
Research Article
FPGA-Based Real-Time Moving Target Detection System for
Unmanned Aerial Vehicle Application

Jia Wei Tang, Nasir Shaikh-Husin, Usman Ullah Sheikh, and M. N. Marsono

Faculty of Electrical Engineering, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor Bahru, Malaysia

Correspondence should be addressed to Nasir Shaikh-Husin; nasirsh@fke.utm.my

Received 15 November 2015; Revised 5 February 2016; Accepted 10 March 2016

Academic Editor: João Cardoso

Copyright © 2016 Jia Wei Tang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Moving target detection is the most common task for Unmanned Aerial Vehicle (UAV) to find and track object of interest from a
bird’s eye view in mobile aerial surveillance for civilian applications such as search and rescue operation. The complex detection
algorithm can be implemented in a real-time embedded system using Field Programmable Gate Array (FPGA).This paper presents
the development of real-timemoving target detection System-on-Chip (SoC) using FPGA for deployment on a UAV.The detection
algorithm utilizes area-based image registration technique which includes motion estimation and object segmentation processes.
The moving target detection system has been prototyped on a low-cost Terasic DE2-115 board mounted with TRDB-D5M camera.
The system consists of Nios II processor and stream-oriented dedicated hardware accelerators running at 100MHz clock rate,
achieving 30-frame per second processing speed for 640 × 480 pixels’ resolution greyscale videos.

1. Introduction

Unmanned Aerial Vehicle (UAV) plays an important role in
mobile aerial monitoring operations and has been widely
applied in diverse applications such as aerial surveillance,
border patrol, resource exploration, and combat and military
applications. Due to its mobility, UAV has also been deployed
for search and rescue operation [1] by acquiring high-
resolution images in disaster area. Apart from that, several
researches [2, 3] have also been done on traffic monitoring
using UAV. As most monitoring systems require detection
and tracking object of interest, moving target detection is a
typical process in UAV monitoring system [4].
Moving target detection is the process of locating moving

objects (foreground) residing in the static scene (back-
ground) from a series of visual images captured from a cam-
era. As displacement of object in subsequent video frames
defines its movement, at least two successive video frames
are required for processing. An object is defined as a moving
target if it is located in two different positions corresponding
to the background from two selected frames taken at different
time intervals.Thus, a backgroundmodel is required to repre-
sent the static scene from incoming video frames prior to the
segmentation of moving object.

Background model can be categorized based on the type
of camera movement [5], including stationary camera, pan-
tilt-zoom camera, free camera motion with planar scene,
and free camera motion with complex scene geometry.
Detection and segmentation of moving objects in stationary
background (static camera) can be performed easily using
background subtraction technique [6–11], while image regis-
tration technique is required inmoving background (moving
camera) involving ego-motion (camera motion) estimation
and compensation to align the backgrounds of selected video
frames prior to object segmentation. The scene in aerial
imagery in UAV video is assumed to be planar [12]. The ego-
motion estimation for planar scene can be estimated using
homography transformation such as affine model. Hence,
moving object can be detected by registering the video
frame to the estimatedmodel and employing the background
subtraction with this registered model. This approach does
not consider the scene with significant depth variations as it
causes incorrect registrations due to parallax.
Due to the complexity of computer vision algorithm,

moving target detection in aerial imagery is a time consuming
process. It is also not practical to rely on a ground processing
station via radio link as video quality will greatly depend on
the wireless communication speed and stability. In addition,

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2016, Article ID 8457908, 16 pages
http://dx.doi.org/10.1155/2016/8457908

2 International Journal of Reconfigurable Computing

full autonomous UAV is desirable as it can operate and react
towards detected target with minimal human intervention
[13]. Thus, an autonomous UAV demands a system with high
mobility and high computing capability to perform detection
on the platform itself. The use of Field Programmable Gate
Array (FPGA) will satisfy the low power consumption, high
computing power, and small circuitry requirements of a UAV
system. FPGA-based system is a good solution in real-time
computer vision problem for mobile platform [14] and can
be reconfigured to handle different tasks according to desired
applications.
This paper presents a FPGA implementation of real-

time moving target detection system for UAV applications.
The detection algorithm utilizes image registration technique
which first estimates the ego-motion from two subsequent
frames using block matching (area-based matching) and
Random Sample Consensus (RANSAC) algorithm. After
compensating the ego-motion, frame differencing, median
filtering, and morphological process are utilized to segment
the moving object. The contributions of this paper are as
follows:

(i) Development of real-time moving target detection
in a System-on-Chip (SoC), attaining 30 frames per
second (fps) processing rate for 640 × 480 pixels’
video.

(ii) Prototyping of the proposed system in a low-cost
FPGA board (Terasic DE2-115) mounted with a 5
megapixels’ camera (TRDB-D5M), occupying only
13% of total combinational function and 13% of total
memory bits.

(iii) Partitioning and pipeline scheduling of the detection
algorithm in a hardware/software (HW/SW) code-
sign for maximum processing throughput.

(iv) Stream-oriented hardware accelerators including
block matching and object segmentation module
which are able to operate in one cycle per pixel.

(v) Analyzing detection performance with different den-
sity of area-based ego-motion estimation and frame
differencing threshold.

The rest of the paper is as follows. Section 2 discusses the
literatures in moving target detection. Section 3 discusses the
moving target detection algorithm while Section 4 describes
the SoC development and the specialized hardware architec-
ture of moving target detection. Section 5 presents the detec-
tion result from the complete prototype. Section 6 concludes
this paper.

2. Related Work

Moving target detection targeting for aerial videos or UAV
applications has been widely researched in the past few
decades. A framework consisting of ego-motion compensa-
tion, motion detection, and object tracking was developed in
[15]. The authors used combination of feature and gradient-
based techniques to compensate ego-motion while utilizing
accumulative frame differencing and background subtraction

Table 1: Comparison between related works on FPGA-based object
detection system for different applications with proposed system.

Related
work

Camera
platform Detection technique and application

[6–11] Static
camera

(i) Background subtraction
(ii) Using GMM, ViBE, and so forth

[23] Moving
robot

(i) Detecting moving object using
(ii) Optical flow and frame differencing

[24] UAV (i) Detecting and tracking object feature

[13] UAV (i) Car detection
(ii) Based on shape, size, and colour

[25] UAV
(i) Detecting moving object
(ii) Using regional phase correlation
(iii) Does not prototype the complete system

[26] UAV (i) Real-time ego-motion estimation

Proposed UAV
(i) Moving target detection
(ii) Using area-based image registration
(iii) Prototyping the complete system

to detect moving vehicle in aerial videos.The research in [16]
presented two different approaches to detect and track mov-
ing vehicle and person using a Hierarchy of Gradient (HoG)
based classifier. The work in [17] has proposed a moving tar-
get detection method that performs motion compensation,
motion detection, and tracking in parallel by including data
capture and collaboration control modules. Multiple target
detection algorithm was proposed in [18], catering for large
number of moving targets in wide area surveillance appli-
cation. Moving target detection and tracking for different
altitude were presented and demonstrated on UAV-captured
videos in [19]. Feature-based image registration technique
was proposed in [20] to detect moving object in UAV video.
The authors utilized corner points in subsequent video frames
as features to perform ego-motion estimation and compen-
sation. In [21], a multimodel estimation for aerial video was
proposed to detect moving objects in complex background
that is able to remove buildings, trees, and other false alarms
in detection. As these literature works focused on improving
the detection algorithm for different cases and did not
consider autonomousUAVdeployment, they developed their
system in a common desktop computer [17, 19–21] or Graphic
Processing Unit (GPU) accelerated [22] environment.
In the context of FPGA-based object detection system,

most works in the literature were targeted for static camera
[6–11] as illustrated in Table 1. They utilized background sub-
traction techniques such as GaussianMixtureModel (GMM)
and ViBE (Visual Background Extractor) to perform fore-
ground object segmentation in static background video. The
work in [23] has proposed FPGA-basedmoving object detec-
tion for a walking robot.They implemented ego-motion esti-
mation using optical flow technique and framedifferencing in
hardware/software codesign system.
There are also several literatures proposing FPGA-based

detection for UAV applications. The research in [24] has
proposed a hardware/software codesign using FPGA for fea-
ture detection and tracking in UAV applications.The authors

International Journal of Reconfigurable Computing 3

implemented Harris feature detector in dedicated hardware
to extract object features from aerial video while tracking
of object based on the features is executed in software.
Implementation of real-time object detection for UAV is
described in [13] to detect cars based on their shape, size, and
colour. However, both works in [13, 24] performed detection
and tracking based on object features and did not focus on
moving targets. A suitable moving target detection algorithm
for FPGA targeting sense and avoid system in UAV has been
proposed in [25] by using regional phase correlation tech-
nique but the authors did not prototype the complete system
in FPGA device. In addition, research in [26] also presented
the hardware design and architecture of real-time ego-motion
estimation for UAV video. Hence, there are limited numbers
of works in the literature focusing on the development of
a complete prototype to perform real-time moving target
detection for UAV applications using FPGA.

3. Moving Target Detection Algorithm

As UAV is a moving platform, the proposed moving target
detection algorithm employs image registration technique to
compensate the ego-motion prior to object segmentation.
Image registration algorithms can be classified into feature-
based and area-based (intensity-based) methods [27, 28].
In feature-based method, detected features such as cor-

ners [29, 30] or SURF [31] from two subsequent frames
are cross-correlated to find the motion of each feature from
one frame to another. Feature-based image registration is
reported to have faster computation in software implemen-
tation as it uses only a small number of points for feature
matching regardless of the number of pixels. The number of
detected features is unpredictable as it depends on the cap-
tured scene of the frames, thus having unpredictable amount
of computation and memory resource, making it difficult
to be implemented in highly parallel hardware. Number of
features can be reduced to a predictable constant with an
additional step of selecting strongest features based on their
score (i.e., feature strength) by sorting or priority queuing
[24]. However, it presents some limitations as only pixels of
the highly textured areas would be selected while neglecting
the homogeneous area [32]. Moreover, feature-based method
requires irregular access of memory which is not suitable for
streaming hardware.
On the contrary, area-based technique construct point-

to-point correspondence between frames by finding themost
similar texture of a block (area) from one frame to another. It
is suitable for parallelism and stream processing as it offers
several benefits for hardware implementation:

(i) It has highly parallel operations that make it suitable
for parallel processing in hardware implementation.

(ii) It allows simple control-flow and does not require
irregular accessing of image pixels.

(iii) It has predictablememory requirementwith fixed size
of computation data.

The overall flow of the proposed algorithm is illustrated
in Figure 1. It consists of two main processes, which are

Motion
estimation

Object
segmentation

Previous frame Current frame

Detected moving object region

Median filtering

Frame differencing

Affine transformation

RANSAC

Block matching

Affine parameters

Morphological process

Figure 1: Overall algorithm of moving target detection using image
registration technique.

motion estimation and object segmentation. Area-based
image registration is utilized in this work. The inputs to the
system are two consecutive greyscale video frames, which are
the current and the previous frames. First, block matching
is performed on these two frames to produce point-to-point
motion between frames. As aerial imagery in UAV video
is assumed to have free camera motion with planar scene
[5], affine model is employed to estimate the ego-motion.
RANSAC is then used to remove insignificant motion (out-
liers) among all points, resulting in the ego-motion in terms
of affine transformation matrix.
After the previous frame is aligned with current frame

using parameters in the affine transformation matrix, frame
differencing can be performed with pixel-by-pixel subtrac-
tion on both aligned frames, followed by thresholding to
produce a binary image. Median filtering and morphological
processes are done on the binary image to remove noises,
resulting in only the detected moving target.
The proposed algorithm is intended for SoC implementa-

tion consisting of aNios II embedded software processor run-
ning at 100MHz. However, most processes running on Nios
II are slow and insufficient to achieve real-time capability. In
order to realize a real-time moving target detection system,
all processes in this work are implemented in fully dedicated

4 International Journal of Reconfigurable Computing

hardware accelerators except RANSAC, which is partially
accelerated in hardware.

3.1. Block Matching. Block matching involves two steps:
extraction and matching, where two consecutive frames
are required. Extraction process will store several blocks
or patches of image pixels from one frame as template,
while matching process will find their most similar blocks
in the second frame. By considering the center points of
blocks as reference, this algorithm will yield numerous pairs
of corresponding points which indicate the point-to-point
motion (movement of the pixels) between two consecutive
frames.The paired points from these two frames will be used
in RANSAC to estimate the ego-motion.
Block extraction is the process of storing numerous

blocks of 9 × 9 pixels from a predefined location from a video
frame.These blocks will be used as templates in the matching
process. The positions of the template blocks are distributed
evenly over the image.There is nomathematical computation
in the extraction process as it involves only direct copying of
image patches from video stream into temporary memory.
Matching process plays the role of finding the most sim-

ilar blocks from current frame for every extracted template
block from the previous frame.This is done by correlating the
template blocks with next frame to find their corresponding
position based on similarity measure. Due to simplicity
of hardware implementation, Sum of Absolute Difference
(SAD) is chosen as the matching criterion for the correlation
process. SAD will generate a similarity error rating of pixel-
to-pixel correlation between each template block (from pre-
vious frame) and matching block (from current frame). SAD
will yield zero result if both blocks are pixel-by-pixel identical.
Blockmatching is computation intensive as each template

block has to search for its most similar pair by performing
SAD with each block within its search region. Several search
techniques had been proposed in the literatures to reduce
the computation by minimizing the search region such
as Three-Step Search Technique [33, 34], Four-Step Search
Technique [35], and Diamond Search [36]. However, most of
these techniques are targeted for general purpose processor
which reads image in irregular way and are not suitable for
streaming hardware architecture. This work uses traditional
full search technique [37] as it is efficient to be performed
in stream-oriented hardware due to its regular accessing of
image.
The number of required matching computations is pro-

portional to the number of blocks (density) and their corre-
sponding search areas. Higher density of blockmatching pro-
vides more points for ego-motion estimation to reduce image
registration error but with higher hardware cost require-
ment (number of hardware computation units). To reduce
hardware cost, this work employs only a low density block
(area-based) matching and does not estimate frame-to-frame
motion of every pixel.
To further optimize hardware resources in stream-

oriented architecture, best-fit and nonoverlapping search
areas are utilized to ensure only one SAD computation is
performed for each incoming pixel. For a number of row
blocks, 𝑚, and a number of column blocks, 𝑛, search areas

are evenly distributed for each block with 𝑠
𝑚
× 𝑠
𝑛
pixels,

formulated in

𝑠
𝑚
= ⌊

𝑊

𝑚

⌋ ,

𝑠
𝑛
= ⌊

𝐻

𝑛

⌋ ,

(1)

where 𝑊 and 𝐻 represent image width and image height,
respectively.
The template block positions (blue) and their correspond-

ing search areas (green) are illustrated in Figure 2. In each
clock cycle, only one template block is matched with one
block from its corresponding search area. As each template
block will only search in its dedicated search area without
intruding other regions, the whole block matching process
shares only one SAD computation unit for processing the
whole image, allowing𝑚 and 𝑛 to be context-switched in run-
time.
The proposed approach is able to perform different

densities of area-based registration using the same hardware
cost. However, higher density reduces the search areas of each
block, thus limiting the flow displacement (travel distance of
each point). The displacement limitations in horizontal 𝑑

𝑚

and vertical 𝑑
𝑛
are given as 𝑑

𝑚
= ±𝑊/2𝑚 and 𝑑

𝑚
= ±𝐻/2𝑛,

respectively. As the position and movement of UAV (height,
velocity, etc.) as well as frame rate of captured aerial video
affect the point-to-point displacement between two succes-
sive frames, the proposed technique will produce wrong
image registration result if the point-to-point displacement
between frames exceeds 𝑑

𝑚
in horizontal or/and 𝑑

𝑛
in

vertical.

3.2. RANSAC. After the block matching stage, a set of point
pairs (point-to-point motion) from two successive frames are
identified. Based on these point pairs, ego-motion estimation
can be performed. As outliers (inconsistent motions) usually
appear in these point pairs, RANSAC algorithm is applied
to remove outliers from the data. RANSAC is an iterative
algorithm to find the affine model that best describes the
transformation of the two subsequent frames. Unlike the con-
ventional RANSAC [38], this work uses an upper bound time
to terminate RANSAC computation (similar to [39]) regard-
less of the number of iterations due to the real-time constraint
as illustrated in Algorithm 1.
At each iteration, RANSAC algorithm chooses three

distinct point pairs randomly as samples. Hypothesis model
of affine transformation is then generated from the selected
samples based on

[
[
[

[

𝑥
󸀠

1
𝑥
󸀠

2
𝑥
󸀠

3

𝑦
󸀠

1
𝑦
󸀠

2
𝑦
󸀠

3

1 1 1

]
]
]

]

=
[
[

[

ℎ
0
ℎ
1
ℎ
2

ℎ
3
ℎ
4
ℎ
5

0 0 1

]
]

]

[
[

[

𝑥
1
𝑥
2
𝑥
3

𝑦
1
𝑦
2
𝑦
3

1 1 1

]
]

]

, (2)

where ℎ
𝑖
denote the parameters of the affine model to be

estimated, 𝑥
𝑖
and 𝑦

𝑖
are the coordinates of chosen sample

points, and 𝑥󸀠
𝑖
and 𝑦󸀠

𝑖
represent their corresponding point

pairs.

International Journal of Reconfigurable Computing 5

(a) 6 × 4 blocks (b) 8 × 6 blocks

Figure 2: Positions of template blocks (blue) and search areas (green) in video frame for different densities (𝑚 × 𝑛) of block matching with
same hardware cost.

while time taken < upper bound time do
(1) Randomly select 3 distinct point pairs as samples.
(2) Generate hypothesis model (affine parameters) based
on the chosen samples.
(3) Apply 𝑇

𝑑,𝑑
test on the hypothesis model.

(4) Calculate the fitness score of the model.
(5) Update and store best scored parameters.

end while

Algorithm 1: RANSAC algorithm.

𝑇
𝑑,𝑑
test proposed in [40] is applied in the algorithm to

speed up RANSAC computation by skipping the following
steps (step (4) and (5)) if the hypothesis model is far from
the truth. Fitness of the hypothesis is then evaluated and
scored by fitting its parameters to all point pairs. The best
hypothesis model is constantly updated in each iteration and
emerges as the final result when the RANSAC is terminated
upon reaching an upper bound time. As RANSAC has the
least computation among overall moving target detection
algorithms, it is implemented as software program with only
the fitness scoring step (step (4)) being hardware accelerated.
Fitness scoring is the calculation of the fitness for a hypothesis
model towards all input data (point pairs from block match-
ing), as described in Algorithm 2.
Each data is considered as an inlier if its fitting error is

smaller than a predefined distance threshold, thdist or vice
versa. Inlier fitness score is its fitting error while outlier score
is fixed to thdist as a constant penalty. The total fitness score
is calculated by accumulating all individual scores for each
data where a perfect fit will have zero fitness score. As fitness
scoring is an iterative process for all data, the number of
computations increases with size of data. As RANSAC is a
stochastic algorithm, it may not produce the best-fit affine
model when given limited iteration.

3.3. Object Segmentation. After estimating ego-motion, the
camera movement between two successive frames is to
be compensated prior to object foreground detection. The

fitness score = 0
for all data

𝑖
do

asub𝑥 = abs(𝑥
2𝑖
− (𝑥
1𝑖
⋅ 𝐻
0
+ 𝑦
1𝑖
⋅ 𝐻
1
+ 𝐻
2
))

asub𝑦 = abs(𝑦
2𝑖
− (𝑥
1𝑖
⋅ 𝐻
3
+ 𝑦
1𝑖
⋅ 𝐻
4
+ 𝐻
5
))

score = min((asub𝑥2 + asub𝑦2), th2dist)
fitnessscore = fitnessscore + score

end for
Where:
Each data

𝑖
contains a point pair (𝑥

1𝑖
, 𝑥
2𝑖
, 𝑦
1𝑖
, and 𝑦

2𝑖
)

𝐻
0
, 𝐻
1
, 𝐻
2
, 𝐻
3
, 𝐻
4
, 𝐻
5
are affine parameters of hypothesis

model.
th2dist is the predefined distance threshold.

Algorithm 2: Fitness scoring in RANSAC algorithm.

previous frame is transformed and mosaic with current
frame using the estimated affine parameters from RANSAC
algorithm. Reverse mapping technique is applied by calcu-
lating the corresponding location in the source image based
on the destination pixel location. The equation of affine
transformation is shown in

[
[
[

[

𝑥
󸀠

𝑖

𝑦
󸀠

𝑖

1

]
]
]

]

=
[
[

[

ℎ
0
ℎ
1
ℎ
2

ℎ
3
ℎ
4
ℎ
5

0 0 1

]
]

]

[
[

[

𝑥
𝑖

𝑦
𝑖

1

]
]

]

, (3)

where 𝑥
𝑖
and 𝑦

𝑖
are the pixel coordinates of destination

image, 𝑥󸀠
𝑖
and 𝑦󸀠

𝑖
denote the corresponding pixel coordinates

in source image, and ℎ
𝑖
are best-fit affine parameters from

RANSAC.
As the transformation may produce fractional result,

nearest neighbour interpolation is utilized due to its efficiency
in hardware design. The ego-motion compensation is per-
formed pixel-by-pixel in raster scan, generating a stream of
the transformed previous frame to the next process.
Frame differencing is executed on the current frame and

the transformed (ego-motion compensated) previous frame
by pixel-to-pixel absolute subtraction of both frames. The
pixels in the resultant image are threshold with constant

6 International Journal of Reconfigurable Computing

Table 2: Pipeline scheduling for processing subsequent frames.

Processes Processing frame at frame period, 𝑡
𝑖

𝑡
0

𝑡
1

𝑡
2

𝑡
3

𝑡
4

⋅ ⋅ ⋅ 𝑡
𝑖

Motion estimation
(i) Block matching 𝐹

0
𝐹
1
← 𝐹
0

𝐹
2
← 𝐹
1

𝐹
3
← 𝐹
2

𝐹
4
← 𝐹
3

⋅ ⋅ ⋅ 𝐹
𝑖
← 𝐹
𝑖−1

(ii) RANSAC — — 𝐹
1
← 𝐹
0

𝐹
2
← 𝐹
1

𝐹
3
← 𝐹
2

⋅ ⋅ ⋅ 𝐹
𝑖−1
← 𝐹
𝑖−2

Object segmentation
(i) Affine transformation

— — — 𝐹
1
← 𝐹
0

𝐹
2
← 𝐹
1

⋅ ⋅ ⋅ 𝐹
𝑖−2
← 𝐹
𝑖−3

(ii) Frame differencing
(iii) Median filtering
(iv) Morphological
𝐹
𝑖
← 𝐹
𝑗
is detection of moving object from 𝑗th frame to 𝑖th frame.

value of thfd to produce binary image. Lower value of thfd
may induce more false alarm in detection while higher value
causes the miss detection. Both subtraction and thresholding
processes can be done as soon as two pixels for the same
coordinate from these frames are obtained to yield one binary
pixel for the next process. Lastly, 7 × 7 binary median filter
and dilation processes are performed on the binary image
to remove noise and improve the detected region of moving
target.

3.4. Pipeline Scheduling. In order to establish a real-time
moving target detection system for streaming video, proper
pipeline scheduling is utilized to fully maximize the overall
system throughput.The algorithm is split into several subpro-
cesses with each hardware accelerator working on different
frames independently, transferring the intermediate result
from one process to another until the end of the detection
cycle. Hence, the system will always produce output every
time after a fixed latency. The overall process is divided into
four stages of pipeline as shown in Table 2.
Due to data dependencies of the streaming algorithm, all

processesmust be done sequentially to produce one detection
result. Block matching requires two successive video frames
for computation. The first frame is streamed in for block
extraction process and stored into frame buffer. Blockmatch-
ing is performed after the next frame is obtained with the
extracted block of previous frame. RANSAC can only begin
its computation after block matching has finished processing
on the entire frame. Lastly, two original frames (𝐹

𝑖−2
and

𝐹
𝑖−3
) are read from frame buffer for object segmentation to

produce the final result. Object segmentation computation
can be performed in stream without further frame buffering.
The overall pipeline processing of the streaming system has
four frames’ latency. Hence, at least four frames (𝐹

𝑖−3
to 𝐹
𝑖
)

must be stored in frame buffer at all time for a complete
moving target detection process.

4. Proposed Moving Target Detection SoC

Themoving target detection SoC is developed andprototyped
in Terasic DE2-115 board with Altera Cyclone IV FPGA
device. The system consists of hardware/software codesign
of the algorithm of where the hardware computation is

executed in dedicated accelerator coded in Verilog Hardware
Description Language (HDL) while software program is
performed using a soft-core Nios II processor with SDRAM
as software memory.The system architecture of the proposed
moving target detection SoC is illustrated in Figure 3.
Camera interface handles the image acquisition tasks to

provide the raw image for processing, while VGA interface
manages video displaying task. Apart from being a software
memory, part of SDRAM is also reserved as video display
buffer. Thus, Direct Memory Access (DMA) technique is
applied to read and write the displaying frame in SDRAM to
ensure the high throughput image transfer.
As multiple frames are required at the same time to

detect moving target, frame buffer is required to temporarily
store the frames for processing. Hence, SRAM is utilized
as frame buffer due to its low latency access. Since most
computations are performed in the dedicated hardware, Nios
II handles only RANSAC process (except fitness scoring step
as described in Section 3.2) and auxiliary firmware controls.
USB controller is included in the SoC to enable data transfer
with USB mass storage device for verification and debugging
purposes. In addition, embedded operating system (Nios2-
linux) is booted in the system to provide file system and
drivers support.
The real-time video is streamed directly into the mov-

ing target detector for processing. Both Nios II and hard-
ware accelerator modules compute the result as a hard-
ware/software codesign system and transfer the output frame
to SDRAM via DMA. VGA interface constantly reads and
displays the output frame in SDRAM. All operations are able
to be performed in real-time, attaining a 30 fps moving target
detection system.

4.1.Moving Target DetectionHardware Accelerator. Thehard-
ware architecture of the moving target detector is shown in
Figure 4. It is composed of motion estimation core, object
segmentation core, frame grabber, and other interfaces. The
overall moving target detection is performed according to the
following sequences:

(1) Frame grabber receives the input video stream and
stores four most recent frames (𝐹

𝑖−3
to 𝐹
𝑖
) into frame

buffer through its interface. At the same time frame

International Journal of Reconfigurable Computing 7

Moving target
detector

NIOS II CPU

SDRAM
controller

Camera
interface

FPGA

Sy
ste

m
 b

us

Embedded Linux

(i) Firmware control

(ii) Software processing

SDRAM

VGA
interface

VGA
display

SRAM

USB
controller

USB mass
storage
device

Camera

Software processor
Hardware accelerator
Controllers and interfaces

Memory components
I/O components

Figure 3: System architecture of moving target detection.

Frame
buffer

interface

Motion
estimation

core

Frame
grabber

Object
segmentation

core

Video stream
input

Bus
interface
(slave)

Software processor

Frame buffer
(SRAM)

Bus
interface
(master)

Video
result

DMA to SDRAM

Affine
parameters

RANSAC
computation

Fi−2

Fi

and Fi−3

Figure 4: Hardware architecture of moving target detector.

8 International Journal of Reconfigurable Computing

grabber also provides the current frame (𝐹
𝑖
) tomotion

estimation core.
(2) Motion estimation core performs blockmatching and
RANSAC computation. Since RANSAC is computed
in both hardware and software, software processor is
constantly accessing this core via system bus interface
to calculate the affine parameters.

(3) After RANSAC, the affine parameters are transferred
from software to object segmentation core. Two pre-
vious frames (𝐹

𝑖−2
and 𝐹

𝑖−3
) are read from the frame

buffer by object segmentation core for processing.
(4) Several processes involving affine transformation,
frame differencing, median filter, and dilation are
then performed on both frames, resulting in the
detected moving target.

(5) Lastly, the bus interface (master) provides DMA
access for object segmentation core to transfer the
end result into SDRAMfor displaying and verification
purposes.

As the frame buffer (SRAM) is a single port 16-bit
memory, frame grabber concatenates two neighbouring 8-bit
greyscale pixels to store in one memory location. Since frame
grabber and object segmentation core share the frame buffer
to write and read frames, respectively, frame buffer interface
provides priority arbitration and gives frame grabber the
highest priority, granting everywrite request. However, frame
buffer may be busy for a couple of clock cycles due to read
operation of SRAM by other modules; a small FIFO with
depth of 4 is utilized in frame grabber to temporarily buffer
the incoming image pixels.

4.2. Motion Estimation Hardware Accelerator. Motion esti-
mation core consists of block matching and RANSAC hard-
ware accelerators. Since RANSAC requires the entire data
of point pairs provided by block matching to begin its
computation, additional buffers are needed to temporarily
store the corresponding point pairs for every two subsequent
frames. The hardware architecture for motion estimation
process is shown in Figure 5.
To enable high throughput data (point pairs) sharing

for both block matching and RANSAC, double buffering
technique is applied by using two buffers (Buffer 1 and Buffer
2) as data storage. For any instance, one buffer is written
by block matching while the other is used for computation
by RANSAC. Buffer controller swaps the roles of these two
buffers for each incoming new frame, therefore ensuring
both processes to be pipelined by reading and writing on
each buffer subsequently. Buffer swapping is initiated at each
completion of block matching modules while RANSAC is
performed during the time gap between each swap and is
terminated before the next swap.

4.2.1. Block Matching Hardware Accelerator. Figure 7 shows
the architecture of the proposed block matching hardware
accelerator, performing template blocks extraction from
one frame and matching of these template blocks in their
corresponding search areas from next frame. The overall

Buffer controller
Buffer 1

Block matching
Video stream

input

RANSAC acceleratorTo software
processor

Buffer 2

Figure 5: Hardware architecture of motion estimation core.

process can be completed in stream to yield the point-to-
point motion (point pairs) of two subsequent frames without
buffering an entire frame.
As 9 × 9 block size is utilized in block matching, a 9-

tap line buffer is designed in such a way that 9 × 9 pixels of
moving window can be obtained in every clock cycle.These 9
× 9 pixels are shared for both block extraction and matching
processes and are read one by one in pipeline from the line
buffer at each valid cycle, resulting in a total of 81 cycles to
obtain a complete window.
The block extractor keeps track of the coordinate of

current pixel in video stream as a reference for extraction
process. Template blocks from incoming frames are extracted
and stored temporarily into block memory. As each block is
extracted line-by-line in raster scan, blockmemory is divided
into nine-rowmemories as illustrated in Figure 6(a)with each
of which being used to store one pixel row in template blocks.
When video stream reaches the block position, each pixel
row is loaded into each rowmemory from the corresponding
tap of the line buffer. Block coordinates are also stored in a
separate FIFO to keep track of its position.
Since only one SAD processor is used for matching 𝑚 ×
𝑛 blocks as mentioned in Section 3.1, the template block
has to be swapped according to the corresponding search
area during raster scan. Hence, row memory is constructed
with two FIFOs, upper and lower FIFO as illustrated in
Figure 6(b), to enable block swapping during matching
process. Template blocks are stored into upper FIFO during
extraction process. During matching process, each line of
raster scan enters eight different search areas to match eight
different template blocks, respectively. Hence, one row of
template blocks is cached in lower FIFO and is repeatedly
used until the end of their search areas (reaching next row of
search areas). Upon reaching each new row of search areas,
template blocks in lower FIFO are replaced with new row of
template blocks from upper FIFO. At the last line of raster
scan, the lower FIFO is flushed to prevent overflow.

International Journal of Reconfigurable Computing 9

CV Control
Vector
(CV)

Tap 0 Tap 1

Row 1
pixels

Template blocks
coordinate

Template blocks
coordinate

Template blocks pixels

Row 2
pixels

Tap 8

Row 8
pixels

CV

Row
memory

Row
memory

Coordinate
memory
(FIFO)

Row
memory

· · ·

· · ·

· · ·

(a) Block memory consisting of nine-row memories

wr_upper

rd_upper

wr_lower

rd_lower

sel1

sel2

CV_in CV_out

Tap

Row pixels

Upper
FIFO

Lower
FIFO

1 0

0

Control
registers

1 0

(b) Row memory contains an upper FIFO and lower FIFO

Figure 6: Block memory architecture for storing template blocks.

Block
extractor

Best
score

tracker

Line buffer

Block memory

SAD processor

Video stream input

Control vector

Matching score

Point pairs

Template blocks Blocks coordinate

9 × 9 window pixels

Figure 7: Stream-oriented hardware architecture of blockmatching.

In order to efficiently extract and match all blocks,
different Control Vector (CV) as illustrated in Table 3 is sent
to perform different reading and writing operations in block
memory based on the current position in raster scan. Both
reads andwrites are independent of each other and are able to
be executed at the same time. Pixels are processed one by one
in 81 cycles to complete a window. Both writing and reading

Table 3: Control Vector (CV) for different read andwrite operations
of block memory.

Position of raster scan Write,upper
Read,
upper

Write,
lower

Read,
lower sel1 sel2

Entering template
block position 1 x x x x x

Entering first search
area row x 1 1 0 1 1

Entering next search
area row x 1 1 1 1 1

Reentering same
search area row x 0 1 1 0 0

Leaving last search
area row x 0 0 1 0 0

processes require 9 cycles for each row memory, passing CV
from the first row memory to the next row memory until
the end to complete a 81-pixel write or read operation of a
template block.
SAD processor performs the correlation of the template

blocks from previous frame with all possible blocks from
current frame according to the search area. Extracted block
pixels are read from block memory, while window pixels in
search areas are provided from the taps of the line buffer.The
total number of required PEs is the total number of pixels
in a window. The process is pipelined such that each pixel
is computed in each PE as soon as it is obtained from the
line buffer. Matching score of each window can be obtained
in every cycle after a fixed latency.
Lastly, the best score tracker constantly stores and updates

the best matching score for each template block within its
corresponding search area. The matching score is compared

10 International Journal of Reconfigurable Computing

x2 H2
y1 H1

H0
y2 H5 x1x1 H3

y1 H4

− × × −

− −

× ×

+

+

+

abs abs

sqr sqr

min

acc

Pipeline
register

Pipeline
register

Pipeline
register

Fitness score

th2
dist

Figure 8: Hardware datapath of fitness scoring in RANSAC accel-
erator.

among the same search area and the coordinates of the best-
scored blocks are preserved. At the end of each search area,
the coordinates of the best pairs (template blocks and their
best-scored blocks) are sent to RANSAC module for next
processing. Hence, the proposed block matching hardware is
able to produce point-to-point motion (point pairs) of every
two successive frames in streaming video at line rate.

4.2.2. RANSAC Hardware Accelerator. RANSAC hardware
design in [39] is utilized in this work, which accelerates
only fitness scoring step. As described in Algorithm 2,
fitness scoring is an iterative process which performs similar
computation to all data samples based on hypothesis model.
Hence, this data intensive process is executed in pipelined
datapath as illustrated in Figure 8. A control unit is utilized
to read input data provided by block matching from buffer
and stream these inputs to the datapath unit at every clock
cycle.
The datapath unit utilizes three stages of pipeline with

the aim of isolating multiplication processes, thus allowing
faster clock rate. The first stage pipeline registers are located
right after the first multiplication, while the other two stages
of pipeline registers enclose the squaring processes. The
individual score is accumulated in the last stage, producing
total final fitness score. The accumulator is reset on each new
set of hypothesis. Thus, the total number of cycles required

Table 4: Fixed point precision of fitness scoring inputs.

Parameter Number of bits Number range
Integer Fraction

𝑥
1
, 𝑦
1
, 𝑥
2
, 𝑦
2

11 0 [−1024, 1024)
𝐻
0
,𝐻
1
,𝐻
3
,𝐻
4

4 12 [−8, 8)
𝐻
2
,𝐻
5

11 5 [−1024, 1024)

Detected moving
target

Affine
parameters

from
software

Affine
PE

Frame
reader

Address

Frame
differencing PE

Binary image stream

Median
PE

Line buffer

Dilation
PE

Line buffer

from frame
buffer

Fi−2 and Fi−3

Fi−2F󳰀
i−3

Figure 9: Hardware architecture for object segmentation.

for fitness score computation is the number of overall data
plus the four-cycle latency.
Although fitness scoring could require floating point

computations, the datapath unit uses suitable fixed point
precision for each stage. SinceNios II is a 32-bit processor, the
affineparameters in hypothesismodel (𝐻

0
to𝐻
6
) are properly

scaled to different precision of 16-bit fixed points as described
in Table 4 so that two affine parameters can be assigned in a
single 32-bit write instruction. As this system is targeted for
640 × 480 pixels’ video, all input coordinates (𝑥

1
, 𝑦
1
, 𝑥
2
, and

𝑦
2
) are scaled to 11 bits.

4.3. Object Segmentation Hardware Architecture. As object
segmentation can be performed in one raster scan, a stream-
oriented architecture is proposed as illustrated in Figure 9. All
subprocesses are executed in pipeline on the streaming video
without additional frame buffering. Object segmentation
process is initiated by software processor after providing the
affine parameters from RANSAC to affine PE. Two frames
(𝐹
𝑖−2
and 𝐹

𝑖−3
as described in Table 2) from frame buffer

(SRAM) are required to segment the moving target.
Based on the affine parameters from RANSAC, affine PE

uses reverse mapping technique to find each pixel location in
previous frame (𝐹

𝑖−3
) using (3) and generates their addresses

in frame buffer (SRAM). Frame readers fetch the previ-
ous frame (𝐹

𝑖−3
) pixel-by-pixel according to the generated

addresses from frame buffer, thus constructing a stream of
transformed frame, which is denoted as 𝐹󸀠

𝑖−3
.

International Journal of Reconfigurable Computing 11

Leftmost
column pixels

Rightmost
column pixels

Median output stream

Adder
tree

Adder
tree

24

pixels
To line buffer

Binary image stream

7 × 7 window

−

+

>>

Figure 10: Hardware architecture of median PE.

By synchronizing the streams of both frames, frame
differencing can be executed in pipeline as soon as one pixel
from each frame is obtained. Hence, one pixel in current
frame (𝐹

𝑖−2
) and one pixel in transformed frame (𝐹󸀠

𝑖−3
) are

fetched alternatively from their corresponding memory loca-
tions by frame reader, constructing two synchronized streams
of 𝐹
𝑖−2
and 𝐹󸀠

𝑖−3
frames. Frame differencing PE performs

pixel-to-pixel absolute subtraction and thresholding on the
streams. The frame differencing PE is able to compute in
one cycle per pixel. A configurable threshold value, thfd, is
used after the subtraction, yielding a stream of binary image
without buffering the whole frame.
After frame differencing the binary image is streamed

into 7 × 7 median filtering. Seven lines of the image are
buffered in the line buffer, providing 7 × 7 pixels window for
the median PE to perform the median computation. Median
computation can be performed in one clock cycle for each
processing window due to short propagation delay as only
binary pixels are involved. Figure 10 shows the hardware logic
design of median PE.
Median filtering can be computed by counting the num-

ber of asserted (binary 1) pixels in the window. If more
than half the pixels in the window (24 pixels) are asserted,
the resultant pixel is “1,” or “0” otherwise. Since processing
window will move only one pixel to the right for each com-
putation during raster scan, current pixel count is computed
by adding the previous pixel count and rightmost column
pixels in the current window while subtracting the leftmost

column pixels in the previous window. Final binary output
pixel is produced by thresholding the current pixel count with
24 (half of window size).
As dilation is also a 7× 7window-based processing, it uses

similar line buffering technique asmedian filtering. However,
only simple logical OR operation is performed on all window
pixels. Due to its simplicity, dilation PE can also be computed
in one clock cycle, resulting in the stream of binary image
with detected region of moving targets.

5. Experimental Results

5.1. Verification of Proposed SoC. Theproposedmoving target
detection SoC is verified in offline detection mode using the
database in [41]. Test videos are 640 × 480 pixels in size
and are greyscaled prior to the verification process. The test
videos are transferred to the system for computation via a
USB mass storage device. After performing the detection in
SoC, the image results are displayed on VGA and also stored
on USB drive for verification. Figure 11 shows the moving
target detection result from the proposed SoC using different
sample videos. The detected regions (red) are overlaid on the
input frame. In most cases, the proposed SoC is able to detect
the moving target in consecutive frames.
However, there are several limitations in this work. Block

matching may not give a goodmotion estimation result if the
extracted blocks do not have texture (the pixels intensity are
similar). Moreover, the detected region of moving target may
appear in cavity or multiple split of smaller regions as only
simple frame differencing is applied in the proposed system.
Additional postprocessing to produce better detected blob by
merging split regions is out of the scope in this work.
As the stochastic RANSAC algorithm is terminated after

a constant time step for each frame, image registration error
may occur which produces incorrect ego-motion estimation.
This could be mitigated by accelerating RANSAC algorithm
to ensure more iterations using dedicated hardware or high
performance general purpose processor.

5.2. Performance Evaluation of Detection Algorithm. Theper-
formance evaluation of the implemented detection algorithm
uses the Mathematical Performance Metric in [42] that
involves several parameters as follows:

(i) True positive, TP: the detected moving object.
(ii) False positive, FP: detected regions that do not corre-
spond to any moving object.

(iii) False negative, FN: the nondetected moving object.
(iv) Detection rate, DR: the ratio of TP with the combina-

tion of TP and FN, as formulated in

DR = TP
TP + FN

. (4)

(v) False alarm rate, FAR: the ratio between FP in all
positive detection, as defined in

FAR = FP
TP + FP

. (5)

12 International Journal of Reconfigurable Computing

(a) Frame: 255 (b) Frame: 275 (c) Frame: 295 (d) Frame: 315

(e) Frame: 1000 (f) Frame: 1020 (g) Frame: 1040 (h) Frame: 1060

(i) Frame: 600 (j) Frame: 620 (k) Frame: 640 (l) Frame: 660

Figure 11: Detected regions from the proposed moving target detection SoC on different sample videos in [41]. Video numbers (a)–(d):
V3V100003 004, video numbers (e)–(h): V3V100004 003, and video numbers (i)–(l): V4V100007 017.

FP

FN
TP

Figure 12: Evaluation of performancemetrics TP, FP, and FN based
on ground truth boxes (blue) and the detected region (red).

To obtain the performance metrics, ground truth regions
are manually labelled in several frames of test videos. A
bounding box is drawn across each moving object to indicate
the ground truth region of every frame as depicted in Fig-
ure 12. A simple postprocessing is performed on the detected
region by filtering out the detected region smaller than 15
pixels’ width or 15 pixels’ height prior to the evaluation.
A detected moving object (TP) has detected regions in its
bounded ground truth area, while a nondetected moving
object (FN) has no detected region overlapping with its
ground truth area. Detected region that does not overlapp
with any ground truth region is considered as false positive
(FP).
The detection performance is evaluated on different

parameters configuration. The DR and FAR for 1000 test
frames using different number of blocks (density in ego-
motion estimation), 𝑚 × 𝑛, in area-based registration and

frame differencing threshold, thfd, are depicted in Table 5 and
Figure 13.
The experiment results show that DR is almost similar

for different density of ego-motion estimation but decreases
with thfd. Although higher density in the proposed work has
lower displacement limitation, 𝑑

𝑚
and 𝑑

𝑛
as discussed in

Section 3.1, most of the point-to-point displacements do not
exceed the limitation due to slowUAVmovement in themost
frames of the test dataset. On the contrary, higher value of thfd
may filter out the moving object if the differences in intensity
of the object pixels and background pixels are almost similar.
FAR decreases with density in ego-motion estimation

due to the higher quality in image registration process but
increases if most frames exceed the displacement limitation,
𝑑
𝑚
and 𝑑

𝑛
. However, false registration due to displacement

limitation results in a huge blob of foreground but does not
greatly increase FAR. Although higher values of thfd decrease
the false detection rate, they also produce smaller foreground
area for all detected moving objects as pixels almost similar
intensity with background will be thresholded.

5.3. Speed Comparison with Full Software Implementation.
The computation speed of the proposed moving target detec-
tion SoC is compared with software computation in different
platforms, including modern CPU (Intel Core i5) in desktop
computer and embedded processor (ARM). Table 6 illustrates
the comparison of computation frame rate and hardware

International Journal of Reconfigurable Computing 13

1 2 3 4 5 6 7 8 9 10
0.944

0.946

0.948

0.95

0.952

0.954

0.956

0.958

0.96

0.962

0.964

D
et

ec
tio

n
ra

te
,D

R

Density of ego-motion, m × n

thfd = 15

thfd = 20

thfd = 25

(a) DR

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fa
lse

 al
ar

m
 ra

te
, F

A
R

Density of ego-motion, m × n

thfd = 15

thfd = 20

thfd = 25

(b) FAR

Figure 13: DR and FAR for different density in ego-motion estimation,𝑚 × 𝑛, and frame differencing threshold, thfd.

Table 5: Performance evaluation in terms of DR and FAR for 1000
frames using different density in ego-motion estimation,𝑚× 𝑛, and
frame differencing threshold, thfd.

𝑚 × 𝑛 thfd DR FAR
12 15 0.958 0.643
12 20 0.954 0.331
12 25 0.949 0.194
24 15 0.957 0.568
24 20 0.950 0.324
24 25 0.945 0.101
35 15 0.958 0.548
35 20 0.952 0.215
35 25 0.947 0.090
48 15 0.959 0.539
48 20 0.952 0.253
48 25 0.944 0.079
70 15 0.958 0.509
70 20 0.951 0.188
70 25 0.946 0.075
88 15 0.960 0.489
88 20 0.951 0.219
88 25 0.947 0.074
108 15 0.958 0.483
108 20 0.952 0.168
108 25 0.946 0.058
140 15 0.958 0.499
140 20 0.951 0.187
140 25 0.946 0.059
165 15 0.958 0.474
165 20 0.953 0.214
165 25 0.947 0.068
192 15 0.959 0.478
192 20 0.952 0.169
192 25 0.946 0.092

Table 6: Computation speed comparison of the proposed sys-
tem with different software implementation using area-based and
feature-based registrations.

Platform Frequency Registration
technique

Frame
rate

Hardware
speed-up

Proposed
SoC 100MHz Area-based 30 1

Intel Core
i5-4210U 1.70GHz Area-based 4.26 7.04

Feature-
based 13.11 2.29

ARM1176JZF 700MHz Area-based 0.20 150
Feature-
based 0.56 53.57

speed-up between the proposed system and other software
implementations using test videos in [41].
As feature-based image registration has faster computa-

tion in software implementation comparing to area-based
registration, speed performance of feature-based method is
also included for comparison. In feature-based implementa-
tion, features are first detected in each frame. The detected
features from current frame are cross-correlatedwith features
with previous framewhile RANSAC algorithm is used to esti-
mate the ego-motion between frames. After compensating
the ego-motion, segmentation ofmoving object uses the same
processes with the proposed system. To further optimize
the software implementation in terms of speed performance,
a fast feature detection algorithm [30] is utilized. As the
number of features will affect the computation time in feature
matching step, only 100 strongest features in each frame are
selected for processing.However, the performance evaluation
does not consider multithreaded software execution.

14 International Journal of Reconfigurable Computing

Table 7: Resources usage of the proposed moving target detection
SoC.

Logic units Utilization (%)
Total combinational function 15161 13%
Total registers 10803 9%
Total memory bits 521054 13%
Embedded multiplier 27 5%
FPGA device Altera Cyclone IV

Based on experimental result, the speed performance
of the proposed moving target detection SoC surpasses
optimized software computation by 2.29 times and 53.57
times compared with implementations in modern CPU
and embedded CPU, respectively. The software computation
(RANSAC) in HW/SW codesign of the proposed system cre-
ates speed bottleneck, thus limiting the maximum through-
put to 30 fps. The processing frame rate of the proposed sys-
tem can be further improved by using fully dedicated hard-
ware.

5.4. Resource Utilization. The overall hardware resources
utilization of the complete system is illustrated in Table 7.
This prototype of real-time moving object detection system
utilizes only less than 20 percent of total resources in Altera
Cyclone IV FPGA device. As the proposed system uses off-
chip memory components for frame buffering, FPGA on-
chip memory is utilized only for line buffering in streaming
process (e.g., block matching and median filtering) and stor-
ing intermediate results (e.g., point pairs after block match-
ing). Thus, the low resource usage of the proposed system
provides abundant hardware space for other processes such as
target tracking or classification to be developed in future.

6. Conclusions

Moving target detection is a crucial step in most computer
vision problem especially for UAV applications. On-chip
detection without the need of real-time video transmission to
ground will provide immense benefit to diverse applications
such as military, surveillance, and resource exploration. In
order to perform this complex embedded video processing
on-chip, FPGA-based system is desirable due to the potential
parallelism of the algorithm.
This paper proposed a moving target detection system

using FPGA to enable autonomous UAVwhich is able to per-
form the computer vision algorithm on the flying platform.
The proposed system is prototyped using Altera Cyclone
IV FPGA device on Terasic DE2-115 development board
mounted with a TRDB-D5M camera. This system is devel-
oped as a HW/SW codesign using dedicated hardware with
Nios II software processor (booted with embedded Linux)
running at 100MHz clock rate. As stream-oriented hardware
with pipeline processing is utilized, the proposed system
achieves real-time capability with 30 frames per second
processing speed on 640× 480 live video. Experimental result
shows that the proposed SoC performs 2.29 times and 53.57
times faster than optimized software computation onmodern

desktop computer (Intel Core i5) and embedded processor
(ARM). In addition, the proposed moving target detection
uses only less than 20 percent of total resources in the
FPGA device, allowing other hardware accelerators to be
implemented in future.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to express their gratitude to Universiti
Teknologi Malaysia (UTM) and the Ministry of Science,
Technology and Innovation (MOSTI), Malaysia, for support-
ing this research work under research Grants 01-01-06-SF1197
and 01-01-06-SF1229.

References

[1] A. Ahmed, M. Nagai, C. Tianen, and R. Shibasaki, “Uav based
monitoring systemandobject detection technique development
for a disaster area,” International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 37, pp.
373–377, 2008.

[2] B. Coifman, M. McCord, R. Mishalani, M. Iswalt, and Y. Ji,
“Roadway trafficmonitoring from an unmanned aerial vehicle,”
IEE Proceedings-Intelligent Transport Systems, vol. 153, no. 1, pp.
11–20, 2006.

[3] K. Kanistras, G. Martins, M. J. Rutherford, and K. P. Valavanis,
“Survey of unmanned aerial vehicles (uavs) for traffic monitor-
ing,” inHandbook of Unmanned Aerial Vehicles, pp. 2643–2666,
Springer, 2015.

[4] K. Nordberg, P. Doherty, G. Farnebäck et al., “Vision for a UAV
helicopter,” in Proceedings of the International Conference on
Intelligent Robots and Systems (IROS ’02), Workshop on Aerial
Robotics, pp. 29–34, Lausanne, Switzerland, October 2002.

[5] D. Zamalieva and A. Yilmaz, “Background subtraction for the
moving camera: a geometric approach,” Computer Vision and
Image Understanding, vol. 127, pp. 73–85, 2014.

[6] M. Genovese and E. Napoli, “ASIC and FPGA implementation
of the Gaussianmixturemodel algorithm for real-time segmen-
tation of high definition video,” IEEETransactions onVery Large
Scale Integration (VLSI) Systems, vol. 22, no. 3, pp. 537–547, 2014.

[7] F. Kristensen, H. Hedberg, H. Jiang, P. Nilsson, and V. Öwall,
“An embedded real-time surveillance system: implementation
and evaluation,” Journal of Signal Processing Systems, vol. 52, no.
1, pp. 75–94, 2008.

[8] H. Jiang, H. Ardö, and V. Öwall, “A hardware architecture
for real-time video segmentation utilizing memory reduction
techniques,” IEEETransactions onCircuits and Systems for Video
Technology, vol. 19, no. 2, pp. 226–236, 2009.

[9] M. Genovese and E. Napoli, “FPGA-based architecture for real
time segmentation and denoising of HD video,” Journal of Real-
Time Image Processing, vol. 8, no. 4, pp. 389–401, 2013.

[10] A. Lopez-Bravo, J. Diaz-Carmona, A. Ramirez-Agundis, A.
Padilla-Medina, and J. Prado-Olivarez, “FPGA-based video
system for real time moving object detection,” in Proceedings

International Journal of Reconfigurable Computing 15

of the 23rd International Conference on Electronics, Communi-
cations and Computing (CONIELECOMP ’13), pp. 92–97, IEEE,
Cholula, Mexico, March 2013.

[11] T. Kryjak, M. Komorkiewicz, and M. Gorgon, “Real-time mov-
ing object detection for video surveillance system in FPGA,” in
Proceedings of the Conference on Design and Architectures for
Signal and Image Processing (DASIP ’11), pp. 1–8, IEEE, Tampere,
Finland, November 2011.

[12] A. Mittal and D. Huttenlocher, “Scene modeling for wide area
surveillance and image synthesis,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, vol. 2,
pp. 160–167, IEEE, June 2000.

[13] A. Price, J. Pyke, D. Ashiri, and T. Cornall, “Real time object
detection for an unmanned aerial vehicle using an FPGA
based vision system,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA ’06), pp. 2854–
2859, IEEE, Orlando, Fla, USA, May 2006.

[14] G. J. Garćıa, C. A. Jara, J. Pomares, A. Alabdo, L. M. Poggi, and
F. Torres, “A survey on FPGA-based sensor systems: towards
intelligent and reconfigurable low-power sensors for computer
vision, control and signal processing,” Sensors, vol. 14, no. 4, pp.
6247–6278, 2014.

[15] S. Ali and M. Shah, “Cocoa: tracking in aerial imagery,” in
Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems
and Applications III, vol. 6209 of Proceedings of SPIE, Orlando,
Fla, USA, April 2006.

[16] J. Xiao, C. Yang, F. Han, and H. Cheng, “Vehicle and person
tracking in aerial videos,” in Multimodal Technologies for Per-
ception of Humans, pp. 203–214, Springer, 2008.

[17] W. Yu, X. Yu, P. Zhang, and J. Zhou, “A new framework of mov-
ing target detection and tracking for uav video application,” in
Proceedings of the International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Science, vol. 37, Beijing,
China, 2008.

[18] V. Reilly, H. Idrees, and M. Shah, “Detection and tracking of
large number of targets in wide area surveillance,” in Computer
Vision—ECCV 2010: 11th European Conference on Computer
Vision, Heraklion, Crete, Greece, September 5–11, 2010, Proceed-
ings, Part III, vol. 6313 of Lecture Notes in Computer Science, pp.
186–199, Springer, Berlin, Germany, 2010.

[19] J. Wang, Y. Zhang, J. Lu, and W. Xu, “A framework for moving
target detection, recognition and tracking in UAV videos,”
in Affective Computing and Intelligent Interaction, vol. 137 of
Advances in Intelligent and Soft Computing, pp. 69–76, Springer,
Berlin, Germany, 2012.

[20] S. A. Cheraghi andU.U. Sheikh, “Moving object detection using
image registration for a moving camera platform,” in Proceed-
ings of the IEEE International Conference on Control System,
Computing and Engineering (ICCSCE ’12), pp. 355–359, IEEE,
Penang, Malaysia, November 2012.

[21] Y. Zhang, X. Tong, T. Yang, and W. Ma, “Multi-model estima-
tion based moving object detection for aerial video,” Sensors,
vol. 15, no. 4, pp. 8214–8231, 2015.

[22] Q. Yu and G. Medioni, “A GPU-based implementation of
motion detection from a moving platform,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and
Pattern RecognitionWorkshops (CVPR ’08), pp. 1–6, Anchorage,
Alaska, USA, June 2008.

[23] A. Laika, J. Paul, C. Claus, W. Stechele, A. E. S. Auf, and E.
Maehle, “FPGA-based real-time moving object detection for

walking robots,” in Proceedings of the 8th IEEE International
Workshop on Safety, Security, and Rescue Robotics (SSRR ’10), pp.
1–8, IEEE, Bremen, Germany, July 2010.

[24] B. Tippetts, S. Fowers, K. Lillywhite, D.-J. Lee, and J. Archibald,
“FPGA implementation of a feature detection and tracking
algorithm for real-time applications,” in Advances in Visual
Computing, pp. 682–691, Springer, 2007.

[25] K. May and N. Krouglicof, “Moving target detection for sense
and avoid using regional phase correlation,” in Proceedings of
the IEEE International Conference on Robotics and Automation
(ICRA ’13), pp. 4767–4772, IEEE, Karlsruhe, Germany, May
2013.

[26] M. E. Angelopoulou and C.-S. Bouganis, “Vision-based ego-
motion estimation on FPGA for unmanned aerial vehicle
navigation,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 24, no. 6, pp. 1070–1083, 2014.

[27] I. M. El-Emary andM.M. A. El-Kareem, “On the application of
genetic algorithms in finger prints registration,”World Applied
Sciences Journal, vol. 5, no. 3, pp. 276–281, 2008.

[28] A. A. Goshtasby, 2-D and 3-D Image Registration: for Medical,
Remote Sensing, and Industrial Applications, JohnWiley & Sons,
New York, NY, USA, 2005.

[29] C. Harris and M. Stephens, “A combined corner and edge
detector,” in Proceedings of the 4th Alvey Vision Conference, vol.
15, pp. 147–151, 1988.

[30] E. Rosten andT.Drummond, “Machine learning for high-speed
corner detection,” in Computer Vision—ECCV 2006, pp. 430–
443, Springer, 2006.

[31] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: speeded
up robust features,” in Computer Vision—ECCV 2006, A.
Leonardis, H. Bischof, and A. Pinz, Eds., vol. 3951 of Lecture
Notes in Computer Science, pp. 404–417, Springer, 2006.

[32] G. R. Rodŕıguez-Canosa, S.Thomas, J. del Cerro, A. Barrientos,
and B. MacDonald, “A real-time method to detect and track
moving objects (DATMO) from unmanned aerial vehicles
(UAVs) using a single camera,” Remote Sensing, vol. 4, no. 4, pp.
1090–1111, 2012.

[33] B. Liu and A. Zaccarin, “New fast algorithms for the estimation
of block motion vectors,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 3, no. 2, pp. 148–157, 1993.

[34] R. Li, B. Zeng, andM. L. Liou, “New three-step search algorithm
for blockmotion estimation,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 4, no. 4, pp. 438–442, 1994.

[35] L.-M. Po andW.-C. Ma, “A novel four-step search algorithm for
fast blockmotion estimation,” IEEETransactions onCircuits and
Systems for Video Technology, vol. 6, no. 3, pp. 313–317, 1996.

[36] S. Zhu and K.-K. Ma, “A new diamond search algorithm for
fast block-matching motion estimation,” IEEE Transactions on
Image Processing, vol. 9, no. 2, pp. 287–290, 2000.

[37] L. De Vos andM. Stegherr, “Parameterizable VLSI architectures
for the full-search block-matching algorithm,” IEEE Transac-
tions on Circuits and Systems, vol. 36, no. 10, pp. 1309–1316, 1989.

[38] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of the ACM, vol.
24, no. 6, pp. 381–395, 1981.

[39] J. W. Tang, N. Shaikh-Husin, and U. U. Sheikh, “FPGA imple-
mentation of RANSAC algorithm for real-time image geometry

16 International Journal of Reconfigurable Computing

estimation,” in Proceedings of the 11th IEEE Student Conference
on Research andDevelopment (SCOReD ’13), pp. 290–294, IEEE,
Putrajaya, Malaysia, December 2013.

[40] O. Chum and J. Matas, “Randomized ransac with T
𝑑,𝑑
test,” in

Proceedings of the British Machine Vision Conference, vol. 2, pp.
448–457, September 2002.

[41] DARPA, SDMS PublicWeb Site, 2003, https://www.sdms.afrl.af
.mil.

[42] A. F. M. S. Saif, A. S. Prabuwono, and Z. R. Mahayuddin,
“Motion analysis for moving object detection from UAV aerial
images: a review,” in Proceedings of the International Conference
on Informatics, Electronics and Vision (ICIEV ’14), pp. 1–6, IEEE,
Dhaka, Bangladesh, May 2014.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

