5 research outputs found

    Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers

    Get PDF
    An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations

    GNC architecture solutions for robust operations of a free-floating space manipulator via image based visual servoing

    Get PDF
    On-orbit servicing often requires the use of robotic arms, and a key asset in this kind of operations is autonomy. In this framework, the use of optical devices is a solution, already analyzed in many researches both for autonomous rendezvous and docking and for the evaluation of the control of the manipulator. In the present paper, simulations for assessing the controller performance are realized in a high-fidelity purposely developed software architecture, in which not only the selected 6 DOF space manipulator is modeled, but also a virtual camera, acquiring in the loop images of the target CAD model imported, is included in the GNC loop. This approach allows to emphasis several problems that would not emerge in simulations with images characterized by easily-identifiable, purposely-created markers. At the scope, a specific GNC architecture is developed, based on finite-state machine logic. According to this approach, two different Image Based Visual Servoing strategies are alternatively performed, commanding only linear or angular velocity of the camera, switching between the two control techniques when the “stack” or “divergence” condition is triggered. In this way a stable and robust accomplishment of the tasks is achieved for many configurations and for different target models

    Reactionless visual servoing of a dual-arm space robot

    No full text
    2014 IEEE International Conference on Robotics and Automation, ICRA 2014 -- 31 May 2014 through 7 June 2014 -- -- 107395This paper presents a novel visual servoing controller for a satellite mounted dual-arm space robot. The controller is designed to complete the task of servoing the robot's endeffectors to the desired pose, while regulating orientation of the base-satellite. Task redundancy approach is utilized to coordinate the servoing process and attitude of the base satellite. The visual task is defined as a primary task, while regulating attitude of the base satellite to zero is defined as a secondary task. The secondary task is formulated as an optimization problem in such a way that it does not affect the primary task, and simultaneously minimizes its cost function. A set of numerical experiments are carried out on a dual-arm space robot showing efficacy of the proposed control methodology. © 2014 IEEE

    High-precision grasping and placing for mobile robots

    Get PDF
    This work presents a manipulation system for multiple labware in life science laboratories using the H20 mobile robots. The H20 robot is equipped with the Kinect V2 sensor to identify and estimate the position of the required labware on the workbench. The local features recognition based on SURF algorithm is used. The recognition process is performed for the labware to be grasped and for the workbench holder. Different grippers and labware containers are designed to manipulate different weights of labware and to realize a safe transportation
    corecore