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Abstract 

On-orbit servicing often requires the use of robotic arms, and a key asset in this kind of operations is autonomy. In this 
framework, the use of optical devices is a solution, already analyzed in many researches both for autonomous rendezvous 
and docking and for the evaluation of the control of the manipulator. In the present paper, simulations for assessing the 
controller performance are realized in a high-fidelity purposely developed software architecture, in which not only the 
selected 6 DOF space manipulator is modeled, but also a virtual camera, acquiring in the loop images of the target CAD 
model imported, is included in the GNC loop. This approach allows to emphasis several problems that would not emerge 
in simulations with images characterized by easily-identifiable, purposely-created markers. At the scope, a specific GNC 
architecture is developed, based on finite-state machine logic. According to this approach, two different Image Based 
Visual Servoing strategies are alternatively performed, commanding only linear or angular velocity of the camera, 
switching between the two control techniques when the “stack” or “divergence” condition is triggered. In this way a stable 
and robust accomplishment of the tasks is achieved for many configurations and for different target models. 

 

Keywords: image based visual servoing; space 
manipulators; on-orbit servicing; advanced software 
simulations 

1. Introduction 

A class of advanced space activities, including on-orbit 
servicing and debris removal [1] , often requires the use 
of robotic arms. Autonomy of these operations is a key 
asset, since the necessary continuous monitoring of the 
scenario and real-time control cannot be provided by a 
ground station. In this framework, the use of optical 
devices for computing the arm control is a solution, 
already analyzed in many researches. Image Based 
Visual Servoing (IBVS) [2] is a control strategy that 
makes use of images (comparing the acquired image 
with the reference one) to compute the desired end-
effector velocity, without the need of reconstructing the 
pose of the target object [3]. The final goal is reached 
when the acquired and reference images coincide, 
meaning that the end-effector has moved to the correct 
position. An early example of this technique applied to 
terrestrial manipulators can be found in [4]. 

Space manipulators present special features with respect 
to terrestrial applications. The movement of the robotic 
arm could lead to an excessive rotation of the platform, 
since it is unconstrained [5]. This problem has been 
already faced by many authors. In [6] an experimental 
set-up is developed to test applications specific to the 
space environment. In [7] a 3D model-based tracking 
algorithm has been studied and tested on a mock-up of a 
telecommunication satellite, using a 6-DOF robotic arm, 
with satisfactory results, in terms of precision of the pose 
estimation and computational costs, for a rendezvous 
mission. A visual servoing controller for a satellite 
mounted dual-arm space robot is proposed in [8]. The 
controller is designed to complete the task of servoing 
the robot's end-effectors to the desired pose, while 
regulating orientation of the base-satellite. Reference [9] 
presents an optimal control approach to guiding the free-
floating satellite-mounted robot, using visual 
information and considering the optimization of the 
motor commands with respect to a specified metric 
along with chaos compensation. 

In the great majority of the papers dealing with 
simulation of visual servoing, an important 
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simplification is present: the image is not acquired, but 
reduced to some feature objects (points, curves, 
blobs…). Even in the case that experiments are 
performed, the target bodies are often characterized by 
easily identifiable markers, thus reducing to a quasi-
ideal case. This approach leads to a significant over-
estimate of the controller performance. In the present 
paper, simulations are performed in a high-fidelity 
purposely developed software architecture, in which not 
only the selected 6 DOF space manipulator is modeled, 
but also a virtual camera, acquiring images of the target 
CAD model imported in MATLAB Virtual Reality 
toolbox, is included in the GNC loop. This approach 
allows to emphasize several problems that would not 
emerge in simulations with ideal images (made of set of 
points or primitive shapes, as typically done). Errors on 
the image feature extraction and possible mismatches 
between reference and actual features heavily decrease 
the arm performance, which could be either stacked in a 
local minimum or even diverge. We have realized that 
computing the linear and angular velocity of the end-
effector within a single computation, as usually 
performed, increases this undesired behavior. Therefore, 
a specific GNC architecture is developed, based on 
finite-state machine logic. According to this approach, 
two different IBVS strategies are alternatively 
performed, commanding only linear or angular velocity 
of the camera, switching between the two control 
techniques when the “stack” or “divergence” condition 
is triggered. In this way a stable and robust 
accomplishment of the tasks is achieved for many 
configurations and for different target models. 

The remainder of the paper is organized as follows: in 
Section 2 the dynamics of the space manipulator are 
described. In Section 3 the main steps for simulating the 
IBVS technique (i.e. the camera model, the interaction 
matrix computation and control law evaluation) are 
reported. In Section 4 the results of the classic IBVS 
implementation for an ideal case (i.e. with ideal features) 
are compared with the results coming from the advanced 
simulation set-up, including rendered images. In Section 
5 the algorithm that has been developed to overcome all 
the problems emerged in realistic simulations is 
described, and relevant result are shown. Final remarks 
can be found in Section 6. 

2. Scenario and Dynamics 
 

The on-orbit operation considered in this work is 
relevant to an inspection mission of a robotic arm, 
mounted on a satellite and composed by 6 links 
connected through revolute joints, with the task to 
acquire a certain configuration with respect to a target. 
This could be the case of a malfunctioning satellite that 
must be repaired, or a debris that must be grasped before 
removal. In both cases, the manipulator must be moved 

in a way that it reaches a certain desired position with 
respect to the target spacecraft. The scenario considered 
in this paper consists in a chaser satellite that, for 
avoiding interactions between robotic arm control and 
attitude control, will de-activate attitude control during 
arm motion. 

 
Fig. 1 The manipulator and the associated reference 
frames 

For computing the dynamic equations of the space 
manipulator, three reference frames can be introduced: 

o (𝑂𝑂𝐼𝐼 ,𝑋𝑋𝐼𝐼 ,𝑌𝑌𝐼𝐼 ,𝑍𝑍𝐼𝐼): inertial reference frame.  
o (𝑂𝑂𝐵𝐵 ,𝑋𝑋𝐵𝐵 ,𝑌𝑌𝐵𝐵 ,𝑍𝑍𝐵𝐵): body reference frame of the bus 

centered in the spacecraft centre of mass with axes 
parallel to the fixed frame at simulation time 𝑡𝑡0 = 0 

o (𝑂𝑂𝑖𝑖 ,𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑍𝑍𝑖𝑖)  with 𝑖𝑖 = 1, … , 6 : body reference 
frame of i-th link with origin in the i-th joint.  

The coordinate vector describing the state of each single 
body is: 
�⃗�𝑋 = [�⃗�𝑥𝐵𝐵 �⃗�𝑞𝐵𝐵 �⃗�𝑥1 �⃗�𝑞1 … �⃗�𝑥𝑖𝑖 �⃗�𝑞𝑖𝑖 … �⃗�𝑥6 �⃗�𝑞6]𝑇𝑇 

where: 
o �⃗�𝑥𝐵𝐵 is the position vector of main bus center of mass 

written in the inertial reference frame 
o �⃗�𝑥𝑖𝑖 is the position vector of i-th joint written in the 

inertial reference frame  
o �⃗�𝑞𝐵𝐵   and �⃗�𝑞𝑖𝑖    with 𝑖𝑖 = 1, … ,6 are the quaternions that 

define bus and links attitude with respect to inertial 
reference frame.  

The minimum set of (lagrangian) coordinates of the 
system is:  

𝑄𝑄�⃗ = [�⃗�𝑥𝐵𝐵 �⃗�𝑞𝐵𝐵 𝜃𝜃𝑗𝑗1 𝜃𝜃𝑗𝑗2 𝜃𝜃𝑗𝑗3 𝜃𝜃𝑗𝑗4 𝜃𝜃𝑗𝑗5 𝜃𝜃𝑗𝑗6]𝑇𝑇  
where the base position vector and the base orientation 
vector are written in the inertial reference frame while 
𝜃𝜃𝑗𝑗𝑖𝑖 is the i-th joint angle calculated with respect to the (i-
1)-th link body reference frame.  
The rotation axis direction of i-th joints written in the 
inertial reference frame is: 

�̂�𝑧𝑗𝑗𝑖𝑖 
𝐼𝐼 = 𝑅𝑅 𝐼𝐼 𝑏𝑏𝑖𝑖 �̂�𝑧𝑗𝑗𝑖𝑖 

𝑏𝑏𝑖𝑖  (1)  
where 𝑅𝑅 𝐼𝐼 𝑏𝑏𝑖𝑖 is the rotation matrix from the i-th link body 

reference frame to the inertial reference frame and �̂�𝑧𝑗𝑗𝑖𝑖 
𝑏𝑏𝑖𝑖  
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is the unit vector identifying the direction of the i-th 
revolute joint rotation axis in the body reference frame.  
For all the revolute joints the following rotation axis is 
chosen: 

�̂�𝑧𝑗𝑗𝑖𝑖 
𝑏𝑏𝑖𝑖 = [0 0 1]𝑇𝑇    𝑖𝑖 = 1, … ,6 

It’s possible to get the motion equations for complex 
multibody systems with numerous degrees of freedom 
using Kane’s method [10]. It allows to obtain the least 
number of differential equations that completely 
describe the multibody system without considering the 
forces due to constraints.  
The dynamic equations of the multibody system written 
according to Kane approach are: 

𝐽𝐽𝑇𝑇𝑀𝑀 𝐽𝐽 𝑄𝑄�⃗ ̈ + 𝐽𝐽𝑇𝑇𝑀𝑀 𝐽𝐽 ̇𝑄𝑄�⃗ ̇ = 𝐽𝐽𝑇𝑇�⃗�𝐹 + 𝐽𝐽𝑇𝑇𝐶𝐶 + 𝜏𝜏 (2)  
where: 
o 𝑀𝑀 is the mass matrix of the system 

𝑀𝑀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝐵𝐵 06×6 … … … 06×6

06×6 𝑀𝑀1    ⋮
⋮  ⋱   ⋮
⋮   𝑀𝑀𝑖𝑖  ⋮
⋮    ⋱ 06×6

06×6 … … … 06×6 𝑀𝑀6 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝑀𝑀𝑖𝑖 = �
𝑚𝑚𝑖𝑖 𝑚𝑚𝑖𝑖  �̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖𝑇𝑇

𝑚𝑚𝑖𝑖 �̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖 𝐽𝐽𝑂𝑂𝑖𝑖 
𝐼𝐼 � 

𝑚𝑚𝑖𝑖 is the mass and 𝐽𝐽𝑂𝑂𝑖𝑖 
𝐼𝐼  the inertia matrix of the i-

th body, whereas 𝑟𝑟𝐶𝐶𝐶𝐶𝑖𝑖 is  the position vector of the 
body center of mass with respect to the origin of 
the body reference frame written in the inertial 
frame. �̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖 represents the skew-symmetric form of 

the vector 𝑟𝑟𝐶𝐶𝐶𝐶𝑖𝑖: 

�̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖 = �
0 −𝑧𝑧𝐶𝐶𝐶𝐶𝑖𝑖 𝑦𝑦𝐶𝐶𝐶𝐶𝑖𝑖

𝑧𝑧𝐶𝐶𝐶𝐶𝑖𝑖 0 −𝑥𝑥𝐶𝐶𝐶𝐶𝑖𝑖
−𝑦𝑦𝐶𝐶𝐶𝐶𝑖𝑖 𝑥𝑥𝐶𝐶𝐶𝐶𝑖𝑖 0

� 

o 𝐶𝐶 is the Coriolis and centrifugal forces vector 

𝐶𝐶 = �𝐶𝐶𝐵𝐵 𝐶𝐶1 … 𝐶𝐶𝑖𝑖 … 𝐶𝐶6�
𝑇𝑇
 

𝐶𝐶𝑖𝑖 = �
−𝑚𝑚𝑖𝑖𝜔𝜔�𝑖𝑖𝜔𝜔�𝑖𝑖  𝑟𝑟𝐶𝐶𝐶𝐶𝑖𝑖
−𝜔𝜔�𝑖𝑖  𝐽𝐽𝑂𝑂𝑖𝑖 

𝐼𝐼  𝜔𝜔��⃗ 𝑖𝑖
� 

𝜔𝜔��⃗ 𝑖𝑖 is the angular velocity of i-th body, and 𝜔𝜔�𝑖𝑖 the skew-

symmetric form of the vector 𝜔𝜔��⃗ 𝑖𝑖: 

𝜔𝜔�𝑖𝑖 = �
0 −ω𝑖𝑖,𝑧𝑧 𝜔𝜔𝑖𝑖,𝑦𝑦
𝜔𝜔𝑖𝑖,𝑧𝑧 0 −𝜔𝜔𝑖𝑖,𝑥𝑥
−𝜔𝜔𝑖𝑖,𝑦𝑦 𝜔𝜔𝑖𝑖,𝑥𝑥 0

� 

 
o �⃗�𝐹 is the external forces vector  
o 𝜏𝜏 is the vector of control torques applied to the 

floating base and to the joints 

o 𝐽𝐽 is the Jacobian matrix that relates the vectors �⃗�𝑋 

and 𝑄𝑄�⃗ : 

�̇⃗�𝑋 = 𝐽𝐽 𝑄𝑄�⃗ ̇  (3)   

The geometric relations between �⃗�𝑋 and 𝑄𝑄�⃗  can be written 
and derived with respect to time to calculate 𝐽𝐽. In general 

form, the time derivative of i-th joint position and the 
angular velocity of i-th link can be written as follows: 

�̇⃗�𝑥𝑖𝑖 
𝐼𝐼 = �⃗�𝑥�̇�𝐵 

𝐼𝐼 − � 𝐷𝐷� 𝐼𝐼 � 𝜔𝜔𝐵𝐵�����⃗ 
𝐼𝐼 −� 𝑙𝑙𝑘𝑘� 𝐼𝐼 

𝑖𝑖−1

𝑘𝑘=1

 𝜔𝜔��⃗ 𝑘𝑘 
𝐼𝐼      (4)   

𝜔𝜔��⃗ 𝑖𝑖 
𝐼𝐼 = 𝜔𝜔𝐵𝐵�����⃗ 

𝐼𝐼 +  � 𝑅𝑅 𝐼𝐼 𝑏𝑏𝑘𝑘 �̂�𝑧𝑗𝑗𝑘𝑘 
𝑏𝑏𝑘𝑘  �̇�𝜃𝑗𝑗𝑘𝑘

𝑖𝑖

𝑘𝑘=1

     (5)   

with 𝑖𝑖 = 1, … ,6. 
 𝐷𝐷��⃗ 
𝐼𝐼  is the vector from base reference frame to first joint 
reference frame while  𝑙𝑙𝚤𝚤��⃗ 

𝐼𝐼  is the vector from i-th joint to 
(i+1)-th joint written in inertial reference frame, where 
𝑅𝑅 𝐼𝐼 𝑏𝑏𝑘𝑘 is the rotation matrix from the k-th link body 

reference frame to the inertial reference frame; 𝐷𝐷� 𝐼𝐼  and 𝑙𝑙𝚤𝚤�  

represent the skew-symmetric form of the vector  𝐷𝐷��⃗ 
𝐼𝐼  and 

 𝑙𝑙𝚤𝚤��⃗ 
𝐼𝐼 , respectively: 

𝐷𝐷� 𝐼𝐼  = �
0 − 𝐷𝐷𝐼𝐼 𝑧𝑧 𝐷𝐷𝐼𝐼 𝑦𝑦

𝐷𝐷𝐼𝐼 𝑧𝑧 0 − 𝐷𝐷𝐼𝐼 𝑥𝑥

− 𝐷𝐷𝐼𝐼 𝑦𝑦 𝐷𝐷𝐼𝐼 𝑥𝑥 0
� 

𝑙𝑙𝚤𝚤� 𝐼𝐼 = �
0 − 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑧𝑧 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑦𝑦
𝑙𝑙𝐼𝐼 𝑖𝑖,𝑧𝑧 0 − 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑥𝑥

− 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑦𝑦 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑥𝑥 0
� 

 
Using these equations allows to write the expression for 
the Jacobian matrix. 
 

3. Image Based Visual Servoing (IBVS) 
 

The task of moving the manipulator is realized using the 
IBVS technique, which requires, of course, the presence 
of a camera, acquiring the image of the target and 
extracting the most important information from it, so 
that the control law can be computed. 
 
3.1 The camera  
A camera is a system that can reproduce on an image the 
portion of space in its field of view through a projection.  
The simplest model of camera is the basic pinhole model 
[16]. 
Consider a point in the 3D space: 

𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
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whose coordinates are written in a frame (𝑂𝑂𝐶𝐶 ,𝑋𝑋𝐶𝐶 ,𝑌𝑌𝐶𝐶 ,𝑍𝑍𝐶𝐶) 
attached to the camera and consider its projection on a 
plane called image plane I: 

𝑝𝑝 = (𝑢𝑢, 𝑣𝑣) 
whose coordinates are written in a frame attached to the 
plane and with the axis 𝑢𝑢 and 𝑣𝑣 parallel to 𝑋𝑋𝐶𝐶 and 𝑌𝑌𝐶𝐶 .  

 
Fig. 2 Basic pinhole model of camera 

All the rays meet in a single point, called optical center 
𝑂𝑂𝐶𝐶  .The plane 𝐼𝐼 is placed in 𝑍𝑍 = 𝑓𝑓 from the optical 
center, where 𝑓𝑓 is the focal length of camera. �̂�𝑍𝐶𝐶, named 
optical axis, is the straight line passing through the 
optical center and perpendicular to the image plane. The 
point c is the projection of optical center on image plane 
and is called principal point.  
The point in the camera frame is transformed into a point 
in the image plane via the perspective transformation: 

�
𝑢𝑢 = 𝑓𝑓

𝑥𝑥
𝑧𝑧

𝑣𝑣 = 𝑓𝑓
𝑦𝑦
𝑧𝑧

 (6)   

This nonlinear transformation can be written in a linear 
form by resorting to the homogeneous representation of 
the points: 

𝑝𝑝 = �𝑢𝑢𝑣𝑣�  → 𝑝𝑝� = �
𝑢𝑢
𝑣𝑣
1
� 

𝑃𝑃 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�  → 𝑃𝑃� = �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� 

The relations (6) become: 

�
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 𝑧𝑧⁄
𝑓𝑓𝑦𝑦 𝑧𝑧⁄

1
� = �

𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦
𝑧𝑧
� = �

𝑓𝑓 0 0
0 𝑓𝑓 0
0 0 1

� �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⇒ 

�
𝑢𝑢
𝑣𝑣
1
� = Ω  �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� (7)   

where Ω is the camera calibration matrix that connects 

the homogeneous coordinates of image plane 𝑝𝑝� and the 
coordinates of point 𝑃𝑃 in the camera frame.  
Eq.(7) can be written considering also the homogeneous 
coordinates of 𝑃𝑃 : 

�
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓 0 0
0 𝑓𝑓 0
0 0 1

� �
1 0 0 0
0 1 0 0
0 0 1 0

� �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� ⇒ 

�
𝑢𝑢
𝑣𝑣
1
� = Ω Π  �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� = 𝑄𝑄  �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� (8)   

𝑄𝑄 is the perspective projection matrix that connects the 

homogeneous coordinates of image plane 𝑝𝑝� and the 
homogeneous coordinates 𝑃𝑃� in the camera reference 
frame.  
An infinite number of points exist in an image plane, so 
a spatial sampling is needed. The spatial sampling unit 
is the pixel and thus the coordinates (𝑢𝑢,𝑣𝑣) of a point in 
the image plane are to be expressed in pixel, (𝑢𝑢𝐼𝐼 , 𝑣𝑣𝐼𝐼).  
The pixel coordinates of the point are related to 
coordinates in metric units through two scale factors 𝛼𝛼𝑥𝑥 
and 𝛼𝛼𝑦𝑦: 

�
𝑢𝑢𝐼𝐼 = 𝛼𝛼𝑥𝑥  𝑢𝑢
𝑣𝑣𝐼𝐼 = 𝛼𝛼𝑦𝑦 𝑣𝑣 

where: 

�
𝛼𝛼𝑥𝑥 = 1 Δ𝑢𝑢⁄   [𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙/𝑚𝑚]
𝛼𝛼𝑦𝑦 = 1 Δ𝑣𝑣⁄    [𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙/𝑚𝑚] 

Δ𝑢𝑢 and Δ𝑣𝑣 are respectively the horizontal and vertical 
size of a pixel. 
Moreover, the image reference frame (𝑋𝑋𝑖𝑖𝑖𝑖,𝑌𝑌𝑖𝑖𝑖𝑖) is 
translated and rotated with respect to the frame (𝑢𝑢𝐼𝐼 , 𝑣𝑣𝐼𝐼) 
with origin in the principal point, so it is necessary to 
perform a coordinates transformation: 

�
𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑢𝑢0 − 𝑢𝑢𝐼𝐼 = 𝑢𝑢0 − 𝛼𝛼𝑥𝑥 𝑓𝑓 𝑥𝑥/𝑧𝑧
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑣𝑣0 − 𝑣𝑣𝐼𝐼 = 𝑣𝑣0 − 𝛼𝛼𝑦𝑦 𝑓𝑓 𝑦𝑦/𝑧𝑧  (9)   

where 𝑐𝑐 = (𝑢𝑢0, 𝑣𝑣0) are the coordinates of principal point 
written in the image reference frame.  

 
Fig. 3 Image Reference Frame  

The perspective projection matrix 𝑄𝑄 becomes: 

𝑄𝑄 = �
−𝛼𝛼𝑥𝑥 𝑓𝑓 0 𝑢𝑢0 0

0 −𝛼𝛼𝑦𝑦 𝑓𝑓 𝑣𝑣0 0
0 0 1 0

� (10)   

P is a point of the target that the manipulator wants to 
capture. Generally, the position vector of the point P is 
written in the reference frame attached to the target 
(𝑂𝑂𝑂𝑂 ,𝑋𝑋𝑂𝑂 ,𝑌𝑌𝑂𝑂 ,𝑍𝑍𝑂𝑂), called object reference frame. So, it is 
needed to realize a roto-translation from object reference 
frame to camera reference frame: 

𝑟𝑟𝑃𝑃 
𝐶𝐶 = 𝑅𝑅𝑂𝑂 

𝐶𝐶  𝑟𝑟𝑃𝑃/𝑂𝑂𝑂𝑂  
𝑂𝑂 + 𝑟𝑟𝑂𝑂 

𝐶𝐶  (11)   
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where 𝑅𝑅𝑂𝑂 
𝐶𝐶  is the rotation matrix from the object 

reference frame to camera reference frame and 𝑟𝑟𝑂𝑂 
𝐶𝐶  is the 

position vector of object reference frame origin with 
respect to camera refence frame origin, written in 
camera reference frame. 

 
Fig. 4 Object and camera reference frame 

Now, it is possible to write the relationship between the 
target’s point in homogeneous coordinate written in the 
object reference frame and the its projections on the 
image plane.  

�
𝑋𝑋𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖𝑖𝑖
1
� = 𝑄𝑄 �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�

𝐶𝐶

= 𝑄𝑄 𝑇𝑇𝑂𝑂 
𝐶𝐶  �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�

𝑂𝑂

= Σ  �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�

𝑂𝑂

 (12)   

where  

𝑇𝑇𝑂𝑂 
𝐶𝐶 = �

𝑅𝑅𝑂𝑂 
𝐶𝐶 𝑟𝑟𝑂𝑂 

𝐶𝐶

𝑂𝑂3×3 1 � 

is the homogeneous transformation matrix that allows to 
pass from the homogeneous coordinates written in the 
object frame to the homogeneous coordinates written in 
the camera frame. 
The matrix Σ contains all the parameters that 

characterize the camera. In particular, two kinds of 
parameters can be recognized: 
o The intrinsic parameters that depend on the 

sensor’s characteristics.  
o The extrinsic parameters that depend on the camera 

relative position with respect to the object 
reference frame. 

 
3.2 Interaction matrix  

 
Consider a point in the 3D space: 

𝑃𝑃 𝐶𝐶 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
whose coordinates are expressed in camera reference 
frame (see Fig. 5).  

 
Fig. 5 Inertial and camera reference frame 

The point’s projection on the image plane is given by the 
following relations: 

�
𝑢𝑢 = 𝑓𝑓

𝑥𝑥
𝑧𝑧

= −𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑂𝑂

𝑣𝑣 = 𝑓𝑓
𝑦𝑦
𝑧𝑧

= −𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑂𝑂
 (13)   

where 𝑓𝑓 is the focal length of camera in pixels. Deriving 
Eq. (13) with respect to time, it is found: 

�
�̇�𝑢 = 𝑓𝑓

�̇�𝑥 𝑧𝑧 − 𝑥𝑥�̇�𝑧
𝑧𝑧2

= 𝑓𝑓
�̇�𝑥
𝑧𝑧
− 𝑢𝑢

�̇�𝑧
𝑧𝑧

�̇�𝑣 = 𝑓𝑓
�̇�𝑦𝑧𝑧 − 𝑦𝑦�̇�𝑧
𝑧𝑧2

= 𝑓𝑓
�̇�𝑦
𝑧𝑧
− 𝑣𝑣

�̇�𝑧
𝑧𝑧

 (14)   

where  
�̇�𝑟 𝐶𝐶 𝑃𝑃/𝑂𝑂𝐶𝐶 = [�̇�𝑥 �̇�𝑦 �̇�𝑧]𝑇𝑇  

is the relative velocity vector of point P with respect to 
the camera, written in camera reference frame.  
Eq. (14) can be written in matrix form: 

��̇�𝑢�̇�𝑣� = �

𝑓𝑓
𝑧𝑧

0 −
𝑢𝑢
𝑧𝑧

0
𝑓𝑓
𝑧𝑧

−
𝑣𝑣
𝑧𝑧

� �
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = 𝐽𝐽1  �

�̇�𝑥
�̇�𝑦
�̇�𝑧
� (15)   

The absolute velocity vector of point P written in camera 
reference frame is the following: 

�̇�𝑟 𝐶𝐶 𝑃𝑃 = �̇�𝑟 𝐶𝐶 𝑂𝑂𝐶𝐶 + �̇�𝑟 𝐶𝐶 𝑃𝑃/𝑂𝑂𝐶𝐶 + 𝜔𝜔��⃗ 
𝐶𝐶

𝑂𝑂𝐶𝐶  ∧  𝑟𝑟 𝐶𝐶 𝑃𝑃 𝑂𝑂𝐶𝐶⁄  (16)   
�̇�𝑟 𝐶𝐶 𝑂𝑂𝐶𝐶  and 𝜔𝜔��⃗ 

𝐶𝐶
𝑂𝑂𝐶𝐶  are the linear and angular velocity of the 

camera, written in camera reference frame. Here and in 
the following, symbol “∧” represent the cross product. 
Eq. (16) can be written in extended form as: 

�̇�𝑟 𝐶𝐶 𝑃𝑃 = �
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� + �

�̇�𝑥
�̇�𝑦
�̇�𝑧
� + �

𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� ∧ �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� (17)   

In this paper, the interaction matrix and relevant IBVS 
is developed under the hypothesis of fixed target; it is 
true that a residual relative velocity is always present 
between chaser and target. However, the focus of the 
paper is on the serious performance degradation caused 
by the processing of “real” images with respect to the 
ideal performance of the control. In real cases, the target 
velocity will be not null, but actually very low, therefore 
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the residual motion of the target is considered a 
negligible disturbance in the following simulations:  
 

�̇�𝑟 𝐶𝐶 𝑃𝑃 = 0 
Hence, Eq. (17) becomes 

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = −�

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� − �

𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� ∧ �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� = −�

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� + �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� ∧ �

𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� 

In matrix form: 

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = �

−1 0 0 0 −𝑧𝑧 𝑦𝑦
0 −1 0 𝑧𝑧 0 −𝑥𝑥
0 0 −1 −𝑦𝑦 𝑥𝑥 0

� �⃗�𝑣 𝐶𝐶 𝐶𝐶 

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = 𝐽𝐽2 �⃗�𝑣 𝐶𝐶 𝐶𝐶 (18)   

where �⃗�𝑣 𝐶𝐶 𝐶𝐶 is a 6 × 1 vector that contains both linear and 
angular velocity of the camera, written in camera 
reference frame. 
Combining Eq. (15) and Eq. (18), the relationship 
between the time variation of the feature coordinates on 
image plane and the camera velocity vector is obtained: 

��̇�𝑢�̇�𝑣� = 𝐽𝐽1 𝐽𝐽2 �⃗�𝑣 𝐶𝐶 𝐶𝐶 = 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 �⃗�𝑣 𝐶𝐶 𝐶𝐶 (19)   

with: 

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡−

𝑓𝑓
𝑧𝑧

0
𝑢𝑢
𝑧𝑧

𝑢𝑢 𝑣𝑣
𝑓𝑓

−�𝑓𝑓 +
𝑢𝑢2

𝑓𝑓
� 𝑣𝑣

0 −
𝑓𝑓
𝑧𝑧

𝑣𝑣
𝑧𝑧

𝑓𝑓 +
𝑣𝑣2

𝑓𝑓
−
𝑢𝑢 𝑣𝑣
𝑓𝑓

−𝑢𝑢
⎦
⎥
⎥
⎥
⎤
 

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 can be written for each point detected on the image. 

Then, a system of 2𝑘𝑘 equations (being k the number of 
considered feature points) in 6 unknow variables is 
found: 

⎣
⎢
⎢
⎢
⎡
�̇�𝑢1
�̇�𝑣1
⋮
�̇�𝑢𝑘𝑘
�̇�𝑣𝑘𝑘⎦
⎥
⎥
⎥
⎤

= �

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖1

⋮
𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘

� �⃗�𝑣 𝐶𝐶 𝐶𝐶 = 𝐿𝐿𝑠𝑠 �⃗�𝑣 𝐶𝐶 𝐶𝐶 (20)   

𝐿𝐿𝑠𝑠 ∈  ℝ2𝑘𝑘×6 is the interaction matrix that depends not 

only on the features 𝑠𝑠 = [𝑢𝑢 𝑣𝑣]𝑇𝑇 but also depends on 
the coordinates z of points with respect to the camera: 

𝐿𝐿𝑠𝑠 = 𝐿𝐿𝑠𝑠 (𝑠𝑠, 𝑧𝑧 𝐶𝐶 ) 

where 
𝑧𝑧 𝐶𝐶 = [𝑧𝑧1 … 𝑧𝑧𝑘𝑘] 

Usually, 𝑧𝑧 𝐶𝐶  is not known so an estimated value or a 
constant value can be used, for example the depth value 
in the initial configuration or that in the desired pose. 
Using an approximate value for the point’s depth is 
equal to use an estimate of interaction matrix 𝐿𝐿�𝑠𝑠.  

 

 
3.3 IBVS control  

 
The purpose of visual servoing control scheme is to 
minimize an error that is defined as: 

𝑝𝑝(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) − 𝑠𝑠∗ (21)   

where 𝑠𝑠(𝑡𝑡) is the 2𝑘𝑘 × 1  vector containing the feature 
parameters of the current image while 𝑠𝑠∗ is the 2𝑘𝑘 × 1 
vector containing the desired feature parameters.  
The features are some specific points detected in the 
image. Hence, extracting an i-th point (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖) from the 
acquired image at time t and considering the coordinates 
transformation (9), the features vector associated to this 
point is: 

𝑠𝑠𝑖𝑖 = �
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖� 

So, if 𝑘𝑘 points are detected then the features vector is 
given by: 

𝑠𝑠 = �
𝑠𝑠1
⋮
𝑠𝑠𝑘𝑘
� 

Deriving the features vector with respect to time, Eq. 
(20) can be written as follow: 

�̇�𝑠 = 𝐿𝐿𝑠𝑠 �⃗�𝑣 𝐶𝐶 𝐶𝐶  (22)   

Usually, the system of equations (22) is overdetermined 
(2𝑘𝑘 > 6 ) and therefore the matrix 𝐿𝐿𝑠𝑠 is not square and 

the inverse cannot be calculated. Eq. (22) can be solved 
using least-squares technique, whose solution is given 
by: 

�⃗�𝑣 𝐶𝐶 𝐶𝐶 =  𝐿𝐿𝑠𝑠+ �̇�𝑠 (23)   

where 𝐿𝐿𝑠𝑠+ is the pseudo-inverse matrix defined as: 

 

𝐿𝐿𝑠𝑠+ = �𝐿𝐿𝑠𝑠𝑇𝑇𝐿𝐿𝑠𝑠� −1𝐿𝐿𝑠𝑠𝑇𝑇 

 
Within the hypothesis that the target is fixed, the time 
derivative of the error is directly related to the velocity 
of the image points as follows: 
 

�̇�𝑝(𝑡𝑡) = �̇�𝑠(𝑡𝑡) 
 
The control actions can be now evaluated, for instance, 
by imposing an exponential decrease of the error, 
through an assigned gain matrix 𝐾𝐾𝑠𝑠: 
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�̇�𝑝(𝑡𝑡) = �̇�𝑠(𝑡𝑡) = −𝐾𝐾𝑠𝑠  𝑝𝑝 (24)   

Combining Eq. (22) and Eq. (24), it results as follows: 
−𝐾𝐾𝑠𝑠 𝑝𝑝 = 𝐿𝐿𝑠𝑠 �⃗�𝑣 𝐶𝐶 𝐶𝐶 

In the case 2𝑘𝑘 > 6, the solution is the following: 

�⃗�𝑣 𝐶𝐶 𝐶𝐶 = −𝐾𝐾𝑠𝑠 𝐿𝐿𝑠𝑠+ 𝑝𝑝 (25)   

The camera is mounted on the end effector of the 
manipulator and therefore the desired camera’s velocity 
coincides with the desired end effector’s velocity: 
 

�⃗�𝑣𝐶𝐶𝑑𝑑𝑑𝑑𝑠𝑠 = �⃗�𝑣𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑠𝑠 
 
The motion of the end effector needs to be related to the 
commands provided to the actuators (“internal control” 
in Fig. 6), depending on the specific architecture of the 
manipulator. It is necessary to establish how the torques 
that must be applied to the joints vary over time to reach 
the desired behavior of the manipulator. The easiest 
command to execute is proportional in each instant to 

the error between the current joint angular velocity �̇⃗�𝜃𝑗𝑗 

and the desired joint angular velocity �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠. So, it can be 

seen as a purely derivative control, even if �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠 is at end 
dependent on the end effector position and attitude error. 
 

𝜏𝜏 = �
𝑂𝑂6×1

−𝐾𝐾𝑑𝑑  ��̇⃗�𝜃𝑗𝑗 − �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠�
� (26)   

where 𝐾𝐾𝑑𝑑 is the gain diagonal matrix. 

 
Fig. 6 IBVS control loop scheme 

IBVS provides as output the velocity of the camera to 
reach the desired configuration of the manipulator rather 
than the desired angular velocity of the joints. So, it is 
necessary to establish the relation that connects end 
effector velocity and joint angular velocity.  
The following relation can be written: 

�⃗�𝑣𝐸𝐸𝐸𝐸 = �𝐽𝐽𝐵𝐵 𝐽𝐽𝐶𝐶�  �
�̇⃗�𝑥𝐵𝐵
𝜔𝜔��⃗ 𝐵𝐵
�̇⃗�𝜃𝑗𝑗

�   (27)   

where 𝐽𝐽𝐵𝐵 is the portion of Jacobian matrix referred to the 

linear and angular velocity of the base while 𝐽𝐽𝐶𝐶 is the 

portion referred to the angular velocity of the joints.  
The geometric relationships between the position of end 
effector and the Lagrangian variables can be written and 
derived with respect to time to obtain 𝐽𝐽𝐵𝐵 and 𝐽𝐽𝐶𝐶 (the 

same procedure has been already done to obtain the 
matrix 𝐽𝐽, eq. (4) and eq. (5) ).  

The desired angular velocity of the revolute joints is 
easily found if the camera velocity is well-known from 
visual servoing control: 

�⃗�𝑣𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑠𝑠 − 𝐽𝐽𝐵𝐵  � �̇⃗�𝑥𝐵𝐵
𝜔𝜔��⃗ 𝐵𝐵

� = 𝐽𝐽𝐶𝐶 �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠 ⇒ 

�̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠 = 𝐽𝐽𝐶𝐶+  ��⃗�𝑣𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑠𝑠 − 𝐽𝐽𝐵𝐵  � �̇⃗�𝑥𝐵𝐵
𝜔𝜔��⃗ 𝐵𝐵

�� (28)   

 
4 Straightforward IBVS application 

 
4.1 Ideal simulations 
 
A preliminary test of the proposed IBVS algorithm is 
strongly advisable, both to provide confidence in the 
approach and to define the dynamic behavior to be 
expected during the tests. 
The numerical computing environment MATLAB has 
been used to execute the dynamical model of 3D 
manipulator and the control scheme IBVS. As a first 
study, only ideal cases have been considered in which 
the images processing is supposed already done.  
The chosen target body is a cube and the features are the 
edges of one facet (see Fig. 7).  
 

 
Fig. 7 Features of the ideal target 

 



ACTA ASTRONAUTICA 

8 
 

The coordinates of the target body and the initial 
position of the end-effector are introduced as input.  
At 𝑡𝑡 = 0 𝑠𝑠 the space system is at rest and the initial 
conditions of manipulator are the following: 
 

�⃗�𝑥𝐵𝐵 = [−0.525 0 −0.2]𝑇𝑇𝑚𝑚   

�⃗�𝑞𝐵𝐵 = [1 0 0 0]𝑇𝑇  

�⃗�𝜃𝑗𝑗 = [0 𝜋𝜋/3 −2 𝜋𝜋/3 𝜋𝜋/3 0 0]𝑇𝑇 𝑟𝑟𝑟𝑟𝑟𝑟  
 
Performing the required transformations, the relative 
position of the features, with respect to the camera 
written in the camera reference frame, can be obtained. 
Afterwards, the current and the desired final position of 
the pixels can be identified. Based on the error between 
the current and the desired position, the required joints 
angular velocities are evaluated, and the manipulator 
kinematics is propagated. 
The gain matrixes 𝐾𝐾𝑠𝑠 and 𝐾𝐾𝑑𝑑 have been chosen after a 

tuning in such a way that the features error goes to zero 
in 60 seconds.  
 

𝐾𝐾𝑠𝑠 = 0.16 𝐼𝐼6×6 

 

𝐾𝐾𝑑𝑑 =

⎣
⎢
⎢
⎢
⎢
⎡
200 0 0 0 0 0

0 200 0 0 0 0
0 0 200 0 0 0
0 0 0 200 0 0
0 0 0 0 2 0
0 0 0 0 0 2⎦

⎥
⎥
⎥
⎥
⎤

 

 
Fig. 8 Features in the desired position (red stars) and in 
the initial position (blue circles) 

 
Fig. 9 Behavior of components x and y of error 

 
Fig. 10 Trajectories in the image plane of the features 
from the initial to the desired configuration 

The features error converges to zero in almost 40 
seconds, as shown in Fig. 9. Fig. 10 shows the 
trajectories of the points in the image plane: the features 
detected at each step move on the image plane until the 
desired location is reached. 

 
Fig. 11 Base Attitude 
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Fig. 12  Initial (green) and final (orange) configuration 
of the robotic arm 

Fig. 11 shows the change in the satellite attitude over 
simulation time. Indeed, the movements of the robotic 
arm cause the rotation of main bus if the attitude control 
system is not in working. The variation in attitude can 
be seen in Fig. 12 as well, where the initial and final 
configuration of manipulator are illustrated.  
 

4.2 Advanced Simulations 
4.2.1 VR world 
Previous simulations supposed well-known feature 
coordinates. However, in a more realistic environment, 
in which the target body is not characterized by 
purposely created visual markers, the image processing 
must be performed to extract the information about 
features. The digital image processing concerns the use 
of algorithms to create, elaborate, transmit and visualize 
digital images. Features can be detected through an 
appropriate image analysis. 
MATLAB Virtual Reality Toolbox (VR) can be used to 
introduce digital images in our model. The Virtual 
Reality Toolbox is a solution for viewing and interacting 
with dynamic systems in a 3D virtual reality 
environment. It extends the capabilities of MATLAB 
and Simulink into the world of virtual reality graphics.  
Hence, a virtual world can be built through this toolbox 
and a CAD model of the target, that must be captured, 
can be imported into it. A rocket engine (see Fig. 13) has 
been chosen as target because it could be a spatial debris 
such as the last stage of a launcher, but this analysis can 
be done with other objects as well.  

 
Fig. 13 Target into the virtual world 

The engine is located with the center of mass in the 
origin of VR reference frame that corresponds to the 
object reference frame introduced in Section 2. 
In the virtual reality world, it is possible to observe the 
engine from different points of view that can be 
modified via a MATLAB code. Varying the point of 
view means to change the position and orientation of a 
camera that focuses the object. This camera is not real 
because its intrinsic parameters cannot be changed.  
 
4.2.2 Feature detection and description 
 
Features such as points, lines, edges, corners or other 
elements that characterize the object can be detected in 
the image acquired at time t and compared with the 
desired features.  
The feature extraction is divided in two steps [12]: 
feature detection and feature description. In the first 
phase, the purpose is to find a set of distinctive and 
stable points of interest while, in the second phase, the 
goal is to build vectors named descriptors that contain 
information about the neighborhood of the detected 
points. Descriptors are fundamental to connected 
features of different images.  
In the literature, a large variety of feature extraction 
methods have been proposed to compute reliable 
descriptors. KAZE [13] is the detector that has been 
chosen for our simulations because it is more efficient in 
terms of number of features extracted than others.  
The choice of KAZE detector is not necessarily the best 
one in every circumstance [14]. In fact, rendered images 
are still different from real images, that are usually more 
detailed. So, for real images or different targets, the 
KAZE detector could be less efficient than other 
detectors.  
 
4.2.3 Feature matching 
Feature matching consists in finding corresponding 
points between the current image and the desired image. 
An example of image acquisition, comparison with the 



ACTA ASTRONAUTICA 

10 
 

desired one (Fig. 14), and matching of the relevant 
features (Fig. 15) is shown for clarity. This process 
allows to write the error defined as the difference 
between the position of matched features and executes 
the IBVS control.  

 
Fig. 14 Desired image (red target) and current image 
(cyan target) 

 
Fig. 15 Feature matching  

To realize feature matching, the descriptors of the two 
images are compared.  
Consider 𝑝𝑝, one of the 𝑚𝑚 features detected from the 
desired image, and its related descriptor 𝜙𝜙�⃗ . The purpose 
is finding the best match in the second image in which 
𝑛𝑛 features have been detected. The Euclidean distance 
between the descriptor of feature 𝑝𝑝 and all the 𝑛𝑛 
descriptors of features detected in the image acquired at 
time 𝑡𝑡 must be calculated to find the best match: 

𝑟𝑟𝑖𝑖 = � |𝜙𝜙�⃗ (𝑝𝑝) − 𝜙𝜙�⃗ (𝑞𝑞𝑖𝑖)|      𝑖𝑖 = 1, … ,𝑛𝑛 

The points detected in the second image are organized 
in ascending order from the descriptor closer to 𝜙𝜙�⃗ (𝑝𝑝) to 
the furthest one. So, the matched features are those that 
have the distance 𝑟𝑟𝑖𝑖 smaller.  
Feature matching is a delicate phase because it can lead 
to false matches. In fact, it is probable that a point of 

interest in the first image has more than one 
corresponding point in the second image and it is 
necessary to choose the best match based on some 
criterions. Tuning some values in the algorithm, false 
matches can be reduced. Clearly, no algorithm can 
guarantee that there are not false matches for all the time 
of simulation.  
For our analysis, we choose descriptors made of 128 
elements instead of usual 64 elements to improve feature 
matching. In addition, at each iteration we selected only 
the 10 best matches.  
 
4.3 Simulation set-up architecture 
The introduction of virtual camera and images 
processing modify the control loop as depicted in Fig. 
16. 

 
Fig. 16 Simulation set-up scheme  

The camera is inside the loop. At each step, the 
manipulator changes its configuration (according to the 

vectors 𝑄𝑄�⃗  and 𝑄𝑄�⃗ ̇  provided in output by the dynamics) 
and the end effector reaches a new position.  
The new camera position and attitude are defined in the 
object reference frame and insert in the VR setting. 
Hence, the field of view is modified, and a new image 
can be acquired.  
To make the simulation more realistic, the camera does 
not capture images at each integration step (fixed at ℎ =
0.01 𝑠𝑠) but every Δ𝑡𝑡 = 0.2 𝑠𝑠. 
 
4.4 Results for advanced simulations 
We consider as first situation a simple case illustrated in 
Fig. 17, where the two images differ only in the vertical 
coordinate of the camera position.  



ACTA ASTRONAUTICA 

11 
 

 
Fig. 17 Desired image (red target) and initial image 
(cyan target) 

The simulation gives the following result.  

 

Fig. 18  Behavior of components x and y of error 

Fig. 18 shows a totally unacceptable result. The 
behavior of error is unstable and diverges over time.  
Performing numerous simulations for different target 
positions and for different gains, the features error never 
converges to zero. So, the IBVS provides undesirable 
results with the introduction of a virtual image in the 
control loop while it perfectly works in ideal case. For 
this reason, the observed problems in these simulations 
are not due to incorrect design of IBVS but to the 
differences between ideal and realistic case, that is the 
introduction of images.  
In the ideal simulation, the error vector is generated by 
always comparing the same four points chosen like 
features. Now, every Δ𝑡𝑡 KAZE does not detect all the 
same points of previous step and, consequently, the 
feature matching gives different results. So, at each step 
the vector error is calculated by comparing different 
features. This is the first difference with the ideal case.  
The second big difference is that the location of detected 
points is not accurate as the ideal case. Small errors in 
the vector 𝑝𝑝 lead to discordant camera velocity. To 

understand this issue, consider the previous example. 
The y-coordinate is the only difference between the two 
vectors. We expect that the camera obtains only a 
negative velocity in y direction to reach the target. 
Hence, features are detected from the two images and 
the feature matching is executed. 

 
Fig. 19  Feature matching 

Observing the feature matching (Fig. 19), we expect that 
features error will be zero for the x components and will 
be different from zero for the y components. 
The feature vector is defined in the following way: 

𝑝𝑝 = 𝑠𝑠 − 𝑠𝑠∗ =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑦𝑦1
⋮
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1∗
𝑦𝑦1∗
⋮
𝑥𝑥𝑖𝑖∗
𝑦𝑦𝑖𝑖∗⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑝𝑝𝑥𝑥1
𝑝𝑝𝑦𝑦1
⋮
𝑝𝑝𝑥𝑥𝑖𝑖
𝑝𝑝𝑦𝑦𝑖𝑖⎦

⎥
⎥
⎥
⎤

 (29)   

The resulting vector has the expected form reported in 
Table 1. 
 
Table 1 Errors using real images. 

𝑝𝑝𝑥𝑥 𝑝𝑝𝑦𝑦 
−0.0029 45.0611 
−0.1309 45.7435 
   0.0452 45.8896 
  0.0580 45.8530 

             −0.0509   45.8560 
−0.0045 45.0383 
   0.1259 45.7331 
−0.0427 45.8884 
   0.0046 45.9581 
−0.1546 45.8007 

Now, thanks to the vector 𝑝𝑝 and the interaction matrix 
calculated with the features of initial image, it is possible 
to obtain the desired velocity of the camera following 
eq. (25), with the results reported in Table 2. 
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Table 2 Desired velocity of the camera using real images. 

𝑣𝑣𝑥𝑥 = 3.6 ∙ 10−4 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 2.41 ∙ 10−2 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑦𝑦 = 7.8 ∙ 10−4 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = −1.8 ∙ 10−4 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑧𝑧 = 2.6 ∙ 10−3 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = −5.37 ∙ 10−4 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄  

 
The result is totally different from the one supposed: 

o 𝑣𝑣𝑦𝑦 is positive and has the same order of 
magnitude of 𝑣𝑣𝑥𝑥 

o 𝑣𝑣𝑧𝑧 is the most important component of linear 
velocity 

o 𝜔𝜔𝑥𝑥 is the biggest velocity component 
The camera moves towards positive y and performs a 
positive rotation around x axis rather than moves 
towards negative y and preserves the attitude. 
We want to perform another calculation. We modify the 
vector error setting the x components to zero and the y 
components to 45 pixels while we leave the interaction 
matrix unvaried. The desired camera velocity becomes 
as reported in Table 3. 
 
Table 3 Desired velocity setting factiously to zero the errors 
due to noisy image processing 

𝑣𝑣𝑥𝑥 = 1.58 ∙ 10−15 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 2.77 ∙ 10−17 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑦𝑦 = −0.047 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = 9.85 ∙ 10−16 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑧𝑧 = −3.5 ∙ 10−16 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = 2.29 ∙ 10−17 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄  

The results agree with the hypothesized values: 𝑣𝑣𝑦𝑦 is the 
only component of the velocity different from zero and 
it is negative.  
From this test, it evident that errors smaller than 1 pixel 
cause important variations in the velocity components. 
So, another control law must be executed to converges 
features error to zero.  
 

5. Sequential Partial Control 
 

An alternative control law is found to perform a suitable 
control for the manipulator such that the feature error 
converges to zero. 
Regarding previous example, the camera must only 
move towards positive direction of y axis to reach the 
target. For this reason, we can think to set equal to zero 
all the elements of interaction matrix that are referred to 
camera angular velocity. We obtain the following 
matrix: 

𝐿𝐿𝑇𝑇 = �

𝐽𝐽𝑇𝑇1

⋮
𝐽𝐽𝑇𝑇𝑘𝑘
� (30)   

where: 

𝐽𝐽𝑇𝑇𝑖𝑖 = �
−
𝑓𝑓
𝑧𝑧

0
𝑢𝑢𝑖𝑖
𝑧𝑧

0 0 0

0 −
𝑓𝑓
𝑧𝑧

𝑣𝑣𝑖𝑖
𝑧𝑧

0 0 0
� 

The desired camera velocity is given by: 

�⃗�𝑣 𝐶𝐶 𝐶𝐶
𝑑𝑑𝑑𝑑𝑠𝑠 = −𝐾𝐾𝑠𝑠 𝐿𝐿𝑇𝑇+  𝑝𝑝 (31)  

Using this relationship in the previous example, we find 
the results of Table 4. 
 
Table 4 Desired velocity with the sequential partial approach. 

𝑣𝑣𝑥𝑥 = 3.73 ∙ 10−5 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 0 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑦𝑦 = −0.0475 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = 0 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑧𝑧 = 0.0044 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = 0 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄  

Hence, these results are more acceptable than the ones 
obtained using the total interaction matrix. In fact, the 
component 𝑣𝑣𝑦𝑦 assumes the expected value while both 𝑣𝑣𝑥𝑥 
and 𝑣𝑣𝑧𝑧 have a lower order of magnitude compared to 𝑣𝑣𝑦𝑦. 
The control law executed with this partial interaction 
matrix limits the end-effector movements because the 
camera cannot acquire angular velocity around its axis. 
Therefore, if the initial image acquired is simply rotated 
with respect to the desired one, this control does not 
work. For example, consider the following image Fig. 
20. 

 
Fig. 20  Desired image (red target) and initial image 
(cyan target) 

In this case, the camera must just perform a rotation of 
10° around its optical axis to reach the goal and therefore 
the matrix 𝐿𝐿𝑇𝑇 cannot be used. 
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We proceed as the previous example setting equal to 
zero all the elements of interaction matrix referred to 
camera linear velocity: 

𝐿𝐿𝑅𝑅 = �

𝐽𝐽𝑅𝑅1

⋮
𝐽𝐽𝑅𝑅𝑘𝑘
� (32)   

where 

𝐽𝐽𝑅𝑅𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡0 0 0

𝑢𝑢𝑖𝑖  𝑣𝑣𝑖𝑖
𝑓𝑓

−�𝑓𝑓 +
𝑢𝑢𝑖𝑖2

𝑓𝑓
� 𝑣𝑣𝑖𝑖

0 0 0 𝑓𝑓 +
𝑣𝑣𝑖𝑖2

𝑓𝑓
−
𝑢𝑢𝑖𝑖  𝑣𝑣𝑖𝑖
𝑓𝑓

−𝑢𝑢𝑖𝑖⎦
⎥
⎥
⎥
⎤
 

The desired camera velocity is given by: 

�⃗�𝑣 𝐶𝐶 𝐶𝐶
𝑑𝑑𝑑𝑑𝑠𝑠 = −𝐾𝐾𝑠𝑠 𝐿𝐿𝑅𝑅+  𝑝𝑝 (33)   

We find the results of Table 5. 
Table 5 Desired velocity obtained setting to zero the camera 
linear velocity 

𝑣𝑣𝑥𝑥 = 0 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 1.13 ∙ 10−4 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑦𝑦 = 0 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = −4 ∙ 10−5 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠 

𝑣𝑣𝑧𝑧 = 0 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = −0.0342 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄  

The most important component of velocity is 𝜔𝜔𝑧𝑧 as we 
expected.  
In these examples, the initial and desired location of the 
camera are well-known and consequently also the 
desired velocity of the camera is known. However, in the 
real simulation, the desired image is only provided while 
the final position of camera is unknown, and we cannot 
know a priori what matrix is better to use. In a general 
case both a translation and a rotation could be necessary 
to get the desired position.  
For this reason, a criterion valid for any desired target 
position and that alternates the use of 𝐿𝐿𝑇𝑇 and 𝐿𝐿𝑅𝑅 must be 

formulated.  
The following solution is proposed. At the beginning of 
the simulation, the matrix 𝐿𝐿𝑇𝑇 is chosen to execute the 

visual servoing control (but equivalent results are found 
also taking the matrix 𝐿𝐿𝑅𝑅). A check on the behavior of 

the error is done to understand if the chosen matrix is 
suitable to realize the control. If the error diverges or 
converges to a value different from zero, the interaction 
matrix is changed into 𝐿𝐿𝑅𝑅. Otherwise, the simulation 

proceeds using 𝐿𝐿𝑇𝑇.  

 
5.1 Algorithm  

For 𝑡𝑡 = Δ𝑡𝑡 = 0.2 𝑠𝑠 (first time step), the image is 
captured, and the image processing is done. In this way, 
it is possible to calculate the error vector and 
consequently the desired camera velocity using the 
interaction matrix  𝐿𝐿𝑇𝑇  (Eq. 31). 

In addition, the averages of error components x and 
components y is performed: 

𝑝𝑝𝑥𝑥 =
1
𝑛𝑛

 (𝑝𝑝𝑥𝑥1 + 𝑝𝑝𝑥𝑥2 + ⋯+ 𝑝𝑝𝑥𝑥𝑖𝑖) (34)   

𝑝𝑝𝑦𝑦 =
1
𝑛𝑛

 �𝑝𝑝𝑦𝑦1 + 𝑝𝑝𝑦𝑦2 + ⋯+ 𝑝𝑝𝑦𝑦𝑖𝑖� 
(35)   

Then, the joints desired angular velocities are obtained 
from the knowledge of �⃗�𝑣 𝐶𝐶 𝐶𝐶

𝑑𝑑𝑑𝑑𝑠𝑠, and the control torques 
are calculated and applied to joints.  
For 𝑡𝑡 = 2 Δ𝑡𝑡  a new image is captured. The feature error 
vector, the average of the error components and the 
desired camera velocity vector are calculated. New 
control torques are founded. The procedure is repeated   
until 𝑛𝑛 images have been acquired and therefore 𝑛𝑛 
feature error vectors have been obtained. For the present 
simulation, 𝑛𝑛 is fixed to 20. So, until 𝑡𝑡 = 4 𝑠𝑠 we proceed 
as indicated. 
For 𝑡𝑡 = 4 𝑠𝑠, the averages of values 𝑝𝑝𝑥𝑥 and 𝑝𝑝𝑦𝑦 measured 
until now are calculated: 

𝑀𝑀1𝑥𝑥 = 1
10
� 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘) + ⋯+ 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘−10)�  (36)   

𝑀𝑀2𝑥𝑥 = 1
10
� 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘−11) + ⋯+ 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘−20)�  (37)   

𝑀𝑀1𝑦𝑦 = 1
10
� 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘) + ⋯+ 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘−10)�  

(38)   

𝑀𝑀2𝑦𝑦 = 1
10
� 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘−11) + ⋯+ 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘−20)�  

(39)   

where in this case 𝑡𝑡𝑘𝑘 = 4 𝑠𝑠, 𝑡𝑡𝑘𝑘−1 = 4 𝑠𝑠 − Δ𝑡𝑡, 𝑡𝑡𝑘𝑘−2 =
4 𝑠𝑠 − 2 Δ𝑡𝑡 etc. Then, the following values are 
computed: 

𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 = |𝑀𝑀1𝑥𝑥 − 𝑀𝑀2𝑥𝑥| 
𝑦𝑦𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 = |𝑀𝑀1𝑦𝑦 −𝑀𝑀2𝑦𝑦| 

and a check on the trend of error is done. 
o Stack Conditions (S) 

The stack conditions are given by: 

𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 < 𝑥𝑥𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ   &   𝑦𝑦𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 < 𝑦𝑦𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ  (40)  

where 𝑥𝑥𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ   and 𝑦𝑦𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ  are thresholds fixed to 
2 𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙. This value is found via a trial and error 
approach in such a way that it is not too small (it is 
never reached) or too large (the maneuver could 
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have been performed longer because it had the 
possibility to further reduce the error). 
If the conditions given by (40) are satisfied, we 
change the interaction matrix into 𝐿𝐿𝑅𝑅. Otherwise, a 

check on divergence conditions is made. 
o Divergence Conditions (D) 

The divergence conditions are given by: 
𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 > 𝑥𝑥𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ   |   𝑦𝑦𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 > 𝑦𝑦𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ  (41)   

where 𝑥𝑥𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ   and 𝑦𝑦𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ  are thresholds fixed to 
5 𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙. This value has been selected via a trial and 
error approach in such a way that the divergence 
alarm does not happen too early, and, on the other 
side, too much time has spent before changing the 
operation mode. 
If one or both conditions (41) are satisfied, the 
error is considered as diverging, and the interaction 
matrix must be changed.  

After these checks, the camera velocity is calculated 
with the new interaction matrix (or with the previous one 
if the conditions are not respected) and the control loop 
is executed as long as other 𝑛𝑛 images are acquired. Then, 
the behavior of the error must be examined again to 
choose the right matrix.  
The process is repeated until the end of simulation, as 
represented by Fig. 21.  

 
Fig. 21  New control loop: sequential partial control. 

This strategy, from a conceptual point of view, is on the 
same line of the Task Priority (TP) [15] or Task 
Sequencing (TS) [16] strategies, which have been also 
experimentally tested in [17]. According to these 
strategies, the main task can be split into subtasks (TP 
approach) or in distinct phases so that an ‘artificial’ 
redundancy is introduced during task execution (TS 
approach). However, in the proposed Sequential Partial 
Control the logic states are iteratively changed, without 
any a priory schedule or intervention by an operator, and 
it can be therefore considered self-adapting to potential 
stall or divergence problems. 
 

5.3 Results for the Sequential Partial Control 
 
Numerous simulations have been executed to verify the 
new control law that works for all the studied cases.  
The feature error always converges to zero and therefore 
every time the end effector reaches the desired pose. 
This kind of control has proven to be robust to false 
matches as well.  
Consider the following example, where the target in the 
desired pose is rotated and translated with respect to the 
initial image (Fig. 22).  
 

 
Fig. 22  Desired image (red target) and initial image 
(cyan target) 

The following results are obtained with the new control 
law.  

 
Fig. 23  Components of camera linear velocity written 
in camera reference frame 
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Fig. 24  Components of camera angular velocity written 
in camera reference frame 

In Fig. 23 and Fig. 24 the linear and angular camera 
velocity are displayed and their particular behavior can 
be seen: when the components of translational velocity 
are different from zero, the components of angular 
velocity are null and vice versa. Nevertheless, the error 
exhibits a suitable trend and it converges in a short time 
(Fig. 25).  

 
Fig. 25  Behavior of components x and y of error 

This achieved by applying control torques of reasonable 
level, as reported in Fig. 7 for the first joint. Similar 
levels are recorded for the other joints. It must be noted 
that in these simulations the joints and relevant actuators 
are considered ideal. 

 

Fig. 26 Control torque for the first joint 

 
Fig. 27  Base Attitude  

As in the ideal case, the satellite performs a change in 
attitude due to the movements of robotic arm ( Fig. 26). 
 

6. Conclusions 
 
In this work, a study on the performance and limitation 
of the IBVS technique applied to space manipulators is 
presented. Advanced simulations, performed including 
rendered images in the GNC loop, have shown that small 
errors on the feature identification and matching process 
can produce large inaccuracies in the control 
computation, leading to the mission failure. 
In order to limit this problem, a novel approach has been 
proposed, consisting in a sequential application of two 
different kinds of IBVS: one of these is focused on the 
linear motion of the end effector only, the other one is 
exclusively focused on the rotation of the end effector. 
Two switching conditions (“divergence” and “stack” 
conditions) have been introduced, so that the overall 
behavior of the manipulator is robust for a large number 
of considered scenarios.  
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Appendix 1 

To execute the simulations, the spacecraft has been 
represented as a prism platform and the robotic arm has 
been represented as a series of empty cylinder with 
thickness 𝑡𝑡. The following tables show the geometrical 
and inertial properties of the bodies.  
 

Spacecraft 

Area of prism base  𝐴𝐴 = 1 𝑚𝑚 × 1𝑚𝑚 

Height  ℎ = 2 𝑚𝑚 

Mass 𝑚𝑚𝐵𝐵 = 600 𝑘𝑘𝑘𝑘 

Inertia matrix in body 

frame 

𝐽𝐽𝐶𝐶𝐶𝐶 
𝐵𝐵

= �
250 0 0

0 250 0
0 0 100

� 𝑘𝑘𝑘𝑘 𝑚𝑚2 

 
Link 2 – Link 3 – Link 4 

Length 𝑙𝑙 = 1 𝑚𝑚 

Circumference 

radius 

𝑟𝑟 = 0.05 𝑚𝑚 

Thickness 𝑡𝑡 = 0.004 𝑚𝑚 

Mass 𝑚𝑚𝑖𝑖 = 15 𝑘𝑘𝑘𝑘 

Inertia matrix 

in body frame 

𝐽𝐽0𝑖𝑖 
𝑏𝑏𝑖𝑖

= �
0.0346 0 0

0 5.0173 0
0 0 5.0173

� 𝑘𝑘𝑘𝑘 𝑚𝑚2 

 
Link 1 – Link 5 – Link 6 

Length 𝑙𝑙 = 0.2 𝑚𝑚 

Circumference 

radius 

𝑟𝑟 = 0.05 𝑚𝑚 

Thickness 𝑡𝑡 = 0.004 𝑚𝑚 

Mass 𝑚𝑚𝑖𝑖 = 5 𝑘𝑘𝑘𝑘 

Inertia matrix 

in body frame 

of link 1 

𝐽𝐽01 
𝑏𝑏1

= �
0.0724 0 0

0 0.0724 0
0 0 0.0115

� 𝑘𝑘𝑘𝑘 𝑚𝑚2 

Inertia matrix 

in body frame 

of link 5 

𝐽𝐽05 
𝑏𝑏5

= �
0.0115 0 0

0 0.0724 0
0 0 0.0724

� 𝑘𝑘𝑘𝑘 𝑚𝑚2 

Inertia matrix 

in body frame 

of link 6 

𝐽𝐽06 
𝑏𝑏6

= �
0.0724 0 0

0 0.0724 0
0 0 0.0115

� 𝑘𝑘𝑘𝑘 𝑚𝑚2 
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