15 research outputs found

    Simulation combined model-based testing method for train control systems

    Get PDF
    A Train Control System (TCS) is utilised to guard the operational safety of the trains in railway systems. Therefore, functional testing is applied to verify consistency between the TCS and specification requirements. Traditional functional testing in TCSs is mainly based on manually designed test cases, which is becoming unsuitable for testing increasingly complex TCSs. Therefore, Model-Based Testing (MBT) methods have been introduced into TCS functional testing, to improve the efficiency and coverage of TCS testing, with application difficulties. To overcome the difficulties of applying MBT methods to test TCSs, the author introduces simulation combined MBT which combines an MBT method with simulation. Modelling method and implementation method for the proposed approach were explained in detail. Two case studies were undertaken to explore the effectiveness of the testing platform developed. The testing results obtained prove that the testing platform can be utilised to implement the functional testing of TCSs. To prove that the MBT platform is effective in detecting errors in the SUT, validation and verification was undertaken, which include validation of specification requirements and verification of the MBT platform. The testing performance is proven to be better than existing MBT methods in terms of coverage and efficiency

    Reachability-based Identification, Analysis, and Control Synthesis of Robot Systems

    Full text link
    We introduce reachability analysis for the formal examination of robots. We propose a novel identification method, which preserves reachset conformance of linear systems. We additionally propose a simultaneous identification and control synthesis scheme to obtain optimal controllers with formal guarantees. In a case study, we examine the effectiveness of using reachability analysis to synthesize a state-feedback controller, a velocity observer, and an output feedback controller.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Dynamic analysis of Cyber-Physical Systems

    Get PDF
    With the recent advances in communication and computation technologies, integration of software into the sensing, actuation, and control is common. This has lead to a new branch of study called Cyber-Physical Systems (CPS). Avionics, automotives, power grid, medical devices, and robotics are a few examples of such systems. As these systems are part of critical infrastructure, it is very important to ensure that these systems function reliably without any failures. While testing improves confidence in these systems, it does not establish the absence of scenarios where the system fails. The focus of this thesis is on formal verification techniques for cyber-physical systems that prove the absence of errors in a given system. In particular, this thesis focuses on {\em dynamic analysis} techniques that bridge the gap between testing and verification. This thesis uses the framework of hybrid input output automata for modeling CPS. Formal verification of hybrid automata is undecidable in general. Because of the undecidability result, no algorithm is guaranteed to terminate for all models. This thesis focuses on developing heuristics for verification that exploit sample executions of the system. Moreover, the goal of the dynamic analysis techniques proposed in this thesis is to ensure that the techniques are sound, i.e., they always return the right answer, and they are relatively complete, i.e., the techniques terminate when the system satisfies certain special conditions. For undecidable problems, such theoretical guarantees are the strongest that can be expected out of any automatic procedure. This thesis focuses on safety properties, which require that nothing bad happens. In particular we consider invariant and temporal precedence properties; temporal precedence properties ensure that the temporal ordering of certain events in every execution satisfy a given specification. This thesis introduces the notion of a discrepancy function that aids in dynamic analysis of CPS. Informally, these discrepancy functions capture the convergence or divergence of continuous behaviors in CPS systems. In control theory, several proof certificates such as contraction metric and incremental stability have been proposed to capture the convergence and divergence of solutions of ordinary differential equations. This thesis establishes that discrepancy functions generalize such proof certificates. Further, this thesis also proposes a new technique to compute discrepancy functions for continuous systems with linear ODEs from sample executions. One of the main contributions of this thesis is a technique to compute an over-approximation of the set of reachable states using sample executions and discrepancy functions. Using the reachability computation technique, this thesis proposes a safety verification algorithm which is proved to be sound and relatively complete. This technique is implemented in a tool called, Compare-Execute-Check-Engine (C2E2) and experimental results show that it is scalable. To demonstrate the applicability of the algorithms presented, two challenging case studies are analyzed as a part of this thesis. The first case study is about an alerting mechanism in parallel aircraft landing. For performing this case study, the dynamic analysis presented for invariant verification is extended to handle temporal properties. The second case study is about verifying key specification of powertrain control system. New algorithms for computing discrepancy function were implemented in C2E2 for performing this case study. Both these case studies demonstrate that dynamic analysis technique gives promising results and can be applied to realistic CPS. For distributed CPS implementations, where message passing, and clocks skews between agents make formal verification difficult to scale, this thesis presents a dynamic analysis algorithm for inferring global predicates. Such global predicates include assertions about the physical state and the software state of all the agents involved in distributed CPS. This algorithm is applied to coordinated robotic maneuvers for inferring safety and detecting deadlock

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications
    corecore