16,717 research outputs found

    Gaming techniques and the product development process : commonalities and cross-applications

    Get PDF
    The use of computer-based tools is now firmly embedded within the product development process, providing a wide range of uses from visualisation to analysis. However, the specialisation required to make effective use of these tools has led to the compartmentalisation of expertise in design teams, resulting in communication problems between individual members. This paper therefore considers how computer gaming techniques and strategies could be used to enhance communication and group design activities throughout the product design process

    Anytime planning for agent behaviour

    Get PDF
    For an agent to act successfully in a complex and dynamic environment (such as a computer game)it must have a method of generating future behaviour that meets the demands of its environment. One such method is anytime planning. This paper discusses the problems and benefits associated with making a planning system work under the anytime paradigm, and introduces Anytime-UMCP (A-UMCP), an anytime version of the UMCP hierarchical task network (HTN) planner [Erol, 1995]. It also covers the necessary abilities an agent must have in order to execute plans produced by an anytime hierarchical task network planner

    A Review of Agent Emotion Architectures

    Get PDF
    This paper attempts to highlight some of the research that has been conducted worldwide in the area of computational models of emotions, with a particular emphasis on agent emotions suitable for simulations and games. The intended outcome is to both review some of the more prominent research in the field, and to also ascertain the level of formal psychology that may underpin such work with a view to proposing that there is scope for an architecture built from the ground up, that arises from non-conflicting theories of emotion

    Universal Intelligence: A Definition of Machine Intelligence

    Full text link
    A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: We take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. We believe that this equation formally captures the concept of machine intelligence in the broadest reasonable sense. We then show how this formal definition is related to the theory of universal optimal learning agents. Finally, we survey the many other tests and definitions of intelligence that have been proposed for machines.Comment: 50 gentle page

    Evolutionary Networks for Multi-Behavioural Robot Control : A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science Massey University, Albany, New Zealand

    Get PDF
    Artificial Intelligence can be applied to a wide variety of real world problems, with varying levels of complexity; nonetheless, real world problems often demand for capabilities that are difficult, if not impossible to achieve using a single Artificial Intelligence algorithm. This challenge gave rise to the development of hybrid systems that put together a combination of complementary algorithms. Hybrid approaches come at a cost however, as they introduce additional complications for the developer, such as how the algorithms should interact and when the independent algorithms should be executed. This research introduces a new algorithm called Cascading Genetic Network Programming (CGNP), which contains significant changes to the original Genetic Network Programming. This new algorithm has the facility to include any Artificial Intelligence algorithm into its directed graph network, as either a judgement or processing node. CGNP introduces a novel ability for a scalable multiple layer network, of independent instances of the CGNP algorithm itself. This facilitates problem subdivision, independent optimisation of these underlying layers and the ability to develop varying levels of complexity, from individual motor control to high level dynamic role allocation systems. Mechanisms are incorporated to prevent the child networks from executing beyond their requirement, allowing the parent to maintain control. The ability to optimise any data within each node is added, allowing for general purpose node development and therefore allowing node reuse in a wide variety of applications without modification. The abilities of the Cascaded Genetic Network Programming algorithm are demonstrated and proved through the development of a multi-behavioural robot soccer goal keeper, as a testbed where an individual Artificial Intelligence system may not be sufficient. The overall role is subdivided into three components and individually optimised which allow the robot to pursue a target object or location, rotate towards a target and provide basic functionality for defending a goal. These three components are then used in a higher level network as independent nodes, to solve the overall multi- behavioural goal keeper. Experiments show that the resulting controller defends the goal with a success rate of 91%, after 12 hours training using a population of 400 and 60 generations

    The Computational Difficulty of Bribery in Qualitative Coalitional Games

    Get PDF
    Qualitative coalitional games (QCG) are representations of coalitional games in which self interested agents, each with their own individual goals, group together in order to achieve a set of goals which satisfy all the agents within that group. In such a representation, it is the strategy of the agents to find the best coalition to join. Previous work into QCGs has investigated the computational complexity of determining which is the best coalition to join. We plan to expand on this work by investigating the computational complexity of computing agent power in QCGs as well as by showing that insincere strategies, particularly bribery, are possible when the envy-freeness assumption is removed but that it is computationally difficult to identify the best agents to bribe.Bribery, Coalition Formation, Computational Complexity

    E-commerce transactions in a virtual environment: Virtual transactions

    Get PDF
    E-commerce is a fundamental method of doing business, such that for a firm to say it is trading at all in the modern market-place it must have some element of on-line presence. Coupled with this is the explosion of the "population" of Massively Multiplayer On-line Role Playing Games and other shared virtual environments. Many suggest this will lead to a further dimension of commerce: virtual commerce. We discuss here the issues, current roadblocks and present state of an e-commerce transaction carried out completely within a virtual environment; a virtual transaction. Although technically such transactions are in a sense trivial, they raise many other issues in complex ways thus making V-transactions a highly interesting cross-disciplinary issue. We also discuss the social, ethical and regulatory implications for the virtual communities in these environments of such v-transactions, how their implementation affects the nature and management of a virtual environment, and how they represent a fundamental merging of the real and virtual worlds for the purpose of commerce. We highlight the minimal set of features a v-transaction capable virtual environment requires and suggest a model of how in the medium term they could be carried out via a methodology we call click-through, and that the developers of such environments will need to take on the multi-modal behavior of their users, as well as elements of the economic and political sciences in order to fully realize the commercial potential of the v-transaction. © 2012 Springer Science+Business Media, LLC

    Agent-based simulation of electricity markets: a literature review

    Get PDF
    Liberalisation, climate policy and promotion of renewable energy are challenges to players of the electricity sector in many countries. Policy makers have to consider issues like market power, bounded rationality of players and the appearance of fluctuating energy sources in order to provide adequate legislation. Furthermore the interactions between markets and environmental policy instruments become an issue of increasing importance. A promising approach for the scientific analysis of these developments is the field of agent-based simulation. The goal of this article is to provide an overview of the current work applying this methodology to the analysis of electricity markets. --

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion
    • 

    corecore