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Abstract
The paper proposes a simple topological characterization of a large class of adversarial distributed-
computing models via affine tasks: sub-complexes of the second iteration of the standard chro-
matic subdivision. We show that the task computability of a model in the class is precisely
captured by iterations of the corresponding affine task. While an adversary is in general defined
as a non-compact set of infinite runs, its affine task is just a finite subset of runs of the 2-round it-
erated immediate snapshot (IIS) model. Our results generalize and improve all previously derived
topological characterizations of distributed-computing models.
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1 Introduction

Distributed computing is a jungle of models, parameterized by types of failures, synchrony
assumptions, and employed communication primitives. Determining relative computability
power of these models (“is model A more powerful than model B”) is an intriguing and
important problem.

The task computability of the wait-free model of computation, which makes no assumptions
about the number of failures that can occur, was characterized by Herlihy and Shavit [7]
through the existence of a specific continuous map from a subdivision of the input complex of
a task I to its output complex O. (The reader is referred to [6] for a thorough discussion of the
use of combinatorial topology in distributed computability.) In particular, the characterization
can consider the iterated standard chromatic subdivision (Chr s depicted in Figure 1a) and,
thus, derive that a task is wait-free solvable if and only if it can be solved in the IIS model.

The aim of this paper is to generalize this topological characterization to models beyond
the wait-free model using the formalism of affine tasks [5]. An affine task is defined through
a pure subcomplex of an iterated standard chromatic subdivision or, equivalently, a subset
of finite runs of the IIS model. Iterations of such affine tasks provide a failure-less compact
model (according to the “longest-prefix” metric [1]).

Given that many fundamental tasks are not wait-free solvable, the prominent adversarial
failure model [2] has been introduced to strengthen the wait-free model. An adversary
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Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

(a) Chr1(s), equivalent to the output complex of
the immediate snapshot (IS) task.

(b) The affine task of the adversary consisting of
{p1}, {p2, p3} with all super-sets (in blue).

Figure 1 Standard chromatic subdivision and an affine task example for n = 3.

A is defined through a collection of process subsets, called live sets. In every run of the
corresponding adversarial A-model, the set of processes taking infinitely many steps must
be a live set. The sub-class of fair adversaries [8] does not, intuitively, allow a subset of
processes participating in a computation to achieve a better set consensus than the whole
set of participants (processes taking at least one step). The class of fair adversaries is pretty
large, as it includes the existing sub-classes of superset-closed and symmetric adversaries.

We show that a specific affine task RA, defined as a subcomplex of the second iteration of
the standard chromatic subdivision, captures the task computability of any fair adversary A.
A task is solved in the A-model if and only it is solvable in the set of IIS runs resulting from
iterations of RA (denoted R∗A).

The notion of agreement functions [8] was instrumental for this result. (An agreement
function α associates each set of processes P with the best level of set consensus solvable when
only processes in P might participate.) Fair adversaries are characterized by their agreement
function in the sense that they belong to the weakest equivalence class (in terms of task
computability) of models with the same agreement function. Our characterization can then
be put as a generalization of the celebrated Asynchronous Computability Theorem (ACT) [7]:

A task T = (I,O,∆), where I is the input complex, O is an output complex, and ∆
is a map from I to sub-complexes of O, is solvable in a fair adversarial A-model if and
only if there exists a natural number ` and a simplicial map φ : R`

A(I)→ O carried
by ∆ (informally, respecting the task specification ∆).

2 Affine tasks for fair adversaries.

Two classes of affine tasks were recently defined. The class Rt−res was introduced in [10],
with R∗t−res equivalent to the t-resilient model. Similarly, the class Rk was introduced in [4],
with R∗k equivalent to the k-concurrent model. Interestingly, these models correspond to two
“well-behaved” sub-classes of fair adversaries on opposite sides of the spectrum. In a sense, a
fair adversary can be seen as a combination of concurrency and resilience, grasped using,
resp., contention and critical simplices:

Contention simplices: If processes are executed sequentially, they not only obtain
distinct views out of IS, but also obtain the same view (inclusion) ordering out of multiple
iterations. But to be combined with resiliency features, concurrency restrictions must be
weaken to focus on “fully” conflicting processes. This is why we say that a simplex, or a
group of processes, forms a 2-contention simplex if any two of its processes have distinct
views in both IS iterations, ordered alternatively in each (see [9] for a formal definition).
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Critical simplices: For fair adversaries, concurrency may rise with participation irregu-
larly. Critical simplices act as representatives of each increase of participation resulting
in a concurrency increase. They are selected among processes with the smallest first
IS output providing an observed participation corresponding to some non-nul level of
set-consensus power. Moreover, in order to be identifiable as critical, they are selected as
critical simplices only if grouped with sufficiently many other processes with the same IS
output, so that if they are withdrawn from their own first IS observed participation the
remaining participation is associated to a strictly smaller set-consensus power. Hence
observing in the second IS all members of a critical simplex is enough to check that they
together form a critical simplex.

Now we are ready to define the subcomplex RA ⊆ Chr2 s. The idea is that a large
2-constention simplex may be allowed only if it terminates after a critical simplex associated
with a large enough view, i.e., concurrency may rises only after sufficient ensured resilience.
A (n− 1)-dimensional simplex σ ∈ Chr2 s (composed of n vertices) belongs to RA if and only
if every sub-simplex of σ of size k which (1) is a 2-contention simplex; (2) does not include
critical simplices members; (3) does not include processes observed by identifiable critical
simplices (with a smaller second IS view); must observe a critical simplex with a first IS view
associated to an agreeent power greater than or equal to k (see Figure 1b for an example).

The proof of equivalence between R∗A and the fair A-adversary model is done using
the equivalent α-model [8] which (1) allows for a simple resolution of RA in the α-model
by simply executing two rounds of an IS algorithm, with a waiting phase in between the
rounds (similarly to [10]); and (2) can be simulated easily as soon as α-adaptive set-consensus
(see [8]) is solvable in the presence of read-write memory (similarly to [4]).

To summarize, this paper generalizes all previous topological characterizations of distrib-
uted computing models [7, 5, 4, 10]. We believe that the results can further be extended to all
“practical” restrictions of the wait-free model of computations, beyond fair adversaries, which
may potentially result in a complete computability theory for distributed computing [3].

References
1 Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,

21(4):181–185, October 1985.
2 Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann.

The disagreement power of an adversary. Distributed Computing, 24(3-4):137–147, 2011.
3 Eli Gafni. Private communication. 2002.
4 Eli Gafni, Yuan He, Petr Kuznetsov, and Thibault Rieutord. Read-Write Memory and

k-Set Consensus as an Affine Task. In OPODIS 2016, volume 70, pages 6:1–6:17, 2017.
doi:10.4230/LIPIcs.OPODIS.2016.6.

5 Eli Gafni, Petr Kuznetsov, and Ciprian Manolescu. A generalized asynchronous comput-
ability theorem. In PODC, pages 222–231, 2014. doi:10.1145/2611462.2611477.

6 Maurice Herlihy, Dmitry N. Kozlov, and Sergio Rajsbaum. Distributed Computing Through
Combinatorial Topology. Morgan Kaufmann, 2014.

7 Maurice Herlihy and Nir Shavit. The topological structure of asynchronous computability.
Journal of the ACM, 46(2):858–923, 1999.

8 Petr Kuznetsov and Thibault Rieutord. Agreement functions for distributed computing
models. In NETYS, pages 175–190, 2017. doi:10.1007/978-3-319-59647-1_14.

9 Petr Kuznetsov, Thibault Rieutord, and Yuan He. Compact topology of shared-memory
adversaries. HAL, https://hal.archives-ouvertes.fr/hal-01572257, 2017.

DISC 2017

http://dx.doi.org/10.4230/LIPIcs.OPODIS.2016.6
http://dx.doi.org/10.1145/2611462.2611477
http://dx.doi.org/10.1007/978-3-319-59647-1_14


56:4 Brief Announcement: Compact Topology of Shared-Memory Adversaries

10 Vikram Saraph, Maurice Herlihy, and Eli Gafni. Asynchronous computability theorems for
t-resilient systems. In DISC, pages 428–441, 2016.


	Introduction
	Affine tasks for fair adversaries.

