197 research outputs found

    Mixed element wideband microwave amplifier design via simplified real frequency technique

    Get PDF
    In this study, we illustrate the design and implementation of a wideband microwave small-signal amplifier composed of mixed elements. The design is based on Simplified Real Frequency Technique (SRFT). A design of low power amplifier circuit is completed and its simulations are performed in success. The circuit is designed with lumped elements, however, some of the lumped elements are converted to distributed elements for their convenience in production. In this way, a mixed element wideband microwave amplifier comprised of input/output matching networks with lumped and distributed elements has been formed. Layout work and also post layout simulation is given with satisfying results.This work is supported by RFT Research A.S., an incubator firm settled in Istanbul Teknopark A.S. campus, Istanbul/TurkeyPublisher's VersionAuthor Post Prin

    Dual band filter design using real frequency technique and frequency transformation

    Get PDF
    In this work, we present a frequency transformation based dual-band filter design approach using scattering based real frequency technique. In the design process, conventional low-pass to band-pass frequency transformation is integrated with the simplified real frequency technique to construct double pass-band filters. The approach is particularly advantageous for designing matching filters between different termination resistances. As an alternative to a direct low-pass to dual-band frequency transformation, the use of dual-band mapping on a normalized band-pass prototype is investigated for efficient control of the passbands. Application of the proposed approaches for dual-band filters is presented by comparative design examples.Publisher's Versio

    Systematic design of output filters for audio class-D amplifiers via Simplified Real Frequency Technique

    Get PDF
    In this paper a new filter design concept is proposed and implemented which takes into account the complex loudspeaker impedance. By means of techniques of broadband matching, that has been successfully applied in radio technology, we are able to optimize the reconstruction filter to achieve an overall linear frequency response. Here, a passive filter network is inserted between source and load that matches the complex load impedance to the complex source impedance within a desired frequency range. The design and calculation of the filter is usually done using numerical approximation methods which are known as Real Frequency Techniques (RFT). A first approach to systematic design of reconstruction filters for class-D amplifiers is proposed, using the Simplified Real Frequency Technique (SRFT). Some fundamental considerations are introduced as well as the benefits and challenges of impedance matching between class-D amplifiers and loudspeakers. Current simulation data using MATLAB is presented and supports some first conclusions

    Unit element bandpass filter design via simplified real frequency technique for UWB microstrip patch antenna

    Get PDF
    Design of a UWB (Ultra Wideband) microstrip patch antenna to operate in the first channel of the UWB standard and a bandpass (BP) UE (Unit Element) microstrip filter (BPUEF) for this antenna are studied and presented with promising experimental results. A typical UE BP filter is a lossless 2-port network which is formed with certain number of cascade connected commensurate transmission lines. Based on the simplified real frequency technique (SRFT) in Richards domain, driving point Darlington impedance function of the BPUEF is obtained via optimization such that optimum power transfer would be possible between a PA (power amplifier) and the antenna. Using the UE synthesis, characteristic impedance values of each UE is extracted from the input impedance function. Theoretical design (Matlab), simulation (ADS, Agilent Inc.) and the measurements are shown to be in a high degree of agreement.Publisher's VersionAuthor Post Prin

    Novel Approach to Design Ultra Wideband Microwave Amplifiers: Normalized Gain Function Method

    Get PDF
    In this work, we propose a novel approach called as “Normalized Gain Function (NGF) method” to design low/medium power single stage ultra wide band microwave amplifiers based on linear S parameters of the active device. Normalized Gain Function TNGF is defined as the ratio of T and |S21|^2, desired shape or frequency response of the gain function of the amplifier to be designed and the shape of the transistor forward gain function, respectively. Synthesis of input/output matching networks (IMN/OMN) of the amplifier requires mathematically generated target gain functions to be tracked in two different nonlinear optimization processes. In this manner, NGF not only facilitates a mathematical base to share the amplifier gain function into such two distinct target gain functions, but also allows their precise computation in terms of TNGF=T/|S21|^2 at the very beginning of the design. The particular amplifier presented as the design example operates over 800-5200 MHz to target GSM, UMTS, Wi-Fi and WiMAX applications. An SRFT (Simplified Real Frequency Technique) based design example supported by simulations in MWO (MicroWave Office from AWR Corporation) is given using a 1400mW pHEMT transistor, TGF2021-01 from TriQuint Semiconductor

    FSRFT Based broadband double matching via passband extremums determination

    Get PDF
    Fast simplified real frequency technique (FSRFT) is a numerical solver used to solve microwave broadband doublematching (DM) circuit design problems in a much faster and effective manner. Recently, it has been reported that an FSRFT based Matlab code can complete the design of a order lowpass lumped element double matching network to match a given generator and load impedance within an optimization time of only 0.6 seconds, a 47 fold less time than that of the same design done using the classical simplified real frequency technique (SRFT). FSRFT owes this superior speed performance to the fact that it tracks only (system unknowns plus 1) number of passband extremum points selected from among the number of gain data ( ). This work introduces a simple numerical technique called PED (passband extremums determination technique) to be used in determination of these passband extremum points (PEs). An exemplary order microwave bandpass DM circuit design using FSRFT based Matlab (of Mathworks Inc.) code and the simulation of this design via MWO (of AWR Corp.) has yielded the same circuit performance with an exact agreement. Thus, FSRFT, equipped with the PED, newly proposed hereby, might be used as a powerful solver in designing broadband circuits in many fields such as RF/microwave, radar, and communications.Publisher's Versio

    The effect of broadband matching in simultaneous information and power transfer

    Get PDF
    This paper presents the implementation and the effect of broadband matching in simultaneous information and power transfer. The narrowband characteristic of antennas limited the applications of simultaneous information and power transfer. The simplified real frequency technique (SRFT) and the non-foster matching technique have been presented to improve the performance in terms of channel capacity and power delivery. Electromagnetic simulation and multiobjective optimization are performed to analyze the tradeoff between the channel capacity and power delivery in different matching conditions. The performance gain using the matching networks have been demonstrated and analyzedPeer ReviewedPostprint (author’s final draft

    Low pass filter design with improved stop-band suppression and synthesis with transformer-free ladders

    Get PDF
    A new method to design transformer-free low pass (LP) ladder network with improved stop-band suppression performance is introduced. The parametric representation of back-end impedance of LP filter network is established with minimum impedance part and a Foster reactance part. The constructed impedance function is optimized by using real frequency technique. It has been shown that the proposed method provides LP filters which have superior stop-band suppression in comparison with classical transfer function-based filters with same complexity. The synthesis of the LP filter is obtained with the proposed element extraction procedure and resulted with fully realizable network elements in ladder form. An LP filter design and application by employing the proposed technique is provided. The measurement results of the prototyped filter are presented.Publisher's Versio

    Filtenna Integration Achieving Ideal Chebyshev Return Losses

    Get PDF
    This paper demonstrates that it is possible to find an ideal filter response (Chebyshew, Butterworth,..) considering the antenna as the last resonator of a filter under certain circumstances related with the antenna performance and the bandwidth of the filtenna device. If these circumstances are not accomplished, we can achieve excellent performance as well, by means of an iterative process the goal of which is defined by either a filter mask or a classical filter function itself. The methodology is based on the conventional coupling matrix technique for filter design and has been validated by fabricating a microstrip prototype using hairpin resonators and a rectangular patch antenna
    corecore