2,337 research outputs found

    Read-Write Memory and k-Set Consensus as an Affine Task

    Get PDF
    The wait-free read-write memory model has been characterized as an iterated \emph{Immediate Snapshot} (IS) task. The IS task is \emph{affine}---it can be defined as a (sub)set of simplices of the standard chromatic subdivision. It is known that the task of \emph{Weak Symmetry Breaking} (WSB) cannot be represented as an affine task. In this paper, we highlight the phenomenon of a "natural" model that can be captured by an iterated affine task and, thus, by a subset of runs of the iterated immediate snapshot model. We show that the read-write memory model in which, additionally, kk-set-consensus objects can be used is, unlike WSB, "natural" by presenting the corresponding simple affine task captured by a subset of 22-round IS runs. Our results imply the first combinatorial characterization of models equipped with abstractions other than read-write memory that applies to generic tasks

    Brief Announcement: Compact Topology of Shared-Memory Adversaries

    Get PDF
    The paper proposes a simple topological characterization of a large class of adversarial distributed-computing models via affine tasks: sub-complexes of the second iteration of the standard chromatic subdivision. We show that the task computability of a model in the class is precisely captured by iterations of the corresponding affine task. While an adversary is in general defined as a non-compact set of infinite runs, its affine task is just a finite subset of runs of the 2-round iterated immediate snapshot (IIS) model. Our results generalize and improve all previously derived topological characterizations of distributed-computing models

    Continuous Tasks and the Asynchronous Computability Theorem

    Get PDF
    The celebrated 1999 Asynchronous Computability Theorem (ACT) of Herlihy and Shavit characterized distributed tasks that are wait-free solvable and uncovered deep connections with combinatorial topology. We provide an alternative characterization of those tasks by means of the novel concept of continuous tasks, which have an input/output specification that is a continuous function between the geometric realizations of the input and output complex: We state and prove a precise characterization theorem (CACT) for wait-free solvable tasks in terms of continuous tasks. Its proof utilizes a novel chromatic version of a foundational result in algebraic topology, the simplicial approximation theorem, which is also proved in this paper. Apart from the alternative proof of the ACT implied by our CACT, we also demonstrate that continuous tasks have an expressive power that goes beyond classic task specifications, and hence open up a promising venue for future research: For the well-known approximate agreement task, we show that one can easily encode the desired proportion of the occurrence of specific outputs, namely, exact agreement, in the continuous task specification

    A generalized asynchronous computability theorem

    Full text link
    We consider the models of distributed computation defined as subsets of the runs of the iterated immediate snapshot model. Given a task TT and a model MM, we provide topological conditions for TT to be solvable in MM. When applied to the wait-free model, our conditions result in the celebrated Asynchronous Computability Theorem (ACT) of Herlihy and Shavit. To demonstrate the utility of our characterization, we consider a task that has been shown earlier to admit only a very complex tt-resilient solution. In contrast, our generalized computability theorem confirms its tt-resilient solvability in a straightforward manner.Comment: 16 pages, 5 figure

    FPGA-based real-time moving target detection system for unmanned aerial vehicle application

    Get PDF
    Moving target detection is the most common task for Unmanned Aerial Vehicle (UAV) to find and track object of interest from a bird's eye view in mobile aerial surveillance for civilian applications such as search and rescue operation. The complex detection algorithm can be implemented in a real-time embedded system using Field Programmable Gate Array (FPGA). This paper presents the development of real-time moving target detection System-on-Chip (SoC) using FPGA for deployment on a UAV. The detection algorithm utilizes area-based image registration technique which includes motion estimation and object segmentation processes. The moving target detection system has been prototyped on a low-cost Terasic DE2-115 board mounted with TRDB-D5M camera. The system consists of Nios II processor and stream-oriented dedicated hardware accelerators running at 100 MHz clock rate, achieving 30-frame per second processing speed for 640 Ă— 480 pixels' resolution greyscale videos

    Algorithm of adaptive modification of tool paths in robot manipulators based on the measurement of 3D real objects

    Get PDF
    The goal of this paper is the definition of an algorithm for adaptive modification of tool paths made by robot manipulators. The algorithm operates on three-dimensional reconstructions obtained from real objects mass-produced and subject to deformation due to manufacturing errors. The three-dimensional reconstruction is by means of hardware and software architecture analyzed in detail in this paper
    • …
    corecore