

To proceed further we introduce a state-variable tfansfdrmation. For ¢,k positive

~ integers, we let

(1 1 .1

V£(61;°";ﬁk) = ﬂl ﬁz | ﬁk 'E']R(('+ 1)5<¥< .

st s st

Let _
W= Vn——l (_>\‘1""’—>\11"1) di'a'g (pla“"pn-—l) € IRnx(n_l) ’
and

WS = [{Vaa( gy —hat) diag (P1yopay)}! | 0] € RE-D0

Note that WEW =1, ;. The p;’s are to be chosen so that the system matrix will have a

desired form to be given.
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Lvet, asin [19],
g
N = [W ] .
S
Observe that M™! = [W b] (see (5.7)). We introduce the new coordinates
y sx |
Wheré z€R*, yE€R. In these coordinates, the system (5.2) has the form

2 =Ap 2+ Ay
v 5’=A21Z +A22Y+11a

where A;; = diag (—A{,..,—Ap—1). If we use the controller
u = {1 sgn(sx) = — [t Sgn Y ,
then the system is described by

2=Az+ Ay

Yy =Agz+Apy —psgny.

Remark 5.1.

|  (5.9)

- (5.10)

O'n-e can interpret equations (5.10) as follows. We are given a dynamic system.

i = A11 7z + A12y
driven by aéignal neuron type controller

y = Agyy — i sgny + AgZ.

(5.11)

(5.12)

This observation follows from the comparison of (2.3) and (5;12), where I = Agy 7.

Note that in order to arrive at the above conclusion we had to perform a state-

space ﬁransformation (5.8) to reveal the implicit presence of the neural controller in the



L closed loop system (5 2), (5 5)
We now expllcltly employ the neural type of controller to a glven dynamlc system

o In partxcular suppose we are glven a dynamlc system modeled by (5. 1) We _pro_pose_:a '

: controller of the form (2 3)

o=~ fu—pusgn o) +U, SR (5.1—3)..__ o

V/Where U == ch, and U(X u) is a sw1tch1ng surface to be chosen The equat1ons of the o

: closed loop system can be represented as .- '
A bl

AT =B u t

plersmoc. a0
. dbserye "that [XT u]T«:"e’-"E{H*l. Tn order to ‘proceed further one has to declde what klnd

‘of dynam1c behavior is to be 1mposed on- the closed—loop system Thls then should be‘
| expressed in the form of n prescr1bed elgenvalues Whlch will correspond to- the elgen-
'values of the system Whlle in sl1d1ng along U(X u) = 0 Hav1ng chosen des1red elgen-
‘ _values we can determme the SW1tch1ng surface O’(X, u) us1ng (5. 7) If one then transforms o
R :(5 14) 1nto the new coord1nates ut111z1ng (5 8) then the resultmg system Wlll be in the

form (5 10)
o lo 0 S £ et A TS L POy e

' Where u = — ’/J, sgn G(X) We choose the sw1tch1ng surface so that the system restrlcted

: to the sw1tch1ng surface has elgenvalue —>\1 From (5 6) and (5 7) the sw1tch1ng surface.‘ '




_ ”sl'xli +xg =NX; +X2=0.
-~ We .us‘ie the éoﬁt;oller .
u=—pu sgn(Ax; +x2) . = o (516)

A block diagrani rrépres,entati‘on of the closed—ldop- system is given in Flg 8.

~ Fig. 8. ‘Block:diagr‘am of ‘the chsed—loop system (5.15),(5.16) ih.‘Example 5.1 in the
§ ~old coordinates. ‘ | |

V"Uvsing: ‘the ‘method described above we have

SR
M= [“:F [N .1]’
andthe sjstém m the new ‘coordinates ié . |
i,=‘—>‘\1z+‘3‘r“ |
= ‘—‘.>‘%}Z,+ Ay — psgny -
Considef fa'gaixi,the ‘syst_eﬂ.i (5.15). This time we chéoée an explict neural éonpr"(_;l-le_.ifi' -
A == fu + oTx — p sgn ofx, ) E i

: Whefe el = [’c.l ,:cz]j.] The closed-loop sysfem now l_ias the,forbmrj
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X 0 1 ofx| o | -
%p|=10 0 1 ||xg|+ |0f(~nsgn ofxu)) - (518)
c; ¢ —F||q 1

tu

L.

A block diagram of this closed-loop system is depicted in Fig. 9.

u .[ X2 X4 Xy ‘
Y Yy VT)_
C2
— | Ci [
.84

Fig. 9. Block diagram of the closed-loop system (5.18).
The »swit»ching'surfacé is found from equation (5.7)

Loy [ . |
o =0, , 5.19
1 =g (_)\2)2 Slz - : | - ( )

where —)\; and —\, are the desired (diétinct) eigenvalues. Solving (5.19) yields

Pl e ]l
S2 Ny =N | —1 1 A3 B

' We now can construct the state-space transformation (5.8). We have

MAg

. 5.20




1

+>\1.

_>\2 ——)\1

'1

0l

ol

| >\1>\2 k2+>\1

Note that

N ()
I vthe new coordinates (5.18) has the form.(.S.IO)" where

:‘_—X{f" ol
A11 = andv y= lSl 55 »1] xa|.

al

The results of Sectlon 4 1mply ‘that the closed loop system descrlbed by (5 10)
“' _locally asymptotlcally stable The goal of the next Sect1on is to- 1nvest1gate reg1ons of
= asymptotlc stablllty for dynam1c systems drlven by a smgle neuron type controller The*_..: ;

_' Aclosed-loop system then is modeled by (5 10)

| - 6. A FIRST APPROX[MATION OF THE REGION OF ASYMPTOTIC'

: ’:STABILITY WITI-I SLIDING

In th1s Sectlon we glve a ﬁrst approx1matlon of the reglon of asymptot1c stablhty"
B "ﬁv‘(RAS) w1th slldlng The results of thls Sectlon are based on the paper by Madam—

| Esfaham et al, [19]._
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' ,. P:):etter’approximatien will Be given in the following Section. We start with the fol-.
- lowing lemma.

The‘system under consideration is modeled by (5.10). '

Lemma 6.1. ([19]). For 0 < € < u, the region
A ={(20) | |Ayz | < p—e} C O

'is a sliding mode domain.

Proof: b.Let_. , A = {(z,y) | |A21z| < ,u—E |y| < —I—r} Thenw.f in.
AN(zy) 1y =0}
== () =y 7 =y(Agz + Agey) — 12 |y |
2 dt | _

<llp—ete—n

=0.
Therefore a trajectory starting’ in. A, can leave A, only thrpugh" the ¢ / [Ass |-
neighborhood of the boundary of A in f).

mj
~>'Observe that if the initial point is in A, then the system Will be in sliding for some

posiﬁve time. HoWefrer, there. is no guarantee that we stay in A for subsequent times.

From the fact that Ay = dlag (—Niyeee —>\n 1) we have the followmg ‘Let B, denote the

~ ball centered at 0 with radlus I.
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| ;-rrgﬁésiﬁian:'6.2.:.([19]) Let | |
O | VR',—sup{r|B ﬂQCA}
Cs=B N0

© Then X is a RAS with sliding. -

: ’vProof Whlle in. shdlng the system is governed by 7= dlag (—>\1, ‘n l)z Hence
: o R - Cnst ', e 7 :
g =__'zi-(0) Nt for i= 1 Thus 1f Z (0) < R2 then E (t) < R2 and by"

| Lemmafil es iz 0 O
ol Note that I is the largest circular region’ 5fhaf, is contained in A.: We can easily see.

o ;that R = ,u/aﬁ, where ag;. = | A1l the Euc'l_videan norm of Ay;. :

: _7 IMPROVED ESTIMATES OF RAS WITH SLIDING |

In the prev1ous Sectlon we obtalned a RAS Wlth shdlng contalned in the sw1tch1ng ;

L surface We now use thls lnformatlon to obtaln RAS’s that are not constralned to the,‘ -

"5W1tch1ng surface The method we use is. that of ﬁndlng RAS s whose restrlctlon to the’
' »SWltchng surface is contalned in E ‘and hence Wlll be a RAS Wlth shdlng ' Our maln

tool is a Lure—hke Lyapunov functlon candldate
V(z,‘y;ﬁ,n,rh) =_(az’1|12||) + 2:8(A212)y +hy +w7 |Y| (1)

- ’Where ,8, h and 1) are pOS1t1ve constants. When there is no‘ ‘,amblgurty, we will 'lwritef’

, " ( ,y) for V( ,y,,@,n, ) Obserye,that '



e (¥) | t}’l <

"_;‘29'_‘

v( ) (anuzn—ﬁlyl +(h ﬂz)y +w7|>'| (72)5:_2}._,;

| if‘Hence 1f h ,62 " > 0 then V 1s p051t1ve deﬁmte If ,6’2 — h > 0 then V is posmve mvj“.,

e
@.

- ,V may not ex1st on ‘a tra_]ectory whlch mtersects Q { ,y | y = 0} However, Whenf‘"

' "',."}restrlcted to Q. the system takes the form = Auz = dlag ('—>\1, : )\ ) Therefore |

T the tra_]ectory (z(t),y( )) is in. ! for tl : t = t2, we must have llz(t2)|| 1l (tl)ll

. "Smce the restrlctlon of level sets of \% to ﬂ are c1rcular reglons, the traJectorles of the' g

} Slnce V contams a multlple of |y| the Lyapunov derlvatlve: o

system cannot leave a sublevel set { ,y) | V ,y < az} of V through Q. Therefore 1f Fr o

o Lisa reglon such that

: ( ) V is pos1t1ve m I‘
ﬁ (11) V 1s negatlve m T\Q : : '_ - { |
o _then the largest sublevel set of V contamed m F is a: RAS If n. addltlon we: have o

- (111) the restrlctlon of F to Q is contamed in E

e ‘,ﬂ_then the ]argest sub]evel set of V contamed m T‘ is a RAS Wlth shdmg Note that We do B

o ;not need to cons1der V on Q

: Theorem 7 1 ([19}) Suppose 77 = 2,3 Then for each 0 < 5 < ,U, there is. an € > 0 S0

‘ ,that for h > ,u the reglon o -

{ ’y |V ,y,ﬁ,n, )”v (u 6)2} ‘_, T

T : 1 ;131s 'a RAS Wrth shdmg




-30-

Proof After some manlpulatlons We obtaln o
V=2 A+ [2ﬁ(A212)2 ]
+ éhjjf v | [Azrz sgn y ’—}MJ_".+ pAg; 2(n — 2] sgn y
+A22 ly | [2n |Y | + 2,3 Azrz) sgn Y + L”?]
o+ 2y [/BAZIAIIZ + /BYA21A12 + 321Z A12]
We choose Kl > O so that Py 1st cohtalhed lln { ,y) | I|A11z]| < Ky, Iz Aps | < Kl, :
o :— 0}. Therefore _ there ‘ibs 2 fixed constant K >0 so- that '
Q? {_(Z;Y I HAIIZH < Kl’ |z A12| < Kl: |Y| < € € > 0} S |
j'V = 2 3212 Auz'-'t 25' [(A21Z) _,‘.“ ] :
bab bylilAne| = +K Il
2

In the above We used the assumptioﬁ that _2ﬂ =7 If l[y|] <c¢andh = | ﬁé— then

V < 22427 Ay 5+ 26](Agi2)” — 47
2

+2—'— |A21z|— +Ke.

. :Let 0< 51 < (5 We can ﬁnd €1 >0 small S0 that 51 + 0 < 0 and V < 0 in
@ ﬂ{ 2,y) | |A212|<N 51, lY' < &} -

V:Con31der the sublevel set _ ., _
= {@y) | V) < (1= 97}

By ehOOSing € small', hence h = i /62 large, we can make -|y | < € uéing (72) Thus

for (z',y)GS we have




o agy izl < :“'_ §+ By < N— ’51'?.
Siﬁce SN 0 1S ¢onta_ined‘ in X, we conClude'that' SC@'.‘ S is;a s Wlth Sliaiﬁg;; .

In the follow1ng sectlons we W1ll extend the obtamed results to mult1—1nput systems,

- ;that is to dynarnlc systems drlven by controllers Whose structure is modeled by the-

addltlve neural network models Asi in the single neuron type controllers We shall utlllze_. -
~ ideas’ from the var1able structure control To proceed with the analys1s we Wlll need a
method for des1gn1ng a sw1tch1ng surface (hyperplane) for rnultl-lnput dynamlc systems

Th1s is the subJect of the next Sectlon

CTtis 1mportant to- observe that by us1ng the var1able structure systems approach we
‘fare able to clrcumvent the problems Whlch arise from d1scont1nu1ty of the nonllnear1t1es

Whlch character1ze neurons.

DESIGN OF THE SWITCHING HYPERPLANE FOR MULTI-INPUT'_
:SYSTEMS

In this Sect1on we w1ll br1eﬂy d1scuss a method for des1gn1ng of the sw1tch1ng sur— '
: face for multl-lnput systems “The" method is . based on that of El- Ghezaw1 et al [8] |
‘Certaln relat1ons Wh1ch come out durmg the analys1s of th1s method are. 1nstrumental in

the constructlon of the. state transformatlon dlscussed in the followmg Sectlon
:* Consider th”e, equivalent system o
x= [I (SB) 1S]Ax

It is easy to see that B(SB) 1S isa progector and has rank m. Hence I — B(SB) 1S is

also a prOJector W1th rank n—m. Therefore the matr1x Aeq = [I — B(SB) 1S]A in. the o

equlvalent system can have at most n—m nonzero e1genvalues Our goal is to choose S



RO SR

SO that the nonzero elgenvalues of Aeq are. prescrlbed negative real numbers and the
correspondmg elgenvectors {wi,-. ,wl1 m} are to be chosen. Let W = [Wl WIl m] note

that_WE]Rnx@ ™) In shdmg mode, the system is described by

X = AggX

' The"drder'of the system is n—m and the solution must be in the null space of Sv, that is,
5SW. =0. It iS'WeH known that eomp'lete con‘trol‘lability of the pair (A,B) istequivalentto
the existence of a :contvrollerA of the form u = — Kx so that the eigenvalues of A — BK

can be arbitrarily assigned [6]. Our equivalent system has the form “

x = Ax — B[(SB)_I,SA]X
" If we Iet K= (SB) 1SA ‘we need A — BK to have n—m prescrlbed negative elgenvalues :

{)\1 yoos An—m } and n—m corresponding eigenvectors {Wl, Wyn_m . Thisis equwalent to
(A —BK)W =WJ , - (8)
: Where J= d1ag[>\1, Ap—m)-

Denote by R(T) the range of the operator T. Since we requlres SB to be nonsmgu— _

Iar and SW.= 0, we must have :' |

(B) NR(W) = {0} | ,‘ : . ST (81“2')’ |
_. It then follows that we should choose the generahzed inverses B8, W& of B, W so that .
BEW = 0 Ll ‘. (8. 3a)
and o e

WeB=o0. - (8:3b)

Liim O}We

 The above relations follow from the following identity [V; ][W 'B| =
choose {wl,..‘.,wn_m'} so that (8.3b) holds.' We can now constnict S. Let wt E]Rmxn‘ be
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any full rank annlhalator of W that is WJ‘ W = 0. "”‘S"in'ce at necessary conditlon' for‘i

: YSX = 0 to be a sw1tch1ng surface is . SW —0 uve see that FWl for any nonsmgular

| FGIRmxm -'; a- candldate We also Tequire that SB=1I. - Note that since |
(W) ﬂR B) {0} WJ‘ B 1s 1nvert1ble ‘We let T' = (WJ‘ B)_V and let S'-— IW'L .‘ It | is o

easy to see that SB = I, and hence (Wl B) 1Wl is a generahzed inverse of B If we

‘let BE = S in (8 3a), the cond1tlon is sat1sﬁed

We W1ll utilize the results of the Sectron to construct a state—space transformatlon ) |

» dec‘oupllng the neural ‘controller- frorn the rest of the system. .

9. DECOUPLING. THE NEURAL CONTROLLER FROM THE REST OF
THE SYSTEM -

In th1s Sectlon we 1ntroduce a transformatwn wh1ch brlngs the closed—loop system

1nto ‘the new coordlnates in Wh1ch the neural structure: of the controller is revealed-

' ThlS transformatlon will also facrhtate the task of est1mat1ng stablhty regrons The' o

results of this Sectlon are based on the paper by Madanr Esfaham et al. [18]

“Let- Mg]Rnxn,“be deﬁned 'b_y' A

Where Wg is' deﬁned by (8 3b) Note that M is lnw‘iert_iblé-With M“1 "=‘ [W " B].f- Introduce
the new coordlnates ' ‘ ‘ o e

Let z = W&x and y =5x. Thenx = { } In the new coordinates; the system becomes ~ -
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% = MAM™'% 4+ MBu .
We. write

A A

MAM™! ; .
A21 A22

where Ay cREmXEm) A cR™™, Note that
o

MB = [I }
. m.

i = All Zb + A12y

hence

9.1
y=Agnz+ Apy +u. : ( , )

Observe that y = ¢ and that Az‘lz + Agoy = SAM 1% = SAx = — uyq. Thus (9.1) can

be rewritten as

i:All‘Z +A12O' (9 2)
&#—ueq+u. '

From (8.1) we have
(A —BK)W =WJ.
Hence
WEAW =J
/ since WEB =0 andv WEW = In;m. We known that A;; = WEAW, and therefore
Ap =1J.
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Example 9.1. Consider the fqllowing System:

o101
X =
3 2

We would like to design the switching surface so that the system restricted to the sur-

0

X u
+ 1

face is stable and has eigenvalue -1. Suppose we choose the corresponding eigenvector

for the equivalent system to be W =w; =

1 L
J. One can easily check that

We =1 0],  BE =S =t I

satisfy (8.3). Hence the switching surface is o(x) =x; +X2 = 0. The transformation

4

The system in the new coordinates is:

matrix is

é=,—,-Z+O'

c=30+u .
The system restricted to the sywitchingasurface is ‘governed’by
B=—u.
Wé'anaiyz‘e thé closed-looped systevm (9.1). with the ccv>nt1>'olrler
| M1Sgnoy
e SENO | -

where
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1 if o] >0
sgn o, =1 0 if ¢ =
-1 if o<O0.

For;copveniencez we let
D= diag[:“’l)‘")}um]

and

Sgnoy
sgno=1| i
|s8n0m
We can now write (9.3) as
u=—D sgno. ' . ‘ .. (9.4)

Combihing (9.1) and (9.4) yields .

i =Apz+Apy L
Y =Agz+Apy—Dsgno T
Note that the subsystem
7 =Agz +Agyy —Dsgno
h Whivch can be interpr-eted as a dynamic controller driving the dynamic ,system

1 =Ayz+Apy

has a‘ strﬁcture of ztn ztdditive neural network model. Although We artived"at:'(g 5)
startmg with the controller (9.4) whose structure does not correspond to an addltlve
‘neural network model we can utilize the above analy31s in the case When we exphcltly
apply a neural control strategy We proceed as follows. Suppose ‘we are glyen--ra -

dynamlc- system model



L3

. X=Ax +Bu

We apply an. add1t1ve neural network control law

u= ﬂu — D sgn o(x u) + T x e f R (96) =
o ‘The‘clos‘ed-loop system is - - t i E
. =1 + | (=D o(x,y)), Lo e (9T
B e T e

'Where [XT' T € IRHm,' and. ofx, u) is- a sw1tch1ng surface to be chosen Us1ng the_

»approach presented in Sectlon 8 we design the sw1tch1ng hyperplane O'(X u) and then.-__

-construct the ltransformatmn M followmg the development in Sect1on 9 In the newt .

coordlnates (9 7) will have the form (9 5) ‘where now- AHEIR , Ago ElRmxm, zEIRn and

’ ‘_yElRm We know that the above procedure y1elds a stable closed—loop system (see Sec—3 o

;f;lOIl 4) However, We are. also 1nterested in the extent of the stablhty propertles of the

'closed loop system The next Sectlon deals W1th thls issue.

10;. ESTIMATION OF STABILITY REGIONS OF DYNAMIC SYSTEMS o

DRIVEN BY THE NEURAL NETWORK CONTROLLERS ,

Thls Sectlon is: devoted to the problem of estlmatlng sliding domams of a class of N

-‘systems modeled by (9 5).. ‘The development of ‘this. Sect1on follows closely the argu—_ |

‘ »ments of »;Madan;l-E’sfahanl et al. [18]_, In the analy31s we shall use: the followmg nota—_.

l}lOD - . SR
For1—12 3—12 we let -

= llAUH ’

where the:Aij 's are from (95) and llAin "‘= max{HAijxllz | ||x|[2 < 1} - ) -
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Let

;t=1nm{ub~§ﬂm},

X = min{ A |,ey Moz |} -
Note that the controllability of the pair (A,B) implies that A;, is not zero and hence
aiz # 0. | - .

We will consider the cases Ag;is 0 and Ag; not necessarily 0 separately in Subsec-

tions 10.1 fand 10.2.  The case of Ay; = 0 is simpler and gives a flavor of the argument
used in the general case. We obtain explicit bounds on the time it takes to reach the
switching surface fdr both cases. Here again, as in the single-input case, we utilize a
variable structure approach. This will guard us against problems caused by the discon-

tinuous nature of the nonlinearities which characterize neural network models.

10.1. Ay =0.

We neéd the following lemma.

Lemma 10.1. Suppose #(t) is real-valued and k # 0. If

then for t = tg,

Proof. Note that ¢ —k ¢ < — 4 is equivalent to % (é"‘kt@ < — pe . The conclu-

sion is obtained by intégration.

O
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The system to be considered in this Subsection has the form:

i = AHZ + A120'
. L (10.1)
0= Ay0 — Dsgno.

Suppose olte) = 0p € R™. If o %0, then

M iUi!~

&t TP el Tl

dloll o c .1 =
1=1

m
Since 3 |0y | = ||ol], we have
i=1

d|| o]
- dt

= [|Ag]l |4l —M=@22HUH — M.

dj il

Note that if 0 < |lo]] < ——H—, then < 0. Hence o{t;) =0 implies that o(t) =0
. a99 : .

dj| all

for t = t;. Also m < 0 is equivalent to the condition 0T & < 0 we have in Sec-

tion 4. By Lemma 10.1,

Tl = = 4 (lopll — Hoy et
a2 99

Therefore if llopll < ——’u—, then oft) is 0 for some finite t with
: a9 : ’

N

t <ty +
: 92

[log1 — tog(12 — 2zl o1 (10.2)

Observe that if Ay, is stable, then IRﬁ is a region of asymptotic stability and the switch-

ing surface is reached in finite time. Otherwise, a region of asymptotic stability is given

by {x€R" : ||Sx|| < —’l—JJ-—} In both cases, o = 0 is a sliding domain.
: agg. ’
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Example 9.1. (continued). Let u = — 10 sgn 0. The closed-loop system in the new

coordinates has the form:
t=—140
g =30 — 10 sgno :
In this case, Ay =3 is unstable. The switching surface is o(x) =%; + %9 =0. From
the abbve, a region of asymptotic stability is given by:

‘ 10
R = {(x1,%) | Jx +x] < 3/

Actually R is the region of asymptotic stability (see Fig. 10).
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" Fig. 10. - Phase-plane portrait for Example 9.1.

o 10.2 "The ge.p_g::fajl'"-césgf’-%vhen‘zAvn lsnotnecessarlly ’:z':eljp'_ S

A‘WC'I'IOW"haVé‘. -
v Z -—--A11Z +A120' :
-' O' Azlz +A220' Dsgnd
Suppose |lz|| 750 ||UH ;éO Then

dnan ot :;(,T - '
= A z —l—o A
T4 Tl 21 2 n n _ E“‘

"'an;_d__> L

loi ]

EI
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d|| =] 217 T z z7
= =27 Ay —— + —— Ajp0.
ds |l 2] el " el

After some manipulations we obtain

d
VL < gy ol + 2an ol — (10.3)
and .
Aol < 5l +apllol . (10.4)
dt . v , :
Let
Y -——{( | >\p' RE™ R™
1 — Z,O') llall < 21229 +X8.22 ) S ’ oc }’
Ly = {(2,0) | agy |zl + agellall < p, 'Z@Rn_m , o€ER™},

and

T=%,N%,.

Theorem 10.2. A trajectory that starts in £ stays in X and reaches the switching sur-

face in finite time, which implies that ¥ is a region of asymptotic stability (RAS).

Proof. Let |
N; ={(z0) | aulloll = Xllall}
and.
Ny = {(1:0) | aslel] < Nial}.

- (see Fig. 11)
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Cblel

(A2l
Np (o<

nnnnnnnn

izl

- Fig. 11. Iliustretien of revgibhsi used in the proof of Theorem 10.2.

v‘v:'B. (10 3) We have “ ” < 0 in: E ﬂeece 1f ( (tO))’ _Q(to))EE we have ( (t)’ o(t))Eill |

for t = to For (z(t),; a(t))ENl ﬂECNl ﬂ El,vwe have

ag II zll + agg-nan e

21 a1g

o
s a2 12 no(to)ll +azz“0<to)”

HGII + azz IIOﬂ

<u—€ for some € > 0 |

Thus we can- conclude that a tra_]ectory ( ( ) O(t)) can. leave E only through N2 ﬂE

dllzll

. p
- -However we have ” H 2 and < 0 in N2, and hence a21||z|| + a22HUH is -
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a decreasing function in Ny (1X. Therefore a trajectory cannot leave Ny (1Y. Hence a

trajectory which starts in X stays in 2.

Suppose (z(t), o(t))EN; N for t; < t < t,. Then we have

dj| o]
I(lit” < aglall + agllodl — 4
1922
S[IK?ﬂﬂmlww~u.
212391 '
Let k = 5 + agy. Then by Lemma 10.1, we have
k(to—t, | k(b,—t,
lofia)ll = lofen)l )—§FMA>_4
Thérefore

fote)ll — llotia)l = |£ = llofea)i| 64 3]

> {’:— — |lo(t)Il | k(ty — t1)

= (1 —Kllot)ll) (b2 — 1) -

Siuppose o(ty) =’007.
Since || o(t)|| is decreasing in X, we have '
o)l = llotta)ll = (1=K lloll) (82 — t1)
We conclude that a‘trajectory cannot spend an infinite amount of tiﬁlé in Ny N 2 with
o)l > o. |

We claim that if (z(t), o(t1))EN; N, (z(t2), ofts))ENy ME, and t; < tg, then
lz(t)ll < [l2(t)ll. The claim is clear if (a(t), o(t))EN, N for t; =t =< ty.
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Otherwise, suprse '("z(t), o(t))ENy ML for t <t = Tl‘, Ty < t <ty, and
(z(Ty), U(Tl)),i(z(Tz), 0(T,)) are on the boundary of Ny (1. Therefore

ATl 1Tl
el (Tl -

Since ||o(t)]| decreases in ¥, we have H2(To)ll < H2(Ty)l| and we can conclude that

lIz(tZ)H < ||z(t;)l| 2s in the case where the whole segment isin Ny (2.
Hence if (z(to); o(tg))ENy N Z, we have for t = to,

dildll
dt

= ag Hz(to)” 4‘;22”0(’50)” - M‘< 0 .
Therefore, if (2(t), o(t))EN, N T fort; < t = t then
lofto)ll — lofta)ll = (s laltal—sazliofto)l )tz — )
We can conclude that a trajectory_cAai‘mot sp.end an infinite amount of timé in N, N X
with o{t)20. |

Thus we must reach the switching surface 0=0 in finite time if we start in E.

O

From the above, we can give explicit estimates of the time it takes to reach the switch-

ing surface starting in X. '

Corollary 10.3. Let

: ﬁ=min{u—( O O ua(to)n}
Sta;rting at (z(to), o(to)) € T, we must reach 0=0 in |

Il o(to)ll
—5

t <ty +
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Example 10.1. Consider the following system:

3 11 00

x=|-6 1 0[x+ 1 1}u

0 03 01

with >'|ui | < 10. Suppose the desired eigenvalue of the reduced order system 1is -3 with

1
corresponding eigenvector w; = [—6 . One can check that
‘ 0

: 6 1 —1
Wg=w§=[100],S———Bg=[ }
| 00 1

satisfy (8.3). The transformation matrix is

10 0

M=1]6 1 —1}.
00 1

The system in the new coordinates has the form:
2=—3z+[1 2|0

A 7 10 0
g = Z g — ag.
1o 0 0 sgn

3
In this case, u=10, \==3, a;5=2.24, ag; =30, a5y=12.46. Hence

30

Toi58 30||z|| + 12.46]|y]] < 10} .

%= {(zy)lyl <

Using a Lyapunov function argument, we can give another region of asymptotic

stability.

Theorem 10.4. A region of asymptotic stability of the system is



- 47 -

- 2= {(0) lallall + Alloll < )

where [ — %[(an—k) + "V (age +)N)* —|—4al2a21] and o = ﬁaZI/(IB+>\)'

Proof. Let V be the positive definite function defined by .

V(z,0) = olzl| + Bllall -

The Lyapunov derivative is

. B zTik T -
V) = e AT

From (10.3), (10.4) we get
V(1,0) = ofMlll+asalotl) + Bloas ol +azsllfl 1
= (atfan)lll + (omms-+amB)lol — u6
Using the values of o and fJ, we have | o
- Vo) < Blollsll + Alil —
The right hand side is less than 0 in %. This finishes the proof if z(t)70 and o{t)50.

Otherwise observe that > 299 and o < as;. By (10.3) and (10.4) we have on

2N {z =0}

WL < oy il — = Bllel] —p <0

andon%ﬂ{U:O}i

dizll o _ ’
- = Ml <o.

Hence V(z,0) decreases on the critical surfaces also and we are done.
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As a consequence of Theorems 10.2 and 10.4 we give a new region of asymptotic

stabili_ty with sliding. .
Theofem 10.5. Let.
Ry = {(2,0) |edlzll + Blloll <, lloll = -a—H»'ZH} '
, , 12 :
L . ' N .
U {(z,0) lagilizl] + agalloll < p, lloll = a—-IIZI|}~
. 12

Then R, is a region of asymptotic stability With sliding.
Proof. We use the same ‘ndtation as in Theorems '10.2 and 10.4. Observe that

For a trajectory that starts in & (N; to reach the switching surface {o=0}, it mﬁst_' '

© pass through 33, which is abregbion of asymptotic stability with sliding. See Fig. 12.
: . , , 0
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. F1g 12 : Illustration of b‘t.,he iﬁo’of o'.f: :T]ieorem 105
‘ Exemple 10.1. (contmued) We have found e
‘ | 2 {» (2, a) |3ol|zl| +12. 46Ha|| < 10, 1|o—|| < 0287}.
We have 0r=25.263: and ﬂ-* 15 997. Therefore | | .
% {z 0) |25 263||Z|| + 15. 997||a|| < 10}
and “ |
i ?zl» =% U(gile) .

Recall that Ny = {(z,0) |llol] > 1.34]j2l[}-
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11. CONCLUDING REMARKS

~ Tn this report we investigated viability of employing controllers based on additive
seural network models to the problem of stabilization (tracking) of a class of dynamic
syé‘bems. Two approaches to designing stabilizing controllers were proposed. Elements
of the variable struéﬁure control theory were utilized to construct such controllers.” The
proposed controllers are characterized by robustness pfoperty which is inherent in the
- variable strueture. controllers. An important role in the analysis was playéd by a special
state Space transférmation. This transformation not only facilitated the stability
analysis but also helped to utilize additive neural network models in designing stabiliz-
iﬁg'cont'rollers.' The proposed approach is promising in three ways. First, it result‘s“ in
robust controllers. Second, it has a potential to be employed in constructing fault
tolerant controllers. Third, it -allowed ,uks to circumvent stability analysis problems
caused by the discontinuous nonlinearities which describe neurons. Also geperalizations
to the control of a more general class of dynamic systems are feasible. The proposed
approach in this report and the results of Walcott and Zék [26] constitute a nice start-

ing point to designing neural network based state estimators for dynamic systems.
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