
ACTA ASTRONAUTICA

1

POST-PRINT

GNC architecture solutions for robust operations of a free-floating space manipulator via image based visual
servoing

C. Marchionnea, M. Sabatinib*, P. Gasbarric

a Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, chiamrc@yahoo.it

b Department of Astronautics, Electric and Energetics, Sapienza Università di Roma, marco.sabatini@uniroma1.it

c Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, paolo.gasbarri@uniroma1.it

* Corresponding Author

Abstract

On-orbit servicing often requires the use of robotic arms, and a key asset in this kind of operations is autonomy. In this
framework, the use of optical devices is a solution, already analyzed in many researches both for autonomous rendezvous
and docking and for the evaluation of the control of the manipulator. In the present paper, simulations for assessing the
controller performance are realized in a high-fidelity purposely developed software architecture, in which not only the
selected 6 DOF space manipulator is modeled, but also a virtual camera, acquiring in the loop images of the target CAD
model imported, is included in the GNC loop. This approach allows to emphasis several problems that would not emerge
in simulations with images characterized by easily-identifiable, purposely-created markers. At the scope, a specific GNC
architecture is developed, based on finite-state machine logic. According to this approach, two different Image Based
Visual Servoing strategies are alternatively performed, commanding only linear or angular velocity of the camera,
switching between the two control techniques when the “stack” or “divergence” condition is triggered. In this way a stable
and robust accomplishment of the tasks is achieved for many configurations and for different target models.

Keywords: image based visual servoing; space
manipulators; on-orbit servicing; advanced software
simulations

1. Introduction

A class of advanced space activities, including on-orbit
servicing and debris removal [1] , often requires the use
of robotic arms. Autonomy of these operations is a key
asset, since the necessary continuous monitoring of the
scenario and real-time control cannot be provided by a
ground station. In this framework, the use of optical
devices for computing the arm control is a solution,
already analyzed in many researches. Image Based
Visual Servoing (IBVS) [2] is a control strategy that
makes use of images (comparing the acquired image
with the reference one) to compute the desired end-
effector velocity, without the need of reconstructing the
pose of the target object [3]. The final goal is reached
when the acquired and reference images coincide,
meaning that the end-effector has moved to the correct
position. An early example of this technique applied to
terrestrial manipulators can be found in [4].

Space manipulators present special features with respect
to terrestrial applications. The movement of the robotic
arm could lead to an excessive rotation of the platform,
since it is unconstrained [5]. This problem has been
already faced by many authors. In [6] an experimental
set-up is developed to test applications specific to the
space environment. In [7] a 3D model-based tracking
algorithm has been studied and tested on a mock-up of a
telecommunication satellite, using a 6-DOF robotic arm,
with satisfactory results, in terms of precision of the pose
estimation and computational costs, for a rendezvous
mission. A visual servoing controller for a satellite
mounted dual-arm space robot is proposed in [8]. The
controller is designed to complete the task of servoing
the robot's end-effectors to the desired pose, while
regulating orientation of the base-satellite. Reference [9]
presents an optimal control approach to guiding the free-
floating satellite-mounted robot, using visual
information and considering the optimization of the
motor commands with respect to a specified metric
along with chaos compensation.

In the great majority of the papers dealing with
simulation of visual servoing, an important

mailto:chiamrc@yahoo.it
mailto:marco.sabatini@uniroma1.it
mailto:paolo.gasbarri@uniroma1.it

ACTA ASTRONAUTICA

2

simplification is present: the image is not acquired, but
reduced to some feature objects (points, curves,
blobs…). Even in the case that experiments are
performed, the target bodies are often characterized by
easily identifiable markers, thus reducing to a quasi-
ideal case. This approach leads to a significant over-
estimate of the controller performance. In the present
paper, simulations are performed in a high-fidelity
purposely developed software architecture, in which not
only the selected 6 DOF space manipulator is modeled,
but also a virtual camera, acquiring images of the target
CAD model imported in MATLAB Virtual Reality
toolbox, is included in the GNC loop. This approach
allows to emphasize several problems that would not
emerge in simulations with ideal images (made of set of
points or primitive shapes, as typically done). Errors on
the image feature extraction and possible mismatches
between reference and actual features heavily decrease
the arm performance, which could be either stacked in a
local minimum or even diverge. We have realized that
computing the linear and angular velocity of the end-
effector within a single computation, as usually
performed, increases this undesired behavior. Therefore,
a specific GNC architecture is developed, based on
finite-state machine logic. According to this approach,
two different IBVS strategies are alternatively
performed, commanding only linear or angular velocity
of the camera, switching between the two control
techniques when the “stack” or “divergence” condition
is triggered. In this way a stable and robust
accomplishment of the tasks is achieved for many
configurations and for different target models.

The remainder of the paper is organized as follows: in
Section 2 the dynamics of the space manipulator are
described. In Section 3 the main steps for simulating the
IBVS technique (i.e. the camera model, the interaction
matrix computation and control law evaluation) are
reported. In Section 4 the results of the classic IBVS
implementation for an ideal case (i.e. with ideal features)
are compared with the results coming from the advanced
simulation set-up, including rendered images. In Section
5 the algorithm that has been developed to overcome all
the problems emerged in realistic simulations is
described, and relevant result are shown. Final remarks
can be found in Section 6.

2. Scenario and Dynamics

The on-orbit operation considered in this work is
relevant to an inspection mission of a robotic arm,
mounted on a satellite and composed by 6 links
connected through revolute joints, with the task to
acquire a certain configuration with respect to a target.
This could be the case of a malfunctioning satellite that
must be repaired, or a debris that must be grasped before
removal. In both cases, the manipulator must be moved

in a way that it reaches a certain desired position with
respect to the target spacecraft. The scenario considered
in this paper consists in a chaser satellite that, for
avoiding interactions between robotic arm control and
attitude control, will de-activate attitude control during
arm motion.

Fig. 1 The manipulator and the associated reference
frames

For computing the dynamic equations of the space
manipulator, three reference frames can be introduced:

o (𝑂𝑂𝐼𝐼 ,𝑋𝑋𝐼𝐼 ,𝑌𝑌𝐼𝐼 ,𝑍𝑍𝐼𝐼): inertial reference frame.
o (𝑂𝑂𝐵𝐵 ,𝑋𝑋𝐵𝐵 ,𝑌𝑌𝐵𝐵 ,𝑍𝑍𝐵𝐵): body reference frame of the bus

centered in the spacecraft centre of mass with axes
parallel to the fixed frame at simulation time 𝑡𝑡0 = 0

o (𝑂𝑂𝑖𝑖 ,𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑍𝑍𝑖𝑖) with 𝑖𝑖 = 1, … , 6 : body reference
frame of i-th link with origin in the i-th joint.

The coordinate vector describing the state of each single
body is:
�⃗�𝑋 = [�⃗�𝑥𝐵𝐵 �⃗�𝑞𝐵𝐵 �⃗�𝑥1 �⃗�𝑞1 … �⃗�𝑥𝑖𝑖 �⃗�𝑞𝑖𝑖 … �⃗�𝑥6 �⃗�𝑞6]𝑇𝑇

where:
o �⃗�𝑥𝐵𝐵 is the position vector of main bus center of mass

written in the inertial reference frame
o �⃗�𝑥𝑖𝑖 is the position vector of i-th joint written in the

inertial reference frame
o �⃗�𝑞𝐵𝐵 and �⃗�𝑞𝑖𝑖 with 𝑖𝑖 = 1, … ,6 are the quaternions that

define bus and links attitude with respect to inertial
reference frame.

The minimum set of (lagrangian) coordinates of the
system is:

𝑄𝑄�⃗ = [�⃗�𝑥𝐵𝐵 �⃗�𝑞𝐵𝐵 𝜃𝜃𝑗𝑗1 𝜃𝜃𝑗𝑗2 𝜃𝜃𝑗𝑗3 𝜃𝜃𝑗𝑗4 𝜃𝜃𝑗𝑗5 𝜃𝜃𝑗𝑗6]𝑇𝑇
where the base position vector and the base orientation
vector are written in the inertial reference frame while
𝜃𝜃𝑗𝑗𝑖𝑖 is the i-th joint angle calculated with respect to the (i-
1)-th link body reference frame.
The rotation axis direction of i-th joints written in the
inertial reference frame is:

�̂�𝑧𝑗𝑗𝑖𝑖
𝐼𝐼 = 𝑅𝑅 𝐼𝐼 𝑏𝑏𝑖𝑖 �̂�𝑧𝑗𝑗𝑖𝑖

𝑏𝑏𝑖𝑖 (1)
where 𝑅𝑅 𝐼𝐼 𝑏𝑏𝑖𝑖 is the rotation matrix from the i-th link body

reference frame to the inertial reference frame and �̂�𝑧𝑗𝑗𝑖𝑖
𝑏𝑏𝑖𝑖

ACTA ASTRONAUTICA

3

is the unit vector identifying the direction of the i-th
revolute joint rotation axis in the body reference frame.
For all the revolute joints the following rotation axis is
chosen:

�̂�𝑧𝑗𝑗𝑖𝑖
𝑏𝑏𝑖𝑖 = [0 0 1]𝑇𝑇 𝑖𝑖 = 1, … ,6

It’s possible to get the motion equations for complex
multibody systems with numerous degrees of freedom
using Kane’s method [10]. It allows to obtain the least
number of differential equations that completely
describe the multibody system without considering the
forces due to constraints.
The dynamic equations of the multibody system written
according to Kane approach are:

𝐽𝐽𝑇𝑇𝑀𝑀 𝐽𝐽 𝑄𝑄�⃗ ̈ + 𝐽𝐽𝑇𝑇𝑀𝑀 𝐽𝐽 ̇𝑄𝑄�⃗ ̇ = 𝐽𝐽𝑇𝑇�⃗�𝐹 + 𝐽𝐽𝑇𝑇𝐶𝐶 + 𝜏𝜏 (2)
where:
o 𝑀𝑀 is the mass matrix of the system

𝑀𝑀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑀𝑀𝐵𝐵 06×6 … … … 06×6

06×6 𝑀𝑀1 ⋮
⋮ ⋱ ⋮
⋮ 𝑀𝑀𝑖𝑖 ⋮
⋮ ⋱ 06×6

06×6 … … … 06×6 𝑀𝑀6 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝑀𝑀𝑖𝑖 = �
𝑚𝑚𝑖𝑖 𝑚𝑚𝑖𝑖 �̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖𝑇𝑇

𝑚𝑚𝑖𝑖 �̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖 𝐽𝐽𝑂𝑂𝑖𝑖
𝐼𝐼 �

𝑚𝑚𝑖𝑖 is the mass and 𝐽𝐽𝑂𝑂𝑖𝑖
𝐼𝐼 the inertia matrix of the i-

th body, whereas 𝑟𝑟𝐶𝐶𝐶𝐶𝑖𝑖 is the position vector of the
body center of mass with respect to the origin of
the body reference frame written in the inertial
frame. �̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖 represents the skew-symmetric form of

the vector 𝑟𝑟𝐶𝐶𝐶𝐶𝑖𝑖:

�̃�𝑟𝐶𝐶𝐶𝐶𝑖𝑖 = �
0 −𝑧𝑧𝐶𝐶𝐶𝐶𝑖𝑖 𝑦𝑦𝐶𝐶𝐶𝐶𝑖𝑖

𝑧𝑧𝐶𝐶𝐶𝐶𝑖𝑖 0 −𝑥𝑥𝐶𝐶𝐶𝐶𝑖𝑖
−𝑦𝑦𝐶𝐶𝐶𝐶𝑖𝑖 𝑥𝑥𝐶𝐶𝐶𝐶𝑖𝑖 0

�

o 𝐶𝐶 is the Coriolis and centrifugal forces vector

𝐶𝐶 = �𝐶𝐶𝐵𝐵 𝐶𝐶1 … 𝐶𝐶𝑖𝑖 … 𝐶𝐶6�
𝑇𝑇

𝐶𝐶𝑖𝑖 = �
−𝑚𝑚𝑖𝑖𝜔𝜔�𝑖𝑖𝜔𝜔�𝑖𝑖 𝑟𝑟𝐶𝐶𝐶𝐶𝑖𝑖
−𝜔𝜔�𝑖𝑖 𝐽𝐽𝑂𝑂𝑖𝑖

𝐼𝐼 𝜔𝜔��⃗ 𝑖𝑖
�

𝜔𝜔��⃗ 𝑖𝑖 is the angular velocity of i-th body, and 𝜔𝜔�𝑖𝑖 the skew-

symmetric form of the vector 𝜔𝜔��⃗ 𝑖𝑖:

𝜔𝜔�𝑖𝑖 = �
0 −ω𝑖𝑖,𝑧𝑧 𝜔𝜔𝑖𝑖,𝑦𝑦
𝜔𝜔𝑖𝑖,𝑧𝑧 0 −𝜔𝜔𝑖𝑖,𝑥𝑥
−𝜔𝜔𝑖𝑖,𝑦𝑦 𝜔𝜔𝑖𝑖,𝑥𝑥 0

�

o �⃗�𝐹 is the external forces vector
o 𝜏𝜏 is the vector of control torques applied to the

floating base and to the joints

o 𝐽𝐽 is the Jacobian matrix that relates the vectors �⃗�𝑋

and 𝑄𝑄�⃗ :

�̇⃗�𝑋 = 𝐽𝐽 𝑄𝑄�⃗ ̇ (3)

The geometric relations between �⃗�𝑋 and 𝑄𝑄�⃗ can be written
and derived with respect to time to calculate 𝐽𝐽. In general

form, the time derivative of i-th joint position and the
angular velocity of i-th link can be written as follows:

�̇⃗�𝑥𝑖𝑖
𝐼𝐼 = �⃗�𝑥�̇�𝐵

𝐼𝐼 − � 𝐷𝐷� 𝐼𝐼 � 𝜔𝜔𝐵𝐵�����⃗
𝐼𝐼 −� 𝑙𝑙𝑘𝑘� 𝐼𝐼

𝑖𝑖−1

𝑘𝑘=1

 𝜔𝜔��⃗ 𝑘𝑘
𝐼𝐼 (4)

𝜔𝜔��⃗ 𝑖𝑖
𝐼𝐼 = 𝜔𝜔𝐵𝐵�����⃗

𝐼𝐼 + � 𝑅𝑅 𝐼𝐼 𝑏𝑏𝑘𝑘 �̂�𝑧𝑗𝑗𝑘𝑘
𝑏𝑏𝑘𝑘 �̇�𝜃𝑗𝑗𝑘𝑘

𝑖𝑖

𝑘𝑘=1

 (5)

with 𝑖𝑖 = 1, … ,6.
 𝐷𝐷��⃗
𝐼𝐼 is the vector from base reference frame to first joint
reference frame while 𝑙𝑙𝚤𝚤��⃗

𝐼𝐼 is the vector from i-th joint to
(i+1)-th joint written in inertial reference frame, where
𝑅𝑅 𝐼𝐼 𝑏𝑏𝑘𝑘 is the rotation matrix from the k-th link body

reference frame to the inertial reference frame; 𝐷𝐷� 𝐼𝐼 and 𝑙𝑙𝚤𝚤�

represent the skew-symmetric form of the vector 𝐷𝐷��⃗
𝐼𝐼 and

 𝑙𝑙𝚤𝚤��⃗
𝐼𝐼 , respectively:

𝐷𝐷� 𝐼𝐼 = �
0 − 𝐷𝐷𝐼𝐼 𝑧𝑧 𝐷𝐷𝐼𝐼 𝑦𝑦

𝐷𝐷𝐼𝐼 𝑧𝑧 0 − 𝐷𝐷𝐼𝐼 𝑥𝑥

− 𝐷𝐷𝐼𝐼 𝑦𝑦 𝐷𝐷𝐼𝐼 𝑥𝑥 0
�

𝑙𝑙𝚤𝚤� 𝐼𝐼 = �
0 − 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑧𝑧 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑦𝑦
𝑙𝑙𝐼𝐼 𝑖𝑖,𝑧𝑧 0 − 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑥𝑥

− 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑦𝑦 𝑙𝑙𝐼𝐼 𝑖𝑖,𝑥𝑥 0
�

Using these equations allows to write the expression for
the Jacobian matrix.

3. Image Based Visual Servoing (IBVS)

The task of moving the manipulator is realized using the
IBVS technique, which requires, of course, the presence
of a camera, acquiring the image of the target and
extracting the most important information from it, so
that the control law can be computed.

3.1 The camera
A camera is a system that can reproduce on an image the
portion of space in its field of view through a projection.
The simplest model of camera is the basic pinhole model
[16].
Consider a point in the 3D space:

𝑃𝑃 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧)

ACTA ASTRONAUTICA

4

whose coordinates are written in a frame (𝑂𝑂𝐶𝐶 ,𝑋𝑋𝐶𝐶 ,𝑌𝑌𝐶𝐶 ,𝑍𝑍𝐶𝐶)
attached to the camera and consider its projection on a
plane called image plane I:

𝑝𝑝 = (𝑢𝑢, 𝑣𝑣)
whose coordinates are written in a frame attached to the
plane and with the axis 𝑢𝑢 and 𝑣𝑣 parallel to 𝑋𝑋𝐶𝐶 and 𝑌𝑌𝐶𝐶 .

Fig. 2 Basic pinhole model of camera

All the rays meet in a single point, called optical center
𝑂𝑂𝐶𝐶 .The plane 𝐼𝐼 is placed in 𝑍𝑍 = 𝑓𝑓 from the optical
center, where 𝑓𝑓 is the focal length of camera. �̂�𝑍𝐶𝐶, named
optical axis, is the straight line passing through the
optical center and perpendicular to the image plane. The
point c is the projection of optical center on image plane
and is called principal point.
The point in the camera frame is transformed into a point
in the image plane via the perspective transformation:

�
𝑢𝑢 = 𝑓𝑓

𝑥𝑥
𝑧𝑧

𝑣𝑣 = 𝑓𝑓
𝑦𝑦
𝑧𝑧

 (6)

This nonlinear transformation can be written in a linear
form by resorting to the homogeneous representation of
the points:

𝑝𝑝 = �𝑢𝑢𝑣𝑣� → 𝑝𝑝� = �
𝑢𝑢
𝑣𝑣
1
�

𝑃𝑃 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� → 𝑃𝑃� = �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�

The relations (6) become:

�
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 𝑧𝑧⁄
𝑓𝑓𝑦𝑦 𝑧𝑧⁄

1
� = �

𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦
𝑧𝑧
� = �

𝑓𝑓 0 0
0 𝑓𝑓 0
0 0 1

� �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� ⇒

�
𝑢𝑢
𝑣𝑣
1
� = Ω �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� (7)

where Ω is the camera calibration matrix that connects

the homogeneous coordinates of image plane 𝑝𝑝� and the
coordinates of point 𝑃𝑃 in the camera frame.
Eq.(7) can be written considering also the homogeneous
coordinates of 𝑃𝑃 :

�
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓 0 0
0 𝑓𝑓 0
0 0 1

� �
1 0 0 0
0 1 0 0
0 0 1 0

� �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� ⇒

�
𝑢𝑢
𝑣𝑣
1
� = Ω Π �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� = 𝑄𝑄 �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

� (8)

𝑄𝑄 is the perspective projection matrix that connects the

homogeneous coordinates of image plane 𝑝𝑝� and the
homogeneous coordinates 𝑃𝑃� in the camera reference
frame.
An infinite number of points exist in an image plane, so
a spatial sampling is needed. The spatial sampling unit
is the pixel and thus the coordinates (𝑢𝑢,𝑣𝑣) of a point in
the image plane are to be expressed in pixel, (𝑢𝑢𝐼𝐼 , 𝑣𝑣𝐼𝐼).
The pixel coordinates of the point are related to
coordinates in metric units through two scale factors 𝛼𝛼𝑥𝑥
and 𝛼𝛼𝑦𝑦:

�
𝑢𝑢𝐼𝐼 = 𝛼𝛼𝑥𝑥 𝑢𝑢
𝑣𝑣𝐼𝐼 = 𝛼𝛼𝑦𝑦 𝑣𝑣

where:

�
𝛼𝛼𝑥𝑥 = 1 Δ𝑢𝑢⁄ [𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙/𝑚𝑚]
𝛼𝛼𝑦𝑦 = 1 Δ𝑣𝑣⁄ [𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙/𝑚𝑚]

Δ𝑢𝑢 and Δ𝑣𝑣 are respectively the horizontal and vertical
size of a pixel.
Moreover, the image reference frame (𝑋𝑋𝑖𝑖𝑖𝑖,𝑌𝑌𝑖𝑖𝑖𝑖) is
translated and rotated with respect to the frame (𝑢𝑢𝐼𝐼 , 𝑣𝑣𝐼𝐼)
with origin in the principal point, so it is necessary to
perform a coordinates transformation:

�
𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑢𝑢0 − 𝑢𝑢𝐼𝐼 = 𝑢𝑢0 − 𝛼𝛼𝑥𝑥 𝑓𝑓 𝑥𝑥/𝑧𝑧
𝑌𝑌𝑖𝑖𝑖𝑖 = 𝑣𝑣0 − 𝑣𝑣𝐼𝐼 = 𝑣𝑣0 − 𝛼𝛼𝑦𝑦 𝑓𝑓 𝑦𝑦/𝑧𝑧 (9)

where 𝑐𝑐 = (𝑢𝑢0, 𝑣𝑣0) are the coordinates of principal point
written in the image reference frame.

Fig. 3 Image Reference Frame

The perspective projection matrix 𝑄𝑄 becomes:

𝑄𝑄 = �
−𝛼𝛼𝑥𝑥 𝑓𝑓 0 𝑢𝑢0 0

0 −𝛼𝛼𝑦𝑦 𝑓𝑓 𝑣𝑣0 0
0 0 1 0

� (10)

P is a point of the target that the manipulator wants to
capture. Generally, the position vector of the point P is
written in the reference frame attached to the target
(𝑂𝑂𝑂𝑂 ,𝑋𝑋𝑂𝑂 ,𝑌𝑌𝑂𝑂 ,𝑍𝑍𝑂𝑂), called object reference frame. So, it is
needed to realize a roto-translation from object reference
frame to camera reference frame:

𝑟𝑟𝑃𝑃
𝐶𝐶 = 𝑅𝑅𝑂𝑂

𝐶𝐶 𝑟𝑟𝑃𝑃/𝑂𝑂𝑂𝑂
𝑂𝑂 + 𝑟𝑟𝑂𝑂

𝐶𝐶 (11)

ACTA ASTRONAUTICA

5

where 𝑅𝑅𝑂𝑂
𝐶𝐶 is the rotation matrix from the object

reference frame to camera reference frame and 𝑟𝑟𝑂𝑂
𝐶𝐶 is the

position vector of object reference frame origin with
respect to camera refence frame origin, written in
camera reference frame.

Fig. 4 Object and camera reference frame

Now, it is possible to write the relationship between the
target’s point in homogeneous coordinate written in the
object reference frame and the its projections on the
image plane.

�
𝑋𝑋𝑖𝑖𝑖𝑖
𝑌𝑌𝑖𝑖𝑖𝑖
1
� = 𝑄𝑄 �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�

𝐶𝐶

= 𝑄𝑄 𝑇𝑇𝑂𝑂
𝐶𝐶 �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�

𝑂𝑂

= Σ �

𝑥𝑥
𝑦𝑦
𝑧𝑧
1

�

𝑂𝑂

 (12)

where

𝑇𝑇𝑂𝑂
𝐶𝐶 = �

𝑅𝑅𝑂𝑂
𝐶𝐶 𝑟𝑟𝑂𝑂

𝐶𝐶

𝑂𝑂3×3 1 �

is the homogeneous transformation matrix that allows to
pass from the homogeneous coordinates written in the
object frame to the homogeneous coordinates written in
the camera frame.
The matrix Σ contains all the parameters that

characterize the camera. In particular, two kinds of
parameters can be recognized:
o The intrinsic parameters that depend on the

sensor’s characteristics.
o The extrinsic parameters that depend on the camera

relative position with respect to the object
reference frame.

3.2 Interaction matrix

Consider a point in the 3D space:

𝑃𝑃 𝐶𝐶 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧)
whose coordinates are expressed in camera reference
frame (see Fig. 5).

Fig. 5 Inertial and camera reference frame

The point’s projection on the image plane is given by the
following relations:

�
𝑢𝑢 = 𝑓𝑓

𝑥𝑥
𝑧𝑧

= −𝑋𝑋𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑂𝑂

𝑣𝑣 = 𝑓𝑓
𝑦𝑦
𝑧𝑧

= −𝑌𝑌𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑂𝑂
 (13)

where 𝑓𝑓 is the focal length of camera in pixels. Deriving
Eq. (13) with respect to time, it is found:

�
�̇�𝑢 = 𝑓𝑓

�̇�𝑥 𝑧𝑧 − 𝑥𝑥�̇�𝑧
𝑧𝑧2

= 𝑓𝑓
�̇�𝑥
𝑧𝑧
− 𝑢𝑢

�̇�𝑧
𝑧𝑧

�̇�𝑣 = 𝑓𝑓
�̇�𝑦𝑧𝑧 − 𝑦𝑦�̇�𝑧
𝑧𝑧2

= 𝑓𝑓
�̇�𝑦
𝑧𝑧
− 𝑣𝑣

�̇�𝑧
𝑧𝑧

 (14)

where
�̇�𝑟 𝐶𝐶 𝑃𝑃/𝑂𝑂𝐶𝐶 = [�̇�𝑥 �̇�𝑦 �̇�𝑧]𝑇𝑇

is the relative velocity vector of point P with respect to
the camera, written in camera reference frame.
Eq. (14) can be written in matrix form:

��̇�𝑢�̇�𝑣� = �

𝑓𝑓
𝑧𝑧

0 −
𝑢𝑢
𝑧𝑧

0
𝑓𝑓
𝑧𝑧

−
𝑣𝑣
𝑧𝑧

� �
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = 𝐽𝐽1 �

�̇�𝑥
�̇�𝑦
�̇�𝑧
� (15)

The absolute velocity vector of point P written in camera
reference frame is the following:

�̇�𝑟 𝐶𝐶 𝑃𝑃 = �̇�𝑟 𝐶𝐶 𝑂𝑂𝐶𝐶 + �̇�𝑟 𝐶𝐶 𝑃𝑃/𝑂𝑂𝐶𝐶 + 𝜔𝜔��⃗
𝐶𝐶

𝑂𝑂𝐶𝐶 ∧ 𝑟𝑟 𝐶𝐶 𝑃𝑃 𝑂𝑂𝐶𝐶⁄ (16)
�̇�𝑟 𝐶𝐶 𝑂𝑂𝐶𝐶 and 𝜔𝜔��⃗

𝐶𝐶
𝑂𝑂𝐶𝐶 are the linear and angular velocity of the

camera, written in camera reference frame. Here and in
the following, symbol “∧” represent the cross product.
Eq. (16) can be written in extended form as:

�̇�𝑟 𝐶𝐶 𝑃𝑃 = �
𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� + �

�̇�𝑥
�̇�𝑦
�̇�𝑧
� + �

𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� ∧ �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� (17)

In this paper, the interaction matrix and relevant IBVS
is developed under the hypothesis of fixed target; it is
true that a residual relative velocity is always present
between chaser and target. However, the focus of the
paper is on the serious performance degradation caused
by the processing of “real” images with respect to the
ideal performance of the control. In real cases, the target
velocity will be not null, but actually very low, therefore

ACTA ASTRONAUTICA

6

the residual motion of the target is considered a
negligible disturbance in the following simulations:

�̇�𝑟 𝐶𝐶 𝑃𝑃 = 0
Hence, Eq. (17) becomes

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = −�

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� − �

𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
� ∧ �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� = −�

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧
� + �

𝑥𝑥
𝑦𝑦
𝑧𝑧
� ∧ �

𝜔𝜔𝑥𝑥
𝜔𝜔𝑦𝑦
𝜔𝜔𝑧𝑧
�

In matrix form:

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = �

−1 0 0 0 −𝑧𝑧 𝑦𝑦
0 −1 0 𝑧𝑧 0 −𝑥𝑥
0 0 −1 −𝑦𝑦 𝑥𝑥 0

� �⃗�𝑣 𝐶𝐶 𝐶𝐶

�
�̇�𝑥
�̇�𝑦
�̇�𝑧
� = 𝐽𝐽2 �⃗�𝑣 𝐶𝐶 𝐶𝐶 (18)

where �⃗�𝑣 𝐶𝐶 𝐶𝐶 is a 6 × 1 vector that contains both linear and
angular velocity of the camera, written in camera
reference frame.
Combining Eq. (15) and Eq. (18), the relationship
between the time variation of the feature coordinates on
image plane and the camera velocity vector is obtained:

��̇�𝑢�̇�𝑣� = 𝐽𝐽1 𝐽𝐽2 �⃗�𝑣 𝐶𝐶 𝐶𝐶 = 𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 �⃗�𝑣 𝐶𝐶 𝐶𝐶 (19)

with:

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡−

𝑓𝑓
𝑧𝑧

0
𝑢𝑢
𝑧𝑧

𝑢𝑢 𝑣𝑣
𝑓𝑓

−�𝑓𝑓 +
𝑢𝑢2

𝑓𝑓
� 𝑣𝑣

0 −
𝑓𝑓
𝑧𝑧

𝑣𝑣
𝑧𝑧

𝑓𝑓 +
𝑣𝑣2

𝑓𝑓
−
𝑢𝑢 𝑣𝑣
𝑓𝑓

−𝑢𝑢
⎦
⎥
⎥
⎥
⎤

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖 can be written for each point detected on the image.

Then, a system of 2𝑘𝑘 equations (being k the number of
considered feature points) in 6 unknow variables is
found:

⎣
⎢
⎢
⎢
⎡
�̇�𝑢1
�̇�𝑣1
⋮
�̇�𝑢𝑘𝑘
�̇�𝑣𝑘𝑘⎦
⎥
⎥
⎥
⎤

= �

𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖1

⋮
𝐽𝐽𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘

� �⃗�𝑣 𝐶𝐶 𝐶𝐶 = 𝐿𝐿𝑠𝑠 �⃗�𝑣 𝐶𝐶 𝐶𝐶 (20)

𝐿𝐿𝑠𝑠 ∈ ℝ2𝑘𝑘×6 is the interaction matrix that depends not

only on the features 𝑠𝑠 = [𝑢𝑢 𝑣𝑣]𝑇𝑇 but also depends on
the coordinates z of points with respect to the camera:

𝐿𝐿𝑠𝑠 = 𝐿𝐿𝑠𝑠 (𝑠𝑠, 𝑧𝑧 𝐶𝐶)

where
𝑧𝑧 𝐶𝐶 = [𝑧𝑧1 … 𝑧𝑧𝑘𝑘]

Usually, 𝑧𝑧 𝐶𝐶 is not known so an estimated value or a
constant value can be used, for example the depth value
in the initial configuration or that in the desired pose.
Using an approximate value for the point’s depth is
equal to use an estimate of interaction matrix 𝐿𝐿�𝑠𝑠.

3.3 IBVS control

The purpose of visual servoing control scheme is to
minimize an error that is defined as:

𝑝𝑝(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) − 𝑠𝑠∗ (21)

where 𝑠𝑠(𝑡𝑡) is the 2𝑘𝑘 × 1 vector containing the feature
parameters of the current image while 𝑠𝑠∗ is the 2𝑘𝑘 × 1
vector containing the desired feature parameters.
The features are some specific points detected in the
image. Hence, extracting an i-th point (𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖) from the
acquired image at time t and considering the coordinates
transformation (9), the features vector associated to this
point is:

𝑠𝑠𝑖𝑖 = �
𝑢𝑢𝑖𝑖
𝑣𝑣𝑖𝑖�

So, if 𝑘𝑘 points are detected then the features vector is
given by:

𝑠𝑠 = �
𝑠𝑠1
⋮
𝑠𝑠𝑘𝑘
�

Deriving the features vector with respect to time, Eq.
(20) can be written as follow:

�̇�𝑠 = 𝐿𝐿𝑠𝑠 �⃗�𝑣 𝐶𝐶 𝐶𝐶 (22)

Usually, the system of equations (22) is overdetermined
(2𝑘𝑘 > 6) and therefore the matrix 𝐿𝐿𝑠𝑠 is not square and

the inverse cannot be calculated. Eq. (22) can be solved
using least-squares technique, whose solution is given
by:

�⃗�𝑣 𝐶𝐶 𝐶𝐶 = 𝐿𝐿𝑠𝑠+ �̇�𝑠 (23)

where 𝐿𝐿𝑠𝑠+ is the pseudo-inverse matrix defined as:

𝐿𝐿𝑠𝑠+ = �𝐿𝐿𝑠𝑠𝑇𝑇𝐿𝐿𝑠𝑠� −1𝐿𝐿𝑠𝑠𝑇𝑇

Within the hypothesis that the target is fixed, the time
derivative of the error is directly related to the velocity
of the image points as follows:

�̇�𝑝(𝑡𝑡) = �̇�𝑠(𝑡𝑡)

The control actions can be now evaluated, for instance,
by imposing an exponential decrease of the error,
through an assigned gain matrix 𝐾𝐾𝑠𝑠:

ACTA ASTRONAUTICA

7

�̇�𝑝(𝑡𝑡) = �̇�𝑠(𝑡𝑡) = −𝐾𝐾𝑠𝑠 𝑝𝑝 (24)

Combining Eq. (22) and Eq. (24), it results as follows:
−𝐾𝐾𝑠𝑠 𝑝𝑝 = 𝐿𝐿𝑠𝑠 �⃗�𝑣 𝐶𝐶 𝐶𝐶

In the case 2𝑘𝑘 > 6, the solution is the following:

�⃗�𝑣 𝐶𝐶 𝐶𝐶 = −𝐾𝐾𝑠𝑠 𝐿𝐿𝑠𝑠+ 𝑝𝑝 (25)

The camera is mounted on the end effector of the
manipulator and therefore the desired camera’s velocity
coincides with the desired end effector’s velocity:

�⃗�𝑣𝐶𝐶𝑑𝑑𝑑𝑑𝑠𝑠 = �⃗�𝑣𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑠𝑠

The motion of the end effector needs to be related to the
commands provided to the actuators (“internal control”
in Fig. 6), depending on the specific architecture of the
manipulator. It is necessary to establish how the torques
that must be applied to the joints vary over time to reach
the desired behavior of the manipulator. The easiest
command to execute is proportional in each instant to

the error between the current joint angular velocity �̇⃗�𝜃𝑗𝑗

and the desired joint angular velocity �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠. So, it can be

seen as a purely derivative control, even if �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠 is at end
dependent on the end effector position and attitude error.

𝜏𝜏 = �
𝑂𝑂6×1

−𝐾𝐾𝑑𝑑 ��̇⃗�𝜃𝑗𝑗 − �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠�
� (26)

where 𝐾𝐾𝑑𝑑 is the gain diagonal matrix.

Fig. 6 IBVS control loop scheme

IBVS provides as output the velocity of the camera to
reach the desired configuration of the manipulator rather
than the desired angular velocity of the joints. So, it is
necessary to establish the relation that connects end
effector velocity and joint angular velocity.
The following relation can be written:

�⃗�𝑣𝐸𝐸𝐸𝐸 = �𝐽𝐽𝐵𝐵 𝐽𝐽𝐶𝐶� �
�̇⃗�𝑥𝐵𝐵
𝜔𝜔��⃗ 𝐵𝐵
�̇⃗�𝜃𝑗𝑗

� (27)

where 𝐽𝐽𝐵𝐵 is the portion of Jacobian matrix referred to the

linear and angular velocity of the base while 𝐽𝐽𝐶𝐶 is the

portion referred to the angular velocity of the joints.
The geometric relationships between the position of end
effector and the Lagrangian variables can be written and
derived with respect to time to obtain 𝐽𝐽𝐵𝐵 and 𝐽𝐽𝐶𝐶 (the

same procedure has been already done to obtain the
matrix 𝐽𝐽, eq. (4) and eq. (5)).

The desired angular velocity of the revolute joints is
easily found if the camera velocity is well-known from
visual servoing control:

�⃗�𝑣𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑠𝑠 − 𝐽𝐽𝐵𝐵 � �̇⃗�𝑥𝐵𝐵
𝜔𝜔��⃗ 𝐵𝐵

� = 𝐽𝐽𝐶𝐶 �̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠 ⇒

�̇⃗�𝜃𝑗𝑗𝑑𝑑𝑑𝑑𝑠𝑠 = 𝐽𝐽𝐶𝐶+ ��⃗�𝑣𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑𝑠𝑠 − 𝐽𝐽𝐵𝐵 � �̇⃗�𝑥𝐵𝐵
𝜔𝜔��⃗ 𝐵𝐵

�� (28)

4 Straightforward IBVS application

4.1 Ideal simulations

A preliminary test of the proposed IBVS algorithm is
strongly advisable, both to provide confidence in the
approach and to define the dynamic behavior to be
expected during the tests.
The numerical computing environment MATLAB has
been used to execute the dynamical model of 3D
manipulator and the control scheme IBVS. As a first
study, only ideal cases have been considered in which
the images processing is supposed already done.
The chosen target body is a cube and the features are the
edges of one facet (see Fig. 7).

Fig. 7 Features of the ideal target

ACTA ASTRONAUTICA

8

The coordinates of the target body and the initial
position of the end-effector are introduced as input.
At 𝑡𝑡 = 0 𝑠𝑠 the space system is at rest and the initial
conditions of manipulator are the following:

�⃗�𝑥𝐵𝐵 = [−0.525 0 −0.2]𝑇𝑇𝑚𝑚

�⃗�𝑞𝐵𝐵 = [1 0 0 0]𝑇𝑇

�⃗�𝜃𝑗𝑗 = [0 𝜋𝜋/3 −2 𝜋𝜋/3 𝜋𝜋/3 0 0]𝑇𝑇 𝑟𝑟𝑟𝑟𝑟𝑟

Performing the required transformations, the relative
position of the features, with respect to the camera
written in the camera reference frame, can be obtained.
Afterwards, the current and the desired final position of
the pixels can be identified. Based on the error between
the current and the desired position, the required joints
angular velocities are evaluated, and the manipulator
kinematics is propagated.
The gain matrixes 𝐾𝐾𝑠𝑠 and 𝐾𝐾𝑑𝑑 have been chosen after a

tuning in such a way that the features error goes to zero
in 60 seconds.

𝐾𝐾𝑠𝑠 = 0.16 𝐼𝐼6×6

𝐾𝐾𝑑𝑑 =

⎣
⎢
⎢
⎢
⎢
⎡
200 0 0 0 0 0

0 200 0 0 0 0
0 0 200 0 0 0
0 0 0 200 0 0
0 0 0 0 2 0
0 0 0 0 0 2⎦

⎥
⎥
⎥
⎥
⎤

Fig. 8 Features in the desired position (red stars) and in
the initial position (blue circles)

Fig. 9 Behavior of components x and y of error

Fig. 10 Trajectories in the image plane of the features
from the initial to the desired configuration

The features error converges to zero in almost 40
seconds, as shown in Fig. 9. Fig. 10 shows the
trajectories of the points in the image plane: the features
detected at each step move on the image plane until the
desired location is reached.

Fig. 11 Base Attitude

-1 -0.5 0 0.5 1

 u/f

-1

-0.5

0

0.5

1

 v
/f

0 20 40 60

time [s]

-600

-400

-200

0

200

400

s-
s

* [p
ix

el
]

e
x

e
y

-1 -0.5 0 0.5 1

 u/f

-1

-0.5

0

0.5

1

 v
/f

0 20 40 60

time [s]

-4

-2

0

2

4

 [d
eg

]

ACTA ASTRONAUTICA

9

Fig. 12 Initial (green) and final (orange) configuration
of the robotic arm

Fig. 11 shows the change in the satellite attitude over
simulation time. Indeed, the movements of the robotic
arm cause the rotation of main bus if the attitude control
system is not in working. The variation in attitude can
be seen in Fig. 12 as well, where the initial and final
configuration of manipulator are illustrated.

4.2 Advanced Simulations
4.2.1 VR world
Previous simulations supposed well-known feature
coordinates. However, in a more realistic environment,
in which the target body is not characterized by
purposely created visual markers, the image processing
must be performed to extract the information about
features. The digital image processing concerns the use
of algorithms to create, elaborate, transmit and visualize
digital images. Features can be detected through an
appropriate image analysis.
MATLAB Virtual Reality Toolbox (VR) can be used to
introduce digital images in our model. The Virtual
Reality Toolbox is a solution for viewing and interacting
with dynamic systems in a 3D virtual reality
environment. It extends the capabilities of MATLAB
and Simulink into the world of virtual reality graphics.
Hence, a virtual world can be built through this toolbox
and a CAD model of the target, that must be captured,
can be imported into it. A rocket engine (see Fig. 13) has
been chosen as target because it could be a spatial debris
such as the last stage of a launcher, but this analysis can
be done with other objects as well.

Fig. 13 Target into the virtual world

The engine is located with the center of mass in the
origin of VR reference frame that corresponds to the
object reference frame introduced in Section 2.
In the virtual reality world, it is possible to observe the
engine from different points of view that can be
modified via a MATLAB code. Varying the point of
view means to change the position and orientation of a
camera that focuses the object. This camera is not real
because its intrinsic parameters cannot be changed.

4.2.2 Feature detection and description

Features such as points, lines, edges, corners or other
elements that characterize the object can be detected in
the image acquired at time t and compared with the
desired features.
The feature extraction is divided in two steps [12]:
feature detection and feature description. In the first
phase, the purpose is to find a set of distinctive and
stable points of interest while, in the second phase, the
goal is to build vectors named descriptors that contain
information about the neighborhood of the detected
points. Descriptors are fundamental to connected
features of different images.
In the literature, a large variety of feature extraction
methods have been proposed to compute reliable
descriptors. KAZE [13] is the detector that has been
chosen for our simulations because it is more efficient in
terms of number of features extracted than others.
The choice of KAZE detector is not necessarily the best
one in every circumstance [14]. In fact, rendered images
are still different from real images, that are usually more
detailed. So, for real images or different targets, the
KAZE detector could be less efficient than other
detectors.

4.2.3 Feature matching
Feature matching consists in finding corresponding
points between the current image and the desired image.
An example of image acquisition, comparison with the

ACTA ASTRONAUTICA

10

desired one (Fig. 14), and matching of the relevant
features (Fig. 15) is shown for clarity. This process
allows to write the error defined as the difference
between the position of matched features and executes
the IBVS control.

Fig. 14 Desired image (red target) and current image
(cyan target)

Fig. 15 Feature matching

To realize feature matching, the descriptors of the two
images are compared.
Consider 𝑝𝑝, one of the 𝑚𝑚 features detected from the
desired image, and its related descriptor 𝜙𝜙�⃗ . The purpose
is finding the best match in the second image in which
𝑛𝑛 features have been detected. The Euclidean distance
between the descriptor of feature 𝑝𝑝 and all the 𝑛𝑛
descriptors of features detected in the image acquired at
time 𝑡𝑡 must be calculated to find the best match:

𝑟𝑟𝑖𝑖 = � |𝜙𝜙�⃗ (𝑝𝑝) − 𝜙𝜙�⃗ (𝑞𝑞𝑖𝑖)| 𝑖𝑖 = 1, … ,𝑛𝑛

The points detected in the second image are organized
in ascending order from the descriptor closer to 𝜙𝜙�⃗ (𝑝𝑝) to
the furthest one. So, the matched features are those that
have the distance 𝑟𝑟𝑖𝑖 smaller.
Feature matching is a delicate phase because it can lead
to false matches. In fact, it is probable that a point of

interest in the first image has more than one
corresponding point in the second image and it is
necessary to choose the best match based on some
criterions. Tuning some values in the algorithm, false
matches can be reduced. Clearly, no algorithm can
guarantee that there are not false matches for all the time
of simulation.
For our analysis, we choose descriptors made of 128
elements instead of usual 64 elements to improve feature
matching. In addition, at each iteration we selected only
the 10 best matches.

4.3 Simulation set-up architecture
The introduction of virtual camera and images
processing modify the control loop as depicted in Fig.
16.

Fig. 16 Simulation set-up scheme

The camera is inside the loop. At each step, the
manipulator changes its configuration (according to the

vectors 𝑄𝑄�⃗ and 𝑄𝑄�⃗ ̇ provided in output by the dynamics)
and the end effector reaches a new position.
The new camera position and attitude are defined in the
object reference frame and insert in the VR setting.
Hence, the field of view is modified, and a new image
can be acquired.
To make the simulation more realistic, the camera does
not capture images at each integration step (fixed at ℎ =
0.01 𝑠𝑠) but every Δ𝑡𝑡 = 0.2 𝑠𝑠.

4.4 Results for advanced simulations
We consider as first situation a simple case illustrated in
Fig. 17, where the two images differ only in the vertical
coordinate of the camera position.

ACTA ASTRONAUTICA

11

Fig. 17 Desired image (red target) and initial image
(cyan target)

The simulation gives the following result.

Fig. 18 Behavior of components x and y of error

Fig. 18 shows a totally unacceptable result. The
behavior of error is unstable and diverges over time.
Performing numerous simulations for different target
positions and for different gains, the features error never
converges to zero. So, the IBVS provides undesirable
results with the introduction of a virtual image in the
control loop while it perfectly works in ideal case. For
this reason, the observed problems in these simulations
are not due to incorrect design of IBVS but to the
differences between ideal and realistic case, that is the
introduction of images.
In the ideal simulation, the error vector is generated by
always comparing the same four points chosen like
features. Now, every Δ𝑡𝑡 KAZE does not detect all the
same points of previous step and, consequently, the
feature matching gives different results. So, at each step
the vector error is calculated by comparing different
features. This is the first difference with the ideal case.
The second big difference is that the location of detected
points is not accurate as the ideal case. Small errors in
the vector 𝑝𝑝 lead to discordant camera velocity. To

understand this issue, consider the previous example.
The y-coordinate is the only difference between the two
vectors. We expect that the camera obtains only a
negative velocity in y direction to reach the target.
Hence, features are detected from the two images and
the feature matching is executed.

Fig. 19 Feature matching

Observing the feature matching (Fig. 19), we expect that
features error will be zero for the x components and will
be different from zero for the y components.
The feature vector is defined in the following way:

𝑝𝑝 = 𝑠𝑠 − 𝑠𝑠∗ =

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1
𝑦𝑦1
⋮
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖⎦
⎥
⎥
⎥
⎤
−

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1∗
𝑦𝑦1∗
⋮
𝑥𝑥𝑖𝑖∗
𝑦𝑦𝑖𝑖∗⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑝𝑝𝑥𝑥1
𝑝𝑝𝑦𝑦1
⋮
𝑝𝑝𝑥𝑥𝑖𝑖
𝑝𝑝𝑦𝑦𝑖𝑖⎦

⎥
⎥
⎥
⎤

 (29)

The resulting vector has the expected form reported in
Table 1.

Table 1 Errors using real images.

𝑝𝑝𝑥𝑥 𝑝𝑝𝑦𝑦
−0.0029 45.0611
−0.1309 45.7435
 0.0452 45.8896
 0.0580 45.8530

 −0.0509 45.8560
−0.0045 45.0383
 0.1259 45.7331
−0.0427 45.8884
 0.0046 45.9581
−0.1546 45.8007

Now, thanks to the vector 𝑝𝑝 and the interaction matrix
calculated with the features of initial image, it is possible
to obtain the desired velocity of the camera following
eq. (25), with the results reported in Table 2.

0 5 10 15

time [s]

-150

-100

-50

0

50

s-
s

* [p
ix

el
]

e
x

e
y

ACTA ASTRONAUTICA

12

Table 2 Desired velocity of the camera using real images.

𝑣𝑣𝑥𝑥 = 3.6 ∙ 10−4 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 2.41 ∙ 10−2 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑦𝑦 = 7.8 ∙ 10−4 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = −1.8 ∙ 10−4 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑧𝑧 = 2.6 ∙ 10−3 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = −5.37 ∙ 10−4 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄

The result is totally different from the one supposed:

o 𝑣𝑣𝑦𝑦 is positive and has the same order of
magnitude of 𝑣𝑣𝑥𝑥

o 𝑣𝑣𝑧𝑧 is the most important component of linear
velocity

o 𝜔𝜔𝑥𝑥 is the biggest velocity component
The camera moves towards positive y and performs a
positive rotation around x axis rather than moves
towards negative y and preserves the attitude.
We want to perform another calculation. We modify the
vector error setting the x components to zero and the y
components to 45 pixels while we leave the interaction
matrix unvaried. The desired camera velocity becomes
as reported in Table 3.

Table 3 Desired velocity setting factiously to zero the errors
due to noisy image processing

𝑣𝑣𝑥𝑥 = 1.58 ∙ 10−15 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 2.77 ∙ 10−17 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑦𝑦 = −0.047 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = 9.85 ∙ 10−16 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑧𝑧 = −3.5 ∙ 10−16 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = 2.29 ∙ 10−17 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄

The results agree with the hypothesized values: 𝑣𝑣𝑦𝑦 is the
only component of the velocity different from zero and
it is negative.
From this test, it evident that errors smaller than 1 pixel
cause important variations in the velocity components.
So, another control law must be executed to converges
features error to zero.

5. Sequential Partial Control

An alternative control law is found to perform a suitable
control for the manipulator such that the feature error
converges to zero.
Regarding previous example, the camera must only
move towards positive direction of y axis to reach the
target. For this reason, we can think to set equal to zero
all the elements of interaction matrix that are referred to
camera angular velocity. We obtain the following
matrix:

𝐿𝐿𝑇𝑇 = �

𝐽𝐽𝑇𝑇1

⋮
𝐽𝐽𝑇𝑇𝑘𝑘
� (30)

where:

𝐽𝐽𝑇𝑇𝑖𝑖 = �
−
𝑓𝑓
𝑧𝑧

0
𝑢𝑢𝑖𝑖
𝑧𝑧

0 0 0

0 −
𝑓𝑓
𝑧𝑧

𝑣𝑣𝑖𝑖
𝑧𝑧

0 0 0
�

The desired camera velocity is given by:

�⃗�𝑣 𝐶𝐶 𝐶𝐶
𝑑𝑑𝑑𝑑𝑠𝑠 = −𝐾𝐾𝑠𝑠 𝐿𝐿𝑇𝑇+ 𝑝𝑝 (31)

Using this relationship in the previous example, we find
the results of Table 4.

Table 4 Desired velocity with the sequential partial approach.

𝑣𝑣𝑥𝑥 = 3.73 ∙ 10−5 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 0 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑦𝑦 = −0.0475 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = 0 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑧𝑧 = 0.0044 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = 0 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄

Hence, these results are more acceptable than the ones
obtained using the total interaction matrix. In fact, the
component 𝑣𝑣𝑦𝑦 assumes the expected value while both 𝑣𝑣𝑥𝑥
and 𝑣𝑣𝑧𝑧 have a lower order of magnitude compared to 𝑣𝑣𝑦𝑦.
The control law executed with this partial interaction
matrix limits the end-effector movements because the
camera cannot acquire angular velocity around its axis.
Therefore, if the initial image acquired is simply rotated
with respect to the desired one, this control does not
work. For example, consider the following image Fig.
20.

Fig. 20 Desired image (red target) and initial image
(cyan target)

In this case, the camera must just perform a rotation of
10° around its optical axis to reach the goal and therefore
the matrix 𝐿𝐿𝑇𝑇 cannot be used.

ACTA ASTRONAUTICA

13

We proceed as the previous example setting equal to
zero all the elements of interaction matrix referred to
camera linear velocity:

𝐿𝐿𝑅𝑅 = �

𝐽𝐽𝑅𝑅1

⋮
𝐽𝐽𝑅𝑅𝑘𝑘
� (32)

where

𝐽𝐽𝑅𝑅𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡0 0 0

𝑢𝑢𝑖𝑖 𝑣𝑣𝑖𝑖
𝑓𝑓

−�𝑓𝑓 +
𝑢𝑢𝑖𝑖2

𝑓𝑓
� 𝑣𝑣𝑖𝑖

0 0 0 𝑓𝑓 +
𝑣𝑣𝑖𝑖2

𝑓𝑓
−
𝑢𝑢𝑖𝑖 𝑣𝑣𝑖𝑖
𝑓𝑓

−𝑢𝑢𝑖𝑖⎦
⎥
⎥
⎥
⎤

The desired camera velocity is given by:

�⃗�𝑣 𝐶𝐶 𝐶𝐶
𝑑𝑑𝑑𝑑𝑠𝑠 = −𝐾𝐾𝑠𝑠 𝐿𝐿𝑅𝑅+ 𝑝𝑝 (33)

We find the results of Table 5.
Table 5 Desired velocity obtained setting to zero the camera
linear velocity

𝑣𝑣𝑥𝑥 = 0 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑥𝑥 = 1.13 ∙ 10−4 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑦𝑦 = 0 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑦𝑦 = −4 ∙ 10−5 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

𝑣𝑣𝑧𝑧 = 0 𝑚𝑚/𝑠𝑠 𝜔𝜔𝑧𝑧 = −0.0342 𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄

The most important component of velocity is 𝜔𝜔𝑧𝑧 as we
expected.
In these examples, the initial and desired location of the
camera are well-known and consequently also the
desired velocity of the camera is known. However, in the
real simulation, the desired image is only provided while
the final position of camera is unknown, and we cannot
know a priori what matrix is better to use. In a general
case both a translation and a rotation could be necessary
to get the desired position.
For this reason, a criterion valid for any desired target
position and that alternates the use of 𝐿𝐿𝑇𝑇 and 𝐿𝐿𝑅𝑅 must be

formulated.
The following solution is proposed. At the beginning of
the simulation, the matrix 𝐿𝐿𝑇𝑇 is chosen to execute the

visual servoing control (but equivalent results are found
also taking the matrix 𝐿𝐿𝑅𝑅). A check on the behavior of

the error is done to understand if the chosen matrix is
suitable to realize the control. If the error diverges or
converges to a value different from zero, the interaction
matrix is changed into 𝐿𝐿𝑅𝑅. Otherwise, the simulation

proceeds using 𝐿𝐿𝑇𝑇.

5.1 Algorithm

For 𝑡𝑡 = Δ𝑡𝑡 = 0.2 𝑠𝑠 (first time step), the image is
captured, and the image processing is done. In this way,
it is possible to calculate the error vector and
consequently the desired camera velocity using the
interaction matrix 𝐿𝐿𝑇𝑇 (Eq. 31).

In addition, the averages of error components x and
components y is performed:

𝑝𝑝𝑥𝑥 =
1
𝑛𝑛

 (𝑝𝑝𝑥𝑥1 + 𝑝𝑝𝑥𝑥2 + ⋯+ 𝑝𝑝𝑥𝑥𝑖𝑖) (34)

𝑝𝑝𝑦𝑦 =
1
𝑛𝑛

 �𝑝𝑝𝑦𝑦1 + 𝑝𝑝𝑦𝑦2 + ⋯+ 𝑝𝑝𝑦𝑦𝑖𝑖�
(35)

Then, the joints desired angular velocities are obtained
from the knowledge of �⃗�𝑣 𝐶𝐶 𝐶𝐶

𝑑𝑑𝑑𝑑𝑠𝑠, and the control torques
are calculated and applied to joints.
For 𝑡𝑡 = 2 Δ𝑡𝑡 a new image is captured. The feature error
vector, the average of the error components and the
desired camera velocity vector are calculated. New
control torques are founded. The procedure is repeated
until 𝑛𝑛 images have been acquired and therefore 𝑛𝑛
feature error vectors have been obtained. For the present
simulation, 𝑛𝑛 is fixed to 20. So, until 𝑡𝑡 = 4 𝑠𝑠 we proceed
as indicated.
For 𝑡𝑡 = 4 𝑠𝑠, the averages of values 𝑝𝑝𝑥𝑥 and 𝑝𝑝𝑦𝑦 measured
until now are calculated:

𝑀𝑀1𝑥𝑥 = 1
10
� 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘) + ⋯+ 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘−10)� (36)

𝑀𝑀2𝑥𝑥 = 1
10
� 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘−11) + ⋯+ 𝑝𝑝𝑥𝑥(𝑡𝑡𝑘𝑘−20)� (37)

𝑀𝑀1𝑦𝑦 = 1
10
� 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘) + ⋯+ 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘−10)�

(38)

𝑀𝑀2𝑦𝑦 = 1
10
� 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘−11) + ⋯+ 𝑝𝑝𝑦𝑦(𝑡𝑡𝑘𝑘−20)�

(39)

where in this case 𝑡𝑡𝑘𝑘 = 4 𝑠𝑠, 𝑡𝑡𝑘𝑘−1 = 4 𝑠𝑠 − Δ𝑡𝑡, 𝑡𝑡𝑘𝑘−2 =
4 𝑠𝑠 − 2 Δ𝑡𝑡 etc. Then, the following values are
computed:

𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 = |𝑀𝑀1𝑥𝑥 − 𝑀𝑀2𝑥𝑥|
𝑦𝑦𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 = |𝑀𝑀1𝑦𝑦 −𝑀𝑀2𝑦𝑦|

and a check on the trend of error is done.
o Stack Conditions (S)

The stack conditions are given by:

𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 < 𝑥𝑥𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ & 𝑦𝑦𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 < 𝑦𝑦𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ (40)

where 𝑥𝑥𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ and 𝑦𝑦𝑠𝑠𝑖𝑖𝑠𝑠𝑐𝑐𝑘𝑘𝑖𝑖ℎ are thresholds fixed to
2 𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙. This value is found via a trial and error
approach in such a way that it is not too small (it is
never reached) or too large (the maneuver could

ACTA ASTRONAUTICA

14

have been performed longer because it had the
possibility to further reduce the error).
If the conditions given by (40) are satisfied, we
change the interaction matrix into 𝐿𝐿𝑅𝑅. Otherwise, a

check on divergence conditions is made.
o Divergence Conditions (D)

The divergence conditions are given by:
𝑥𝑥𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 > 𝑥𝑥𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ | 𝑦𝑦𝑐𝑐𝑐𝑐𝑖𝑖𝑑𝑑 > 𝑦𝑦𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ (41)

where 𝑥𝑥𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ and 𝑦𝑦𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖ℎ are thresholds fixed to
5 𝑝𝑝𝑖𝑖𝑥𝑥𝑝𝑝𝑙𝑙. This value has been selected via a trial and
error approach in such a way that the divergence
alarm does not happen too early, and, on the other
side, too much time has spent before changing the
operation mode.
If one or both conditions (41) are satisfied, the
error is considered as diverging, and the interaction
matrix must be changed.

After these checks, the camera velocity is calculated
with the new interaction matrix (or with the previous one
if the conditions are not respected) and the control loop
is executed as long as other 𝑛𝑛 images are acquired. Then,
the behavior of the error must be examined again to
choose the right matrix.
The process is repeated until the end of simulation, as
represented by Fig. 21.

Fig. 21 New control loop: sequential partial control.

This strategy, from a conceptual point of view, is on the
same line of the Task Priority (TP) [15] or Task
Sequencing (TS) [16] strategies, which have been also
experimentally tested in [17]. According to these
strategies, the main task can be split into subtasks (TP
approach) or in distinct phases so that an ‘artificial’
redundancy is introduced during task execution (TS
approach). However, in the proposed Sequential Partial
Control the logic states are iteratively changed, without
any a priory schedule or intervention by an operator, and
it can be therefore considered self-adapting to potential
stall or divergence problems.

5.3 Results for the Sequential Partial Control

Numerous simulations have been executed to verify the
new control law that works for all the studied cases.
The feature error always converges to zero and therefore
every time the end effector reaches the desired pose.
This kind of control has proven to be robust to false
matches as well.
Consider the following example, where the target in the
desired pose is rotated and translated with respect to the
initial image (Fig. 22).

Fig. 22 Desired image (red target) and initial image
(cyan target)

The following results are obtained with the new control
law.

Fig. 23 Components of camera linear velocity written
in camera reference frame

ACTA ASTRONAUTICA

15

Fig. 24 Components of camera angular velocity written
in camera reference frame

In Fig. 23 and Fig. 24 the linear and angular camera
velocity are displayed and their particular behavior can
be seen: when the components of translational velocity
are different from zero, the components of angular
velocity are null and vice versa. Nevertheless, the error
exhibits a suitable trend and it converges in a short time
(Fig. 25).

Fig. 25 Behavior of components x and y of error

This achieved by applying control torques of reasonable
level, as reported in Fig. 7 for the first joint. Similar
levels are recorded for the other joints. It must be noted
that in these simulations the joints and relevant actuators
are considered ideal.

Fig. 26 Control torque for the first joint

Fig. 27 Base Attitude

As in the ideal case, the satellite performs a change in
attitude due to the movements of robotic arm (Fig. 26).

6. Conclusions

In this work, a study on the performance and limitation
of the IBVS technique applied to space manipulators is
presented. Advanced simulations, performed including
rendered images in the GNC loop, have shown that small
errors on the feature identification and matching process
can produce large inaccuracies in the control
computation, leading to the mission failure.
In order to limit this problem, a novel approach has been
proposed, consisting in a sequential application of two
different kinds of IBVS: one of these is focused on the
linear motion of the end effector only, the other one is
exclusively focused on the rotation of the end effector.
Two switching conditions (“divergence” and “stack”
conditions) have been introduced, so that the overall
behavior of the manipulator is robust for a large number
of considered scenarios.

0 10 20 30 40 50 60

Time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Jo
in

t #
1

to
rq

ue
 (N

m
)

ACTA ASTRONAUTICA

16

Appendix 1

To execute the simulations, the spacecraft has been
represented as a prism platform and the robotic arm has
been represented as a series of empty cylinder with
thickness 𝑡𝑡. The following tables show the geometrical
and inertial properties of the bodies.

Spacecraft

Area of prism base 𝐴𝐴 = 1 𝑚𝑚 × 1𝑚𝑚

Height ℎ = 2 𝑚𝑚

Mass 𝑚𝑚𝐵𝐵 = 600 𝑘𝑘𝑘𝑘

Inertia matrix in body

frame

𝐽𝐽𝐶𝐶𝐶𝐶
𝐵𝐵

= �
250 0 0

0 250 0
0 0 100

� 𝑘𝑘𝑘𝑘 𝑚𝑚2

Link 2 – Link 3 – Link 4

Length 𝑙𝑙 = 1 𝑚𝑚

Circumference

radius

𝑟𝑟 = 0.05 𝑚𝑚

Thickness 𝑡𝑡 = 0.004 𝑚𝑚

Mass 𝑚𝑚𝑖𝑖 = 15 𝑘𝑘𝑘𝑘

Inertia matrix

in body frame

𝐽𝐽0𝑖𝑖
𝑏𝑏𝑖𝑖

= �
0.0346 0 0

0 5.0173 0
0 0 5.0173

� 𝑘𝑘𝑘𝑘 𝑚𝑚2

Link 1 – Link 5 – Link 6

Length 𝑙𝑙 = 0.2 𝑚𝑚

Circumference

radius

𝑟𝑟 = 0.05 𝑚𝑚

Thickness 𝑡𝑡 = 0.004 𝑚𝑚

Mass 𝑚𝑚𝑖𝑖 = 5 𝑘𝑘𝑘𝑘

Inertia matrix

in body frame

of link 1

𝐽𝐽01
𝑏𝑏1

= �
0.0724 0 0

0 0.0724 0
0 0 0.0115

� 𝑘𝑘𝑘𝑘 𝑚𝑚2

Inertia matrix

in body frame

of link 5

𝐽𝐽05
𝑏𝑏5

= �
0.0115 0 0

0 0.0724 0
0 0 0.0724

� 𝑘𝑘𝑘𝑘 𝑚𝑚2

Inertia matrix

in body frame

of link 6

𝐽𝐽06
𝑏𝑏6

= �
0.0724 0 0

0 0.0724 0
0 0 0.0115

� 𝑘𝑘𝑘𝑘 𝑚𝑚2

References

[1] A. Ellery, “Tutorial Review on Space
Manipulators for Space Debris Mitigation”,
Robotics, No. 8, 2019.

[2] S. Hutchinson, G. D. Hager, P. I. Corke, “A
Tutorial on Visual Servo Control”, IEEE
Transactions On Robotics And Automation, Vol.
12, No. 5, Ottobre 1996 .

[3] F. Chaumette, S. Hutchinson, “Visual servo
control. I. Basic approaches”, IEEE Robotics
Automation Magazine, Vol. 13, No. 4, pp.82-90,
Dicembre 2006.

[4] K. Hashimoto, T. Kimoto, T. Ebine, H. Kimura,
“Manipulator Control with Image-Based Visual
Servo”, IEEE International Conference on
Robotics and Automation, Sacramento.

[5] K. Yoshida, B. Wilcox, Space Robots and
Systems, Springer, 2008.

[6] M. Sabatini, R. Monti, P. Gasbarri, G. B.
Palmerini “Adaptive and robust algorithms and
tests for visual-based navigation of a space
robotic manipulator”, Acta Astronautica, Vol.
83, pp. 65-84, 2013

[7] Petit, A., Marchand, E., Kanani, K. “Vision-
based space autonomous rendezvous: A case
study”, (2011) IEEE International Conference on
Intelligent Robots and Systems, pp. 619-624.

[8] A.H.A. Hafez, V.V. Anurag, S.V. Shah, K.M.
Krishna, C.V. Jawahar, Reactionless visual
servoing of a dual-arm space robot, in: 2014
IEEE Int. Conf. Robot. Autom., IEEE, 2014,
pp.4475–4480.

[9] J. Alepuza, M. R. Emami, J. Pomares, “Direct
image-based visual servoing of free-floating
space manipulators”, Aerospace Science and
Technology, No. 55, pp. 1-9, 2016.

[10] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo,
Robotics: modelling, planning and control,
Springer, 2009

[11] R. Hartley and A. Zisserman, Multiple View
Geometry in Computer Vision, 2° Edition,
Cambridge University Press, 2003.

[12] A. I. Awad, M. Hassaballah, Image Feature
Detectors and Descriptors: Foundations and
Applications, Springer, Svizzera, 2016.

[13] P. F. Alcantarilla, A. Bartoli, A. J. Davison,
“KAZE Features”, European Conference on
Computer Vision, ECCV 2012, Part VI, LNCS
7577, pp. 214–227, Springer, 2012.

[14] S. A. K. Tareen, Z. Saleem, “A Comparative
Analysis of SIFT, SURF, KAZE, AKAZE, ORB,
and BRISK”, iCoMET, 2018.

ACTA ASTRONAUTICA

17

[15] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B.
Siciliano, “Closed loop inverse kinematics schemes
for constrained redundant manipulators with task
space augmentation and task priority strategy,” Int.
J. of Robotics Research, vol. 10, pp. 410–425, 1991.

[16] A. De Luca, G. Oriolo, and P. Robuffo Giordano,
“Image-based visual servoing schemes for
nonholonomic mobile manipulators,” Robotica,
vol. 25, no. 2, pp. 131–145, 2007.

[17] A. De Luca, M. Ferri, G. Oriolo, P. Robuffo
Giordano, "Visual Servoing with Exploitation of
Redundancy: An Experimental Study", 2008 IEEE
International Conference on Robotics and
Automation Pasadena, CA, USA, May 19-23, 2008.

