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Abstract

With the recent advances in communication and computation technologies, integra-

tion of software into the sensing, actuation, and control is common. This has lead to

a new branch of study called Cyber-Physical Systems (CPS). Avionics, automotives,

power grid, medical devices, and robotics are a few examples of such systems. As these

systems are part of critical infrastructure, it is very important to ensure that these

systems function reliably without any failures. While testing improves confidence in

these systems, it does not establish the absence of scenarios where the system fails.

The focus of this thesis is on formal verification techniques for cyber-physical systems

that prove the absence of errors in a given system. In particular, this thesis focuses

on dynamic analysis techniques that bridge the gap between testing and verification.

This thesis uses the framework of hybrid input output automata for modeling

CPS. Formal verification of hybrid automata is undecidable in general. Because of

the undecidability result, no algorithm is guaranteed to terminate for all models. This

thesis focuses on developing heuristics for verification that exploit sample executions

of the system. Moreover, the goal of the dynamic analysis techniques proposed in

this thesis is to ensure that the techniques are sound, i.e., they always return the

right answer, and they are relatively complete, i.e., the techniques terminate when the

system satisfies certain special conditions. For undecidable problems, such theoretical

guarantees are the strongest that can be expected out of any automatic procedure.

This thesis focuses on safety properties, which require that nothing bad happens.

In particular we consider invariant and temporal precedence properties; temporal

precedence properties ensure that the temporal ordering of certain events in every

execution satisfy a given specification.

This thesis introduces the notion of a discrepancy function that aids in dynamic

analysis of CPS. Informally, these discrepancy functions capture the convergence or

divergence of continuous behaviors in CPS systems. In control theory, several proof

certificates such as contraction metric and incremental stability have been proposed to
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capture the convergence and divergence of solutions of ordinary differential equations.

This thesis establishes that discrepancy functions generalize such proof certificates.

Further, this thesis also proposes a new technique to compute discrepancy functions

for continuous systems with linear ODEs from sample executions.

One of the main contributions of this thesis is a technique to compute an over-

approximation of the set of reachable states using sample executions and discrepancy

functions. Using the reachability computation technique, this thesis proposes a safety

verification algorithm which is proved to be sound and relatively complete. This

technique is implemented in a tool called, Compare-Execute-Check-Engine (C2E2)

and experimental results show that it is scalable.

To demonstrate the applicability of the algorithms presented, two challenging case

studies are analyzed as a part of this thesis. The first case study is about an alerting

mechanism in parallel aircraft landing. For performing this case study, the dynamic

analysis presented for invariant verification is extended to handle temporal properties.

The second case study is about verifying key specification of powertrain control sys-

tem. New algorithms for computing discrepancy function were implemented in C2E2

for performing this case study. Both these case studies demonstrate that dynamic

analysis technique gives promising results and can be applied to realistic CPS.

For distributed CPS implementations, where message passing, and clocks skews be-

tween agents make formal verification difficult to scale, this thesis presents a dynamic

analysis algorithm for inferring global predicates. Such global predicates include as-

sertions about the physical state and the software state of all the agents involved

in distributed CPS. This algorithm is applied to coordinated robotic maneuvers for

inferring safety and detecting deadlock.
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Chapter 1

Introduction

The hardware revolution in the past few decades has reduced the size of transistors

exponentially and enabled the manufacturing of complex integrated circuits with bil-

lions of transistors. This has lead to the integration of software in various walks

of life such as mobile phones, sensor networks, and embedded control systems. Re-

cent developments in communication technologies such as Bluetooth, NFC, WiFi, and

the Internet have enabled coordination among these software agents. Integrating soft-

ware and communication technologies in traditional disciplines such as transportation,

avionics, power grids, and medicine is expected to provide huge social and environ-

mental benefits. This, in turn, lead to a new field of study called Cyber-Physical

Systems (CPS).

Cyber-physical systems have two major characteristics. First, CPS interact with

the physical environment, i.e., they sense and control physical quantities such as volt-

ages in power grids, velocity of cars, etc. Control theory refers to the branch of science

that studies such continuous systems. It focuses on designing controllers such that the

system meets the desired qualities such as stability, robustness, disturbance rejection,

etc. The second characteristic of CPS is that they are controlled by software. Unlike

control theory, software is studied as a discrete transition system where the state

of software evolves in discrete steps. As the study of CPS involves both continuous

behaviors and discrete transitions, it is an interdisciplinary field at the intersection

of control theory and computer science.

Many safety critical systems often involve both physical and software components.

Examples of such systems are air-traffic control protocols, smart grids, autonomous

cars, medical devices, etc. Faulty behavior of such systems can have catastrophic

consequences such as loss of property and in extreme cases, life. Hence, it is very

important to ensure that these CPS systems do not have any undesired behaviors (or

bugs). While rigorous testing of CPS can help identify bugs, it does not prove their

absence. One way to ensure that the system does not have any bugs is to perform
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formal verification. Formal verification is a branch of science that checks all possible

behaviors of the system and proves the absence of bugs.

One of the prerequisites for performing formal verification is that the system model

and specification must be expressed in a mathematical framework with precise seman-

tics. Given a model of a system and its specification, formal verification, by checking

all possible behaviors of the system, either proves that the the specification is satis-

fied or presents a behavior that violates the specification. For example, to verify a

specification that a power grid system never fails, the following steps are performed.

First, we develop a mathematical model of a power grid, then, we define the set of

behaviors that lead to failed states, and finally, prove that the set of behaviors that

lead to failed states are not a part of the mathematical model. In this thesis, we

develop new techniques for verifying invariant and temporal properties of CPS.

1.1 Challenges In Verification Of CPS

CPS involves interaction between continuous nature of physical environment and

the discrete nature of software, which makes their verification challenging. Software

verification, which establishes whether a given software satisfies a given specification

is, in general, undecidable. Verification of CPS where software interacts with physical

environment is hence, in general, undecidable. Although verifying properties of finite

state discrete transition systems is known to be decidable, it suffers from state space

explosion problem.

Verification of timed automata [13], which models the behavior of real-time sys-

tems, is shown to be decidable and is PSPACE-complete. Verification of rectangular

hybrid automata (RHA), a modest extension of timed automata that generalizes the

behavior of physical environment to rectangular dynamics, i.e., the rate of evolu-

tion of a continuous variable is an interval ẋ ∈ [a, b], is shown to be undecidable

in [88]. Although, verification of special classes of RHA were shown to be decid-

able in [149, 21, 150, 44], such classes impose restrictions on the nature of discrete

transitions and are not suitable for modeling realistic CPS.

For CPS where the evolution of physical environment is defined as linear ordinary

differential equation (ODE), decidability is only known for very restrictive class of

systems [109, 147, 57]. Such results impose restrictions on the structure of ODEs

and in some cases also on the property of interest. One of the main challenges
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in verifying CPS where physical environment is modeled as linear ODEs is that the

system behavior would involve either exponential or trigonometric functions (or both)

and analysis of such systems is not known to be decidable. If the physical environment

is specified as a nonlinear ODE, decidability results are not known. This is mainly

because the closed form expression for solution of a nonlinear ODE may not exist and

hence one has to largely rely on numerical techniques for verification.

Another aspect of CPS verification is that a bounded uncertainty in the initial set

of a physical environment would lead to an uncountable number of behaviors. Hence,

verifying such systems would require checking whether all of these uncountably infi-

nite number of executions satisfy the specification or not. Searching for an execution

that violates the specification within the uncountable number of executions would be

like looking for a needle in a haystack. All these factors, i.e., interface between contin-

uous and discrete components, complexity of physical environment, and uncountably

infinite number of executions makes verification of CPS challenging.

1.2 Thesis Overview

For formally verifying whether a given CPS satisfies its specification, this thesis pro-

poses new dynamic analysis techniques. Dynamic analysis, broadly, refers to a class

of techniques that infer properties of a system from its sample executions. While

testing these CPS systems involves checking whether sample behaviors of CPS satisfy

the specification, dynamic analysis extends testing by performing formal analysis on

the sample behaviors and then infers a property about all possible behaviors of the

system. In practice, many CPS involve interaction with a physical environment that

evolves according to an ordinary differential equation (ODE). In general, a closed

form solution of an ODE does not exist and hence, one has to rely on numerical sim-

ulations to understand the behaviors of such systems, to a large extent. This makes

dynamic analysis an attractive framework for verifying CPS as it can be applied to

physical environments described by nonlinear ODEs and also because it can be easily

integrated into the testing procedures, which are the standard industrial practice.

For continuous systems, neighboring trajectories get arbitrarily close to each other

as the distance between the initial states of the trajectories vanishes. The dynamic

analysis technique presented in this thesis exploits this continuity property. In Chap-

ter 3, we introduce discrepancy function that formally expresses this continuity prop-

3



erty. We also prove that discrepancy functions generalize several proof certificates

developed in control theory for establishing convergence or divergence of neighbor-

ing trajectories. Our technique requires formal models of CPS to be equipped with

discrepancy functions.

The dynamic analysis technique for continuous systems presented in this thesis

(Chapter 3) generates sample simulations and uses discrepancy functions to com-

pute an overapproximation of all the behaviors, which can then be used for verifying

whether the system satisfies the specification or not. In Chapter 4 we extend this

dynamic analysis technique to CPS where the continuous state changes as a result of

interaction with software. We also present the tool Compare-Execute-Check-Engine

(C2E2) that implements the dynamic analysis technique. Several aspects of the tool

such as the tool architecture, input and output format, and user experience are also

discussed in Chapter 4.

To demonstrate the promise of the dynamic analysis technique presented in this

thesis, we perform two case studies of realistic systems and present the verification

results in Chapter 5. The first case study is an alerting system in a parallel aircraft

landing protocol. In a parallel landing scenario, the alerting mechanism is supposed

to be designed in such a way that an alert will be issued before the landing aircraft

get too close to each other. The alerting mechanism designed by NASA has complex

nonlinear functions and hence presents a challenge for verification. In this thesis, we

overcome this challenge by presenting a new dynamic analysis algorithm and verify

the alerting mechanism.

The second case study considered is a powertrain control system, which controls

the engine subsystem in an automotive. The main goal of this system is to con-

trol the fuel/air ratio in the engine around an optimal value to achieve maximum

fuel efficiency. The evolution of continuous variables in powertrain control system is

given by a complex nonlinear ODE, making the analysis challenging. In this thesis,

we implement new techniques for computing discrepancy function to overcome this

challenge and present promising verification results.

While verifying distributed systems is challenging because of nondeterminism in

communication, message delays, and concurrency, distributed CPS additionally have

the complexity of interaction with a physical world. In Chapter 6, we present a

new dynamic analysis technique for distributed CPS that helps in debugging imple-

mentations. This brings together the techniques presented in Chapters 3 and 4 and

the techniques used in inferring global predicates in distributed systems. We ver-
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ify various applications of a distributed robotic systems such as way-point tracking,

geo-receive, and light painting, that are implemented in StarL framework.

1.3 Literature Review

Verification of CPS has enjoyed research attention for the past 20 years (check pro-

ceedings of HSCC [83, 62, 29] for recent developments). In the rest of this section,

we present an overview of several modeling frameworks for CPS, the properties of

interest, related research work, and the contributions of this thesis in the context of

existing literature.

1.3.1 Modeling Cyber Physical Systems

The mixture of continuous and discrete behaviors in a CPS requires new mod-

eling frameworks. A few popular frameworks for modeling CPS are Hybrid Au-

tomata [14, 15], Hybrid Programs [139, 140, 141], and Hybrid Input/Output Au-

tomata (HIOA) [121, 127]. These modeling frameworks differ from each other in the

complexity of the physical environment and the notation used to describe the be-

haviors of CPS. Time automata [13] was first proposed as a framework to model the

behavior of real time systems. The passing of time is modeled using clock variables

that are either on or off. The software in real time system is modeled as a finite

state machine that interacts with these clock variables. Hybrid automata [15] are

extensions of timed automata to handle more involved behaviors of continuous vari-

ables. In a hybrid automaton, the continuous behaviors are not restricted to clocks,

but can evolve according to differential equations. In this thesis, we use the Hybrid

Input/Output Automata (HIOA) framework proposed in [121, 127]. HIOA uses tra-

jectories that are real valued functions of time for modeling the evolution of physical

environment in a CPS.

Hybrid automata have been extensively used in modeling many physical processes

such as voltage behavior in circuits [9], biological systems such as heart [136, 85] and

pancreas [152], and avionics systems such as aircraft behaviors [115].

There are several industrial scale tools available for modeling and developing/de-

signing CPS. One of the most commonly used toolboxes is Simulink/Stateflow [4, 3]

toolbox provided by Mathworks. Alternative modeling tools used in the industry are
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Ptolemy [34] and Modelica [68]. While Ptolemy and Modelica have concrete seman-

tics, more widely used Simulink/Stateflow toolbox does not have a formal semantics.

In this thesis, we focus our attention on Simulink/Stateflow models and interpret

them as hybrid input output automata [162].

1.3.2 Specification

System specification describe the requirements for a system. Although such specifi-

cations are typically given in natural language, for performing formal verification by

rigorously checking all possible behaviors, one requires a formal semantics for each

specification. Temporal logics introduce constructs that help express the natural

language specification into logical formulas and are used extensively in formal verifi-

cation. Linear Temporal Logic (LTL) [144] and Computational Tree Logic (CTL) [39]

are two popular temporal logic frameworks for describing specification for hardware

and software systems. As CPS have both continuous and discrete behaviors, new

temporal logics such as Signal Temporal Logic (STL) [122] and Metric Temporal

Logic (MTL) [107] were proposed to express specification in CPS domains. Formulas

in these logics express requirements on behaviors of CPS, not just on the continuous

behaviors, but also on the interaction with software.

Two important classes of specification widely studied in CPS verification are safety

and liveness properties. A safety property (sometimes referred as invariant property)

is said to be satisfied by a system if all the behaviors of the system remain in a set

that is defined to be safe. One variant of safety property that we investigate in this

thesis is bounded time safety property, where we consider executions of CPS for only

bounded time. Typically, the safe set of states for a safety property are defined as

the compliment of unsafe set, hence verifying such properties would require checking

that none of the behaviors of the system reaches the unsafe set.

Liveness specification are specially important for reactive CPS, i.e., where all the

behaviors run for unbounded time. An example liveness property is region stability

which says that eventually all the behaviors of the system reach a given set of states

reach a particular region and stay there. Other stability notions such as Lyapunov

stability and exponential stability are commonly studied in control theory and are part

of any standard text book such as [89, 105]
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1.3.3 Relevant Results In Verification Of Cyber-Physical Systems

Verification of cyber-physical systems can be mainly categorized into two groups:

algorithmic and proof theoretic. Proof theoretic verification requires using an auto-

mated theorem prover such as PVS [134] or Keymeara [143] and establishing that a

hybrid automaton satisfies a specification by using a fixed set of axioms and proof

rules such as in [128, 138, 35]. One commonly used technique to prove safety prop-

erties using proof theoretic techniques is to search for a candidate invariant (either

using reachability analysis [76] or other heuristics [98, 161]) and then use the proof

rules for establishing that the candidate invariant is indeed an invariant. Although

proof theoretic techniques have been applied to verify moderately complex systems,

they require domain expertise and manual effort.

Algorithmic verification techniques, on the other hand propose algorithms that take

as input a hybrid automaton and a specification and return whether the specification

is satisfied or not, by performing a pre-decided sequence of computations. This thesis

proposes new algorithms for verification of CPS systems and hence falls into the

second category.

A popular approach for verifying safety properties of CPS is model checking [42, 24].

Typical model checking approaches compute an overapproximation of all the states

that can be reached by all the behaviors of a system. One of the main research ques-

tions in model checking CPS systems is to establish the decidability and complexity

of these verification procedures. In [12] it was established that verifying an invari-

ant property of timed automata is PSPACE-complete. These verification algorithms

have been implemented in widely used tools such as UPPAAL [112] and Kronos [33].

In [88], undecidability of verifying invariant properties for a special type of hybrid

automata called rectangular hybrid automata (RHA) was established and a model

checker for verifying RHA was presented in [87]. Extending the dynamics of the

system from intervals to linear ODEs gives us linear hybrid systems (sometimes also

called affine hybrid systems). Decidability of very special fragments of linear hybrid

systems was proved in [109, 147, 166, 57]. The decidability of hybrid systems with

linear and nonlinear dynamics is still an open problem. However, δ-decidability of

bounded time safety properties of hybrid systems was proved to be decidable in [71].

As realistic CPS systems do not often fall into the decidable classes, it is important

to develop heuristics for general CPS models that are efficient and provide some

theoretical guarantees. In the rest of this section we will present different approaches

that have been used in developing scalable verification techniques for CPS.
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Reachable Set Computation: Reachable set computation techniques compute

the set of the states (or an overapproximation) reached by all the possible behaviors

of the system. If this reachable set does not contain any state from the unsafe set of

states, then we can conclude that the safety property is satisfied by the system. For

timed automata and special classes of rectangular hybrid automata, the reachable

set of states for unbounded time can be computed exactly. For the undecidable frag-

ment of rectangular hybrid automata, as the safety verification problem is in general

undecidable, the reachable set computation might not terminate. The efficiency of

computing reachable set would depend on the data structure used for storing the

reachable set. Discussion about efficiency of data structure representation for model

checking timed automata can be found in [18, 111, 86].

For CPS with linear and nonlinear ODE, the decidability of reachable set compu-

tation is still an open problem. For physical dynamics described by linear ODEs, the

continuous state of the system is given by matrix exponential. Computing matrix

exponentials exactly is only possible with strict restrictions on the ODE and hence,

a common approach for verifying such systems is to compute numerical overapprox-

imations. As these numerical overapproximations cannot be computed for infinite

time horizon, many of reachable set computation techniques for CPS with linear and

nonlinear ODEs are restricted to bounded time. We now present an overview of some

popular data structures or representations used in reachable set computation.

In Phaver [64, 67] the reachable set is represented as a convex polyhedron. As the

number of vertices in a convex polyhedron might increase exponentially with respect

to the number of equations (and dimensions), this representation does not work well

for higher dimensional systems. Other data structures used include Zonotopes [77],

Ellipsoides [31, 108], and Oriented Rectangular Hulls [159]. Support functions [113]

have been recently proposed as a new data structure for computing reachable set.

Support functions are equipped with a fixed point operator that helps in computing

the reachable set of states for unbounded time. This data structure along with a few

enhancements [66] is being used in SpaceEx [65], the current state of the art model

checker for linear hybrid systems.

Unlike their linear counterparts, nonlinear ODEs might not have a closed form

expression for the solution and hence numerical techniques are typically used in all

reachable set computation techniques. One of the first steps in this direction was

presented in [45]. Rigorous algebraic representation of sets were used for reachable set

computation in [28]. Flow* [38] uses Taylor models and CORA [6] uses Polynomial
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Zonotopes introduced in [5] for representing the reachable set. HyCreate [25] uses

similar approach to [45], however performs optimizations in reducing error and can

be applied for reachability analysis in real time [26]. In this thesis, we present a new

representation of the reachable set called reachtree that we introduce in Chapter 3.

Abstractions and Approximations: The reachable set computation techniques

presented earlier suffer from some disadvantages. First, is that as the number of

dimensions increases, due to the curse of dimensionality, the number of steps for

computing reachable set increases exponentially. Further, with increasing complexity

of the differential equations or the interaction between the continuous and software

systems, the efficiency of these techniques decreases. Hence, much research has been

done on coming up with new abstractions and approximations for making the verifi-

cation scalable.

Abstraction of a system, informally, is a simplification of the system that allows for

more behaviors. If the abstraction of a system satisfies a property then the property

is said to be satisfied by the system. However, the converse is not true, i.e., if the

abstraction violates the property, the system might still satisfy the property. Counter

Example Guided Abstraction Refinement (CEGAR) technique [41] has been a pop-

ular framework where a series of abstractions for a concrete system are constructed

until an abstraction that satisfies the property is obtained or a violation of the prop-

erty is observed. CEGAR technique has been applied to CPS verification in [40, 11].

Subsequent works that compute better abstractions and make the verification scal-

able were proposed in [151, 153, 163, 145]. Such abstraction refinement techniques

are orthogonal to the dynamic analysis considered in this thesis. One can poten-

tially develop new abstraction-refinement techniques using the tool C2E2 presented

in Chapter 4 as the verification back end.

While reachable set computations for complex ODEs compute an overapproxima-

tion of the reachable set, a few other forms of approximations have also been con-

sidered in the literature. One body of work in this domain is approximate bisim-

ulation [79, 81, 160]. These approaches compute a discrete approximation of the

continuous behaviors of CPS and hence leverage the symbolic model checking [126]

techniques for verification of discrete systems. Another branch of work in approxi-

mations is hybridization [19, 20]. In hybridization, the nonlinear ODE of the physical

environment is approximated (while preserving soundness) as linear ODE in several

regions of operation. This simplifies the reachability computation of nonlinear sys-
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tems to more tractable computation for linear systems. Polynomial approximations

of the behaviors of linear systems were also considered in [148, 146].

Dynamic Analysis: As explained earlier in this chapter, dynamic analysis refers to

a class of techniques where the property is inferred to be satisfied by the system from

only a sampled set of executions. This thesis primarily deals with dynamic analysis

and hence we present a relatively more detailed overview of existing literature in

dynamic analysis.

The first approach to bridge the gap between simulation and verification was pro-

posed in [78]. The authors present a verification algorithm for continuous linear

systems by sampling a few simulations and constructing a Metric Transition Sys-

tem [80]. This metric transition system gives us a finite state approximation of the

reachable set which can then be used for invariant verification. Another approach

for computing an overapproximation of the reachable set from sample simulations

has been proposed in [51]. In [51], the authors leverage sensitivity for computing

an overapproximation of the reachable set from a neighborhood. This requires the

ordinary differential equation solver to be equipped with special procedures that com-

pute sensitivity along a sample execution. It is shown that this overapproximation is

sound for continuous behaviors that follow linear ordinary differential equations, but

no such guarantee can be provided for systems with nonlinear ordinary differential

equations.

Another important line of work in dynamic analysis is related to falsification tech-

niques presented in [17, 133, 50]. Given a system as an executable model and specifi-

cation given as a formula in metric temporal logic, these techniques generate sample

executions and compute the robustness of these executions with respect to the spec-

ification provided. The search for executions that violate the specification is then

performed using stochastic optimization techniques. The algorithm terminates with

either an execution that falsifies the specification or does not find a counterexample

within the given budget. Falsifying techniques hence only aid in bug finding but do

not give a proof that the system satisfies the specification.
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1.4 Contributions

In this thesis we bridge the gap between testing procedures that generate sample

simulations and formal verification. There are two major advantages of the tech-

niques proposed in this thesis compared to the other dynamic analysis techniques.

First, while other dynamic analysis techniques work for linear ordinary differential

equations, the techniques proposed in this thesis are also applicable to physical envi-

ronment that follow nonlinear ordinary differential equations, which is a vastly more

general class of systems. Second, while other reachable set computation techniques

only guarantee soundness, we also guarantee relative completeness, which states that

the dynamic analysis algorithm will always terminate if the system satisfies a specific

condition. In this thesis, the condition for relative completeness is the robust satisfac-

tion of the specification, which means that all the executions and their ε-perturbations

also satisfy the specification. Such relative completeness guarantees are the strongest

one can hope for given that in the invariant verification for general hybrid automata

is undecidable.

To demonstrate the applicability of the proposed approach, we look at two verifi-

cation case studies in this thesis. The first is a parallel aircraft landing protocol and

second is a powertrain control system. We show that our approach can be extended

to verify other temporal properties without losing the strong theoretical guarantees.

Each of these case studies presents a unique challenge for verification and we present

the advantages of dynamic analysis that made the verification feasible.

For distributed CPS implementations where uncertainties in message passing and

clock drifts lead to state space explosion, we present a dynamic analysis technique

for inferring the global predicates. For doing this, we bring together techniques used

to infer global predicates in distributed systems and reachability computation tech-

niques for hybrid systems. Such global predicates of distributed CPS systems help in

inferring not just the software behavior of CPS implementations, but also the relation

between the software and the physical state of the CPS.

1.5 Organization Of The Dissertation

We start with preliminaries in Chapter 2 which include the modeling framework of

hybrid input output automata. In Chapter 3 we introduce the notion of discrepancy

function, a certificate that generalizes other proof certificates from control theory that
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first appeared in [55]. We also present a dynamic analysis algorithm for continuous

systems and its theoretical guarantees. In Chapter 4 we present the extension of the

dynamic analysis technique to general hybrid automata, that appeared in [56], and

discuss the features of the tool C2E2 that implements the algorithm. In Chapter 5

we inspect the two verification case studies of parallel landing protocol (appeared

in [58]) and powertrain control system(appeared in [53]) and present the challenges,

extensions to the verification technique, and experimental results of the case stud-

ies. In Chapter 6 we present the technique for inferring global predicates of the

distributed CPS implementations that appeared in [54]. We present our conclusions

and directions for future research in Chapter 7.
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Chapter 2

Preliminaries

This chapter introduces mathematical definitions and notations that are used in the

rest of the thesis. In Section 2.1 we introduce the notations for vectors, sets, func-

tions, and readers familiar with such notation may skip forward to Section 2.2, where

we introduce the modeling formalism of Hybrid Input Output Automata (proposed

in [127]) for modeling Cyber-Physical Systems.

2.1 Vectors, Sets, And Functions

For a vector x ∈ Rn, ||x|| denotes the `2 norm. For x1, x2 ∈ Rn, ||x1 − x2|| is the

Euclidean distance between the points. A closed ball of radius δ centered at x1 is

defined as Bδ(x1)
∆
= {x | ||x1 − x|| ≤ δ}. Unless otherwise stated, the default norm

(denoted as || · ||) for elements in Rn is the `2 norm. Other norms such as `1 and `∞

are denoted as || · ||1 and || · ||∞ respectively. Given a set S and a transition relation

R ⊆ S × S, the transitive closure of the relation is denoted as R∗ and (u, v) ∈ R∗ if

and only if ∃u1, u2, . . . , uk ∈ S such that (u, u1) ∈ R, ∀1 ≤ i ≤ k − 1, (u1, ui+1) ∈ R,

and (uk, v) ∈ R.

For a set S ⊆ Rn, we denote its compliment as Sc. Given δ ≥ 0, the expansion of

the set S by δ is defined as Bδ(S) = ∪x∈SBδ(x). We will find it convenient to also

define the notion of shrinking S by δ, i.e., for δ < 0, and S ⊆ Rn, Bδ(S) = {x ∈
S |B−δ(x) ⊆ S}. Given a function f : Rn×Rn → R≥0, the δ-sublevel set of f around

x, denoted as Bf
δ (x0)

∆
= { x |f(x, x0) ≤ δ}.

A set S1 is a δ-overapproximation of S2, if S2 ⊆ S1 ⊆ Bδ(S2). The maximum dis-

tance between two sets S1 and S2 is denoted as distmax(S1, S2) = supx1∈S1,x2∈S2{||x1−
x2|| }. For a bounded set S, a δ-cover of S is a finite collection of points X = {xi}mi=1

such that S ⊆
⋃m
i=1Bδ(xi). Its diameter diameter(S)

∆
= supx1,x2∈S ||x1 − x2||.

Given intervals I, I ′ over R, the relation I < I ′ holds iff ∀u ∈ I,∀u′ ∈ I ′, u < u′.

Relation I ≤ I ′ holds iff ∀u ∈ I,∃u′ ∈ I ′, u < u′. Relations > and ≥ are defined
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similarly. For a real number b, I − b = {u − b | u ∈ I}. Subtraction operation over

intervals is defined as, I−I ′ = {u−u′ |v ∈ I, v′ ∈ I ′}. I×I ′ = {u×u′ |u ∈ I, u′ ∈ I ′}.
A predicate over Rn is a computable function P : Rn → {>,⊥} that maps each

state in Rn to either > (true) or ⊥ (false). A predicate P is associated with the set

[[P ]] = {x | P (x) = >}. When it is clear from context, we will overload the symbolic

name of the predicate P to also denote its associated set [[P ]].

A guarantee predicate [124] P (x) is a predicate of the form [[P ]] = { x| ∃t >
0, fp(x, t) > 0}, where fp : Rn × R → R is called a lookahead function. A guarantee

predicate holds at a state x if there exists some future time t at which fp(x, t) > 0

holds. Using a quantifier elimination procedure, a guarantee predicate can be reduced

to an ordinary predicate without the existential quantifier. However, this can be an

expensive operation, and more importantly, it is only feasible for restricted classes of

real-valued lookahead functions with explicit closed form definitions.

A continuous function f : Rn × R → R is smooth if all its higher derivatives and

partial derivatives exist and are also continuous. It has a Lipschitz constant K ≥ 0

if for every x1, x2 ∈ Rn, ||f(x1)− f(x2)|| ≤ K||x1 − x2||.
A non-negative function g : R≥0 → R≥0 is a class K function if g(x) ≥ 0 for x 6= 0,

g(0) = 0 and g(x) → 0 as x → 0. A class K function g is called K∞ if g(x) → ∞ as

x → ∞. For example, the function f(x) = x
1+x

belongs to class K but not to K∞.

A function g : R≥0 × R≥0 → R≥0 is called a K L function, if and only if (1) for each

t ∈ R≥0, gt(x)
∆
= g(x, t) is a K function and (2) for each x ∈ R≥0

n, gx(t)
∆
= g(x, t)→ 0

as t→∞

2.1.1 Matrices

For an n × n matrix A ∈ Rn×n, the norm of matrix, denoted as

||A|| = maxx:||x||=1 ||xTAx||. A is positive semi-definite, written as A � 0, if ∀x ∈
Rn, xTAx ≥ 0. It is positive definite, A � 0, if the previous inequality is strict.

It is negative (semi) definite if −A is positive (semi) definite. A matrix function

M : Rn ×R≥0 → Rm×m maps a state x ∈ Rn and a time t to a matrix M(x, t). M is

called an uniform metric if ∀x ∈ Rn,∀t > 0, M(x, t) is symmetric, positive definite

and ∀y ∈ Rm,∃ v2, v1 ∈ R such that 0 < v2 < v1, v2 · yTy ≤ yTM(x, t)y ≤ v1 · yTy.

Given a matrix M , its matrix exponential eM is defined as

eM = I +M +
1

2!
M2 +

1

3!
M3 + . . .
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2.2 Continuous And Hybrid System Models

Hybrid automata framework is proposed as a modeling framework (in [15]) for Cyber-

Physical Systems that interact with the physical environment and are controlled by

software. An executions of a hybrid automaton is a sequence of continuous trajecto-

ries and discrete transitions where the continuous trajectories model the evolution of

the real valued variables with time (the physical parameters), and the discrete tran-

sitions model the evolution of software in discrete steps. In this section, we introduce

the syntax, definitions, and semantics of Hybrid Input Output Automata (HIOA)

framework proposed in [127].

2.2.1 Continuous Systems

Let us denote the set of all the real valued variables in the model as the set V . For

continuous systems, all the variables are real valued and hence the set of all values

the variables can take, denoted as val(V) = Rn. A continuous behavior of the system

is modeled as a trajectory. A trajectory τ is defined as a function τ : dom→ val(V)

where dom is either [0, T ] for some T > 0 or is [0,∞) defines the evolution of the

system with time. The domain of the function is referred as τ.dom and τ.dur = T

if dom = [0, T ] and is ∞ otherwise. The state of the system along the trajectory at

time t is defined as τ(t). Given a function f : Rn → Rn, a trajectory τ is said to be a

solution of the ordinary differential equation ẋ = f(x) if ∀t ∈ τ.dom, d
dt
τ(t) = f(τ(t)).

When f is a nice1 function, the ODE has a unique solution for a given initial state

and a duration. With different initial states and time bounds, an ODE defines a set

of trajectories. For such a vector function f(x) =


f1(x)

...

fn(x)

, its Jacobian Jf is given

as


∂f1

∂x1
. . . ∂f1

∂xn

... · · · ...

∂fn
∂x1

. . . ∂fn
∂xn

. The Jacobian of f at x approximates the rate of change of each

component of f(x), with respect to changes in x.

1 For example, Lipschitz continuous or smooth. A continuous function f : Rn×R→ R is smooth
if all its higher derivatives and partial derivatives exist and are also continuous. It has a Lipschitz
constant K ≥ 0 if for every x1, x2 ∈ Rn, ||f(x1)− f(x2)|| ≤ K||x1 − x2||.
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A continuous system C is denoted by the tuple 〈V , T 〉 where V is the set of variables

and T is a set of trajectories that are closed under the prefix, suffix, and concatena-

tion operations. In this thesis, we restrict our attention to deterministic continuous

systems. That is, if two trajectories τ1 and τ2 start from the same initial state, i.e.,

τ1.fstate = τ2.fstate, then either τ1 is a prefix of τ2 or vice versa. We say that a con-

tinuous system 〈V , T 〉 is defined by an ODE ẋ = f(x) if and only if all the solutions

of the ODE are in T . In this thesis, we assume that the solution for the initial value

problem of the ODE ẋ = f(x) exists, and is unique, and hence T is deterministic.

In this thesis, we are interested in only bounded time properties of continuous sys-

tems, i.e., given a time bound T , we consider trajectories τ such that τ.dom = [0, T ].

The set of reachable states of a continuous system starting from an initial set Θ for

bounded time T is defined as follows:

Definition 1 Given a continuous system C ∆
= 〈V , T 〉, initial set Θ, and time bound T ,

the set of reachable states of C from Θ for time bound T , is defined as Reach(C,Θ, T ) =

{x | ∃τ ∈ T ,∃t ∈ [0, T ] such that , τ(0) ∈ Θ, and , τ(t) = x}.

Example 1: An RLC circuit consists of a resistor, capacitor, and inductor connected

in series or in parallel (an example RLC circuit with series connection is shown in

Figure 2.1). RLC circuits are ubiquitous in oscillators and power systems.

Figure 2.1: An
example RLC
circuit.

A second order differential equation modeling the dynamics of

current in an RLC circuit is given by:

d2i

dt2
+
R

L

di

dt
+

i

LC
= 0.

Using the variable transformation as v 7→ di
dt
, u 7→ i, we can write

the above second order differential equation as a linear ODE as

u̇
v̇

 =

 0 1

− 1
LC
−R
L


u
v

 . (2.1)

�

Consider a continuous system C = 〈V , T 〉, where the trajectories are solutions of a

linear ODE (also commonly referred as Linear Time Invariant Systems (LTI systems))
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given as ẋ = Ax + B where A is an n × n matrix and B is a column matrix with n

rows. The closed form expression for the state of a trajectory at time t is given by:

τ(t) = eAtτ(0) +

∫ t

0

eA(t−s)Bds

where eAt is the matrix exponential.

For a continuous system C = 〈V , T 〉, where the trajectories are solutions of a linear

ODE given as ẋ = A(t)x + B(t) where A(t) and B(t) are time varying matrices

(often called Linear Time Varying Systems (LTV systems)), a closed form expression

similar to LTI systems does not exist. However, if A(t) and B(t) are continuous

functions, there exists a state transition matrix which characterizes the trajectories

of the system. A state transition matrix Φ where Φ : R×R→ Rn×n returns a matrix

Φ(t1, t2) given any two time instances t1 and t2. It satisfies the following properties

for any t1, t2, t3 in R

1. Φ(t1, t1) = I,

2. Φ(t1, t2)−1 = Φ(t2, t1), and

3. Φ(t1, t3) = Φ(t1, t2)Φ(t2, t3)

If A(t) and B(t) are continuous functions, then there exists a state transition matrix

Φ such that all the trajectories of C satisfy

τ(t) = Φ(t, 0)τ(0) +

∫ t

0

Φ(t, s)B(s)ds.

Notice that the state transition matrix for LTV is a generalization of LTI. Substi-

tuting Φ(t1, t2) = eA(t2−t1) would give a solution to the LTI system. In this thesis,

we assume that for linear systems considered, Φ is the state transition matrix that

defines the trajectories.

2.2.2 Hybrid Systems

In addition to modeling the continuous behaviors, a hybrid system also models the

software state using discrete variables. For hybrid systems the set of variables (both

continuous and discrete) in denoted by V . This set is the union of set of real valued

continuous variables X and a special discrete variable loc that captures the software

17



state of a CPS. The set of all possible valuations of these variables is denoted by

val(V). The set of all possible valuations of loc is called the set of locations (Loc).

The continuous evolution of the variables is modeled by trajectories similar to that

of continuous systems.

The discrete transitions between the two locations are specified by a set A of ac-

tions. An action a ∈ A is enabled at a state whenever the state satisfies a special

predicate Guarda that is associated with the action. When the system takes a discrete

transition, the new state of the system after the transition is defined by a function

Reseta that maps the old state (pre-state) to a new state, also called the post-state

(and possibly a new location). All of these components together define the behavior

of the hybrid automaton as a sequence of alternating trajectories and transitions.

Definition 2 A Hybrid Automaton (HA) A is a tuple 〈V , A,D, T 〉 where

(a) V = X ∪ {loc} is a set of variables. Here loc is a discrete variable of finite

type Loc. Valuations of loc are called locations. Each x ∈ X is a continuous

variable of type R. Elements of val(V) are called states.

(b) A is a finite set of actions or transition labels.

(c) D ⊆ val(V)×A× val(V) is the set of discrete transitions. A discrete transition

(v, a,v′) ∈ D is written as v
a→ v′. The discrete transitions are specified by

finitely many guards and reset maps involving V .

(d) T is a set of trajectories for X which is closed under suffix, prefix and con-

catenation (see [104] for details). For each l ∈ Loc, a set of trajectories Tl for

location l are specified by differential equations El and an invariant Il ⊆ val(X).

Over any trajectory τ ∈ Tl, loc remains constant and the variables in X evolve

according to El such that at each time in the domain of τ , τ(t) satisfies the

invariant Il.

An execution of a hybrid automaton A records all the information (about its vari-

ables) over a particular run. Formally, an execution is an alternating sequence of

trajectories and actions σ = τ0a1τ1 . . . where each τi is a closed trajectory and

τi(t)
ai+1→ τi+1(0), where t is the last time point in τi. The duration of an execu-

tion is the total duration of all the trajectories. σ.dur = Στi.dur if all the trajectories

τi are finite or σ.dur =∞ otherwise. The set of all executions is denoted as execs(A).

In this thesis, we only consider executions with a bounded number of transitions and
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(a) Hybrid automaton model of a cardiac cell with a pacemaker.

(b) Sample behavior of the cardiac cell-pacemaker system
from an initial state.

Figure 2.2: Figure depicting a hybrid automaton model of a cardiac cell-pacemaker
system and a behavior of the hybrid automaton from an initial set.

bounded duration. Given a set of initial states Θ ⊆ val(V ), the set of executions

from Θ are those executions in execs(A) with their first state, τ0(0), in Θ. The set

of executions starting from Θ of duration at most T and with at most N transitions

will be denoted as execs(A,Θ, T,N).

Example 2: A hybrid system that models the behavior of a cardiac cell-pacemaker

system is given in Figure 2.2(a). The hybrid system has two locations, namely,

stim on and stim off. The continuous variables u and v model certain electrical

properties of the cardiac cell and t models the time spent in the current location.

The system stays in stim on location when the pacemaker gives a stimulus to the

cell and is in stim off location when the stimulus from pacemaker is absent.

Observe that the discrete transition from stim on to stim off is only enabled when

the value of t = 5. After the discrete transition, the value of t is reset to 0, and the

values of u and v are left unchanged. Observing the other discrete transition from

stim off to stim on helps us realize that the hybrid system given in Figure 2.2(a)

models the cardiac cell-pacemaker system where pacemaker gives stimulus periodi-

cally (with a time period of 25 units) for a duration of 5 units. The behavior of the

continuous variable u with time is given in Figure 2.2(b). �
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Definition 3 (Reachable Set) Given a hybrid system A, initial set Θ, bounded

time T , and number of discrete transitions N , the set of all reachable states, denoted

as Reach(A,Θ, T,N) = { x | ∃σ ∈ execs(A,Θ, T,N), 0 ≤ t ≤ N, such that σ(t) = x}.
We denote this set as Reach(Θ, T,N) when A is clear from the context.

Definition 4 (Safe and Unsafe) Given a hybrid automaton A with an initial set

Θ, unsafe set U , time bound T , and transition bound N , is said to be safe, if

Reach(A,Θ, T,N) ∩ U = ∅. Otherwise, A is said to be unsafe.

Definition 5 (Perturbing a Hybrid Automaton) Given a hybrid automaton A =

〈V , A,D, T 〉, we define an ε-perturbation of A as a new automaton Aε that has com-

ponents identical to A, except, (a) for each location ` ∈ Loc, IAε` = Bε(I
A
` ) and (b)

for each action a ∈ A, GuardAεa = Bε(GuardAa ).

Here IAloc is the invariant of the location of a hybrid automaton A and GuardAa denotes

the guard set for action a. The definition permits ε < 0 for perturbation of a hybrid

automaton. Informally, a positive perturbation of a hybrid automaton A bloats the

invariants and guard sets and therefore enlarges the set of executions. A negative

perturbation on the other hand, shrinks the invariants and the guards and therefore

reduces the set of executions.

Definition 6 (Robust safety and unsafety) Given a hybrid automaton A with

an initial set Θ, unsafe set U , time bound T , and bound on discrete transitions N , it

is said to be robustly safe if and only if ∃ε > 0, such that Reach(Aε, Bε(Θ), T,N) ∩
Bε(U) = ∅. It is said to be robustly unsafe if and only if ∃ε < 0 such that

Reach(Aε, Bε(Θ), T,N) ∩Bε(U) 6= ∅.

2.3 Models For Distributed Cyber-Physical Systems

A distributed CPS consists of several agents, each of them interacting with physi-

cal environment, software, and with each other by sending and receiving messages

through communication channels. For modeling distributed CPS, we will use a spe-

cial type of Hybrid Input/Output Automaton (HIOA) [104, 127] that has constructs

for communication channels and messages. Here, input/output transitions of the

automata model the sending and receiving of messages. We first discuss the commu-

nication model among the agents, present the HIOA model of each of these agents,

and finally give the semantics for the behavior of distributed CPS.
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Communication Model The agents communicate through messages sent over an

unreliable asynchronous channel. That is, messages can be arbitrarily delayed and

dropped. It is standard to formally model this communication as a single automaton,

Channel, which stores the set of all in-flight messages that have been sent, but are yet

to be delivered. An agent sends a message m by invoking a send(m) action (more on

this in the agent model). This action adds m to the in-flight set. At any arbitrary

time, an in-flight message m is chosen by the Channel, which either delivers it to its

recipient or removes it from the set. Let M be the set of all possible messages ever

sent or received. We assume that all messages are unique and each message identifies

its sender and recipient. We denote the set of messages sent and received by agent i

by Mi,∗ and M∗,i, respectively.

Agent Model Each agent in a distributed CPS interacts with the physical envi-

ronment and the software. Hence we consider that each of the agents is a hybrid

automaton as given in Definition 2 along with some extensions. In this thesis, we

denote the hybrid system that models the behavior of ith agent as Ai. One specific

feature of agents in distributed CPS is that each of the agents has its own clock

variable clki. For distributed CPS models, this clki models the real-world properties

such as drift and phase difference between clocks of different agents. Hence, it is not

necessary that all the agents have the exact value of clki.

Hybrid automaton Ai
∆
= 〈Vi, Ai, Di, Ti〉 that models the behavior of the agent i is

a hybrid automaton as given in Definition 2 along with a few extensions. These are

given as follows:

a) The set of variables Vi consists of the set of continuous variables Xi (which includes

the clki variable) and the set of discrete variables Yi. The set of discrete variables Yi

includes a special variable msghisti that records all the sent and received messages.

We denote the set of valuations for agent i as Qi
∆
= val(Vi).

a) The set of actions Ai consists of the discrete transitions defined in Definition 2

and the set {sendi(m) | m ∈Mi,∗} ∪ {receivei(m) | m ∈M∗,i}.

a) Discrete transitions include the transitions given in Definition 2 and also of ac-

tions sendi(m) and receivei(m) actions in Ai. During the discrete transitions of

sendi(m) and receivei(m), the corresponding message is added to the msghisti

discrete variable.
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a) The trajectories of agents in distributed CPS are same as that of the hybrid

automaton given in Definition 2.

System Model Let I be the set of unique identifiers for all the agents in the

system. The complete system model is a TIOA called System = 〈V , A,D, T 〉 that is

obtained as the parallel composition of {Ai}i∈I with Channel. We refer the reader

to [104] for the formal definition of the composition operator. Informally, each Ai
synchronizes with Channel through the sendi(m) and the receivei(m) actions. For a

message m ∈ Mi,j sent by Ai for Aj, the sendi(m) is triggered by Ai and puts m in

Channel, then some time after that, receivej(m) is (nondeterministically) triggered by

Channel, and causes m to be delivered at Aj.

Semantics An execution of System models a particular run. Formally, an execution

σ is an alternating sequence τ0a1τ1 . . . τk, where each τj in the sequence is a trajectory,

and each aj is an action of System. The duration of an execution is defined as

σ.dur =
∑k

j=1 τj.dur. For any t ∈ [0, σ.dur], σ(t) denotes state of System at the end

of in the longest prefix of σ with duration t. For a set of variables S, σ(t).S is the

valuation of the variables in S at the state σ(t). A global predicate for System is a

set P ⊆
∏

i∈I Qi. Often we will define P using a formula involving the variables in⋃
i∈I Vi. A predicate is satisfied by an execution σ at time t if σ(t) ∈ P .

2.3.1 Properties Of Distributed Cyber-Physical Systems

In this thesis, we are concerned with inferring global properties of sets of executions

that correspond to recorded observations. First, we define recorded observations or

traces.

Definition 7 A trace for an agent Ai is a finite sequence βi = vi[1], . . . ,vi[k], where

each vi[j] ∈ Qi is the jth observed state of Ai. We define length(β) to be k.

We assume that for every agent Ai, we know its initial state, denoted as vi,0. A

trace for System is a collection β = {βi}i∈I , where each βi is a trace for Ai. We define

[[β]] as the set of observations in β. Next, we formalize the notion of correspondence

between traces and executions.
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Definition 8 Given a trace β = {βi}i∈I , an execution σ of System corresponds to β

if

∀ i ∈ I,∃ t1 ≤ t2 . . . ≤ tlength(βi),

∀j ∈ {1, . . . , length(βi)}, σ(tj).Vi = βi[j] ∧ σ(0).Vi = vi,0.

The set of executions corresponding to trace β is denoted by TraceInvβ. Multiple

executions may correspond to the same trace because the system model can be nonde-

terministic and there is loss of information in the trace observations.

Finally, we state the two types of analysis we perform on distributed CPS in this

thesis. Given the model of System A, global predicate P , and a trace β, decide if

(a) there exists a time t ∈ [0, σ.dur] such that for all σ ∈ TraceInvβ, σ satisfies P at

t, that is σ(t) ∈ P , and

(b) for all time t ∈ [0, σ.dur] and all σ ∈ TraceInvβ, σ satisfies P at t, that is σ(t) ∈ P .

We conclude this section by recalling the definition of Lamport’s happens before re-

lation on state observations [110]. For two state observations vi[j] and v′i[j
′] in a

given trace β, vi[j] is said to happen before v′i[j
′], denoted by vi[j] ; v′i[j

′], iff one

of the following holds: (i) i = i′ and j < j′, or (ii) i 6= i′, vi[j] is the post state of a

sendi(m) transition for some m ∈Mi,i′ , and vi′ [j
′] is the post-state of the correspond-

ing receivei′(m) transition. We identify the relation ; with its transitive closure. For

an observation v in β, we define before(v) as the set {u | u ; v} and after(v) as the

set {u | v ; u} .
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Chapter 3

Dynamic Analysis of Continuous Systems

In this chapter, we present a dynamic analysis technique for verifying bounded time

safety properties for continuous systems. The dynamic analysis algorithm along with

the model, requires as input a discrepancy function for the continuous system: a

function that gives an upper bound on the distance between two trajectories. In

this chapter, we show that discrepancy function generalizes well known proof certifi-

cates considered in control theory such as contraction metrics [118] and incremen-

tal Lyapunov functions [16]. Further, we present a new algorithm for synthesizing

discrepancy functions for linear systems. We then present the dynamic analysis al-

gorithm for bounded time safety verification of continuous systems. This algorithm

iteratively computes reachtree, a data structure that records an overapproximation of

the reachable set of states. We establish theoretical properties such as soundness and

relative completeness of the verification algorithm and present experimental results

that outperform other verification tools.

3.1 Introduction

Given a continuous system, the bounded time safety property answers the following

question: “Given an initial set and an unsafe set, does there exist a trajectory which

starts from the initial set and reaches the unsafe set within the bounded time T ’’.

For continuous systems where rate of change of a variable is a constant, or lies in

a fixed interval, i.e. ẋ = c or ẋ ∈ [a, b], this question can be answered trivially

when initial and unsafe sets are convex polyhedra. For general continuous systems

with trajectories specified as solutions of ordinary differential equations ẋ = f(x),

the safety verification problem can be nontrivial. Recall from Section 2.2.1, that for

linear systems given as ẋ = Ax+B, the closed form solution is given by the equation

τ(t) = eAtτ(0) +
∫ t

0
eA(t−τ)Bdτ . Hence, checking the bounded time safety property

would require computing the matrix exponential eAt.
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This presents us with two challenges for verification. First, computing the matrix

exponential exactly (or its symbolic representation) is only possible for very specific

matrices. To overcome this challenge, one has to rely on computing its bounded

numerical approximation, several techniques for which, have been presented in [130].

Second, even if the matrix exponential can be computed numerically, one has to track

all the trajectories from the initial set and prove (or disprove) that no trajectory

reaches the unsafe set. One of the common techniques employed to overcome this

challenge is computing the reachable set. In [64, 65, 77, 8, 31], the authors present

new approaches that compute the reachable set of states for linear systems using

numerical overapproximations of matrix exponential. While these techniques are

sound, they suffer from curse of dimensionality and hence do not scale for large

dimensional systems.

Unlike its linear counterparts, the closed form expression for the solution of a

nonlinear ODEs may not exist. Hence, the techniques developed for safety verification

of linear systems cannot be extended to nonlinear systems. Current state of the

art techniques [38, 28] for checking safety verification of nonlinear systems rely on

computing Taylor model flowpipes and do not scale to large dimensions.

In this chapter, we present a dynamic analysis algorithm for continuous systems

(introduced in Section 2.2.1) with trajectories that are solutions of linear and non-

linear ODEs. Broadly, dynamic analysis refers to techniques that not only use the

information about the automaton models (static), but also information from execu-

tions of the model or the real system for inferring a property of the system. Dynamic

analysis techniques are specially suitable for continuous systems defined by nonlin-

ear ODEs because the closed form solution for the ODE may not exist and hence

inferring properties of such systems relies to a large extent on numerical simulations.

Further, dynamic analysis techniques enjoy an advantage over static analysis tech-

niques that they can produce a a counterexample (or violating behavior) in case the

desired property is not satisfied by the system.

Assumption 1 In this thesis, we make two assumptions about the safety verification

problem of continuous systems. First, is that the initial set is compact and bounded

and second, that the continuous system is deterministic. The assumption that the

initial set is bounded and compact is commonly used in other works in literature such

as [38, 64, 65]. While the Hybrid Input/Output Automata framework [127] allows for

nondeterminism in trajectories, in this thesis, we focus on continuous systems where

trajectories are given by solutions of ODEs. We restrict our attention to linear and
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nonlinear ODEs for which a solution exists and is unique and hence the continuous

system is deterministic.

The dynamic analysis presented in this chapter exploits the continuity property of

the trajectories. For “well-behaved’’ continuous systems, two trajectories that start

within close vicinity of each other, stay close to each other, and further, this distance

vanishes as the distance between the starting states vanish. This intuition is captured

in what we call discrepancy function. A given discrepancy function for a continuous

system (a) bounds the distance between trajectories that start from neighboring

states, and (b) converges to 0 as the distance between the initial states goes to 0. Proof

certificates such as contraction metric [118] and incremental Lyapunov function [16]

have been proposed in control theory in order to study convergence and divergence

of neighboring trajectories. In this chapter we establish that discrepancy function

is a generalization of such commonly used proof certificates. This helps us leverage

the existing automatic techniques for proving convergence or divergence and thereby

compute discrepancy function.

The dynamic analysis technique for safety verification presented in this chapter

is an iterative process with 4 steps: simulate, bloat , check , and refine respectively.

The verification algorithm proceeds as follows: 1) It computes a finite cover of the

bounded and compact initial set according to partitioning parameter δ. This cover

is a collection of neighborhoods that have diameter bounded by δ. 2) Next, the

algorithm generates a numerical simulation from each of these neighborhoods. 3) It

then computes an overapproximation of the reachable set of each neighborhood by

bloating the numerical simulation using the discrepancy function. We call each of

these bloated simulations as reachtubes. The bloating using discrepancy functions

ensures that the set of reachable states from the initial set is contained in the union

of reachtubes. 4) It then checks whether each of these reachtubes satisfies the safety

property. 5) Finally, based on the results of checking safety, the algorithm either

concludes that the system satisfies (or violates) the safety property or if it cannot

infer safety (or its violation), it computes a new set of reachtubes by reducing the

partitioning parameter δ.

We show that the proposed dynamic analysis technique can not only compute

sound overapproximation, but also compute arbitrarily precise overapproximation

of the reachable set from the initial set Θ. This helps us in establishing relative

completeness which states that the algorithm will terminate with the right answer

whenever the system is robustly safe or robustly unsafe.
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The rest of the chapter is organized as follows, first we introduce the notion of

discrepancy function and establish that discrepancy function generalizes well studied

notions of proof certificates studied in control theory in Section 3.2. In Section 3.4, we

present a new techniques for computing discrepancy functions for linear ODEs. We

then present in Section 3.5, a dynamic analysis algorithm and prove its theoretical

guarantees. We conclude and present the related work in Section 3.7 after reporting

the verification results on standard benchmark examples in Section 3.6.

3.2 Discrepancy Function

The dynamic analysis procedure presented in this chapter requires what we call dis-

crepancy function that we will now present. For now, we assume that discrepancy

function is provided as an input by the end user, however, in Section 3.4 we discuss

a few techniques to compute discrepancy functions automatically. Informally, a dis-

crepancy function gives an upper bound on the distance between two trajectories as

a function of the distance between their initial states and the time elapsed.

Definition 9 Given an n-dimensional continuous system 〈V , T 〉 with a set of real

valued variables V and the set of trajectories T as defined in Section 2.2.1, a smooth

function V : R2n → R≥0 is called a discrepancy function for the continuous system if

there are functions α1, α2 ∈ K∞ and a uniformly continuous function β : R2n × R→
R≥0 such that for any pair of states x1, x2 ∈ Rn, any pair of trajectories τ1, τ2 ∈ T ,

and time t ≥ 0:

x1 6= x2 ⇐⇒ V (x1, x2) > 0, (3.1)

α1(||x1 − x2||) ≤ V (x1, x2) ≤ α2(||x1 − x2||), (3.2)

t ≤ min{τ1.dur, τ2.dur}, V (τ1(t), τ2(t)) ≤ β(τ1(0), τ2(0), t), and (3.3)

β(x1, x2, t)→ 0 as ||x1 − x2|| → 0. (3.4)

A tuple 〈α1, α2, β〉 satisfying the above conditions is called a witness to the dis-

crepancy function.

Condition 3.1 requires that the function V (x1, x2) vanishes to zero if and only if

the first two arguments (the initial states of the two trajectories) are identical. Con-
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dition 3.2 states that the value of V (x1, x2) can be upper and lower-bounded by func-

tions α2 and α1 of the `2 distance between x1 and x2.

Figure 3.1: Figure
illustrating the
discrepancy function
with sample trajectories
τ1, τ2, τ3 from initial
states x1, x2, x3

respectively.

Condition 3.3 requires that the function V applied to two

trajectories τ1 and τ2 at time t (within the duration of

both the trajectories) is upper bounded by the function β

applied to the initial states of the two trajectories τ1(0),

τ2(0), and the time t. Together with condition 3.4 on β,

we have that the function V converges to 0 as the `2 dis-

tance between the initial states ||τ1(0)− τ2(0)|| converges

to 0. Local discrepancy functions [61] can be defined by

restricting the trajectories T and functions V and β to

a subset of Rn in Definition 9. Figure 3.1 illustrates dis-

crepancy function using sample trajectories.

Remark 1 An exponential discrepancy function, defined

by a pair 〈K, γ〉, K ≥ 1, γ ∈ R is a special type of discrep-

ancy function with V , α1, α2, and β given as

1) V (x1, x2)
∆
= ||x1 − x2||,

2) α1(||x1 − x2||) = α2(||x1 − x2||)
∆
= ||x1 − x2||, and

3) β(x1, x2, t)
∆
= Keγt||x1 − x2||.

It is easy to infer that β is uniformly continuous for a bounded time T , and condi-

tions 3.1, 3.2, and 3.4 are satisfied. �

3.3 Discrepancy Function And Proof Certificates In Control

Theory

In this section, we show that proof certificates used in control theory are in fact dis-

crepancy functions. We consider continuous systems 〈V , T 〉 as given in Section 2.2.1

with the trajectories satisfying the Ordinary Differential Equation

ẋ = f(x). (3.5)

That is, for any τ ∈ T , 0 ≤ t ≤ τ.dur, d
dt
τ(t) = f(τ(t)).
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3.3.1 Lipschitz Continuity

Consider the continuous system 〈V , T 〉 with L > 0 as the Lipschitz constant for f(x),

right hand side of differential equation. Lipschitz continuity is a common assumption

on f(x) as it guarantees the existence and uniqueness of trajectories. Further, Lip-

schitz constant for f(x) can be computed automatically for linear, polynomial, and

certain classes of trigonometric functions. A few empirical techniques for estimating

Lipschitz constant for different classes of functions are given in [168]. We observe

that for such systems, the function V (x1, x2)
∆
= ||x1 − x2|| is a discrepancy function.

Proposition 1 For continuous system 〈V , T 〉 that satisfies ODE given in Equa-

tion 3.5 with Lipschitz constant L ∈ R≥0 for f(x), V (x1, x2)
∆
= ||x1−x2|| is a discrep-

ancy function with witness 〈α1, α2, β〉 where α1(||x1−x2||) = α2(||x1−x2||) = ||x1−x2||
and β(x1, x2, t) = eLt||x1 − x2||.

Proof: It is easy to check that the function V (x1, x2) = ||x1 − x2|| satisfies the first

two conditions (conditions 3.1, 3.2) in Definition 9 with α1(||x1 − x2||) = α2(||x1 −
x2||) = ||x1−x2||. Consider a pair of trajectories τ1, τ2 ∈ T with t ≤ τ1.dur, t ≤ τ2.dur.

If we take the derivative of the function V with respect to t:

d

ds
(V (τ1(s), τ2(s))) =

d

ds
||τ1(s)− τ2(s)||

=
τ1(s)− τ2(s)

||τ1(s), τ2(s)||
(
d

ds
τ1(s)− d

ds
τ2(s))

≤ || d
ds
τ1(s)− d

ds
τ2(s)|| = ||f(τ1(s))− f(τ2(s))||

≤ L||τ1(s)− τ2(s)|| = L V (τ1(s), τ2(s)).

Thus, for any pair of trajectories τ1 and τ2, we have

V̇ ≤ L V

⇒ V (τ1(t), τ2(t)) ≤ V (τ1(0), τ2(t))e
∫ t
0 Lds using Grönwall’s inequality

⇒ V (τ1(t), τ2(t)) ≤ V (τ1(0), τ2(0))eLt

This gives us a bound on V which grows exponentially with time t:

V (τ1(t), τ2(t)) ≤ eLtV (τ1(0), τ2(0)) = eLt||τ1(0)− τ2(0)||.

Hence V is a discrepancy function with witness 〈α1, α2, β〉 where α1 = α2 = ||x1−x2||
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and β(x1, x2, t) = eLt||x1 − x2||.

We illustrate the computation of discrepancy function using Lipschitz constant using

an example of RLC circuit.

Example 3: Consider the RLC circuit given in Example 1. For particular choice of

the R, L, and C parameters, the system can be written as:u
v

 =

 0 1

−2 −2


u
v

 . (3.6)

The system with state space ū = (u, v) is a damped oscillatory system that eventually

stabilizes to the origin. The Lipschitz constant over this region can be computed

by maximizing ||A1[u1,v1]T−A1[u2,v2]T ||
||[u1−u2 v1−v2]T || with (u1, v1) and (u2, v2) in R2, where A1 is the

matrix in Equation 3.6. For this example, the Lipschitz constant can be obtained by

computing the matrix norm ||A1|| using MATLAB and it turns out to be 2.9208. It

follows that, the discrepancy function is given as V ((u1, v1), (u2, v2)) = ||[u1−u2 v1−
v2]T || and β((u1, v1), (u2, v2), t) = e2.9208t||[u1 − u2 v1 − v2]T ||. �

Although computing Lipschitz constant is a feasible way to compute the dis-

crepancy function, we illustrate the disadvantage of using Lipschitz constant us-

ing Example 3. Consider two trajectories τ1 and τ2 starting δ distance apart, i.e.,

||τ1(0) − τ2(0)|| = δ. The discrepancy function given in Example 3 estimates that

||τ1(10)− τ2(10)|| ≤ e2.9208×10δ ≈ 4.84 1012δ. The overapproximation of the reachable

set for the RLC circuit in Example 3 for the initial set u ∈ [0, 0.1], v = 2 computed us-

ing the Lipschitz constant is given in Figure 3.2(a). This estimate of distance is very

coarse overapproximation and hence may be impractical for verification, especially

for long time horizons. In the next few sections, we present other proof certificates

which compute more precise overapproximations that are favorable for verification

than Lipschitz constant.

3.3.2 Contraction Metrics

The discrepancy function from Lipschitz constant provides an overapproximation of

the distance between trajectories that exponentially increases with time. For systems

where trajectories exponentially converge towards each other, contraction metric (pro-

posed in [118, 117]) is given as a proof certificate for establishing this convergence. In
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this section we compute a discrepancy function from contraction metric, and unlike

Lipschitz constant the overapproximation of distance between trajectories exponen-

tially decreases with time.

Definition 10 (Definition 1 from [118]) A region of the state space for ODE given

in Equation 3.5 is called contraction region if the Jacobian of f(x) given by ∂f
∂x

is uni-

formly negative definite in that region.

In was shown in [118] that trajectories converge exponentially in a contraction

region of an ODE. The rate of exponential convergence is bounded by the maximum

eigen value of the symmetric part of Jacobian. Theorem 2 formalizes the exponential

convergence of trajectories and helps in computing the discrepancy function in the

contraction region of an ODE.

Theorem 2 (Theorem 1 from [118]) The exponential rate of convergence of tra-

jectories in contraction region for continuous system defined by Equation 3.5 is bounded

by λmax where λmax is the maximum eigen value of symmetric part of Jacobian

(1
2
( ∂f
∂x

T
+ ∂f

∂x
)). Hence, for any two trajectories τ1 and τ2 in contraction region,

||δx|| ≤ ||δx0||eλmaxt, where δx0 = τ1(0)− τ2(0) and δx = τ1(t)− τ2(t).

Proposition 3 For a continuous system 〈V , T 〉 defined by ODE given in Equa-

tion 3.5 with λmax as the maximum eigen value of symmetric part of Jacobian,

V (x1, x2)
∆
= ||x1 − x2|| is a discrepancy function with witness 〈α1, α2, β〉 where α1 =

α2 = ||x1 − x2|| and β(x1, x2, t) = ||x1 − x2||eλmaxt.

Proof: Follows from Theorem 2.

A weaker condition than Theorem 2 for proving exponential convergence of trajec-

tories is presented in Theorem 4.

Definition 11 (Definition 2 from [118]) A uniform metric M : Rn × R≥0 →
Rn×n is called a contraction metric for ODE given in Equation 3.5 if ∃βM ∈ R≥0

such that

∂f

∂x

T

M(x, t) + M(x, t)
∂f

∂x
+ Ṁ(x, t) + βMM(x, t) � 0. (3.7)
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Theorem 4 (Theorem 2 From [118]) For an ODE given in Equation 3.5 that

admits a contraction metric M, the trajectories converge exponentially with time,

i.e. ∃ k ≥ 1, γ > 0 such that, ∀τ1, τ2 ∈ T , δxT · δx ≤ kδxT0 · δx0e
−γt, where

δx0 = τ1(0)− τ2(0) and δx = τ2(t)− τ2(t).

Proposition 5 For continuous systems 〈V , T 〉 defined by ODE in Equation 3.5 that

admits a contraction metric M, V (x1, x2)
∆
= (x1 − x2)T (x1 − x2) is a discrepancy

function with witness 〈α1, α2, β〉 where α1 = α2 = (||x1 − x2||)2 and β(x1, x2, t) =

k(||x1 − x2||)2e−γt where k, γ are from Theorem 4.

Proof: It is clear that the function V (x1, x2) satisfies the first two conditions in

Definition 9 with α1(||x1−x2||) = α2(||x1−x2||) = (||x1−x2||)2 = (x1−x2)T (x1−x2).

Further, we have that:

V (τ1(t), τ2(t)) = (τ1(t)− τ2(t))T (τ1(t)− τ2(t))

= δxT δx where δx = τ1(t)− τ2(t)

≤ kδxT0 δx
T
0 e
−γt, from Theorem 4

= β(τ1(0), τ2(0), t).

Hence, we have that V is a discrepancy function with witness 〈α1, α2, β〉.

Example 4: Continuing with the system in Example 3, we compute the Jacobian

∂f
∂ū

=

 0 1

−2 −2

 and observe that the maximum eigen value of its symmetric part

is
√

3−2
2

, thus λmax ≤ −1
10

. From proposition 3, it follows that V ((u1, v1), (u2, v2)) =√
(u1 − u2)2 + (v1 − v2)2 is a discrepancy function with witness 〈α1, α2, β〉 such that

α1 = α2 =
√

(u1 − u2)2 + (v1 − v2)2 and

β((u1, v1), (u2, v2), t) =
√

(u1 − u2)2 + (v1 − v2)2e
−t
10 .

Also notice that, matrix function M(ū, t)
∆
=

2.5 0.5

0.5 0.75

 is a constant positive

semi definite matrix function and hence is a uniform metric. Evaluating the left

hand side of equation (3.7) with βM = 0.5, we obtain ∂f
∂x̄

T
M(ū, t) + M(ū, t)∂f

∂ū
+

Ṁ(ū, t) + βMM(ū, t) =

−0.75 0.25

0.25 −1.625

 ≺ 0. Hence, M(ū, t) is a contraction
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(a) Lipschitz constant as discrepancy function. (b) Contraction metric as discrepancy function.

Figure 3.2: Figure depicting the difference in reachable set (with u vs time plot)
while using Lipschitz constant and contraction metric as discrepancy function.
Comparing the scales on the two figures, it is clear that Lipschitz constant gives
exponentially worse bound than contraction metric.

metric for Example 3. From Theorem 4, we have that ∃k ≥ 1, γ > 0, such that

δūT · δū ≤ kδūT0 · δū0e
−γt. From Proposition 5, the function V ((u1, v1), (u2, v2)) =

[u1−u2 v1−v2]T [u1−u2 v1−v2] is a discrepancy functionwith witness α1 = α2 = ((u1−
u2)2+(v1−v2)2) and β((u1, v1), (u2, v2), t) = k((u1−u2)2+(v1−v2)2)e−γt. Although the

exponential rate of convergence can be derived from βM , the multiplicative constant

k can only be inferred for specific matrices M . �

The reachable set for the RLC circuit using the discrepancy function obtained

from contraction metric as described in Example 4 for the initial set u ∈ [0, 0.1], v =

2 is given in Figure 3.2(b). Observing Examples 3 and 4 it can be inferred that

several discrepancy functions can be computed for the same continuous system. The

difference in the discrepancy functions would be in the order of overapproximation for

the distance between trajectories. The difference in the order of overapproximation for

computing the set of reachable states using different discrepancy functions becomes

apparent when we compare Figure 3.2(a) and Figure 3.2(b).
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3.3.3 Incremental Stability

While Lipschiz constant provides an upper bound of the distance between trajectories

that increases exponentially, contraction metric gives an upper bound that decreases

exponentially with time. However, in practice it need not be the case that the trajec-

tories converge or diverge exponentially. For such systems contraction metric cannot

be computed and Lipschitz constant gives a very coarse overapproximation. Incre-

mental stability proposed in [16] expresses the property that the trajectories of the

system converge towards each other, but the rate of convergence is not necessarily

exponential. Incremental Lyapunov function is a proof certificate to establish incre-

mental stability. Such guarantees impose less stricter conditions than contraction

metrics and provide weaker guarantees on the rate of convergence of trajectories.

A generalization of incremental stability is the notion of incremental forward com-

pleteness proposed in [169]. While incremental stability requires that the trajectories

converge towards each other with time, incremental forward completeness relaxes

this notion and requires that the distance between trajectories to be bounded as

time diverges. In this section we introduce the basics of incremental stability and

incremental forward completeness and compute a discrepancy function whenever the

system satisfies these conditions.

Definition 12 A continuous system 〈V , T 〉 defined by ODE given in Equation 3.5 is

incrementally stable if there is a K  L function β such that for any two trajectories τ1

and τ2 in T , ||τ1(t)− τ2(t)|| ≤ β(||τ1(0)− τ2(0)||, t).

Theorem 6 (Theorem 1 from [16]) If the system defined by ODE given in Equa-

tion 3.5 is incrementally stable, then there exists a smooth function V : Rn×Rn → R≥0

and ∃α1, α2 ∈ K∞ and α ∈ K, such that for every pair of states x1, x2 ∈ Rn

α1(||x1 − x2||) ≤ V (x1, x2) ≤ α2(||x1 − x2||), and (3.8)

V (τ1(t), τ2(t))− V (τ1(0), τ2(0)) ≤
∫ t

0

−α(||τ1(s)− τ2(s)||)ds. (3.9)

The function V is called an incremental Lyapunov function.

Proposition 7 For a continuous system 〈V , T 〉 defined by ODE in Equation 3.5

with incremental Lyapunov function V , the function V is a discrepancy function

with witness 〈α1, α2, β〉 where α1 and α2 are from Equation 3.8 and β(x1, x2, t) =
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V (x1, x2) +
∫ t

0
−α(||τ1(s)− τ2(s)||)ds where α is from Equation 3.9 and τ1 and τ2 are

trajectories starting from x1 and x2 respectively.

Proof: From Equation 3.8, we can infer that V satisfies conditions 3.1 and 3.2.

Further, from Equation 3.9 we can infer that V and β satisfy the conditions 3.3

and 3.4. Uniform continuity of β follows from uniform continuity of α as α ∈ K.

Hence V is a discrepancy function with 〈α1, α2, β〉 as witness.

Remark 2 [Incremental Stability for Linear Systems] Consider a continuous system

〈V , T 〉 defined by a linear differential equation ẋ = Ax where A is a constant matrix.

Suppose two n× n matrices P and Q satisfy the Lyapunov equation ATP +PA = Q

and P is positive definite and Q is negative semi-definite. Then, V (x1, x2)
∆
= (x1 −

x2)TP (x1−x2) is an incremental Lyapunov function and hence a discrepancy function.

This can be established as follows:

d

ds
(V (τ1(s), τ2(s))) =

d

ds
(τ1(s)− τ2(s))TP (τ1(s)− τ2(s))

= (
d

dt
(τ1(s)− τ2(s)))TP (τ1(s)− τ2(s)) +

(τ1(s)− τ2(s))TP ((
d

ds
τ1(s)− τ2(s)))

= (τ1(s)− τ2(s))T (ATP + PA)(τ1(s)− τ2(s))

= (τ1(s)− τ2(s))TQ(τ1(s)− τ2(s))

= −1× α(τ1(s), τ2(s)).

Hence, V (τ1(t), τ2(t)) = V (τ1(0), τ2(0)) +
∫ t

0
−α(τ1(s), τ2(s))ds which is identical to

Equation 3.9. Since P is a positive definite matrix, it follows that ∃α1, α2 such that

Equation 3.8 is satisfied. Thus V is an incremental Lyapunov function for the ODE

ẋ = Ax. Hence, V is a discrepancy function from Proposition 7. �

Remark 2 is of practical importance as it gives an automatic technique for comput-

ing discrepancy function for stable linear systems. The Lyapunov equation ATP +

PA = Q can be solved by encoding it as Linear Matrix Inequalities (LMIs) [32] and

using the related tools [116, 69].
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Incremental Forward Completeness

Definition 13 (Definition 2.4 from [169]) A continuous system 〈V , T 〉 defined

by ODE in Equation 3.5 is incrementally forward complete if it is Lipschitz con-

tinuous, and there exists continuous function β : R≥0 × R≥0 → R≥0 such that for

every s ∈ R≥0, β(·, s) is a K∞ function and for any two initial trajectories τ1 and

τ2 in T , ||τ1(t) − τ2(t)|| ≤ β(||τ1(0) − τ2(0)||, t). We refer to β as a witness for

incremental forward completeness.

Proposition 8 If a continuous system 〈V , T 〉 defined by ODE in Equation 3.5 is In-

crementally forward complete with witness function β1, then the function V (x1, x2) =

||x1 − x2|| is a discrepancy function with witness 〈α1, α2, β〉 as α1 = α2 = ||x1 − x2||
and β(x1, x2, t) = β1(||x1 − x2||, t).

Proof: Follows from Definition 13.

Example 5: Continuing with the system in Example 3, here we start with a can-

didate quadratic incremental Lyapunov function V ((u1, v1), (u2, v2))
∆
= [u1 − u2 v1 −

v2]TP [u1−u2 v1−v2], with α1
∆
= 0.375(u1−u2)2+0.375(v1−v2)2+0.5(u1−u2)(v1−v2),

α2
∆
= 1.25(u1 − u2)2 + 1.25(v1 − v2)2 + 0.5(u1 − u2)(v1 − v2) and α

∆
= (u1 − u2)2 +

(v1 − v2)2, with P =

1.25 0.25

0.25 0.375

 . First we check that V is indeed an incre-

mental Lyapunov function by computing V̇ ((u1, v1), (u2, v2)) which turns out to be

[u1−u2 v1−v2]T [ATP+PA][u1−u2 v1−v2] = −α(u1, v1, u2, v2). Since α > 0 whenever

(u1, v1) 6= (u2, v2), (u1, v1) 6= (0, 0) and (u2, v2) 6= (0, 0). Integrating both sides, we get

V (τ1(t), τ2(t))− V ((u1, v1), (u2, v2)) ≤
∫ t

0
−α(||τ1(s)−τ2(s)||)ds. Hence V is a discrep-

ancy functionwith witness 〈α1, α2, β〉 where

β((u1, v1), (u2, v2), t) = V ((u1, v1), (u2, v2)) +
∫ t

0
−α(||τ1(s)− τ2(s)||)ds. �

Having seen different proof certificates in control theory to establish convergence

and divergence of trajectories. We now inspect the difference between these proof

certificates through some examples.

Example 6: Consider a two dimensional linear system: u̇ = −u; v̇ = −v0

100
, with

initial state (u0, v0). A trajectory of the system is given by τ(t) = (u0e
−t, v0

(1−t)
100

).

The system converges to origin as t → 100. In this example, the distance between

two trajectories from different initial states decreases linearly and not exponentially.

It can be verified that the function V ((u1, v1), (u2, v2)) = (u1 − u2)2 + (v1 − v2)2 is
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an Incremental Lyapunov function for duration [0, 100] as it satisfies Equations 3.8

and 3.9. The Jacobian ∂f
∂ū

is

−1 0

0 0

 and hence a uniform metric M(ū, t) that

satisfies Definition 11 does not exist. �

Example 6 illustrates that incremental stability is a strictly more general condition

than contraction metric. However, existence of contraction metric ensures exponential

convergence of trajectories which is a much stronger guarantee than what is provided

by incremental stability. Note that whenever the contraction metric is a constant

matrix, an incremental Lyapunov function can be computed from the contraction

metric. We now illustrate that discrepancy function is a strict generalization of both

contraction metric and incremental Lyapunov function.

Example 7: Consider the system u̇ = 1; v̇ = v0

100
, where (u0, v0) is the initial state

of the trajectory. The closed form solution of the above system is given as u(t) =

u0+t, v(t) = v0(1+ t
100

). For two trajectories starting from (u1, v1) and (u2, v2), the dis-

tance between the trajectories after time t is given as√
(u1 − u2)2 + (1 + t

100
)2(v1 − v2)2. Observe that the function V ((u1, v1), (u2, v2)) =√

(u1 − u2)2 + (v1 − v2)2 with

α1 = α2 =
√

(u1 − u2)2 + (v1 − v2)2 and β((u1, v1), (u2, v2), t) =√
(u1 − u2)2 + (1 + t

100
)2(v1 − v2)2 satisfies all the conditions in Definition 9 and hence

is a discrepancy function. �

Example 7 presents a system for which both contraction metric and incremental

Lyapunov function do not exist, but has a bounded time discrepancy function. De-

tailed comparison of these proof theoretic techniques can be obtained from [100, 118,

16].

Remark 3 [Comparison between Discrepancy Function and Sensitivity Analysis] Sen-

sitivity sx for a continuous system defined by ODE ẋ = f(x) is given by the differential

equation ṡx = ∂f
∂x
sx. The value of sensitivity at time t for an initial state x0, denoted

as sx0(t) is obtained by solving the differential equation ṡx = ∂f
∂x
sx along the solution

of ẋ = f(x) from x0. It has been observed in [52] that ||sx1(t)|| · ε gives the first order

term in the Taylor series expansion of ||τ1(t)− τ2(t)|| where ||τ1(0)− τ2(0)|| = ε.

Ignoring the higher order terms in the Taylor series expansion when ε� 0, ||sx1(t)||·
ε gives us a close estimate of ||τ1(t)−τ2(t)||. For linear systems, this estimate is exact

as all the higher order terms vanish. However, for nonlinear systems, this estimate is
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neither an overapproximation, nor an underapproximation. In contrast to sensitivity

analysis, discrepancy function requires that β(x2, x1, t) is an overapproximation of

V (τ1(t), τ2(t)) for both linear and nonlinear systems. �

3.4 Algorithmic Techniques For Computing Discrepancy

Functions

We have seen in Sections 3.3.1, 3.3.2, and 3.3.3 that discrepancy function general-

izes proof certificates used for establishing convergence or divergence of trajectories.

Typically, these proof certificates are derived manually. In [22], the authors present

a technique to establish exponential convergence among trajectories using Sum Of

Squares (SOS) techniques. Informally, it searches for a contraction metric that satis-

fies conditions given in Definition 11. The technique works as follows:

1) Select the degree of the polynomial d for contraction metric M(x). That is, all the

terms in the contraction metric are fixed degree polynomial terms in the n real

variables. For example, the general form of M(x) for a two dimensional system

with variables u and v is given as

Σaijv
iuj Σbijv

iuj

Σcijv
iuj Σdijv

iuj

.

2) Calculate R(x) = ∂f
∂x

T
M(x) +M(x)∂f

∂x
+ Ṁ(x) and enforce constraints on aij, bij,

cij and dij such that R(x) is symmetric.

3) Impose the restrictions that polynomials yTM(x)y and −yTR(x)y are sum of

squares polynomials and solve for the feasibility using SOS tools. If the solution

exists, then the SOS solver will find values of coefficients of polynomials.

4) If the solution is feasible, compute the exponential rate of convergence by com-

puting the value of γ such that ∂f
∂x

T
M(x) +M(x)∂f

∂x
+ Ṁ(x) + γM(x) ≺ 0.

5) If SOS solver returns infeasible, then increase the degree of the polynomial terms

in M and repeat.

For a given nonlinear ODE, the existence of a sum of squares polynomial as con-

traction metric is not guaranteed and hence the technique need not terminate. A
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variant of the above presented technique can be used to compute incremental Lya-

punov function. In Remark 2, we presented a technique for computing discrepancy

function for exponentially stable linear systems, however, cannot be applied to all

linear systems (such as time varying linear systems or linear systems that are not

exponentially stable).

To overcome the disadvantages of the existing techniques, in this section, we present

a new technique for computing bounded time discrepancy functions for linear systems.

The techniques presented relies on computing sample simulations of the system. We

call these sample simulations as validated simulations. Typical numerical simulations

return a sequence of sampled states of a trajectory at regular time instances. Val-

idated simulations, on the other hand, return a sequence of regions that encloses

the trajectory for specified time durations. We use these validated simulations not

just for computing discrepancy functions, but also for dynamic analysis techniques

presented in Section 3.5. In the rest of this section, we give a formal definition of

validated simulation and present the algorithm for computing discrepancy function

for any linear systems using validated simulations. We also discuss other algorithmic

techniques for computing discrepancy function in literature such as [91, 90, 60].

3.4.1 Validated Simulations

Definition 14 Consider a continuous system 〈V , T 〉 defined by ODE in Equation 3.5.

Given a trajectory τ ∈ T starting from x0 ∈ Rn of duration T > 0, time step h > 0,

and an error bound ε > 0, an (x0, T, ε, h)-simulation of trajectory τ is a finite sequence

ψ = (R1, [t0, t1]), . . . , (Rk, [tk−1, tk]) such that, ∀i > 0, Ri ⊆ Rn, ti ∈ R≥0 and

(1) ∀ i ∈ {0, . . . k − 1}, ti+1 − ti ≤ h, t0 = 0, and tk = T ,

(2) ∀ i > 0,∀t ∈ [ti−1, ti], τ(t) ∈ Ri, and

(3) ∀ i > 0, diameter(Ri) ≤ ε.

Figure 3.3 illustrates an (x0, T, ε, h)-simulation of the trajectory τ . As opposed to

providing sample states of the trajectory at regular intervals, a validated simulation

returns a sequence of time stamped regions as shown in Figure 3.3. The diameter of

each of the regions is bounded by ε and for any given time instance t ∈ [ti−1, ti], τ(t) ∈
Ri. Given any pair ε, h such a validated simulation for a trajectory τ need not exist.
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Figure 3.3:
Illustration of a
validated
simulation for a
trajectory τ .

For computing validating simulations, we instead do the fol-

lowing: fix the time step h and use numerical solvers such as

CAPD [2] and VNODE-LP [132] to compute validated simula-

tion that encloses the trajectory τ . We then compute the value of

ε such that the returned validated simulation is an (x0, T, ε, h)-

simulation. Given an initial state x0 = τ(0) and time bound

T = τ.dur, the function valSim(x0, T, h, f) returns the pair 〈ψ, ε〉
such that ψ is an (x0, T, ε, h)-simulation. In this thesis, we as-

sume that validated simulations can be made arbitrarily precise,

i.e, ε → 0 as h → 0. In practice, we have observed that CAPD

indeed generates simulations that are arbitrarily precise up to

the order of 10−7. We now present the technique to compute dis-

crepancy function using validated simulations for linear systems.

3.4.2 Computing Discrepancy Function
For Linear Systems From Validated Simulations

To compute discrepancy function for linear system from simula-

tions, we exploit the linearity property of the solutions of ODEs.

We define distance function for two validated simulations and then present an al-

gorithm for computing a bounded time discrepancy function that uses the distance

function for validated simulations.

Definition 15 Let ψ1 = (R1
1, [t

1
0, t

1
1]), . . . , (R1

k1
, [t1k1−1, t

1
k1

]), be an

(x1, T, ε, h)-simulation of trajectory τ1 and ψ2 = (R2
1, [t

2
0, t

2
1]), . . . , (R2

k1
, [t2k1−1, t

2
k1

]) be

an (x2, T, ε, h)-simulation of trajectory τ2, the distance function d〈ψ1,ψ2〉 : R≥0 → R≥0

is such that given t ∈ [0, T ]

1. If t = 0, d〈ψ1,ψ2〉(0) = distmax(R
1
1, R

2
1).

2. If t ∈ (t1l−1, t
1
l ], t ∈ (t2m−1, t

2
m], d〈ψ1,ψ2〉(t) = distmax(R

1
l , R

2
m).

Informally, for two validated simulations ψ1 and ψ2, the distance function d〈ψ1,ψ2〉

is a piecewise constant function such that, for a given time instance t, d〈ψ1,ψ2〉(t)

gives the maximum distance between the two corresponding regions R1
l and R2

m that

enclose the trajectories τ1 and τ2 at the time instance t respectively. Proposition 9
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formalizes that such distance function gives an upper bound on the distance between

trajectories.

Proposition 9 Given ψ1 = (R1
1, [t

1
0, t

1
1]), . . . , (R1

k1
, [t1k1−1, t

1
k1

]), an

(x1, T, ε, h)-simulation of trajectory τ1 and ψ2 = (R2
1, [t

2
0, t

2
1]), . . . , (R2

k1
, [t2k1−1, t

2
k1

]), an

(x2, T, ε, h)-simulation of trajectory τ2, we have that

∀t ∈ [0, T ], d〈ψ1,ψ2〉(t) ≥ ||τ1(t)− τ2(t)||.

Proof: The proof follows trivially for t = 0 as from Definition 15,

d〈ψ1,ψ2〉(0) = distmax(R
1
1, R

2
1), and from Definition 14, we have that τ1(0) ∈ R1

1 and

τ1(0) ∈ R2
1.

Consider t ∈ (t1l−1, t
1
l ], t ∈ (t2m−1, t

2
m]. It follows from Definition 14 that τ1(t) ∈ R1

l

and τ2(t) ∈ R2
m. Since d〈ψ1,ψ2〉(t) = distmax(R

1
l , R

2
m). It follows that d〈ψ1,ψ2〉(t) ≥

||τ1(t)− τ2(t)||.

Intuitively, Proposition 9 states that the maximum distance between two regions

that enclose the trajectories for a time instance gives an upper bound on the distance

between the trajectories at that instance.

We now present Algorithm 3.1 that computes a discrepancy function for linear

system by computing n distance functions. The algorithm computes the distance

between two trajectories by exploiting the superposition principle for linear systems.

The distance between trajectories is expressed as the sum of n distance functions

from which an upper bound is computed.

input : 〈V , T 〉, ε, h, T
output: Discrepancy function V , and its witness 〈α1, α2, β〉

1 Select an initial state x0, and orthonormal basis {v1, . . . , vn};
2 〈ψ0, ε0〉 ← valSim(x0, T, h);
3 for each vi do
4 〈ψi, εi〉 ← valSim(x0 + vi, T, h);
5 di ← d〈ψ0,ψi〉 ; // Distance function between ψi and ψ0

6 end
7 d←

∑n
i=1 di ; // Sum of distance functions in line 5

8 return V (x1, x2)
∆
= ||x1 − x2||, β(x1, x2, t)

∆
= ||x1 − x2||d(t);

Algorithm 3.1: Algorithm for computing discrepancy function for linear sys-
tems.

The algorithm 3.1 first selects an initial state x0 and an orthonormal basis {v1, . . . , vn}
for Rn. In the loop from lines 3 to 6, it then generates n + 1 validated simulations
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ψ0, ψ1, . . . , ψn of trajectories starting from x0, x0+v1, . . . , x0+vn respectively. The dis-

tance functions d〈ψ0,ψ1〉, . . . , d〈ψ0,ψn〉 are added in line 7. This sum of distance functions

d(t) when multiplied with the initial distance between trajectories ||x1 − x2|| returns

the product ||x1 − x2||d(t). This product is an upper bound on the distance between

trajectories τ1 and τ2 at time t, i.e. ||τ1(t)− τ2(t)|| ≤ ||x1− x2||d(t). Hence, the func-

tion V (x1, x2)
∆
= ||x1−x2|| is a discrepancy function with β(x1, x2, t) = ||x1−x2||d(t).

Proposition 11 establishes that Algorithm 3.1 computes a discrepancy function for

any continuous system defined by a linear ODE.

Proposition 10 Consider a continuous system 〈V , T 〉 defined by a linear ODE ẋ =

A(t)x+B(t) where A(t) and B(t) are possibly time varying and Φ be the state tran-

sition matrix that defines the solution of ODE. Given any t ∈ [0, T ], we have that

||Φ(t, 0)vi|| ≤ di(t) where vi is the ith vector in the orthonormal basis selected in

line 1 and di is the distance function between ψ0 and ψi that is computed in line 5 of

Algorithm 3.1.

Proof: As Φ is the state transition matrix that defines the solution of linear ODE

ẋ = A(t)x+B(t), for any trajectory τ ∈ T , we have τ(t) = Φ(t, 0)τ(0)+
∫ t

0
Φ(t, s)B(s)ds.

If τ0 and τi correspond to the trajectories starting from x0 and x0 + vi, we have that

τ0(t) = Φ(t, 0)τ0(0) +
∫ t

0
Φ(t, s)B(s) ds and τi(t) = Φ(t, 0)τi(0) +

∫ t
0

Φ(t, s)B ds. It

follows that

||τ0(t)− τi(t)|| = ||Φ(t, 0)τ0(0) +

∫ t

0

Φ(t, s)B(s) ds

− (Φ(t, 0)τi(0) +

∫ t

0

Φ(t, s)B(s) ds)||

= ||Φ(t, 0)(τ0(0)− τi(0))||

= ||Φ(t, 0)vi||.

Also, from Proposition 9 we have that ||τ0(t) − τi(t)|| ≤ di(t). Hence we have

||Φ(t, 0)vi|| ≤ di(t).

Proposition 11 Given a continuous system 〈V , T 〉 defined by a linear ODE ẋ =

A(t)x + B(t) where A(t) and B(t) are possibly time varying. The function V and β

returned by Algorithm 3.1 are such that V is a bounded time discrepancy function of

the system with witness 〈α1, α2, β〉 where α1 = α2 = ||x1 − x2||.
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Proof: Let Φ be the state transition matrix that defines the solution of the ODE

ẋ = A(t)x+B(t), i.e., for any trajectory τ ∈ T , τ(t) = Φ(t, 0)τ(0)+
∫ t

0
Φ(t, s)B(s)ds.

Consider two trajectories τ1 and τ2 in T such that τ1(0)− τ2(0) = η1v1 + . . .+ ηnvn,

where v1, . . . , vn are the orthonormal bases selected in line 1 of Algorithm 3.1 and

∀0 ≤ i ≤ n, ηi ∈ R. Note that such scalars η1, . . . , ηn exist because {v1, . . . , vn}
is an orthonormal basis. Also note that as we use `2 norm, we have that |ηi| ≤
||τ1(0)− τ2(0)||. Now, using the solution of the linear ODE, we have that

||τ1(t)− τ2(t)|| = ||Φ(t, 0)τ1(0) +

∫ t

0

Φ(t, s)B(s) ds

− (Φ(t, 0)τ2(0) +

∫ t

0

Φ(t, s)B(s) ds)||

= ||Φ(t, 0)(τ1(0)− τ2(0))||

= ||Φ(t, 0)(η1v1 + . . .+ ηnvn)||

= ||η1Φ(t, 0)v1 + . . .+ ηnΦ(t, 0)vn||

≤ |η1| · ||Φ(t, 0)v1||+ . . .+ |ηn| · ||Φ(t, 0)vn||

≤ |η1| · d1(t) + . . .+ |ηn|dn(t) from Proposition 10

≤ ||τ1(0)− τ2(0)|| · d1(t) + . . .+ ||τ1(0)− τ2(0)|| · dn(t)

= ||τ1(0)− τ2(0)|| · d(t)

= β(τ1(0), τ2(0), t).

Hence V (τ1(t), τ2(t)) ≤ β(τ1(0), τ2(0), t) which satisfies the third condition in the

Definition 9. As β(x1, x2, t) = ||x1 − x2||d(t), it follows that β(x1, x2, t) → 0 as

||x1 − x2|| → 0. Uniform continuity of β follows from boundedness of d(t) in [0, T ].

Observing that the the first two conditions of Definition 9 are satisfied with α1 = α2 =

||x1 − x2|| is trivial. Hence V is a discrepancy function with 〈α1, α2, β〉 as witness.

Algorithm 3.1 can be used to compute discrepancy function for any linear system

(both time invariant and time varying). Further, it only relies on the procedure valSim

to generate validated simulations and hence is agnostic of the underlying model.

Also notice that the discrepancy function obtained is a function of the orthonormal

bases selected in line 1. Typically, these orthonormal bases can be the standard

coordinate axes. The strategy to pick the orthonormal bases in order to get the

tightest discrepancy function is still an open problem and is part of future work. As

Algorithm 3.1 relies only on sample simulations to compute discrepancy function, it
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enables complete black box verification for linear systems when applied together with

the dynamic analysis presented in Section 3.5.

Remark 4 Alternative approaches for computing discrepancy functions automati-

cally : Research on computing discrepancy functions (and other proof certificates in

control theory) automatically has recently received much attention recently [60, 91,

90, 27, 103]. We highlight the contributions of relevant results and contrast it with

the technique in Algorithm 3.1.

In [103], the authors propose a new technique for computing Lyapunov functions

guided by the sample simulations of the system. What separates [103] from earlier

computational approaches such as [46, 135] is that the search for Lyapunov function is

guided by sample simulations. Similar technique that searches for contraction metrics

using sample simulations is presented in [27]. These techniques require an underlying

oracle to answer if the Lyapunov function (or the contraction metric) inferred is

correct or not. Unlike these techniques, Algorithm 3.1 is agnostic of the underlying

model and does not require any oracle.

In [91, 90], the authors present input-to-state discrepancy function, an extension

of discrepancy to continuous systems with inputs. Using input-to-state discrepancy

function, the authors present a new compositional approach for computing discrep-

ancy function for a network of continuous and hybrid system from the input-to-state

discrepancy function of the modules. Such techniques compliment the techniques

present in this thesis.

In [60], the authors present a new technique for computing discrepancy function

for nonlinear systems from sample simulations. Given a validated simulation ψ of

τ , and radius δ, the technique presented in [60] returns a function β that gives an

upper bound on the distance between trajectories starting at most δ distance away

from τ(0). While technique in [60] can be applied to trajectories of nonlinear ODEs,

it performs static analysis of the ODE and hence is not agnostic of the underlying

model. �

3.5 Dynamic Analysis Of Continuous Systems

In this section we present the algorithm for performing dynamic analysis of a con-

tinuous system for which a discrepancy function and its witness are provided. Given

an initial set of states denoted as Θ, the goal of dynamic analysis is to formally
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prove whether a given property is satisfied (or violated) by all the trajectories start-

ing from Θ by analyzing a finite number of simulations. Typically for continuous

systems, the set Θ is uncountable and hence exhaustive simulation is impossible. In-

stead, for performing dynamic analysis, we rely on discrepancy function to compute

overapproximations of trajectories in a neighborhood.

The dynamic analysis technique (Algorithm 3.4) has 4 main steps: simulate, bloat,

check, and refine given as follows.

Simulate: A cover of the initial set Θ is computed as a union of neighborhoods,

i.e. ∪mi=1Bδ(xi) and a simulation is generated from each xi.

Bloat: An overapproximation of all the behaviors in the neighborhood Bδ(xi)

is computed by bloating the simulation using the discrepancy function. This

bloated simulation, which overapproximates the behaviors of all trajectories

starting from a neighborhood is called reachtube (given in Definition 16).

Check: For each of these reachtubes, it is checked whether the property is sat-

isfied or violated.

Refine: If the property is satisfied by all the reachtubes, or if a counterexample

is discovered, we return the verification result, else, we refine the cover by

computing smaller neighborhoods.

As the partition of the initial set gets finer, the order of overapproximation com-

puted by rechtubes decreases. Hence, when the system robustly satisfies or violates

the property, the overapproximation computed with finer partition would eventually

either prove or disprove the property and the algorithm terminates.

For dynamic analysis, we save the overapproximations of all the trajectories from

an initial set Θ in a tree data structure. This tree is called reachtree (given in Defini-

tion 17) and each element in this tree contains a reachtube for a given set of states.

In this section, we present the definitions and procedures required for computing

reachtree and present an algorithm for verifying the safety property of the continuous

system with respect to a given unsafe set.

3.5.1 Reachtubes And Reachtrees

The definition of validated simulation that computes a sound overapproximation of

trajectory has been given in Definition 14. In this section, we generalize that definition
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to not just a single state, but a set of states and show how such reachtubes can be

made arbitrarily precise.

Definition 16 Given a continuous system 〈V , T 〉, and an initial set of states S, an

(S, T, ε, h)-reachtube of the trajectories starting from S for bounded time T is given

as φ = (R1, [t0, t1]), . . . , (Rk, [tk−1, tk]) such that, ∀i > 0, Ri ⊆ Rn, ti ∈ R≥0, and

(1) ∀ i ∈ {0, 1, . . . k}, ti+1 − ti ≤ h, t0 = 0, and tk = T ,

(2) ∀ i > 0,∀t ∈ [ti−1, ti],∀τ ∈ T , such that τ(0) ∈ S, τ(t) ∈ Ri, and

(3) ∀ i > 0, diameter(Ri) ≤ ε.

The ith region in the reachtube φ, i.e. Ri is sometimes referred as φ[i] and the

interval [ti−1, ti] is referred as φ.dur[i]. Similar to validated simulation, the reachtube

from a given set of states S need not satisfy the error bound ε for a given time step h.

Algorithm 3.2 defines a procedure called reachTube for computing a reachtube that

uses valSim as a subroutine when the discrepancy function V with witness 〈α1, α2, β〉
are provided.

input : S, h, T , V , 〈α1, α2, β〉
output: 〈φ, ε〉 such that φ is an (S, T, ε, h)-reachtube from S

1 x0 ← center(S);
2 〈ψ, ε1〉 ← valSim(x0, T, h);
3 ε2 ← supx∈S,t∈[0,T ]β(x0, x, t);
4 ε3 ← supx1,x2,α1(||x1−x2||)≤ε2||x1 − x2||;
5 for each (Ri, [ti−1, ti]) ∈ ψ do
6 Add (R′i, [ti−1, ti]) to φ such that R′i = Bε3(Ri);

7 end
8 return 〈φ, ε1 + ε3〉;

Algorithm 3.2: Algorithm for computing reachtubes using valSim

The algorithm generates a validated simulation ψ from the center of the set of

states S. It then computes the maximum distance between two trajectories starting

from S as ε1 + ε3 computed in lines 3 and 4 using the witness of the discrepancy

function β. It then bloats the validated simulation ψ by the maximum distance to

compute the reachtube from the set of states S. An Illustration of the algorithm for

computing a reachtube is shown in Figure 3.4.
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Proposition 12 The procedure reachTube(S, T, h) returns 〈φ, ε〉 such that φ is an

(S, T, ε, h)-reachtube.

Proof: Suppose that the validated simulation ψ = (R1, [t0, t1]), . . . , (Rk, [tk−1, tk])

and the reachtube given as φ = (R′0, [t0, t1]), . . . , (R′k, [tk−1, tk]). As ψ is a validated

simulation, it follows that for t ∈ [tl−1, tl] the trajectory starting τ0 from x0 is con-

tained in region Rl, i.e. τ0(t) ∈ Rl.

Consider a trajectory τ starting from x ∈ S. From discrepancy function, we know

that V (τ(t), τ0(t)) ≤ β(x, x0, t). As ε2 in line 3 computes the supremum value of

β, we have that V (τ(t), τ0(t)) ≤ ε2. From discrepancy function, we know that

V (τ(t), τ0(t)) ≥ α1(||τ(t) − τ0(t)||), thus in line 4 the value of ε3 computed is the

maximum distance between the two trajectories i.e. ||τ(t) − τ0(t)|| ≤ ε3. Hence

τ(t) ∈ Bε3(Ri) = R′i. Observe that diameter(R′i) ≤ ε1 + ε3. Hence φ is an (S, T, ε, h)-

reachtube with ε = ε1 + ε3.

Corollary 13 Reachtubes can be made arbitrarily precise. That is, ∀ε > 0, ∃δ >
0, h > 0 such that whenever diameter(S) ≤ δ, reachTube(S, T, h) returns φ such that

φ is an (S, T, ε, h)-reachtube.

Figure 3.4:
Illustration of a
reachtube obtained
by bloating a
validated simulation.

This observation follows from the fact that the diameter of

reach region returned by valSim (ε1) can be made arbitrarily

small by decreasing the time step h. Further, it follows from

the uniform continuity property of β that ∃δ > 0 such that ε3

computed in line 4 is less than ε− ε1.

For computing an overapproximation of trajectories from

a given set of initial states Θ, one can directly compute

reachTube(Θ, T, h). However, this overapproximation, for

some cases, may be too coarse to infer the property of in-

terest. Hence, in order to improve the order of overapprox-

imation, one might have to consider a collection of smaller

neighborhoods in the set Θ, compute reachTube from each of

the smaller neighborhoods and then combine these reachtubes

together to infer whether all trajectories from Θ satisfy the

property of interest. We introduce a notion of reachtree that

helps in computing finer oveapproximations of all trajectories

from Θ.
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We now introduce the notion of a reachtree for a given set of initial states Θ, time

bound T , partitioning parameter δ > 0, and time step h. A (Θ, T, δ, h)-reachtree has

a root, denoted as #. Each of the child elements to the root has three attributes.

They are given as

1. InitialSet refers to a set of states S such that S = Bδ(x) for some x ∈ Rn and

S ⊆ Θ.

2. tag is a value in {may,must}. It is set to must if S ⊂ Θ and is set to may

otherwise.

3. RT stores reachTube(S,T, h), a reachtube that contains all the trajectories from

the initial set S for bounded time T .

Formal definition of reachtree for continuous systems is given in Definition 17.

Definition 17 Given a continuous system 〈V , T 〉, an initial set Θ, a partitioning

parameter δ > 0, time bound T , and time step h, a (Θ, T, δ, h)−reachtree is a tree of

depth 1 with root node denoted as # with child elements E1, E2, . . . , Em, where the

child elements has three attributes InitialSet, tag, and RT such that

(1) Ei.InitialSet = Bδ(x) for some x ∈ Rn, Ei.InitialSet ∩ Θ 6= ∅, and

Θ ⊆ ∪mi=1Ei.InitialSet,

(2) Ei.tag = must if Ei.InitialSet ∩Θc = ∅ is may otherwise, and

(3) Ei.RT = reachTube(Ei.InitialSet, T, h).

The algorithm to construct reachtree is given in Algorithm 3.3. It first computes

a δ-cover of the initial set. For each element in the δ-cover, it creates a new child to

the root node and sets the InitialSet attribute as the neighborhood Bδ(x). The tag

attribute is set as must if the neighborhood is contained in the initial set Θ. The

attribute RT stores the reachtube from Bδ(x) computed using reachTube procedure.

An illustration of the reachtree is shown in Figure 3.5.

3.5.2 Dynamic Analysis For Safety Verification

In this section, we will present an algorithm for verifying a special class of properties

called safety properties for continuous systems. A safety property is satisfied by a
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input : Θ, T , δ, h
output: reachtree ∆

1 Compute X = {Bδ(x1), . . . , Bδ(xm)}, a δ-cover of Θ;
2 ∆← Tree() with root node as #;
3 for each Bδ(xi) ∈ X do
4 Create node Ei with Ei.InitialSet = Bδ(xi);
5 if Bδ(xi) ⊂ Θ then Ei.tag = must;
6 else Ei.tag = may;
7 Ei.RT← φi where 〈φi, εi〉 ← reachTube(Bδ(xi), h, T );
8 Set # as parent to Ei
9 end

10 return ∆

Algorithm 3.3: Algorithm to compute reachtree.

Figure 3.5: Illustration of a reachtree from an initial set Θ.

continuous system from an initial set of states, if all the trajectories starting from the

initial set do not enter a specified unsafe set. The safety verification procedure itera-

tively computes reachtrees with increasing precision and checks whether the reachtree

is safe or not. The loop terminates if the safety is established, or a counterexample to

the safety property is found. In this section, we present the algorithm formally and

prove that the algorithm gives theoretical guarantees, such as soundness and relative

completeness.

Definition 18 Given a reachtree ∆ and an unsafe set U , the procedure checkSafety

returns safe or unsafe or unknown if and only if

• checkSafety(∆, U) = safe if ∀Ei ∈ ∆, ∀j, Ei.RT[j] ∩ U = ∅

• checkSafety(∆, U) = unsafe if ∃Ei ∈ ∆, such that Ei.tag = must and

∃j, Ei.RT[j] ⊂ U .

• checkSafety(∆, U) = unknown otherwise.
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Observe that the procedure checkSafety returns safe only when all the reachtubes

in the nodes of the tree are safe, and it returns unsafe only when a node that is tagged

must has an element in reachtube that is completely contained within the unsafe set

U . From propositions 12, it follows that whenever the checkSafety procedure returns

unsafe, then there exist at least one trajectory τ from Θ that is unsafe, and whenever

checkSafety returns safe, all the trajectories are indeed safe. The algorithm for safety

verification of continuous systems is given in Algorithm 3.4.

input : Θ, T , 〈V , T 〉
output: If the continuous system is safe or unsafe

1 Select δ > 0, h ∈ [0, T ];
2 while true do
3 ∆← reachTree(Θ, T, δ, h);
4 if checkSafety(∆, U) = safe then return safe;
5 else if checkSafety(∆, U) = unsafe then return unsafe;

6 else δ ← δ
2
; h← h

2
;

7 end

Algorithm 3.4: Dynamic analysis algorithm for safety verification of continuous
systems.

The algorithm iteratively computes reachtrees of increasing precision that will ei-

ther prove that the system is safe or unsafe. If the checkSafety procedure for the

tree does not return that the tree is safe or unsafe, then a better approximation is

computed by refining the values of δ and h.

Theorem 14 Algorithm 3.4 for verifying safety of continuous systems is sound, i.e.

if the algorithm returns safe, then the trajectories starting from Θ for bounded time

T are safe, and if it returns unsafe, then there exists a trajectory starting from Θ that

is unsafe within the time bound T .

Proof: From proposition 12 and Definition 17, it follows that for any trajectory

τ ∈ T , starting from Θ, ∃Ei ∈ ∆ such that τ(0) ∈ Ei.InitialSet and hence ∀t ∈
[0, T ], τ(t) ∈ Ei.RT. Hence, if the checkSafety procedure returns safe, all the trajec-

tories are safe.

If the algorithm returns unsafe, then the checkSafety procedure for the reachtree

returned unsafe. Hence, ∃Ei ∈ ∆, such that Ei.tag = must and ∃j, Ei.RT[j] ⊂ U .

Thus, from Proposition 12, we have that ∀τ ∈ T with τ(0) ∈ Ei.InitialSet, ∃t ∈
Ei.RT.dur[j], τ(t) ∈ U and hence the system is unsafe.
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Theorem 15 Algorithm 3.4 for verifying safety of continuous systems is relatively

complete, i.e. if all the trajectories are robustly safe (Definition 6), then the algorithm

will terminate and return safe, and if the trajectories are robustly unsafe, then the

algorithm will terminate and return unsafe.

Proof: Suppose that the system is robustly safe. Hence, ∃εr > 0 such that, ∀τ ∈ T
starting from Θ, Bεr(τ)∩U = ∅. First, it follows from Theorem 14 that the algorithm

will not return unsafe. Therefore, the algorithm either returns safe or iterates by

reducing the value of δ and h. From Corollary 13, it follows that ∃δr, hr > 0 such that

all the reachtubes computed in reachTree(Θ, δr, hr, T ), i.e. Ei.RT are such that the

diameter of the regions in the reachtubes is less than εr, i.e. diameter(Ei.(RT )[j]) <

εr. Hence, ∀Ei ∈ ∆, ∀j, Ei.RT[j] ∩ U = ∅. Hence, the algorithm will terminate when

δ is less than δr and h less than hr and returns that the system is safe.

If the system is robustly unsafe, then ∃εr > 0, ∃τ ∈ T starting within Θ and

∃t ∈ [0, T ] such that Bεr(τ(t)) ∈ U . Hence, ∃δ > 0 such that ∀τ ′ ∈ T starting from

Bδ(τ(0)), the state at time t is unsafe, i.e. τ(t) ∈ U . From Corollary 13 we have

that ∃δr, hr > 0 such that ∃Ei ∈ ∆ and ∃j, Ei.RT[j] ⊂ R. Hence, the algorithm will

return unsafe.

We remark that in the case when some trajectories from Θ are safe but not robustly

safe, Algorithm 3.4 may not terminate. Observe that relative completeness of the

above algorithm is achieved mainly because of Corollary 13 where reachtubes are

computed with arbitrarily small δ and h. In practice this may not be feasible as CAPD

implements finite precision arithmetic. However, even if we have finite precision

arithmetic, relative completeness is achieved if the system is robustly safe with ε0

greater than the precision of solver. In the landscape of CPS verification, given that

safety verification is undecidable in general, such theoretical guarantees of soundness

and relative completeness are the strongest one can hope for.

In summary, we have seen the algorithm for constructing reachtrees, inferring safety

of reachtrees, and their iterative refinement to obtain a positive (or negative) answer

for the safety verification. We have implemented these algorithms and the results of

experimental evaluation are given in Section 3.6.
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Benchmark Vars. TH Refs. Sims. C2E2 (sec) Flow∗ (sec) Ariadne (sec)

Moore-Greitzer Jet Engine [22] 2 10 12 36 1.56 10.54 56.57

Brussellator 2 10 33 115 5.262 16.77 72.75

VanDerPol 2 10 5 17 0.75 8.93 98.36

Coupled VanDerPol [22] 4 10 10 62 1.43 90.96 270.61

Sinusoidal Tracking [156] 6 10 12 84 3.68 48.63 763.32

Linear Adaptive 3 10 8 16 0.47 NA NA

Nonlinear Adaptive 2 10 16 32 1.23 NA NA

NonLin. Adpt. + Disturbance 3 10 22 48 1.52 NA NA

Table 3.1: Experimental results for benchmark models with C2E2. Vars: Number of Variables,

TH: Time Horizon for Verification, Refs: Number of Refinements, Sims: Total number of

simulation traces required for proving safety.

3.6 Experimental Evaluation

For demonstrating the effectiveness of our technique which uses discrepancy functions

and simulations for verification, we have built a tool called Check Execute Compare

Engine (C2E2). More details about the tool C2E2 are given in Section 4.4. C2E2

accepts initial set and the unsafe set that are given as convex polyhedron. The vali-

dated simulations required by the dynamic analysis technique are generated using the

numerical integration engine CAPD [2]. CAPD uses finite precision interval arith-

metic and Taylor models for generating simulations described in Section 3.4.1. The

tool is developed in C++ and uses GNU Linear Programing Kit (GLPK) to check

the distance of simulation traces from the unsafe set. Observe that the algorithm

presented in Section 3.5.2 requires arbitrary precision arithmetic for relative com-

pleteness, however in practice, we use finite precision arithmetic which requires the

robustness to be greater than precision of the solver. In practice we terminate if the

partitioning reaches 10−5 and return unknown.

Our evaluation has four parts: First, we verify a benchmark suite consisting of

natural linear and nonlinear dynamical system models. Second, we verify several

adaptive control examples where the executable system has a reference model with

unknown parameters. Third, we evaluate scalability by increasing the time horizon

for verification and the number of dimensions of two parameterized models. Finally,

we study the effect of the initial partitioning.
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3.6.1 Benchmarks And Comparison With Other Tools

We compare the performance of C2E2 against Flow∗ [37] and Ariadne [28] using

a benchmark suite consisting of linear and nonlinear models. Ariadne uses faithful

geometric representation of sets for computing reachable set and Flow∗ uses Taylor

models. Results of comparing the performance with Breach are discussed later in this

section. In Table 3.1, we report the time taken by Flow∗ and C2E2 for computing

reach set and checking safety with respect to the unsafe set, and the time taken by

Ariadne for computing the reachable states. Considering that runtime for Flow∗

depends on remainder errors and order of Taylor model, we use adaptive orders and

set the remainder error to a value such that increasing it by a factor of 2 would change

the verification result from “SAFE” to “UNKNOWN”. The parameters for Ariadne

is set to the same values as that for Flow∗. Table 3.1 show that C2E2 outperforms

the other tools in all examples, and in most cases it is faster by at least an order

of magnitude. All the experiments were performed on an i7 Quadcore machine with

8GB memory running Ubuntu 11.10.

Breach [50] is another tool against which we evaluated C2E2 . Breach is a toolbox

developed in MATLAB with a GUI, making a fair comparison difficult. We ran

Breach on Vanderpol coupled oscillator, Sinusoidal tracking, and tank examples, and

measured the “wall clock” running time. In all cases C2E2 was faster; we don’t report

these numbers because of inaccuracies inherent in such numbers. One limitation of

Breach is that we cannot specify polyhedral unsafe sets. Also Breach is neither sound

nor complete for nonlinear models, but inaccuracies in the verification results for the

examples were not observed.

Tools dReal [71] and dReach [106] are also commonly used for safety verification of

nonlinear continuous and hybrid systems. The model of the system is encoded in as a

formula (which includes constructs for continuous evolution through ODEs) and the

safety verification problem is encoded as an SMT instance and given as input to dReal

and dReach. Contrary to C2E2 that either proves the system to the safe or provides a

counterexample, dReal and dReach return that either the formula is satisfied (in which

case the system is safe) or return a δ-unsat formula (in which case the δ-perturbation

of the model is unsafe). Due to this difference in the guarantees provided by the

verification algorithms, we feel that comparing C2E2 with dReal/dReach would be

unfair.

For the adaptive control system, the n-tank system and the nonlinear navigation

system the discrepancy functions were derived manually, and for all the other exam-
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ples the discrepancy functions were obtained from the papers [22, 156] in which the

systems appeared.

3.6.2 Systems Models With Unknown Parameters

One prominent advantage of our approach is that it supports verification of executable

systems where the reference model has unknown parameters. An illustrative example

is the linear plant:

ẋ = 1

ẏ = θ + u

where θ is an unknown parameter and u is the control input. Following a standard

adaptive control technique for driving y to zero, a new variable θ̂—an estimator for

θ—is introduced giving the new dynamics for y:

ẋ = 1

ẏ = −σy + θ − θ̂
˙̂
θ = γy

Constants σ, γ > 0 are chosen by the designer. For the new system,

V ((x1, y1, θ̂1), (x2, y2, θ̂2))
∆
= 1

2
(x1 − x2)2 + γ

2
(y1 − y2)2 + 1

2
(θ̂1 − θ̂2)2 is an incremental

Lyapunov function because V̇ = −γσ(y1 − y2)2 < 0 and was used as discrepancy

function for verification.

Consider the nonlinear system:

ẋ = θx+ u

with control input u. Similar to the earlier example, we introduce θ̂ and define

u = −θ̂x− x such that the closed system becomes:

ẋ = (θ − θ̂)x− x
˙̂
θ = x2

The Lyapunov function 1
2
x2 + 1

2
(θ − θ̂)2 establishes stability of the system. For com-
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Benchmark Refs. Sims. Time

12-Tanks 1 16 2.744

18-Tanks 4 76 15.238

24-Tanks 4 100 22.126

30-Tanks 4 124 28.824

12-Vehicles 0 32 5.477

16-Vehicles 0 64 12.238

20-Vehicles 0 128 25.144

24-Vehicles 0 256 54.236

(a) Scalability of verification of for n-
Tank and n-vehicle systems.

Benchmark δ Refs. Sims. Time

Nonlin. Adpt. 0.5 16 32 1.01

Nonlin. Adpt. 0.2 9 20 0.91

Nonlin. Adpt. 0.05 5 13 0.58

Nonlin. Adpt. 0.01 0 26 1.32

VanDerPol 0.5 30 96 3.84

VanDerPol 0.2 5 17 0.75

VanDerPol 0.05 8 32 1.44

VanDerPol 0.01 0 120 5.87

(b) Dependence of running time on initial
state covers.

Figure 3.6: Scalability and Initial state covers. Refs: Number of refinements, Sims: Number of

simulation traces, Time: Running time of C2E2 in seconds.

puting a discrepancy function, we come up with a quartic (fourth degree) discrepancy

function. A modified version of this example introduces unknown disturbance inputs.

Traditional model checkers that model unknown parameters as unknown constant

variable require partial information (such as range of values) for handling these sys-

tems which is not required by our technique.

3.6.3 Scalability With Time And Dimensions

To check the scalability of the approach with time horizon, we verified the VanDerPol

and the Nonlinear Adaptive control benchmarks for time horizons 10, 20 and 40. The

verification times of the former were 0.741, 1.662 and 4.373 seconds and for the latter

were 1.245, 2.604 and 6.075 seconds respectively. This suggests that the verification

time scales roughly linearly with the time horizon for these stable systems.

Table 3.6(a) shows the scaling of the verification times with the number of dimen-

sions. We consider the a switched variant of nonlinear version of the n interconnected

tank system of [7] and a switched nonlinear model with n/4 vehicles and each vehi-

cle having 4 continuous variables. For n-tank the initial value of δ is large and this

triggers several refinements and for n-vehicles the initial value of δ is small and this

decrease (or eliminates) the need for refinements. There are two key observations.

First, as the number of refinements increase, the size of the cover increases propor-

tional to the number of dimensions. This is evident in the case of n-tanks, where

for the n = 12, 1 refinement step required checking of 16 executions, whereas in the

case of n = 24, 4 refinement steps required 100 executions. Second, as the number of

55



dimensions increase, a smaller value of initial partitioning parameter δ increases the

size of the cover exponentially. This is evident in the case of n-vehicles, where adding

each new vehicle increased the number of simulations by a factor of 2.

3.6.4 Dependence On Initial Set Partition

Table 3.6(b) shows the verification times for different δ-coverings of the initial set. If

the value of δ is too small, then C2E2 generates a large initial partitioning and hence

increases the number of simulations. On the other hand, if the initial δ is too large,

then C2E2 needs to perform many refinements, and hence, takes more time. The

value of optimum value of δ clearly depends on that robustness of the system and the

relative distance of simulations from unsafe set. Observe that in Table 3.6(b), the

partitioning with δ = 0.2 takes less time for verification than δ = 0.5 and δ = 0.1.

Searching for the optimal value of δ is an interesting direction of future work.

3.7 Conclusions And Related Work

In this chapter we first presented discrepancy function for a continuous system that

captures the notion of divergence or convergence of trajectories. We have established

that these discrepancy functions are generalizations of proof certificates such as con-

traction metric and incremental Lyapunov functions routinely used in stability anal-

ysis of dynamical systems in control theory. We have also presented an algorithms

for computing discrepancy function for linear systems using validated simulations.

We then introduced a notion of reachTube that overapproximates the set of reachable

states from a given set of initial states. We then provided an algorithm for computing

reachTree from validated simulations and discrepancy functions from a given set of

initial states. The safety verification algorithm that iteratively computes reachtrees

with increasing precision until the system is inferred to be safe or unsafe. Finally, we

presented experimental evaluation on several benchmark problems to conclude that

the approach holds promise.

Dynamic analysis techniques for safety verification has been studied before in [78,

101]. The authors present a technique to compute Metric Transition System from

sample simulations of linear systems. This thesis differs from [78] as it does not

compute discrete transition system and can also be applied for nonlinear systems.
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Sensitivity analysis has been used in [52] for computing overapproximation of trajec-

tories in a neighborhood and proposes a safety verification algorithm using sample

simulations. This thesis uses discrepancy functions for computing overapproxima-

tion, which can be applied to nonlinear systems, as opposed to [52] which can only be

applied to linear systems. Sample simulations of the systems were used to compute

symbolic traces for Simulink/Stateflow models in [102], however do not tackle the

safety verification problem that is analyzed in this thesis. As opposed to this thesis,

STRONG [49] applies a lazy approach and partitions the initial set based the distance

from unsafe set.

Proof certificates such as Incremental Lyapunov functions and Incremental forward

completeness have been used in the literature to compute finite bisimulation models

in [82] and [169]. However, this thesis is the first work to propose the usage of proof

certificates for safety verification.
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Chapter 4

Dynamic Analysis of Hybrid Systems

In this chapter we present a dynamic analysis algorithm for hybrid systems where,

the continuous state evolves based on the current location and can be reset during

discrete transitions. We extend the notion of reachtree from continuous systems

presented in Chapter 3 to hybrid systems. This extension requires handling invariants

of each location and guards and resets for each discrete transition that enable the

change of location. This chapter introduces two routines. First, invariantPrefix for

handling the invariants for each location and second, nextRegions for computing the

overapproximation of states that encounter a discrete transition. We present the

safety verification algorithm for hybrid systems, establish its correctness, and prove its

relative completeness property. We also describe the tool Compare-Execute-Check-

Engine (C2E2) that implements the algorithm, its architecture, and present some

verification results.

4.1 Introduction

In this chapter we extend the dynamic analysis algorithm presented in Chapter 3 to

hybrid systems. We assume that the user provides discrepancy functions for each

of the locations of the hybrid system. The reachTube routine that computes an

overapproximation of trajectories for continuous systems gets the current location loc

as additional argument.

There are, however, two main steps in extending the dynamic analysis from con-

tinuous to hybrid systems. First, is to handle the invariants, i.e., every trajec-

tory τ in a given location l (τ ∈ Tl) respects the invariant of the location, i.e.,

∀t ∈ [0, τ.dur], τ(t) ∈ Invl. The routine invariantPrefix is presented to handle this is-

sue. Second, is to handle the discrete transitions. This involves making the following

checks while computing an overapproximation of the reachable states: a given discrete

transition a is only enabled if the current state of the system x satisfies the guard
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predicate, i.e., Guarda(x) is true. Further, once the discrete transition is enabled,

the state after the discrete transition is given by a reset map Reseta(x). This reset

map Reseta(x), maps a given state x to a set of states Nx. The system nondetermin-

istically chooses the next state of the execution from Nx. For handling the discrete

transitions, we present nextRegions routine.

Using these two procedures, we extend the notion of reachtree for continuous sys-

tems defined in Section 3.5.1 to hybrid systems. The depth of the reachtrees of hybrid

systems can be greater than 1. Further, each element in the reachtree has additional

attributes which track the current location, time when the execution entered the loca-

tion, and the number of discrete transitions taken. Similar to continuous systems, the

safety verification procedure for hybrid systems constructs reachtrees iteratively until

either the safety of the system is inferred or an execution (or its overapproximation)

that violates the safety property is discovered.

This chapter is organized as follows. We first present the two new routines for

handling invariants for location and discrete transition in Section 4.2. We then present

the reachtree computation for hybrid systems in Section 4.2.1. The safety verification

algorithm, its proof of soundness and relative completeness is presented in Section 4.3.

We then present the architecture of the C2E2 that implements the dynamic analysis

algorithm and discuss its features and user experience in Section 4.4. Finally, we

conclude this chapter after presenting the experimental results in Section 4.5.

4.2 Reachtrees With Invariants And Discrete Transitions

Before introducing the new routines that handle the invariants for locations and

guards for discrete transitions, we briefly recall the execution of a hybrid system

from Section 2.2.2. Given a hybrid system A = 〈V , A,D, T 〉, an execution starting

from an initial state x0 and initial location loc0 is given as alternating sequence of

trajectories and actions, i.e., σ = τ0a1τ1 . . . such that each τi is a trajectory and ai

is a discrete transition. Further, each trajectory always lies within the invariant of

the given location, i.e., ∀i, τi ∈ Tτi.loc and ∀t ∈ [0, τi.dom], τi(t) ∈ Invloc. Moreover, a

discrete transition is taken only when the guard is enabled and the starting state from

the next location is nondeterministically chosen from the reset map of the discrete

transition, i.e., τi−1.lstate ∈ Guardai and τi.fstate ∈ Resetai(τi−1.lstate). The location

after the discrete transition is given as nextLocai .
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In Section 3.5.1, we have introduced a notion of reachtube for continuous systems.

The procedure reachTube(S, h, T ) computes an overapproximation of all the trajecto-

ries starting from S for bounded time T of a continuous system using its discrepancy

function. For hybrid systems, we assume that each location l is provided with a dis-

crepancy function V l and witness 〈αl1, αl2, βl〉. We extend the reachtube routine as

reachTube(S, h, T, l) that computes a reachtube for trajectories in location l given as Tl
for a bounded time T in a similar manner. Notice that for hybrid systems, we require

that the trajectories satisfy the invariant of the location Invl at all times. To com-

pute new reachtubes that satisfy this restriction, we define a procedure invariantPrefix

which only considers trajectories that respect the invariant Invl. Before introducing

the procedure, we present a definition for tagging.

Definition 19 (Tagging) Given a region R and set P , tag(R,P ) returns either a

must or may or not as follows:

1. tag(R,P ) = must if and only if R ⊆ P .

2. tag(R,P ) = not if and only if R ⊆ P c.

3. tag(R,P ) = may otherwise.

Definition 20 (Invariant Prefix) Given a reachtube ψ = (R1, [t0, t1]), . . .,

(Rk, [tk−1, tk]) and a set P , invariantPrefix(ψ, P ) returns the longest sequence φ =

〈R1, tag1, [t0, t1]〉, . . ., 〈Rm, tagm, [tm−1, tm]〉, such that ∀1 ≤ i ≤ m, tagi is decided as

• tagi = must if and only if ∀j ≤ i, tag(Rj, P ) = must.

• tagi = may if and only if ∀j ≤ i, tag(Rj, P ) is either must or may and ∃q ≤ i,

tag(Rq, P ) = may.

That is, if m < k, then tag(Rm+1, P ) = not.

Intuitively, a region Ri is tagged must in an invariant prefix, if all the regions

before Ri (including itself) are contained within the set P . It is tagged may if all

the regions before it have nonempty intersection with P , and at least one of them

(including itself) is not contained within the set P . Given a reachtube ψ from a

set S, φ = invariantPrefix(ψ, Invloc) returns an overapproximation of the valid set of

trajectories from S that respect the invariant of the location loc of the hybrid system.

Thus, the set of all reachable states from S by a valid trajectory are contained within
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Figure 4.1: Figure illustrating the invariant prefix of reachtubes with respect to
different invariants. The untagged regions in reachtube obtained from reachTube
procedure are colored green. The regions in the invariant prefix that are tagged
must are colored blue and the regions tagged may are colored gray.

φ. Also, from Definition 16 we have that, if a region R is tagged must, then there

exists at least one trajectory starting from S that can reach R while respecting the

invariant P . We abuse notation and say that R ∈ φ if 〈R, tag, [t, t′]〉 is an element of

the sequence φ.

Illustrations of invariant prefix for a reachtube from S for several invariants is shown

in Figure 4.1. Each of the figures in the top row shows a reachtube and an invariant,

and the bottom row shows the corresponding invariant prefix. A region in invariant

prefix is colored blue if it is tagged must and is colored gray if it is tagged may. The

figures illustrate two things. First is that the invariant prefix does not contain the

regions that violate the invariant (i.e., tag(R,P ) = not) or the regions that appear

after a region that violates the invariant. Second, is that the first region that is tagged

may is not contained within the invariant and all the subsequent regions are tagged

may.

We now introduce the routine nextRegions that computes overapproximation of the

reachable states that serve as initial states in a new location after taking a discrete

transition. A discrete transition a is enabled if the current state satisfies the guard
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condition Guarda. The state after the discrete transition is obtained by applying the

reset map Reseta. Given a sequence of tagged regions (obtained from invariantPrefix

routine), the nextRegions routine returns the tagged set of reachable regions after a

discrete transition.

Definition 21 (Next Regions) Given φ = 〈R1, tag1, [t0, t1]〉, . . .,

〈Rm, tagm, [tm−1, tm]〉, a sequence of tagged regions obtained from invariantPrefix of a

location l, the subroutine nextRegions(φ) returns a set of tagged regions R.

〈R′, tag ′, loc′, t′〉 ∈ R if and only if there exists an action a from location l of the

automaton and a region Ri in φ such that R′ = Reseta(Ri), t′ = ti−1, loc′ = nextLoca

and one of the following conditions hold:

(a) Ri ⊆ Guarda, tag i = must, tag ′ = must.

(b) Ri ∩Guarda 6= ∅, Ri * Guarda, tag i = must, tag ′ = may.

(c) Ri ∩Guarda 6= ∅, tag i = may, tag ′ = may.

A given tuple 〈R′, tag ′, loc′, t′〉 ∈ R is tagged must only when the region Ri is

tagged must and is contained within the Guarda. In all other cases, i.e. when Ri

is not completely contained within the guard, or if Ri is tagged may, the region is

tagged may. This ensures that regions tagged must are indeed reachable after the

discrete transition, and all the regions tagged may, may contain some reachable state

after the discrete transition. Figure 4.2 illustrates the result of a next procedure on

an invariant prefix. The reset map considered in the figure is the identity function.

Notice that the regions that are tagged must by the nextRegions routine are tagged

must in the invariant prefix and are contained in the guard. These regions are colored

blue in the figure. The regions that are tagged may by the nextRegions routine are

either tagged may in the invariant prefix or are not contained in the guard.

Assumption 2 We restrict our attention to hybrid systems with reset maps that are

uniformly continuous functions. For such systems, it follows that

diameter(Reseta(R))→ 0 as diameter(R)→ 0.

Notice that for each reachtube, multiple tagged regions are returned by nextRegions

routine. For computing the overapproximation of the set of reachable states from a

given initial set for a hybrid system, we construct reachtree. The elements of tree

store the invariant prefixes, i.e., the set of states reachable from a trajectory that
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Figure 4.2: Figure illustrating the nextRegions procedure for an invariant prefix with
respect to a guard. The regions in the invariant prefix that are tagged must are
colored blue and the regions tagged may are colored gray. Same color convention is
followed in labeling the regions returned by the nextRegions procedure.

respects the invariant of current location. If any discrete transitions are encountered

by the trajectories, new child nodes are added to the current element that store

the reachable set after a discrete transition (returned by nextRegions routine). The

reachtree computation continues computing the reachtubes from initial set of child

nodes and this process continues until the time bound or the bound on number of

discrete transitions is reached. We now present the algorithm for computing the

reachtree for hybrid systems.

4.2.1 Computing Reachtree For Hybrid Systems

The reachtree for hybrid systems is an extension of the reachtree for continuous sys-

tems presented in Section 3.5.1. In addition to the attributes InitialSet, tag, and

RT, the elements in reachtree of hybrid systems have attributes location, time, and

switches. These attributes track the location of the execution, the time of enter-

ing the location, and the number of discrete transitions taken to reach the location

respectively. Additionally we have color attribute that helps in construction of the

reachtree.

For a given system A, reachtree algorithm takes as input the set of initial states

Θ, the time bound T , the initial location of the system loc0, and the bound on the

number of discrete transitions N . Additionally, parameters δ > 0, for constructing a

cover of the initial set Θ and h, used as time step in computing reachtubes are also

provided as inputs. The algorithm for computing reachtree is given in Algorithm 4.1.

The Algorithm 4.1 for hybrid systems is similar to the Algorithm 3.3. However, in
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input : A, Θ, δ, T , h, N , loc0

output: reachTree ∆
1 Compute X = {Bδ(x1), . . . , Bδ(xm)}, a δ-cover of Θ;
2 ∆← Tree() with root node as #;
3 for each Bδ(xi) ∈ X do
4 Ei ← newNode();
5 Ei.InitialSet← Bδ(xi);
6 if Bδ(xi) ⊂ Θ then Ei.tag← must;
7 else Ei.tag← may;
8 Ei.location← loc0;
9 Ei.time← 0;

10 Ei.switches← 0;
11 Ei.color← gray;
12 Set # as parent to Ei;

13 end
14 for each E ∈ T with E.color = grey ∧ E.switches ≤ N ∧ E.time ≤ T do
15 〈ψ, ε〉 ← reachTube(E.InitialSet, T − E.time, h, E.location);
16 φ← invariantPrefix(ψ);
17 E.RT← φ;
18 for each 〈R′, tag′, loc′, t′〉 ∈ nextRegions(φ) do
19 F ← newNode();
20 F.InitialSet← R′;
21 if E.tag = may then F.tag← may else F.tag← tag′;
22 F.location← loc′;
23 F.time← t′;
24 F.switches← E.switches + 1;
25 F.color← gray;
26 Set E as parent to F ;

27 end
28 E.color← black;

29 end
30 return ∆

Algorithm 4.1: Algorithm to compute reachtree for hybrid systems.
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hybrid systems due to the presence of discrete transitions, the depth of the reachtree

can be more than 1. The loop from lines 3 to 13 initiates the computation of reachtree.

This loop computes the δ-cover of Θ and creates a node Ei for every element Bδ(xi)

in the cover. The attribute InitialSet is assigned as Bδ(xi), tag is assigned must or

may based on whether the Bδ(xi) is completely contained within the initial set or not.

The attributes time and switches are assigned 0 as no time elapsed and no discrete

transitions are taken. Finally, the color attribute is assigned gray and the node is set

as the child node to the root #.

The loop in lines 14 to 29 computes the rest of the reachtree. The loop selects an

element E in the tree which is colored gray within the bounded time T and discrete

transitions N . For such element, line 16 computes the invariant prefix of the reachtube

starting from E.initialSet for T −E.time duration. It then computes the set of regions

that can take a discrete transition by invoking the nextRegions routine in line 18.

For each of the tagged regions returned by nextRegions, a new node is created, its

attributes appropriately assigned, and the new node is added as the child node to the

current node E in lines 19 to 26. Finally, the color of the current node is assigned

black. This process is repeated until there are no nodes left that are colored gray

with bound time T and discrete transitions N . The above procedure is guaranteed

to terminate because of the bound on time and on the number of discrete transitions.

Further, the depth of the reachtree is at most N + 1.

We abuse notation and say that E ∈ ∆ to mean E is an element of the reachtree

∆. We also say that R ∈ ∆ to mean that ∃E ∈ ∆, such that R ∈ E.RT. From the

construction of reachtree, the following properties of reachtree can be established. We

define the reachable set of ∆ as the collection of regions in the reachtubes in ∆.

Definition 22 Given a reachtree ∆, we denote the set of all regions in reachtubes of

∆ as ReachSet(∆). Formally, ReachSet(∆)
∆
= ∪R∈∆R.

Lemma 16 Consider a reachtree ∆ of hybrid system A for initial set Θ, time bound

T , and bound on discrete transitions N , it follows that

Reach(A,Θ, T,N) ⊆ ReachSet(∆).

Proof: Consider an execution σ of the hybrid system A for bounded time and

bounded number of switches starting from initial set Θ. Let σ = τ0a1τ1 . . . amτm. We

now prove that ∀t ≤ σ.dur, ∃ Ek ∈ ∆, ∃Rj ∈ Ek.RT such that σ(t) ∈ Rj. We prove

this by induction on number of discrete transitions.
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Base Case: Suppose σ does not have any discrete transition, i.e., σ = τ0. As

τ0(0) ∈ Θ, we have that ∃Ei ∈ ∆, specifically, a child node of # such that τ0(t) ∈
Ei.InitialSet (line 1 computes the δ-cover of the initial set Θ). Notice that line 15

computes ψ, which is the reachtube for bounded time T starting from Ei.InitialSet.

Hence, we have that ∀t ≤ τ0.dur, ∃Rj ∈ ψ, such that τ0(t) ∈ Rj. Moreover, since σ

is a valid execution of A, we have that ∀t ≤ τ0.dur, τ0(t) ∈ Invloc0 , it follows that

∃R′j ∈ φ such that τ0(t) ∈ R′j where φ is returned by invariantPrefix routine in line 16.

Induction Step: Suppose that for all executions σ′ with k−1 discrete transitions

(k− 1 ≤ N − 1), the induction hypothesis is satisfied. We now have to establish that

for all executions σ with k discrete transitions, the hypothesis is satisfied. Suppose

that σ′ = τ0a1 . . . ak−1τk−1 and σ = τ0a1 . . . ak−1τk−1akτk, that is, σ is the execution

obtained when σ′ takes the discrete transition ak and the trajectory τk.

From the induction hypothesis, we have that ∀t ≤ σ′.dur,∃E ∈ ∆, R ∈ E.RT

such that σ(t) ∈ R. Consider specifically the node that includes the last state of the

execution σ′. Let E ′ ∈ ∆ such that ∃R′ ∈ E ′.RT such that σ′.fstate ∈ R′. As ak

is the discrete transition that is enabled after σ′, it follows that σ′.fstate ∈ Guardak .
Hence, we have that R′∩Guardak 6= ∅. Thus when nextRegions routine is invoked for

E ′ in line 18, a new node E is created with initial set as R, the region reached after

taking discrete transition ak from R′. Therefore, we have that τk.fstate ∈ E.InitialSet.

Using the base case hypothesis, it follows that ∀t ∈ [σ′.ltime, σ.ltime], τk(t) ∈ Rj for

some Rj ∈ E.RT.

Informally, Lemma 16 states that union of all the regions in reachtubes of a

reachtree ∆ contains the reachable set. Hence, to compute an overapproximation

of the reachable set of states, one can compute a reachtree ∆ and compute an overap-

proximation by considering the union of all the regions in ∆. In Chapter 6, we refer

to this procedure as Post

Lemma 17 Given a node E ∈ ∆ such that E.tag = must, and region R ∈ E.RT that

is tagged must, we have that R ∩Reach(A,Θ, T,N) 6= ∅.

Proof: To prove this theorem, it is enough to prove that there exists an execution

that reaches R if it meets the conditions stated. We prove this by induction on the

depth of node E in reachtree ∆ that contains R.

Base Case: Suppose that an element E is at depth 1 (as the root node # does not

contain any reachtube) such that E.tag = must and let R ∈ E.RT be a region that
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is tagged must. It immediately follows from line 6 that E.InitialSet ⊆ Θ. As E.RT

computes the invariant prefix of reachtube starting from the initial set, we have that

all the trajectories τ that start from E.InitialSet for bounded time T are enclosed by

the invariant prefix. Moreover, if region R is tagged must in the invariant prefix, it

means that all the regions before it are completely contained within the invariant,

hence ∃τ ∈ Tloc such that τ(t) ∈ R.

Induction Step: Suppose that the node E is at depth k such that E.tag = must

and let R ∈ E.RT be a region that is tagged must. Suppose that the parent node

of E be E ′. From the procedure nextRegions and from line 21 in Algorithm 4.1, it

follows that 1) E ′.tag = must and 2) ∃R′ ∈ E ′.RT such that R′ is tagged must and

∃a ∈ A such that R′ ⊆ Guarda, E.InitialSet = Reseta(R
′).

From induction hypothesis, we know that ∃σ′ ∈ execs(A) such that σ′.fstate ∈ R′

(one can construct such an execution that ends in R′ by considering only a prefix of the

execution that reaches R′). As R′ ⊆ Guarda, it follows that the discrete transition

a is enabled at σ′.fstate. Applying the base case hypothesis, we have that ∃τ ′, a

trajectory that starts from E.InitialSet and reaches R while satisfying the invariant

of the location. Hence, the execution σ = σ′aτ ′ that is obtained by concatenating σ′

with action a and trajectory τ ′ is a valid execution and reaches R.

Lemma 18 Given a reachtree ∆, let maxDiameter(∆)
∆
= max { diameter(R) | R ∈

∆}. It follows that maxDiameter(∆)→ 0 as δ → 0 and h→ 0.

Proof: Follows from Corollary 13 which states that all the regions in reachtubes can

be made arbitrarily precise (from uniform continuity of discrepancy functions) and

from Assumption 2 which establish the uniform continuity of reset maps.

4.3 Safety Verification For Hybrid Systems

The safety verification procedure is similar to that for continuous systems, where

higher precision reachtrees are computed until the reachtree is proved to be safe or

unsafe. We begin by first defining when a reachtree is safe.

Definition 23 Given a reachtree ∆ and an unsafe set U , the procedure checkSafety

returns safe or unsafe or unknown if and only if

• checkSafety(∆, U) = safe if ∀E ∈ ∆, ∀Ri ∈ E.RT, Ri ∩ U = ∅
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• checkSafety(∆, U) = unsafe if ∃E ∈ ∆, such that E.tag = must and

∃〈Ri, tagi, [ti−1, ti]〉 ∈ E.RT, Ri ⊆ U and tagi = must.

• checkSafety(∆, U) = unknown otherwise.

Similar to the safety of reachtree defined in Chapter 3, Definition 23 defines a

reachtree to be safe only when all the reachtubes in all the nodes in the reachtree are

safe. If there is an element E in reachtree that is tagged must and there is a region R

in E.RT tagged must that is completely contained within unsafe set, then it is said to

be unsafe. Else, one cannot infer whether the reachtree is either safe or unsafe, i.e.,

unknown. This happens because the overapproximation of reachtree is too coarse

to either infer safety or its violation. To improve the order of overapproximation,

we compute more precise reachtrees. The verification algorithm that computes more

precise reachtrees for each iteration is presented in 4.2.

input : A, Θ, U , T , N , loc0

output: If A is safe or unsafe
1 Select δ > 0, h ∈ [0, T ];
2 while true do
3 ∆← reachTree(Θ, T,N, δ, h, loc0) ;
4 if checkSafety(∆, U) = safe then return safe;
5 else if checkSafety(∆, U) = unsafe then return unsafe;

6 else δ ← δ
2
; h← h

2
;

7 end

Algorithm 4.2: Dynamic analysis algorithm for safety verification of hybrid
systems.

The correctness of the safety verification algorithm follows from the properties of

reachtree given as lemmas 16 and 17. We first state the soundness property as follows:

Theorem 19 (Soundness) Given a hybrid system A, initial set Θ, unsafe set U ,

time bound T , and bound on discrete transitions N , if the algorithm 4.2 returns safe

(or unsafe), then the system A is safe (or unsafe).

Proof: Suppose that the Algorithm 4.2 returns safe. It follows that all the regions in

the reachtree ∆ (line 3) are safe. From Lemma 16 we have that all the reachable states

from initial set Θ for bounded time and bounded number of discrete transitions are

contained within the regions of reachtree. Hence, all executions with bounded time

and bounded discrete transitions are safe.
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Suppose that the algorithm 4.2 returns unsafe. It follows that ∃E ∈ ∆ such that

E.tag = must and ∃R ∈ E.RT that is tagged must and R ⊆ U . From Lemma 17,

it follows that there exists an execution σ ∈ execs(A,Θ, T,N) such that σ(t) ∈ R.

Hence the system is unsafe.

Lemma 20 Given a reachtree ∆, let ε = maxDiameter(∆) as defined in Lemma 18.

Given any region R ∈ ∆, there is at least one execution of Aε from the initial set

Bε(Θ) that reaches R within T time and N discrete transitions.

Proof: Recall that Aε is the hybrid system that is obtained by bloating all the

invariants and guards by ε. Similarly Bε(Θ) is obtained by bloating Θ by ε. Notice

that all the regions that satisfy Lemma 17 are reachable by at least one execution of

A from Θ and the proposition is automatically true.

We now consider the regions that are not covered by Lemma 17. For such regions,

one of the following is true:

1. The region R is tagged may by the invariantPrefix routine or

2. The element E is tagged may by the nextRegions routine or

3. E is a child node to the root # and E.InitialSet ∩Θc 6= ∅ (line 6).

If the invariants, guards, and the initial set are bloated by ε, then the regions in the

reachtree ∆ would all be tagged as must regions during the reachtree computation

from Aε. Hence, from Lemma 17, it follows that all the regions in R are reachable

for Aε with Bε(Θ) as initial set.

Theorem 21 (Relative Completeness) Algorithm 4.2 will terminate and return

correct answer when A is robustly safe or robustly unsafe.

Proof: Suppose that the system is robustly safe. Recall from Definition 6 that if

a system is robustly safe, then ∃ε > 0 such that all executions of Aε from initial set

Bε(Θ) are safe from Bε(U). From Theorem 19, we have that the algorithm never

returns unsafe. Thus, the algorithm will continue computing more and more precise

reachtrees until the safety of the system is proved. As the values of δ → 0 and h→ 0,

the maximum diameter of regions in ∆ also converges to 0. Let δ′ and h′ be the values

such that the maximum diameter of regions in ∆ is ε/2. It follows from Lemma 20

that all such regions can be reached by executions starting from Bε/2(Θ) of Aε/2. As
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the system is robustly safe, i.e. do not contain any state from Bε(U), the checkSafety

procedure should return that ∆ is safe because all the regions are at least ε/2 distance

from the unsafe set U .

Suppose that the system is robustly unsafe. From Definition 6. we have that

∃ε < 0 such that all executions of Aε from initial set Bε(Θ) are safe from Bε(U). From

Theorem 19, we have that the algorithm never returns safe. Thus, the algorithm will

continue computing more and more precise reachtrees until the violation of safety is

proved. Let δ′ and h′ be the parameters such that the diameter of all the regions

computed in ∆ are less than ε/2.

Suppose that the unsafe execution σ of Aε starting from Bε(Θ) is given as σ =

τ0a1τ1 . . . amτm where σ.lstate ∈ Bε(U). From Lemma 17 it follows that ∃E0, E1, . . . , Em

such that Ei ∈ ∆ such that τi ∈ Ei.RT and Ei+1 is a child of Ei. As the diameter for

each of the regions is less than ε/2, it follows that each of the regions that contain

trajectory τi in Ei.RT are completely contained within the invariant and are tagged

must. Similarly, it follows that the regions where the discrete transition ai is enabled

are also completely contained within the guards and hence are also tagged must.

Consider the region R ∈ ∆ such that σ.lstate ∈ R. It follows that R is tagged must.

Since σ.lstate ∈ Bε(U), we have that R ⊆ Bε/2(U). Hence the checkSafety routine

should return that ∆ is unsafe.

In this section, we have presented a dynamic analysis technique for hybrid systems.

We have seen the algorithm for computing the reachtree and presented an algorithm

for safety verification using the reachtrees computed. In the following sections, we

discuss the implementation of our technique in a tool and present some experimental

results.

4.4 Compare-Execute-Check-Engine (C2E2): A Dynamic

Analysis Tool For Hybrid Systems

The safety verification algorithm presented in Section 4.3 has been implemented in

a tool called Compare-Execute-Check-Engine (C2E2). The tool takes as input the

model of a hybrid system and a safety property. Further, discrepancy functions for

each of the locations of the automaton are given by the user as model annotations.

This is similar in spirit to the code contracts used in software. Having provided the
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model, discrepancy function, and safety property, C2E2 verifies whether the safety

property is satisfied or violated by the model. If violated, C2E2 also presents the

counterexample (or its overapproximation) that violates the safety property. In this

section we discuss the tool’s architecture, its input format of the model description,

format of the discrepancy function provided as model annotations, and user expe-

rience. We conclude this section by verifying standard benchmark examples with

C2E2.

4.4.1 Architecture Of C2E2

The architecture of C2E2 is shown in Figure 4.3. The front end parses the input

models, provides an editor for adding and verifying several safety properties, com-

municates the necessary information to the back-end for verification, and provides a

plotter which helps visualize the reachable set. It is developed in Python and vastly

extends the Hylink parser [123] for Stateflow models. The back end (verification en-

gine that implements Algorithm 4.2) is developed in C++. The front end parses the

input model file (.mdl or .hyxml) into an intermediate format and generates a C++

code for computing numerical simulations. The properties are obtained from the in-

put file or from the user through the front end’s GUI. The C++ code for generating

numerical simulations is compiled using a validated simulation engine provided by

Computer Assisted Proofs in Dynamic Groups (CAPD) library [2]. This compiled

code and the property are read by the C2E2 verification back end which also uses the

GLPK libraries. The verification result and the computed reachable set are read by

the front end for display and visualization. This modular architecture allows us to

extend the functionality of the tool to new types of models (such as Simulink mod-

els, systems with differential algebraic inequalities), different simulation engines (for

example, Boost, VNODE-LP), and alternative checkers (such as Z3 and dReal [70]).

4.4.2 Models, Properties, And Annotations

Models & Properties: C2E21 takes as input annotated Stateflow models. Math-

works Simulink/Stateflow is a commonly used toolbox for modeling industrial scale

CPS. It can express the continuous evolution of physical environment as solutions

of ODEs (possibly nonlinear) and the software state can be described by different

1https://publish.illinois.edu/c2e2-tool/
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Figure 4.3: Architecture of C2E2

locations and with discrete transitions defined by guards and resets. The parser de-

veloped in Hylink [123] parses Stateflow models (given as files with .mdl extension).

Alternatively, as Stateflow is a proprietary format, in order to facilitate academic re-

searchers to develop models without having access to Simulink-Stateflow, we extended

the Hylink parser to also accept as input an eXtensible Markup Language (XML) file

with special tags for different elements of hybrid system. We restrict our attention

to hybrid systems with polynomial predicates over the state variables as guards and

invariants, and for the discrete transitions, the resets that are polynomial real-valued

functions. The properties can be specified in the .hyxml model files or using the

GUI. C2E2 can verify bounded time safety properties specified by a time bound, a

polyhedral set of initial states and polyhedral set of unsafe states. Internally C2E2

does not bound the discrete number of transitions.

Annotations: The dynamic analysis technique presented crucially depends on dis-

crepancy function. C2E2 requires that these discrepancy functions be given as model

annotations. Specifically, C2E2 expects exponential discrepancy function for each

location, given as tuple 〈K, γ〉 such that for a location l, given any two trajectories

τ1, τ2 ∈ Tl and t ∈ τ1.dur, t ∈ τ2.dur, ||τ1(t) − τ2(t)|| ≤ Keγt||τ1(0) − τ2(0)||. This

pair 〈K, γ〉 is provided as comments in the Stateflow model and with special tags in

hyxml file. We have seen in Sections 3.3.1 and 3.3.2 that ODEs that are Lipschitz

continuous or ODEs that admit a contraction metric give us exponential discrepancy

functions. In Example 8 we show how to obtain an exponential discrepancy function
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for systems that have incremental Lyapunov function described in Section 3.3.3.

Example 8: Consider the differential equation

ẋ = 1 + x2y − 2.5x;

ẏ = 1.5x− x2y − y

By analyzing the auxiliary system (x1, y1) and (x2, y2), using the incremental stabil-

ity [16], we have that

d

dt
[(x1 − x2)2 + 2(x1 − x2)(y1 − y2) + (y1 − y2)2] = −2(x1 − x2 + y1 − y2)2 < 0.

Therefore, for any two trajectories τ1 and τ2 starting from (x1, y1) and (x2, y2) re-

spectively it follows that (τ1(t).x− τ2(t).x)2 + 2(τ1(t).x− τ2(t).x)(τ1(t).y − τ2(t).y) +

(τ1(t).y − τ2(t).y)2 ≤ (x1 − x2)2 + 2(x1 − x2)(y1 − y2) + (y1 − y2)2. The function

||τ1(t)−τ2(t)|| ≤ 2||τ1(0)−τ2(0)||e0×t is an annotation and is specified as K = 2, γ = 0.

�

Remark 5 Example 8 illustrates the procedure to get an exponential discrepancy

function for a particular incrementally stable system. More generally, for systems

that are incrementally stable (as defined in Section 3.3.3) with incremental Lyapunov

function V , we have that 〈K, γ〉 is an exponential discrepancy function where

K = supx2,x1{
V (x1, x2)

||x1 − x2||
} and γ = 0.

�

4.4.3 User Experience

In this section, we discuss the C2E2 interface for verifying safety property and vi-

sualization of reachable set. Upon launching C2E2 and loading the model file, the

users are greeted with a front end that enables them to explore the hybrid system

in a tree-format as shown in Figure 4.4(a). The front end also facilitates the users

to provide the safety property using GUI. The interface for specifying and verifying

safety properties is shown in Figure 4.4(c). The interface has two main components.

To the left is the model explorer which displays the model in a tree format and to the
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(a) Model Explorer. (b) Property Editor.

(c) GUI Front End.

Figure 4.4: Figure showing a snippet of cardiac cell model in (a), property dialog for
specifying properties in (b), the GUI for C2E2 that enables to verify properties and
observe the models in (c).

right is the interface that allows the users to add, edit, copy, delete or verify several

safety properties. The safety property for the hybrid system is defined by the initial

set of states and an unsafe set of states. The GUI for specifying a new property is

shown in Figure 4.4(b). As each property is edited, the smart parser provides real-

time feedback about syntax errors and unbounded initial sets (Figure 4.4(b)). Once

properties are edited the verifier can be launched.

Visual representation of reachable states and locations can aid debugging process.

To this end, we have integrated a visualizer into C2E2 for plotting the projections of

the reachable states. Once a property has been verified, the user can plot the valua-

tions of variables against time or valuations of pairs of variables (phase plots). Similar

to the interface for safety verification, the visualizer also has 2 main components. On
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(a) GUI for creating new
plots.

(b) Plot of reachable set.

(c) GUI for plotting.

Figure 4.5: Figure showing the interface for adding a new plot in (a), reachable set
of the cardiac cell model in (b), and the visualizer interface in (c).

the left is the interface that provides thumbnails of the phase or time plots (that are

already plotted) and to the right is the interface that allows users to add, modify,

delete, or plot additional time or phase plots. The screen shot of the interface is

shown in Figure 4.5(c). The interface for adding a new plot is shown in Figure 4.5(a).

The unsafe set is projected on the set of plotting variables. The property parser and

visualizer uses the Parma Polyhedra Library2 and matplotlib3.

2http://bugseng.com/products/ppl/
3http://matplotlib.org/
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4.4.4 Stateflow Model Semantics

It is often the case that using a typical formal verification tool requires a steep learning

curve to understand the input format for models, the specification, and the interface.

Designing C2E2 with a GUI was a conscious choice to alleviate part of the problem.

Additionally, C2E2 accepts Stateflow models as input, which brings it closer to CPS

system designers. However, these Stateflow models do not have a prescribed seman-

tics. The simulations traces that MATLAB generates is considered as the default

semantics of the model. There are two aspects of these models that should be dis-

cussed. First is that although the mathematical formalism of HIOA [127] allows for

nondeterminism, such nondeterminism is not allowed in Stateflow models. Second, all

the discrete transitions are interpreted as “urgent’’, i.e. a discrete transition is taken

by the system as soon as it is enabled. For example, if the guard for a discrete transi-

tion is given as x ≥ 5, it is enabled whenever the value of variable x is greater than or

equal to 5. However, in Stateflow, the transition is taken as soon as it is enabled i.e.

x = 5. Under such interpretation, the guard sets are only allowed to be hyperplanes

or hypersurfaces given by solutions of polynomials. For such models, the safety ver-

ification algorithm need not terminate. Therefore, we consider an ε perturbation of

the guards. That is, the guard x >= 5 is interpreted as x >= 5− ε ∧ x <= 5 + ε.

4.5 Experiments

Simulation based verification approach for annotated models has been demonstrated

to outperform other verification tool such as Flow* and Ariadne in Section 3.6. In this

chapter, we present the verification results for some of the nonlinear and linear hybrid

systems benchmarks in Table 4.1. The annotations for each of these benchmarks have

been obtained by techniques described in Sections 3.2 and 3.4. All the experiments

have been performed on Ubuntu 11.10 systems with Intel i-7 Quad core processor

with 8GB ram.

Algorithm 4.2 iteratively computes more precise reachtrees and checks if the reachtree

is safe. However, the implementation optimizes this procedure by performing safety

verification while reachtree is being computed. Therefore, if the system turns out

to be unsafe, then the reachtree computation terminates. This is reflected in Ta-

ble 4.1 where the systems that violate safety take less time for verification than their

safe counterparts. On standard examples C2E2 can successfully verify these sys-
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Benchmark Vars. Num. Loc. TH VT (sec) Result

Cardiac Cell 3 2 15 17.74 safe

Cardiac Cell 3 2 15 1.91 unsafe

Nonlinear Navigation 4 4 2.0 124.10 safe

Nonlinear Navigation 4 4 2.0 4.94 unsafe

Inverted Pendulum 2 1 10 1.27 safe

Inverted Pendulum 2 1 10 1.32 unsafe

Navigation Benchmark 4 4 2.0 94.35 safe

Navigation Benchmark 4 4 2.0 4.74 unsafe

Table 4.1: Experimental Results for benchmark examples. Vars: Number of Variables, Num.

Loc. : Number of discrete locations in hybrid automata, TH: Time Horizon for Verification, VT

(sec) : Verification time for C2E2 in seconds, Result: Verification result of C2E2.

tems within an order of minutes and also handle nonlinear differential equations with

trigonometric functions of inverted pendulum.

4.6 Conclusions

In this chapter we have presented the algorithm for computing reachTree for hybrid

systems that overapproximates all the executions with bounded time and discrete

transitions. For doing this, we have introduced two new routines called invariantPrefix

and nextRegions. We then presented a safety verification algorithm for hybrid systems

and proved its theoretical guarantees namely soundness and relative completeness.

We then presented a tool C2E2 that implements the verification algorithm presented.

We inspected several aspects of the tool C2E2 such as its architecture, its GUI inter-

face, and visualization features. We conclude this chapter with verification results of

standard benchmark examples.
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Chapter 5

Verification Case Studies: Parallel Landing Protocol
And Powertrain Control System

In this chapter we present two case studies for verification. First, is an alerting

mechanism for parallel landing protocol and second, is a powertrain control system

in automobiles. The parallel landing protocol considered in this case study relies

on an alerting mechanism called Adjacent Landing Alerting System (ALAS) [96] for

ensuring that a safe separation is maintained between the landing aircraft. In this

chapter, we formulate the requirements of the alerting mechanism rigorously as tem-

poral precedence properties and present a dynamic analysis technique for verifying

such properties. We present the experimental results of the verification under different

scenarios and runway geometries. The second case study is verification of powertrain

control systems that has been proposed as a challenge problem by Toyota [94]. We

verify important temporal properties for powertrain control system using the dynamic

analysis technique for safety verification presented in Chapter 4. These two case stud-

ies demonstrate that dynamic analysis is a powerful technique for verifying realistic

CPS.

5.1 Introduction

We now discuss the motivation behind the verification of parallel landing protocol

and powertrain control system, the challenges encountered during verification, and

outline the verification technique.

Parallel Landing Protocol: Steady increase in the air-traffic is projected to result

in crowded airspaces and lower throughputs of airports. To improve the throughput

of airports, Simplified Aircraft-based Paired Approach (SAPA) concept was proposed

in [96] for enabling parallel landing of aircraft. SAPA relies on an alerting mechanism

called Adjacent Landing Alerting System (ALAS) for ensuring that the safe separation

between landing aircraft is always maintained. ALAS is designed to issue an alert if

78



it predicts that the safe separation between the landing aircraft would be violated in

the near future.

It is hence pivotal to verify the correctness of ALAS protocol. ALAS should not only

issue an alert before the aircraft violate safe separation, but it should issue this alert

at least b time units before such violation happens. This time b is used as a buffer time

for enabling the fail safe maneuvers in case of violation of safe separation. Formally,

this property is specified as a temporal precedence property denoted as P1 ≺b P2. A

system is said to satisfy P1 ≺b P2 if and only if all behaviors satisfy the predicate P1

at least b time units before satisfying the predicate P2. For ALAS, the requirement

can be written in the form of Alert ≺b Unsafe where Alert predicate is satisfied by a

state if ALAS issues an alert in that state and Unsafe predicate is satisfied when the

safe separation between aircraft is violated.

Another challenging aspect of the ALAS is that, the predicate that issues the alert,

falls under the category of guarantee predicates. Such predicates are of the form

∃t, fp(x, t). Here fp is called the lookahead function and predicts the future behavior

of the system. Although quantifier elimination can be used to handle a restricted form

of such lookahead functions (such as polynomials), it is often an expensive operation.

In the case of ALAS, this lookahead function is defined implicitly as a solution of a

linear ordinary differential equation and hence involves trigonometric functions, for

which, quantifier elimination is an expensive operation.

In this chapter, we verify the correctness of ALAS. We achieve this by present-

ing a new dynamic analysis algorithm for verifying temporal precedence properties.

The algorithm relies on computing reachtrees for hybrid systems that was presented

in Chapter 4. Further, we present a dynamic analysis technique for handling the

guarantee predicate that is given as solution to ordinary differential equations. We

prove the correctness of the algorithm, establish its theoretical properties and present

verification results.

Powertrain Control System: As the targets for fuel efficiency, emissions, and

drivability become more demanding, automakers are becoming interested in pushing

the design automation and verification technologies for automotive control systems.

The benchmark suite of powertrain control systems published in [95, 94] was posed as

challenge problem for academic research. These benchmarks consists of a sequence of

SimulinkTM/StateflowTM models of the engine with increasing levels of sophistication

and fidelity.
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The complex of these models involves delay differential equations, periodically up-

dated sensors, and look up tables. Such models are out of the scope of current

verification tools. This complex model has been simplified to have ordinary differen-

tial equations, one with periodically updated sensors, and the other with polynomial

ordinary differential equations. The challenge problems posed in [95, 94] includes

verifying the conformance of one model with another. Important requirements of

the system were specified in Signal Temporal Logic [122], a logical framework for

specifying temporal properties of signals.

In this chapter, we present the results of verifying properties of powertrain control

system model with polynomial dynamics. The key controlled quantity is the air to

fuel ratio which influences the emissions, the fuel efficiency, and the torque generated.

The properties verified in this case study are divided mainly into two categories. First,

are the global properties that ensure that the air to fuel ratio always lies within the

operating range and second, are the performance properties that enforce that the air

to fuel ratio is within a bounded range close to the reference air to fuel ratio. In

this chapter we present verification results of these properties using the reachTree

computation presented in Chapter 4.

This chapter is organized as follows: we first present the case study of verifying

temporal precedence protocol for parallel landing protocol in Section 5.2. Here, we

present the verification algorithm (Section 5.2.2), prove its theoretical guarantees

(Section 5.2.2), and experimentally evaluate the proposed approach under different

scenarios (Section 5.3.2). We then present the case study of powertrain control sys-

tems in Section 5.4. We present the model considered for verification (Section 5.4.1),

outline the verification algorithm (Section 5.4.2), and present the verification results

of different properties (Section 5.5).

5.2 Temporal Precedence Checking For Parallel Landing

Protocol

We now present the verification case study of Adjacent Landing Alerting System

(ALAS). The Simplified Aircraft-based Paired Approach (SAPA) is an advanced op-

erational concept proposed by the US Federal Aviation Administration (FAA) [96].

The SAPA concept supports dependent, low-visibility parallel approach operations to

runways with lateral spacing closer than 2500 ft. A Monte-Carlo study conducted by
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NASA has concluded that the basic SAPA concept is technically and operationally

feasible [96]. SAPA relies on an alerting mechanism ALAS [137] to avoid aircraft blun-

ders, i.e., airspace situations where an aircraft threatens to cross the path of another

landing aircraft. The alerting mechanism designed to handle such scenarios should

issue an alert preemptively before safe separation is violated. This requirement can

be formally expressed as a temporal precedence property that we will introduce later

in this section.

In the case of ALAS, this alerting system is designed as a guarantee predicate

that is, the predicate is satisfied if the predicted behavior of the aircraft leads to

the violation of safe separation. Further, the look ahead function in the guarantee

predicate is given as implicit solution of differential equations. In this section we

present a dynamic analysis technique for verifying temporal precedence property and

handle guarantee predicates that is given implicitly as solution of differential equation.

We conclude this section by presenting the results of verifying the ALAS protocol for

different aircraft speeds and runway configurations.

5.2.1 Temporal Precedence And Guarantee Predicates

We assume that the motion of aircraft performing parallel landing is given as a hybrid

system. The continuous motion of the aircraft is modeled as trajectories in each

location of hybrid system. As the motion of each aircraft is dependent on the control

input it receives from software, the discrete transitions in the hybrid system models

the discrete transitions in software. Suppose that a hybrid system A models the

behavior of aircraft in a parallel landing scenario.

An important property that should be satisfied by the ALAS system during parallel

landing is that the alert should be issued at least a given time units b before the

aircraft violate safe separation. This is modeled as temporal precedence property

given formally as follows.

Definition 24 Given a hybrid system A, initial set Θ, predicates P1 and P2, and

parameter b > 0, the property P1 ≺b P2 is said to be satisfied by A from the set Θ if

and only if ∀σ ∈ execs(A,Θ), ∀t2 > 0 with σ(t2) ∈ P2, ∃t1 > 0 such that σ(t1) ∈ P1

and t1 < t2 − b. We say that P1 ≺ P2 is satisfied if ∃b > 0 such that P1 ≺b P2 is

satisfied. The property P1 ≺b P2 is said to be violated if and only if ∃σ ∈ execs(A,Θ),

such that, ∃t2 > 0, such that σ(t2) ∈ P2 and ∀t1 > 0, t1 ≤ t2 − b with σ(t1) /∈ P1.
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Definition 25 (Robust satisfaction or violation) Given a hybrid system A, ini-

tial set Θ, predicates P1 and P2, and parameter b > 0, the property property P1 ≺b P2

is said to be robustly satisfied if ∃ν > 0, ε > 0 such that all executions of Aε starting

from Bε(Θ) satisfy the property B−ε(P1) ≺b+ν Bε(P2). The property P1 ≺b P2 is said

to be robustly violated if ∃ν > 0, ε > 0 such that an executions of A−ε starting from

B−ε(Θ) violates the property Bε(P1) ≺b−ν B−ε(P2). Here Bε(Pi) (B−ε(Pi)) refers to

the bloating of the predicate Pi with the factor ε (−ε) respectively.

Definition 24 states that whenever the predicate P2 is satisfied by the execution σ

(say at time instance t2), the predicate P1 was satisfied at an earlier time instance

(say t1) at least b time units before. If the above condition does not happen, then

it is said to violate the property. Notice that a system that satisfies the property

B−ε(P1) ≺b+ν Bε(P2) also satisfies P1 ≺b P2 and hence B−ε(P1) ≺b+ν Bε(P2) is a

stronger requirement than P1 ≺b P2. Similarly Bε(P1) ≺b−ν B−ε(P2) is a weaker

requirement than P1 ≺b P2.

Suppose that the predicate to issue the alert in ALAS is given as Alert and the

violation of safe separation is given by Unsafe, then the formal requirement of ALAS

is given as Alert ≺b Unsafe where b is the desired buffer time. In this case study,

we consider only executions of bounded time and bounded number of switches in

Definition 24 as specification for temporal precedence. The next building block that

is required in verification of ALAS is the notion of guarantee predicate. We recall the

definition of guarantee predicate as follows:

Definition 26 A predicate P is said to be a guarantee predicate with lookahead func-

tion fP : Rn × R → R if P
∆
= ∃t, fP (x, t) < 0. That is, a state x ∈ P if and only if

∃t, fP (x, t) < 0.

A special case of this guarantee predicates is when this lookahead function is defined

as solution of ODE. We consider a solution of an ODE as a continuous system C ′ ∆
=

〈V , T ′〉. Guarantee predicates defined with respect to such continuous systems are

defined as follows:

Definition 27 Given a continuous system C ′ ∆
= 〈V, T ′〉 defined as the solution of an

ODE ẋ = g(x), a function wP : Rn → {>,⊥}, the guarantee predicate P defined by

the ODE is given as x ∈ P if and only if ∃τ ′ ∈ T ′ with τ(0) = x, ∃t > 0 such that

wP (τ(t)) = >.
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In this case study, we only consider guarantee predicates with bounded lookahead

time, i.e., the trajectories in Definition 27 are restricted to bounded time (more

on this in Section 5.2.3). Before presenting the verification algorithm for temporal

precedence, we will introduce the definition of may, must and not regions for a

reachtree. Recall that a reachtree (Section 4.2.1) is a tree with each element storing

the invariant prefix of reachtubes that overapproximates the reachable set. Formally,

the notion of may, must, and not regions is given as follows:

Definition 28 Given a reachtree ∆, 〈R, tag, I〉 ∈ ∆, and a predicate P , we have that

〈R, tag, I〉 ∈ mustInt(P,∆) if and only if R ⊆ P .

〈R, tag, I〉 ∈ notInt(P,∆) if and only if R ⊆ P c.

〈R, tag, I〉 ∈ mayInt(P,∆) otherwise.

We drop ∆ as the second argument when it is clear from the context.

5.2.2 Dynamic Analysis For Temporal Precedence Verification

In this section, we present the dynamic analysis algorithm for verifying temporal

precedence properties. This algorithm relies on computing reachtrees for hybrid sys-

tems that were introduced in Section 4.2. Similar to the verification of safety proper-

ties, this algorithm iteratively computes reachtrees with increasing precision. For each

reachtree computed, it checks whether the reachtree satisfies the temporal precedence

property and terminates if either the temporal precedence is satisfied, or, a violating

execution is discovered. We now present the building blocks for the verification pro-

cedure. The first building block is a reached before relation among the tagged regions

in the reachtree.

Definition 29 Given a reachtree ∆ and 〈R1, tag1, I1〉, 〈R2, tag2, I2〉 ∈ ∆, we say that

〈R1, tag1, I1〉 is reached before 〈R2, tag2, I2〉 if and only if one of two conditions is

satisfied:

1. ∃E ∈ ∆, such that 〈R1, tag1, I1〉 ∈ E.RT and 〈R2, tag2, I2〉 ∈ E.RT and I1 ≤ I2,

or

2. ∃E1, E2 ∈ ∆, such that 〈R1, tag1, I1〉 ∈ E1.RT and 〈R2, tag2, I2〉 ∈ E2.RT, and

∃a, a discrete transition such that E2 is a child node of E1 obtained after taking

the discrete transition a from the region R1, i.e., E2.initialSet = Reseta(R1).
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Informally, 〈R1, tag1, I1〉 is reached before 〈R2, tag2, I2〉 if either they appear in

the same reachtube and R1 appears before R2 in the reachtube, or, R2 is part of a

reachtube that is obtained after taking a discrete transition from R1. We denote the

reached before relation as 〈R1, tag1, I1〉 y 〈R2, tag2, I2〉. The following corollary can

be proved using the proof of Lemma 16.

Corollary 22 Given a reachtree ∆ of A from initial set Θ, time bound T , and

bound on discrete transitions N , and given 〈R1, tag1, I1〉, 〈R2, tag2, I2〉 ∈ ∆ such that

〈R1, tag1, I1〉 y 〈R2, tag2, I2〉, it follows that, if ∃σ ∈ execs(A,Θ, T,N), ∃t ∈ I2 such

that σ(t) ∈ R2, then ∃t′ ∈ I1, t′ ≤ t such that σ(t′) ∈ R1.

Informally, Corollary 22 says that for any execution that reaches the region R2, the

execution also reaches R1 before it reaches R2 if they are related by reached before

relation. This holds because either R2 comes after R1 in the same reachtube or R2

is in a reachtube obtained after taking a discrete transition from region R1. Notice

that the corollary holds when 〈R1, tag1, I1〉 and 〈R2, tag2, I2〉 are also related by the

transitive closure of reached before relation, i.e., 〈R1, tag1, I1〉y∗ 〈R2, tag2, I2〉.

Definition 30 Given a reachtree ∆, predicates P1 and P2, and b > 0, we have

• ∆ satisfies the property P1 ≺b P2, if and only if for all 〈R, tag, I〉 ∈ mustInt(P2)∪
mayInt(P2), ∃〈R′, tag′, I ′〉 ∈ mustInt(P1), such that 〈R′, tag′, I ′〉y∗ 〈R, tag, I〉
and I ′ < I − b.

• ∆ violates the property P1 ≺b P2, if and only if, ∃〈R′, tag′, I ′〉 ∈ mustInt(P2),

such that, ∀〈R, tag, I〉 ∈ ∆, such that 〈R, tag, I〉y∗ 〈R′, tag′, I ′〉, and I ′ ≤ I−b,
we have that 〈R, tag, I〉 ∈ notInt(P1).

• ∆ neither satisfies nor violates P1 ≺b P2 otherwise.

Definition 30 defines whether a given reachtree ∆ satisfies a given temporal prece-

dence property P1 ≺b P2 or not. Informally, it states that the property is satisfied if

for every must or may region of P2 in a given reachtree, there exists a must region

of P1 that is reached before at least b time units. Further, the reachtree is said to

violate the property if there exists a must region of P2, say R2, such that regions that

are reached before b time units from R2 belong to notInt(P1). Otherwise, it cannot

be inferred whether the temporal precedence property is satisfied or violated. The
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procedure check(∆, P1 ≺b P2) returns > if ∆ satisfies the property, ⊥ if ∆ violates

the property and unknown otherwise.

We now present the verification algorithm for temporal precedence properties that

uses reachtree computation.

input : Θ, T , N , A, loc0, P1 ≺b P2

output: If A satisfies the property or not
1 Select δ > 0, h ∈ [0, T ];
2 while true do
3 ∆← reachTree(Θ, δ, h, T,N, loc0) ;
4 if check(∆, P1 ≺b P2) = > then return satisfies ;
5 else if check(∆, P1 ≺b P2) = ⊥ then return violates ;

6 else δ ← δ
2
; h← h

2
;

7 end

Algorithm 5.1: Dynamic analysis algorithm checkTempPrec for verifying tem-
poral precedence property of hybrid systems.

Algorithm 5.1 is similar to the safety verification algorithm presented in Algo-

rithm 4.2. We now prove the theoretical guarantees provided by Algorithm 5.1.

Theorem 23 (Soundness) Procedure checkTempPrec defined in Algorithm 5.1 is

sound, i.e., if it returns that the system satisfies the property, then the property is

indeed satisfied. If it returns that the property is violated, then the property is indeed

violated by the system.

Proof: Proof follows from Definition 24 and Corollary 22.

Theorem 24 (Relative Completeness) If the system A robustly satisfies the prop-

erty P1 ≺b P2 or if A robustly violates P1 ≺b P2 then procedure checkTempPrec defined

in Algorithm 5.1 terminates with the right answer.

Proof: This proof is similar to the proof of Theorem 21 for proving relative com-

pleteness of the verification with respect to safety properties.

Property is robustly satisfied: Suppose that the system robustly satisfies the prop-

erty. From Definition 25, let ε > 0, ν > 0 such that all executions of Aε from Bε(Θ)

satisfy B−ε(P1) ≺b+ν Bε(P2). As the algorithm is sound, it will never return that the

property is violated and it iterates while reducing the value of δ and h. It follows
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from Lemma 18 that ∃δ′ > 0, h′ > 0, such that the diameter of all the regions in ∆ is

less than ε/4 and the intervals for all the regions is less than ν/4.

Now consider 〈R2, tag2, I2〉 ∈ mayInt(P2) ∪ mustInt(P2). Consider an execution

σ that reaches R2, i.e., ∃t ∈ I2, such that σ(t) ∈ R2. Suppose that σ(t) ∈ P2.

Since the system robustly satisfies the property, from Definition 25, it follows that

∃t′ < t− b− ν such that σ(t′) ∈ B−ε(P1). Consider the region 〈R1, tag1, I1〉 such that

σ(t′) ∈ R1. As diameter(R1) < ε/4, we have that 〈R1, tag1, I1〉 ∈ mustInt(P1), and

since t′ < t − b − ν, it follows that 〈R1, tag1, I1〉 y∗ 〈R2, tag2, I2〉 and I1 < I2 − b.
Hence for every region in mayInt(P2)∪mustInt(P2), there is a region in mustInt(P1)

at least b time units before. Therefore the algorithm will terminate and return that

the system satisfies the property.

Property is robustly violated: Suppose that the system robustly violates the prop-

erty. From Definition 25, let ε > 0, ν > 0 such that an execution of A−ε from B−ε(Θ)

violates Bε(P1) ≺b−ν B−ε(P2). As the algorithm is sound, it will never return that

the property is satisfied and it iterates while reducing the value of δ and h. It follows

from Lemma 18 that ∃δ′ > 0, h′ > 0, such that the diameter of all the regions in ∆ is

less than ε/2 and the intervals for all the regions is less than ν/4.

Now consider an execution σ in execs(A−ε) that violates the property Bε(P1) ≺b−ν
B−ε(P2). Let t2 be the time instance such that σ(t2) ∈ B−ε(P2) and ∀t1 < t2 − b+ ν,

we have that σ(t1) /∈ Bε(P1). Now consider 〈R2, tag2, I2〉 ∈ ∆ such that σ(t2) ∈ R2.

Since diameter(R2) < ε/4, we have that 〈R2, tag2, I2〉 ∈ mustInt(P2). Consider

〈R1, tag1, I1〉 ∈ ∆ such that 〈R1, tag1, I1〉 y ∗〈R2, tag2, I2〉 with I1 ≤ I2 − b − ν/4.

From the falsifying execution, it follows that 〈R1, tag1, I1〉 ∈ notInt(P1). Hence, the

procedure will return that the system violates the property.

5.2.3 Handling Guarantee Predicates

The final piece in the temporal precedence verification is to check whether a region

is a must or a may region for a guarantee predicate given as implicitly as solutions

of ODE. We consider a bounded time version of the guarantee predicate, i.e., given

bounded time Tb, the predicate P is defined as x ∈ P if and only if ∃τ ′ ∈ T ′ such

that τ ′(0) = x and ∃t > 0, t < Tb, wp(τ
′(t)) = >. Given a region R and predicate

P , for checking whether R ⊆ P , R ⊆ P c, or R ∩ P 6= ∅ ∧ R ∩ P c 6= ∅, we compute

the reachtree for continuous system C ′ starting from the set R and check that all the

reachtubes in the nodes of reachtree eventually enter the region wp(x) = >. This
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procedure checkGuarantee is given in Algorithm 5.2.

input : R, Tb, C ′, wp
output: Whether R ⊆ P , R ⊆ P c, or R ∩ P 6= ∅ ∧R ∩ P c 6= ∅

1 . Select δ > 0, h ∈ [0, Tb];
2 while true do
3 ∆← reachTree(Θ, Tb, δ, h);
4 if ∀Ei ∈ ∆, ∃Rj ∈ Ei.RT, wp(Rj) = > then return R ⊆ P ;
5 else if ∀Ei ∈ ∆, ∀Rj ∈ Ei.RT, wp(Rj) = ⊥ then return R ⊆ P c;
6 else if ∃Ei, Ej ∈ ∆, Ei.tag = Ej.tag = must, ∃Rk ∈ Ei.RT, ∃Rl ∈ Ej.RT ,

wp(Rk) = >, wp(Rl) = ⊥ then return R ∩ P 6= ∅ ∧R ∩ P c 6= ∅;
7 else δ ← δ

2
; h← h

2
;

8 end

Algorithm 5.2: Dynamic analysis technique for checking whether a region sat-
isfies a guarantee predicate.

In lines 4 and 6, the function wp(Rj) would return > if and only if ∀x ∈ R,wp(x) =

>. In line 5, the function wp(Rj) would return ⊥ if and only if ∀x ∈ Rj, wp(x) = ⊥.

The proof of soundness and relative completeness of the algorithm are very similar

to proofs of soundness and relative completeness of safety verification given in Theo-

rems 14 and 15. Similar to the safety verification procedure, this algorithm might not

terminate if the region does not robustly satisfy the predicate. Hence, in practice, we

terminate after reaching thresholds on δ and h and label the region as unknown.

5.3 Case Study: NASA’s ALAS Protocol For Parallel

Landing

ALAS is a pair-wise algorithm, where the two aircraft are referred to as ownship

and intruder (as shown in Figure 5.1). When the ALAS algorithm is deployed in an

aircraft following the SAPA procedure, the aircraft considers itself to be the ownship,

while any other aircraft is considered to be an intruder. The alerting logic of the

ALAS algorithm consists of several checks including conformance of the onwship to

its nominal landing trajectory, aircraft separation at current time, and projected

aircraft separation for different trajectories.

A formal static analysis of the ALAS algorithm is challenging due to the complex-

ity of the SAPA protocol and the large set of configurable parameters of the ALAS
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Figure 5.1: Possible blundering scenario during parallel approach of aircraft.
Intruder (red) & ownship (blue).

algorithm that enable different alerting thresholds, aircraft performances, and runway

geometries. In this case study, we consider the component of the ALAS alerting logic

that checks violations of predefined separation minima for linear and curved projected

trajectories of the current aircraft states. This component is one of the most challeng-

ing to analyze since it involves nonlinear dynamics. Safety considerations regarding

communication errors, pilot and communication delays, surveillance uncertainty, and

feasibility of resolution maneuvers are not considered in this case study.

For the analysis of the landing protocol, this case study considers a blundering

scenario where the intruder aircraft turns towards the ownship during the landing

approach. The dynamics of the aircraft are modeled as a hybrid system with contin-

uous variables sxi, syi, vxi, vyi and sxo, syo, vxo, and vyo representing the position

and velocity of intruder and ownship respectively. The hybrid system has two modes:

approach and turn. The mode approach represents the phase when both aircraft

are heading towards the runway with constant speed. The mode turn represents the

blundering trajectory of intruder. In this mode, the intruder banks at an angle φi to

turn away from the runway towards the ownship. The guard condition on the discrete

transition determines the time of transition from approach to turn. In this mode, the

differential equation of the ownship remains the same as that of approach, but the
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intruder’s turning motion with banking angle φi is

˙

sxi

syi

vxi

vyi


=



0 0 1 0

0 0 0 1

0 0 0 ωi

0 0 −ωi 0





sxi

syi

vxi

vyi


+



0

0

ωi − cy

ωi + cx


, (5.1)

where cx and cy are constant functions of the initial states of the ownship and intruder,

and ωi is the angular speed of intruder. Given the bank angle φi, the angular speed

is given by wi = G| tan(φi)|√
vxi2+vyi2

, where G is the gravitational constant. The upper bound

on the bank angle φi is denoted as φmax.

The system starts in the approach mode with the initial position of the intruder

at sxi = syi = 0 and the ownship at sxo = xsep and syo = ysep, where xsep denotes

the lateral separation between the runways and ysep denotes the initial longitudinal

separation between the aircraft. The initial velocities of both aircraft along the x-axis

are 0 and the initial velocities along the y-axis are parameters. The discrete transition

from approach mode to turn mode is enabled when the time spent in approach mode

is in the interval [2.3, 2.8]. These parameters and the initial values of the variables

are constrained by the SAPA procedure [96].

5.3.1 Alerting Logic And Verification Of Temporal Precedence
Property

The alerting logic of ALAS considered in this case study issues an alert when the

aircraft are predicted to violate some distance thresholds called Front and Back [137].

To predict this violation, the alerting logic of ALAS projects the current state of the

system with three different dynamics: first, the intruder does not turn, i.e., banking

angle 0◦, second, the intruder turns with the specified bank angle φi and third, the

intruder turns with the maximum bank angle φmax. If any of these projections violates

the distance thresholds, then an alert is issued. The alert predicates for the each one

of these projections are represented by Alert0, Alertφi and Alertφmax , respectively.

Thus, the alerting logic considered in this case study is defined as Alert ≡ Alert0 ∨
Alertφi ∨ Alertφmax .
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The alert predicates Alert0, Alertφi and Alertφmax are guarantee predicates. The

lookahead function for Alertπ is defined as follows: from a given state x, it computes

the projected trajectory of the aircraft when intruder turns at bank angle π. If these

trajectories intersect, then it computes the times of intersection. That is, it computes

ti, to such that sx′i(ti) = sx′o(to) and sy′i(ti) = sy′o(to), where sx′i, sy
′
i, sx

′
o, sy

′
o represent

the positions of the intruder and ownship aircraft in the projected trajectory. If such

ti and to exist, the Alertπ is defined as:

Alertπ(x) ≡ iff ti > to ? (∆t2 × (vx2
o + vy2

o) < Back 2)

: (∆t2 × (vx2
o + vy2

o) < Front2),

where ∆t = ti− to. If such ti and to do not exist, then Alertπ(x) = ⊥. The expression

a ? b : c is a short hand for if(a) then b else c.

As the guarantee predicates cannot be handled by SMT solvers, we use the pro-

cedure checkGuarantee given in Algorithm 5.1 for handling them. In this case study,

the proposed technique is used to resolve the nonlinearities of to and ti in the Alertπ

predicate. As given in procedure checkGuarantee, the following steps are performed

to resolve the nonlinear guarantee predicate. First, bounded time reachtree ∆ is

computed for the projected dynamics. Then, for each reachtube in the reachtree,

the intervals To and Ti are computed such that ti ∈ Ti and to ∈ To. Finally, an

overapproximation Alert ′π of Alertπ is computed as: Alert ′π(x) = > iff

Ti > To ? (∆T 2 × (vx2
o + vy2

o) < Back 2)

: (∆T 2 × (vx2
o + vy2

o) < Front2),

where ∆T = Ti−To. The numerical values of Ti and To computed simplify the Alert ′π

predicate and can be handled by SMT solvers.

A state of the system where the intruder aircraft is inside a safety area surrounding

the ownship is said to be Unsafe. This case study considers a safety area of rectangular

shape that is SafeHoriz wide, starts a distance SafeBack behinds the ownship and

finishes a distance SafeFront in front of the ownship. The values SafeHoriz , SafeBack

and SafeFront are given constants. Formally, the predicate Unsafe is defined as

Unsafe(x) ≡ (syi > syo ? syi − syo < SafeFront : syo − syi < SafeBack) and |sxi −
sxo| < SafeHoriz .

The specification for ALAS considered in this case study is that an alert is raised
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Figure 5.2: Figure depicting the set of reachable states of the system. Red color
regions indicate that the safe separation is violated.

at least b seconds before the intruder violates the safety buffer. This can written

as a temporal precedence property Alert ≺b Unsafe. In this case study we consider

scenarios where alert precedes unsafe configuration by at least 4 time units.

5.3.2 Verification Scenarios And C2E2 Performance

Algorithm 5.1 that verifies the temporal precedence property has been implemented

as a prototype extension in the tool Compute Execute Check Engine (C2E2). C2E2

accepts Stateflow (SF) charts as inputs, translates them to C++ using CAPD for

generating rigorous simulations. For checking SAT/SMT queries, it uses Z3 [47]

and GLPK1. The discrepancy functions for the aircraft dynamics were obtained by

computing incremental Lyapunov-like function using MATLAB [55]. The following

experiments were performed on Intel Quad Core machine 2.33 GHz with 4GB memory.

The temporal precedence property Alert ≺b Unsafe is checked for several configu-

rations of the system, i.e., values of parameters and initial values of state variables.

For these experiments, the time bound for verification is set to 15 seconds and the

time bound for projection is set to 25 seconds.

Scenario 1. The system configuration is specified by the following parameters

and variables: xsep ∈ [0.22, 0.24] km, ysep ∈ [0.2, 0.4] km, φi = 30◦, φmax = 45◦,

vyo = 0.07 km/s and vyi = 0.08 km/s. With this configuration, C2E2 proves that

the system satisfies the temporal precedence property Alert ≺4 Unsafe and an alert

is generated 4.38 seconds before the safety is violated. The set of reachable states

of the ownship and the intruder when the safety property is violated is shown in red

and the safe states reached are shown in blue and green respectively in Figure 5.2(a).

1http://www.gnu.org/software/glpk
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Scen. A ≺4 U time (m:s) Refs. A ≺t U

6 False 3:27 5 2.16

7 True 1:13 0 –

8 True 2:21 0 –

6.1 False 7:18 8 1.54

7.1 True 2:34 0 –

8.1 True 4:55 0 –

9 False 2:18 2 1.8

10 False 3:04 3 2.4

9.1 False 4:30 2 1.8

10.1 False 6:11 3 2.4

Table 5.1: Running times. Columns 2-5: Verification Result, Running time, # of
refinements, value of b for which A ≺b U is satisfied.

Scenario 2. Increasing the intruder velocity to vyi = 0.11 km/s, and bank angle

φi = 45◦ from the configuration of Scenario 1 results in Scenario 2. In this case, the

safe separation between the intruder and the ownship is always maintained as the

intruder completes the turn behind the ownship. Also, the alarm is not raised and

hence the property Alert ≺4 Unsafe is satisfied.

Scenario 3. Changing the configuration by vyi = 0.11 km/s, xsep ∈ [1.02, 1.04]

km, and φi = 45◦ from Scenario 1 results in Scenario 3. C2E2 proves that the

simplified alerting logic considered in this case study issues a false-alert, i.e., an alert

is issued even when the safety of the system is maintained. Though the property

Alert ≺4 Unsafe is not violated, avoiding such circumstances improves the efficiency

of the protocol and C2E2 can help identify such configurations.

Scenario 4. Placing the intruder in front of ownship, i.e., ysep = −0.3 km and

vyi = 0.115 km/s from configuration in Scenario 1 results in Scenario 4. C2E2 proves

that the simplified alerting logic considered in this case study misses an alert, i.e.,

does not issue an alert before the safety separation is violated. Such scenarios should

always be avoided as they might lead to catastrophic situations. This demonstrates

that C2E2 can aid in identifying scenarios which should be avoided and help design

the safe operational conditions for the protocol.
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Scenario 5. Reducing the xsep ∈ [0.15, 0.17] km and ysep ∈ [0.19, 0.21] km from

configuration in Scenario 1 gives Scenario 5. For this scenario, C2E2 did not terminate

in 30 mins. Since the verification algorithm (Algorithm 5.1) is sound and relatively

complete only if the system robustly satisfies the property, it is conjectured that

Scenario 5 does not satisfy the property robustly. The partitioning and the simulation

parameters at the time-out were δ = 0.0005 and time step h = 0.001. These values are

an order of magnitude smaller than the typical values for termination, e.g., δ = 0.005

and h = 0.01, which supports the conjecture that Scenario 5 does not satisfy the

property robustly.

The running time of verification procedure and their outcomes for several other

scenarios are presented in Table 5.1. Scenarios 6-8 introduce uncertainty in the initial

velocities of the aircraft with all other parameters remaining the same as in Scenario 1.

The velocity of the aircraft are changed to be vyo ∈ [0.07, 0.075] in Scenario 5, vyi ∈
[0.107, 0.117] in Scenario 6, and vxi ∈ [0.0, 0.005] in Scenario 7 respectively. Scenarios

S.1 is similar to Scenario S (for S being 6,7,8), but with twice the uncertainty in the

velocity. Scenario 9 is obtained by changing the runway separation to be xsep =

0.5 ± 0.01. Scenario 10 is obtained by reducing the xsep = 0.2 ± 0.01. Scenario S.1

is similar to Scenario S (for S being 9,10) however with twice the time horizon for

verification and projection. These results suggest that the verification time depends

approximately linearly on the time time horizon.

5.4 Powertrain Control System Verification

In this section, we present the verification case study of powertrain control sys-

tems. Due to the increased importance of fuel efficiency in cars, and the environ-

mental impacts of reduced emissions, automotive companies are interested in in-

tegrating fine tuned control software in the powertrain control systems. Recently

a suite of benchmarks were published in [95, 94] to introduce realistic industrial

scale models to academics interested in formal verification. These benchmarks con-

sist of SimulinkTM/StateflowTM models (a popular modeling framework developed by

MathworksTM) with increasing level of complexity and sophistication. These models

capture the behavior of chemical reactions in internal combustion engine and hence

hybrid automata are ideally suitable to capture both the discrete transitions of control

software and the continuous parameters in these models.
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The complex of the models captures all the interactions taking place in a phys-

ical process and faithfully models the control software. Hence, it contains several

hierarchical components in Simulink/Stateflow with look-up tables, and delay differ-

ential equations. Currently, no state of the art formal verification tool can handle

such complex system models. This complex model has been simplified to a model

with periodic inputs to ordinary differential equations using several heuristics. These

heuristics do not provide any theoretical guarantees, but as per the authors, seem to

exhibit similar behavior (with respect to conformance of properties) of the complex

model [95]. This model has been further simplified to a hybrid automaton with poly-

nomial ordinary differential equations. In this case study, we verify the properties of

polynomial hybrid automaton model of the powertrain control system.

The rest of the section is as follows: we first introduce the model and its char-

acteristic properties. We highlight the main challenge in verifying such system and

present the details of the model that is verified in this case study. We then present

the STL properties of interest and explain how the STL properties are encoded as

safety properties. We then describe the optimizations used in verification procedure.

Finally we present the verification results for different properties.

5.4.1 Nonlinear Hybrid Powertrain Model

The SimulinkTM model for the powertrain control system is shown in Figure 5.3(a).

The system has four continuous variables p, λ, pe, i (see Figure 5.3(b)), and four modes

of operation: startup, normal , power , and sensor fail . The system also receives an

input signal θin from the environment. This continuous signal models the throttle

input given by the user. The mode switches (also called transitions) are brought

about by changes in the input throttle angle θin or failure events.

The rest of the SimulinkTM diagram defines polynomial differential equations that

govern the evolution of the continuous variables in the four different modes. As an

example, we reproduce the differential equation for normal mode of operation.

ṗ =c1(2θin(c20p
2 + c21p+ c22)− c12(c2 + c3ωp+ c4ωp

2 + c5ω
2p))

λ̇ =c26(c15 + c16c25Fc + c17c
2
25F

2
c + c18ṁc + c19ṁcc25Fc − λ)

ṗe =c1(2c23θin(c20p
2 + c21p+ c22)− (c2 + c3ωpe + c4ωp

2
e + c5ω

2pe))

i̇ =c14(c24λ− c11).
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(a) Hybrid automata model of
powertrain control system.

Variable Description

p Intake manifold pressure

pe Intake manifold pressure estimate

λ Air-fuel ratio

i Integrator state, control variable

θin Throttle angle

(b) Table of variables in powertrain control
system.

Figure 5.3: Figure showing the model of the powertrain control in (a) and its
variables in (b).

Here Fc = 1
c11

(1+ i+c13(c24λ−c11))(c2 +c3ωpe+c4ωp
2
e+c5ω

2pe), ṁc = c12(c2 +c3ωp+

c4ωp
2 + c5ω

2p), and all the ci’s are constant parameters of the model (from [95]).

Notice that these differential equations contain θin on the right hand side. The

behavior of the system would hence depend upon the value of the input given. Al-

though preliminary techniques verifying models with inputs (that treat the input as

an unknown parameter) exist, such techniques cannot handle the complexity of the

differential equations for the powertrain control system. Hence we construct a closed

hybrid automata model by fixing a family of input signals given as θin. The family

of input signals considered for this case study are modifications of the input signals

considered in [95]. We select two such families of input signals that visit all the modes

of the Stateflow model.

5.4.2 Specification Of Powertrain Control Systems

The required specification of powertrain control systems was given in [95] as a number

of STL properties. Although, in general, STL properties might have nested temporal

constructs (see [122]), for the sake of our case study, we do not need the full semantics

of STL. In the rest of this section, we present only the semantics for properties of

interest for powertrain control system.

Atomic propositions in STL are of the form q
∆
= xi ≥ | = | ≤ c where the value of

continuous variable xi is compared to the constant c. Extended propositions can be

boolean combinations of such atomic propositions. An execution σ at time t satisfies

the atomic predicate q if and only if σ(t).xi ≥ | = | ≤ c. Extension for boolean

combination of atomic propositions follows trivially.
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STL has a temporal construct � for specifying temporal properties of signals. A

non-nested formula in STL is given as �[a,b]Q where Q is a boolean combination of

atomic propositions. An execution σ is said to satisfy �[a,b]Q if and only if ∀t ∈
[a, b], σ(t) satisfies Q.

Powertrain control system has two main goals: first is to maintain the air fuel ratio

in an operating region and the second is to ensure that air fuel ratio quickly converges

to a value close to the reference value of fuel air ratio, that is geared towards fuel

efficiency. An example of the first requirement which ensure that the fuel air ratio is

in an operating region is given as the following STL formula:

�[0,T ](0.8λref ≤ λ ≤ 1.2λref ). (5.2)

The performance requirement requires that whenever the mode of operation changes,

the air fuel ratio converges close to reference value in a given time interval. As this

mode operation happens whenever the input throttle θin rises from 0 to 60, one such

STL requirement is given as

rise ⇒ �(η,ζ)(0.98λref ≤ λ ≤ 1.02λref ), (5.3)

where η and ζ are parameters for the property.

For verifying such STL properties, we encode them as safety properties. For doing

the same, we introduce a special variable called clk variable that keeps track of time

elapsed. Using this, the violation of STL property can be encoded as reaching an

unsafe set. For example, to verify the STL property �[3,4]x > 4, we encode it as safety

property as follows. We add the clock variable clk to the hybrid system, set its rate

of change ˙clk = 1 in all the locations of hybrid system and leave its value unchanged

for all the discrete transition. We say that the system satisfies the STL property if

and only if it is safe with respect to the unsafe set U
∆
= {clk ≤ 4 ∧ clk ≥ 3 ∧ x < 4}.

5.4.3 Verification Algorithm And Optimizations

As we have encoded the verification of STL properties as safety verification, we can use

the checkSafety procedure given in Algorithm 4.2 for verifying properties of powertrain

control system. However, checkSafety procedure requires that a discrepancy function

for each location be provided as a model annotation. For powertrain control system,

existing proof theoretic certificates in control theory that use SOS tools (given in
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first part of Section 3.4) could not produce a useful annotation. Hence, we use

a technique for computing on-the-fly discrepancy function computation technique

proposed in [60]2. For implementing the on-the-fly discrepancy function procedure,

C2E2 requires the ability to compute the the eigenvalues of the symmetric parts of the

Jacobian and maximizing the norm of the interval matrices. The former is done using

using Eigen library [59] and the latter is done using norm calculations with interval

arithmetic. We now discuss some of the optimizations and engineering performed as

a part of this case study.

Coordinate Transformation. An important technical detail that makes the im-

plementation scale is the coordinate transformation proposed in [60]. For Jacobian

matrices with complex eigenvalues the local discrepancy computed directly using the

above algorithm can be a positive exponential even though the actual trajectories

are not diverging. This problem can be avoided by first computing a local coordi-

nate transformation and then applying the algorithm. Coordinate transformation

provides better convergence, but comes with a multiplicative cost in the error term.

This trade-off between the exponential divergence rate and the multiplicative error

has to be tuned by choosing the time horizon over which the coordinate transforma-

tion is computed.

Model Reduction. In start up and power mode of the system, the differential equa-

tion does not update the value of the integrator variable i, i.e. i does not appear

in the right hand side of the differential equations for variables p, λ, pe. Moreover

i̇ = 0. We take advantage of this observation, and consider only the dynamics of the

variables p, λ, and pe for computing local discrepancy. Without this optimization, the

maximum eigen values of symmetric part of Jacobian would return 0 and the error

computation would result in a very coarse approximation (exponential blow up) of

the discrepancy function.

5.5 Experimental Results On Powertrain Challenge

We have implemented on-the-fly discrepancy function computation as a prototype

extension of the tool C2E2. As the number of switching signals corresponding to driver

behaviors is infinite, we analyze a subset of all possible switching signals. Specifically,

2The modified tool and related files are available from http://publish.illinois.edu/

c2e2-tool/powertrain-challenge/
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Property Mode Sat. Sim. Time

�Ts,Tλ ∈ [0.8λref , 1.2λref ] all modes yes 53 11m58s

�[0,Ts]λ ∈ [0.8λref , 1.2λref ] startup yes 50 10m21s

�[Ts,T ]λ ∈ [0.95λref , 1.05λref ] normal yes 50 10m28s

�[Ts,T ]λ ∈ [0.8λpwrref , 1.2λ
pwr
ref ] power yes 53 11m12s

�[0,Ts]λ ∈ [0.98λref , 1.02λref ] startup no 2 0m24s

�[Ts,T ]λ ∈ [0.9λpwrref , 1.1λ
pwr
ref ] power no 4 0m43s

rise ⇒ �(η,ζ)λ ∈ [0.9λref , 1.1λref ] startup yes 50 10m40s

rise ⇒ �(η,ζ)λ ∈ [0.98λref , 1.02λref ] normal yes 50 10m15s

(` = power)⇒ �(ηpwr,ζ)λ ∈ [0.95λpwrref , 1.05λpwrref ] power yes 53 11m35s

(` = power)⇒ �(ηs,ζ)λ ∈ [0.95λpwrref , 1.05λpwrref ] power no 4 0m45s

Table 5.2: Table showing the result and the time taken for verifying STL specification of the
powertrain control system. Sat: Satisfied, Sim: Number of simulations performed. All the
experiments are performed on Intel Quad-Core i7 processor, with 8 GB ram, on Ubuntu 11.10.

we pick two behaviors that cover almost all of the STL properties provided in [95].

Table 5.2 provides the results of verifying different STL properties.

The first six properties provided in Table 5.2 are invariant properties. These in-

variant properties can be global (i.e. correspond to all modes) or could be restricted

to a certain mode of operation provided in the Mode column. The invariants assert

that the air-fuel ratio should not go out of the specified bounds. Observe that C2E2

could not only prove that the given specification is satisfied, but also that a stricter

version of invariants for startup and power modes is violated. The next four proper-

ties are about the settling time requirements. These requirements enforce that in a

given mode, whenever an action is triggered, the fuel air ratio should be in the given

range provided after η (or ηpwr for power mode) time units. Similar to the invariant

properties, C2E2 could also find counterexample for a stricter version of the settling

time requirement (ηs settling time instead of η) in power mode. When C2E2 finds

an overapproximation that violates a given property, it immediately terminates and

hence C2E2 takes less time when it finds counterexamples. The parameters used for

verification are η = ηpwr = 1, ηs = 0.5, Ts = 9, T = 20, λref = 14.7, λpwrref = 12.5,

and ζ = 4. Set of reachable states of the powertrain control system for a given driver

behavior is provided in Figure 5.4.
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Figure 5.4: Figure showing the reachable set of the powertrain control system for a
given user behavior that visits different modes.

5.6 Conclusion And Related Work

In this chapter we have presented two case studies, the first is an alerting mechanism

in a parallel aircraft landing and the second is verifying STL properties of powertrain

control systems. Both these systems present realistic examples of CPS models and

highlight a challenging problem for verification. The challenge in verifying ALAS

system is to handle the nonlinear guarantee predicate given implicitly as solution of

ODE. We overcome this challenge by using a dynamic analysis technique for handling

guarantee predicates. The challenge in verifying powertrain control system is the

complexity of the differential equations that govern the dynamics. We overcome

this challenge by implementing an algorithm that computes on-the-fly discrepancy

function for powertrain control systems. These two case studies demonstrate that

dynamic analysis techniques can be applied to realistic case studies without losing

the theoretical guarantees.

Verification of air traffic control protocols has been an important application for

CPS verification techniques [164, 165, 154, 148]. Verification of collision avoidance

protocols such as TCAS and ACASX using Keymeara was done in [142] and [93]

respectively. Verification of a Small Aircraft Transportation Systems (SATS) was

performed using PVS in [131]. Parametrized distributed protocols have been verified

in [120, 99]. The case study presented in this thesis is the first one to verify the ALAS
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system. The benchmarks of powertrain control systems has been a very recent area

of interest. In [95, 94] the authors present the verification challenges in powertrain

system and present some falsification results. New falsification techniques have been

developed recently to improve the search for falsifying execution [172, 171]. The case

study on powertrain control systems is the first to formally verify the powertrain

control system.
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Chapter 6

Dynamic Analysis of Distributed CPS

In this chapter we present a dynamic analysis for inferring global predicates for a

distributed Cyber-Physical Systems. Implementations of distributed CPS systems

have uncertainties in sensor measurements, actuation parameters, and clocks drifts

between different nodes. Thus, local recordings from nodes is insufficient for infer-

ring a global predicate (on the software state or the physical state) of the distributed

system. In this chapter we present a technique for inferring global predicates in the

software state (such as deadlock detection), and physical state (such as safe separa-

tion between nodes) using the local recordings. We apply the technique on a several

distributed robotics applications like waypoint tracking, geocasting, and distributed

traffic control protocol, and verify global predicates such as safety and deadlock de-

tection. The results presented in this chapter were presented originally in [54].

6.1 Introduction

Consider programming a group of mobile robots for collaborative construction. Each

robot executes a program implementing one or more distributed algorithms, moves

and manipulates its environment, and exchanges messages over an unreliable commu-

nication channel with other robots. In a realistic setting, numerous program param-

eters have to be configured for the system to work, there are failures, and moreover,

there is no common notion of time. This is also the case with a variety of other

real-time systems, such as autonomous vehicle platoons, industrial automation and

warehouse management systems, and distributed process control systems. Even where

the high-level, centralized and idealized control algorithm is well-understood, failures,

timing-errors, and message delays make their implementation challenging. One bar-

rier is that the distributed programmer, unlike her sequential compatriots, does not

enjoy the benefits of a debugger that can deterministically replay an execution and

identify the precise step where a program goes awry and later manifests as an incor-
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rect behavior. The uncertainties in the message delays, concurrency, timing of events,

and the interaction of the program with its physical environment, make deterministic

replay impossible from the traces of the individual agents (robots or processes).

In this chapter, we present a procedure for answering the following types of queries.

Given a trace β (given in Definition 7)—a sequence of state recordings for each of

the individual agents—of the distributed system A and a global property P , does

there exist a real-time t when all possible (or at least one) bounded executions of A
that correspond to the recording β, satisfy the property P . The algorithm combines

dynamic analysis of the trace β with symbolic overapproximation of bounded reach

sets obtained through static analysis of A. It is always sound, and it is complete

when both the static analysis and the dynamically generated information are exact.

How does this procedure help in developing distributed cyber-physical systems?

Suppose P describes a bad state (such as collision or deadlock) of the system and the

algorithm answers ‘yes’ with a witnessing time t. Then the developer can learn that

all the executions that resolve the uncertainties in a manner that is consistent with

the recordings in β, demonstrate the violation of P at time t. She can then focus

this particular set of executions around time t to isolate the bug. If the algorithm

answers that there is no time when any execution satisfies P , then it establishes the

complement of P for the bounded time interval. On the other hand, if the algo-

rithm demonstrates that there is some time t when some overapproximation of the

executions satisfy P , then a definite conclusion cannot be reached, and one has to

either record a trace with more information or relax the property P . Under addi-

tional assumptions, the algorithm is complete—the overapproximation is exact—the

procedure pinpoints an actual execution that violates the property; such traces can

then be used for debugging and diagnosis.

Overview of the procedure: A trace β of a distributed system with a set I of

agents is a collection of traces {βi}i∈I , where each trace βi is a sequence of snapshots

or observations recorded locally by agent Ai. Our technique should generalize to

traces with quantized and partial state observations, however, for simplifying the

exposition we assume that each observation is a recording of the complete state of

Ai. Since this is a distributed system, the agents do not share any common knowledge

about time. In fact, the only timing information available about an observation is

the time stamp value from the agent’s local clock which may not be synchronized

with other agents or with any external clock. Since this is a cyber-physical system,
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in between successive recordings, the state of the agents—for example, the positions

of the robots—continue to evolve continuously.

The first step in our algorithm is to infer from the trace β, for each observation

v ∈ β, a real-time interval (called the observation interval) over which the observation

could have been recorded. This inference is based on the timing information available

about the local clocks and the time-bounds induced by the causality of the messages

exchanged between agents.

From the observation intervals, we then compute the set of states that could be

reached by agent Ai between successive observations. This step strongly relies on

static analysis approaches available for individual agent models. In this chapter, we

assume that behavior of the physical variables is modeled using rectangular hybrid

automata [10], and as a consequence, we can symbolically compute expressions for

forward and backward reach sets (Pre (, ) and Post (, ) defined formally in Defini-

tion 32) from a given set of states (for more details on reachable set computation for

hybrid systems, please refer to Section 1.3). For more general dynamics, although

it is difficult to compute the reachable set exactly, one can potentially use the nu-

merical techniques present in literature (see Section 1.3). Alternatively, one can also

use the dynamic analysis techniques presented in Chapters 3 and 4. In this chapter,

we assume that the reachable set computed can be expressed as a logical formula in

linear/nonlinear arithmetic solvers such as Z3 [48].

The final step combines the symbolic reachability computations of the individual

agents and checks if there exists a time t when the complete distributed system

violates the given property.

There are two sources of imprecision in the procedure. First, the Pre (, ) and Post (, )

expressions obtained through static analysis may not be exact. This may be the case

either because the model of the system that is analyzed is not exact (e.g., the program

or the dynamics are not known exactly), or because the model cannot be analyzed

exactly. There exists a rich body of literature addressing the latter (see, Section 1.3

for more details and the recent the proceedings of HSCC [63, 83]). While there are

classes of systems for which reach sets can be computed exactly, for most systems

with complex dynamics, these computations are necessarily overapproximations of the

actual dynamics. The second source of imprecision is the inaccuracy of the dynamic

information recorded in the traces. Specifically, these inaccuracy arises from the

lack of exact information about the timing of the recorded observations. For each

observation, we calculate an interval of real time in which it may have occurred.
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If these intervals are larger than what is actually possible, then the set of possible

executions computed from the given (inaccurate) trace may subsume the actual set

of possible executions. We show that the procedure is complete, if both these types

of inaccuracies can be eliminated.

We have built a programming platform, called StarL [170, 114], for quickly develop-

ing distributed Android applications communicating over ad-hoc WiFi networks and

Bluetooth. Using StarL, we have implemented applications such as peer-to-peer chat,

geocasting, coordinated distributed search with mobile robots, and distributed traffic

control [170]1. We have implemented the procedure described in this chapter in a

prototype tool that uses the Z3 SMT-solver [48] and have analyzed numerous traces

from distributed Android applications with up to 20 agents. Analyzing a 10 second

trace for 20 agents typically takes between a few seconds to a couple of minutes.

These performance figures suggest that the procedure can scale. The traces analyzed

in these experiments are obtained from three applications: waypoint following, geo-

casting, and a distributed traffic control application that requires mutual exclusion.

For these traces, we are able to establish and find counterexamples for interesting

properties, such as, (a) no two mobile robots ever came within a certain distance

of each other, (b) every message that was geocast to a certain region was received

by another agent iff the agent happened to be in that region during a certain time

interval, and (c) there are no deadlocks at traffic intersections.

6.2 From Distributed Traces To Global Properties

In this section, we use the notations developed for modeling distributed CPS that

were presented in Section 2.3. We present new definitions for observation intervals and

present a procedure to infer the global predicates of distributed CPS by performing

static and dynamic analysis on a trace.

6.2.1 Observation Intervals

Each recorded state vi[j] in a trace βi is associated with a local clock value vi[j].clk,

but thus far we have not made any assumptions about clk apart from it being con-

1In fact, the errors encountered in developing these applications partly motivated the current
work.
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tinuous. In distributed computing systems, the impossibility of constructing globally

synchronized clocks is a fundamental limitation [167]. Therefore, it is unrealistic to

assume that all the vi[j].clk values equal the real-time of the execution σ at which

vi[j] is recorded. At the same time, many embedded devices have local clocks that

are synchronized up to some accuracy using distributed clock synchronization algo-

rithms. The next definition specifies when an observation is synchronized to some

accuracy.

Definition 31 For a recorded state vi[j] ∈ Qi in a trace β of System and a positive

constant µ ∈ R≥0 ∪{∞}, vi[j] is said to be µ-synchronized if for every execution σ ∈
TraceInvβ, (1) there exists t in the real-time interval J

∆
= [max(vi.clk−µ, 0),vi.clk+µ]

such that, σ(t).Vi = vi[j] and (2) for all t /∈ J , σ(t).Vi 6= vi[j]. βi is µ-synchronized

if every observation in βi is µ-synchronized.

In other words, for any execution that corresponds to β, the state observation vi[j]

occurs within the interval J and only within that interval. If the agents implement a

clock synchronization algorithm that guarantees that the local clocks are synchronized

to the real-time with an accuracy of µ, then it is guaranteed that each βi in the trace β

is µ-synchronized. This definition is more general, in that, it allows different agents’

clocks to be synchronized to real-time with different accuracy, and even different

states within the same trace can be associated with local clocks that have different

accuracy. Note that an∞-synchronized recorded state provides no information about

the real-time of the recording. Also, if vi[j] is µ-synchronized in β, then it is also

µ′-synchronized for any larger µ′ ≥ µ.

For a given trace β, the observation interval [L(v), U(v)] for a µ-synchronized

observation v is defined inductively along the happens-before (happens-after) chain

as follows:

L(v) = max

(
0,v.clk − µ, max

u∈before(v)
L(u)

)
, and (6.1)

U(v) = min

(
v.clk + µ, min

u∈after(v)
U(u)

)
. (6.2)

We define the duration of a trace β, dur(β), as maxv∈[[β]] U(v).

The following lemma is proved by induction on the length of the happens-before

(and happens-after) chain of an observation.

Lemma 25 For every execution σ ∈ TraceInvβ, for every observation v in β of some
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agent i, (1) there exists t in the real-time interval [L(v), U(v)], such that σ(t).Vi = v,

and (2) for all t /∈ [L(v), U(v)], σ(t).Vi 6= v.

6.2.2 Filling in the Gaps

Throughout this section, we fix an automaton Ai and a trace βi = vi[1], . . . ,vi[k]

of Ai. We drop the suffix i from the observations vi[j] and the initial state vi,0 in

this section. The trace βi records the state of Ai at certain time instants. The ex-

act real-time of an observation v in βi is unknown, but we compute the observation

interval [L(v), U(v)] that satisfies Lemma 25. In what follows, we present a sym-

bolic approximation algorithm that takes three inputs: (a) the hybrid system that

models the behavior of agent i as Ai, (b) a trace of Ai with length k and duration

T , βi = v[1], . . . ,v[k], v0 and (c) the observation intervals for the observations in

βi. The algorithm computes a symbolic expression reachβi(t), such that for each

t ∈ [0, dur(βi)], reachβi(t) overapproximates the states reached by Ai through the

executions in TraceInvβi .

Example 9: Our running example consists of three mobile robots in the plane,

each attempting to move their x-coordinate to equal their numeric identifiers (e.g.,

eventually x1 = 1, x2 = 2, and x3 = 3), without caring about the values of their

y-coordinates. To accomplish this goal, each robot has several modes, each with

different dynamics corresponding to a different controller. For ease of exposition

for the example, we assume (a) the observation intervals are disjoint for each robot,

(b) that mode switches only occur at the time an observation is recorded, and (c) that

the robots have rectangular dynamics (that is, ẋi ∈ [am, bm] for some constants am ≤
bm in each mode m). These assumptions are in contrast to the general case defined

in Equation (6.3) and computed in the actual experiments.

clk x ẋ ∈ [a, b] µl µu

1.03 3.20 [−1.6,−0.9] 0.100 0.100

1.67 2.39 [−1.6,−0.9] 0.126 0.108

2.42 1.47 [−1, 1] 0.100 0.144

3.45 1.59 [0.5, 0.5] 0.144 0.100

4.08 1.86 [−1.6,−0.9] 0.126 0.100

Table 6.1: Example trace for robot 2 corresponding to Figure 6.1
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A trace consisting of five valuations of a robot is shown in Table 6.1, and this

corresponds to the middle robot 2 (in light green) in Figure 6.1. In the trace, clk is

the local time recorded in the trace, x is the robot’s x-coordinate in the corresponding

interval [clk − µl, clk + µu], and ẋ ∈ [a, b] indicates the dynamics with which x is

evolving. �

Before introducing the algorithm, we define several building-block expressions that

are computed from static analysis of Ai’s specification. For an expression S involving

the variables of Ai, [[S]] ⊆ Qi denotes the subset of states that satisfy S. We now

formally define the notation for Pre(, ) and Post(, ) functions.

Definition 32 Given a hybrid system that models the behavior of agent i as Ai, a set

of states S ⊆ val(Vi), and time t > 0. PostAi(S, t) is an expression involving Vi∪{t},
such that for any execution σ of Ai with σ.fstate ∈ [[S]], σ(t) ∈ [[PostAi(S, t)]]. The

PostAi(S, t) expression is said to be exact if, for every s ∈ [[PostAi(S, t)]], there exists

an execution σ with σ(0) ∈ S and σ(t) = s. PreAi(S, t) is an expression involving

V ∪ {t} such that for any execution σ of Ai with σ(t) ∈ [[S]], σ.fstate ∈ [[PreAi(S, t)]].

Exact PreAi(S, t) expressions are defined analogously.

One way to numerical compute Post (, ) and Pre (, ) is to use dynamic analysis tech-

niques presented in Chapters 3 and 4. As we consider only rectangular hybrid au-

tomata models for modeling the interaction of agent i with the physical environment,

several works in literature present techniques for computing these symbolic expres-

sions (see Section 1.3).

For any time t ∈ [0, dur(βi)], before(t) returns the v ∈ [[βi]] with the the largest

U(v) < t, or v0 if no such v exists, and after(t) returns the v ∈ [[βi]] with the the

smallest L(v) ≥ t, or it returns a special symbol > indicating that there is no such

observation.

input : βi = 〈v[1], . . . ,v[k]〉, v0

output: reachβi(t)
1 TSeq ← Sort({L(v), U(v) | v ∈ [[βi]]});
2 (l, u)← (tj, tj+1) // such that t ∈ [l, u) and tj, tj+1 ∈ TSeq;
3 Seq ← 〈before(l), obs([l, u)), after(u)〉;
4 reachβi(t)← Pred(Seq, [l, u));

Algorithm 6.1: Algorithm for computing the predicate for the set of states
reached in the interval tj, tj+1.
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In Line 5, obs([l, u)) is the sequence of observations, such that for each v in the

sequence [L(v), U(v)]∩[l, u) 6= ∅. Seq prepends before(l) to this sequence and appends

after(u) only if it is not >. The predicate Pred(Seq, [l, u)) takes as input such a

sequence and the time interval [l, u), and computes the symbolic expression for the set

of states reached in the interval [l, u). If after(u) 6= >, then Pred(〈s1, . . . , sm〉, [l, u), t)

is defined as (l ≤ t < u) ∧ ∃ts1 < ts2 < . . . < tsm

m∧
j=1

(L(sj) ≤ tsj ≤ U(sj)) ∧
m−1∧
j=1

(tsj ≤ t ≤ tsj+1
⇒

(Post (sj, t− tsj) ∧ Pre (sj+1, tsj+1
− t))). (6.3)

If after(u) = >, then it is defined as (l ≤ t < u) ∧ ∃ts1 < ts2 < . . . < tsm

m∧
j=1

(L(sj) ≤ tsj ≤ U(sj)) ∧
m−1∧
j=1

(tsj ≤ t ≤ tsj+1
⇒

(Post (sj, t− tsj) ∧ Pre (sj+1, tsj+1
− t))) ∧

(t ≥ tsm ⇒ (Post (sm, t− tsm))). (6.4)

The next lemma states that reachβi(t) contains all states that are reachable at time

t through any execution in TraceInvβi .

Lemma 26 For any execution σ ∈ TraceInvβi of Ai and any t ∈ [0, dur(βi)), σ(t) ∈
[[reachβi(t)]].

Proof: Let us fix an execution σ of Ai in TraceInvβi and an instant of time t ∈
[0, dur(βi)). Let TSeq be the sorted sequence of unique observation interval endpoints

for the observations in β as computed in Line 3. In Line 4, t uniquely defines the

interval [l, u) such that t ∈ [ti, ti+1). Let Seq = 〈s1, s2, . . . , sm〉 be the sequence of

observations computed in Line 5. We will show that σ(t) ∈ [[Pred(Seq, [l, u))]].

First we consider the case where sm = after(u) 6= > and Pred is defined by Equa-

tion (6.3). From Lemma 25 (1), it follows that for each j ∈ {1, . . . ,m}, there exists

∃ tsj ∈ [L(si), U(si)], α(tsj) = sj. (6.5)

From Definition 8, it also follows that for each j ∈ {1, . . . ,m− 1}, tsj ≤ tsj+1
. From

the construction of Seq, we have that s1 happened before l, sm happened after u,

and s2, . . . , sm−1 happened (in that order) within the time interval [l, u). Therefore,
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t must be within the [tsj , tsj+1
) for exactly one j ∈ {1, . . . ,m}. We fix the j such that

t ∈ [tsj , tsj+1
). Using Equation (6.5), we have σ(tsj) = sj and σ(tsj+1

) = sj+1. Thus,

σ(t) ∈ [[Post (sj, t− tsj)]] and σ(t) ∈ [[Pre (sj+1, tsj+1
− t)]].

For the case where after(u) = > sm 6= after(u) and Pred is defined by Equa-

tion (6.4). The proof is identical to the previous case with the exception of the

situation where t ≥ tsm . In this case, there is no observation after t in σ, but there is

only an observation sm before t. Thus, σ(t) ∈ Post (sm, t− tsm).

Example 10: In this part of the running example, we illustrate how the set of

Pre (, ) and Post (, ) can be used for computing the reachable states between two

consecutive observations. These sets of reachable states between observations are

shown for the x-coordinate of the three robots plotted against real-time in Figure 6.1.

The observations (x values) and the corresponding observation intervals are visualized
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Figure 6.1: Example timeline and reach set computation between observations for
the x-coordinates of three mobile robots in the plane.

as the black lines. From observation 3, the Post (, ) (the points between the purple

lines) is computed up to the last time observation 4 could have occurred. Likewise,

from observation 4, the Pre (, ) (the points between the orange lines) is computed up
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to the earliest time observation 3 could have occurred. Instantiating (Equation (6.3))

for this case, we have:

∃t0 < tm.v[3].clk − v[3].σl ≤ t0 ≤ v[3].clk + v[3].σu∧

v[4].clk − v[4].σl ≤ tm ≤ v[4].clk + v[4].σu ⇒

Post(v[3].x, t− t0) ∧ Pre(v[4].x, tm − t).

Under the assumption that the robots’ positions evolve with rectangular dynamics,

the Post (v[3].x, t− t0) expression for robot 1 starting from observation 3 is:

∃t.v[3].x+ v[3].a(t− t0) ≤ x(t) ≤ v[3].x+ v[3].b(t− t0).

As we have assumed every time a mode switch occurs a state observation is added

to the trace, these Pre (, ) and Post (, ) expressions are exact. The final expression for

reachβi(t) for t between observations 3 and 4 computed by eliminating quantifiers.

For a general automaton Ai, these expressions are computed from the static analysis

of the specification Ai. �

Under the additional assumption that the observation intervals in βi are exact and

disjoint and that the Pre (, ) and Post (, ) computations are exact, we show that every

state in [[reachβi(t)]] is reachable by some execution in TraceInvβi at time t.

Lemma 27 Suppose Ai permits exact computation of Post (, ) and Pre (, ) expressions

and for the given trace β, all the observation intervals are exact and disjoint. For any

t ∈ [0, dur(β)) and any state s ∈ [[reachβ(t)]], there exists an execution σ ∈ TraceInvβ

with σ(t) = s.

Proof: Let us fix t ∈ [0, dur(βi)), and a state s ∈ [[reachβi(t)]]. Let TSeq and Seq be

the time and observation sequences computed in Lines 3 and 5 in Algorithm 6.1. Let

[l, u) be the interval in Tseq which contains t. Let before(l) = v1 and after(u) = v2.

Note that since the observation intervals are disjoint, for all but the last interval

after(u) 6= >. Based on the disjointedness of the observation intervals, there are two

possible cases to consider:

Case 1: There is no observation with the observation interval is [l, u]. Therefore,

[l, u] cannot be the last interval and after(u) 6= >. Since s ∈ [[reachβ(t)]], from Equa-

tion (6.3), it follows that there exists t1 ∈ [L(v1), U(v1)] and t2 ∈ [L(v2), U(v2)], such

that s ∈ [[Post (v1, t − t1)]] and s ∈ [[Pre (v2, t2 − t)]]. Since the Pre (, ) and Post (, )
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computations are exact, it follows that there exists an execution fragment σ′ with

σ′(0) = v1, σ′(t − t1) = s and σ′(t2 − t1) = v2. Furthermore, since [L(v1), U(v1)] is

an exact observation interval, there exists an execution σ1 ∈ TraceInvβ′i , where β′i is

the prefix of βi up to v1, such that σ1.ltime = t1 and σ1.lstate = v1. For the same

reason, there exists another execution σ2 ∈ TraceInvβ′′i , where β′′i is the suffix of βi

starting from v2. Concatenating we define σ
∆
= σ1σ

′σ2 ∈ TraceInvβi and satisfies the

requirement σ(t) = s.

Case 2: There exists a single observation v ∈ [[βi]] for which L(v) = l and U(v) =

u. Since s ∈ [[reachβi(t)]], from Equation (6.3), we know that there exists t1 ∈
[L(v1), U(v1)], tv ∈ [l, u], and t2 ∈ [L(v2), U(v2)], such that one of the following

conditions must hold (1) t1 ≤ t ≤ tv , s ∈ [[Post (v1, t− t1)]], and s ∈ [[Pre (v, tv − t)]],
or (2) tv ≤ t ≤ t2, s ∈ [[Post (v, t − tv)]], and s ∈ [[Pre (v2, t2 − t)]]. We consider

the first sub case. Since the Pre (, ) and Post (, ) computations are exact, it follows

that there exists an execution fragment σ′ with σ′(0) = v1, σ′(t − t1) = s and

σ′(tv − t1) = v. Furthermore, since [L(v1), U(v1)] is an exact observation interval,

there exists an execution σ1 ∈ TraceInvβ′i , where β′i is the prefix of βi up to v1, such

that σ1.ltime = t1 and σ1.lstate = v1. For the same reason, there exists another

execution σ2 ∈ TraceInvβ′′i , where β′′i is the suffix of βi starting from v. Concatenating

these executions, we define σ = σ1σ
′σ2 ∈ TraceInvβ and satisfies the requirement

σ(t) = s.

For the second sub case, the reasoning is similar except that we have to consider the

possibility that after(u) is >, that is, v2 is undefined. In that situation, the execution

prefix to v (at time tv) is concatenated with any execution fragment that starts from

v and hits s after t− tv time.

Summary of Sections 6.2.1 and 6.2.2 We have presented a procedure for com-

puting observation intervals for each observation in a trace β = {βi} of a distributed

system A = ‖iAi. Furthermore, from these observation intervals and static analysis of

each individual automaton Ai, we can symbolically compute an expression reachβi(t)

that overapproximates the set of states of Ai that can be reached at a given time

t ∈ [0, dur(βi)). Under additional assumptions about the accuracy of the observation

intervals and the static analysis, reachβi(t) is the exact set of states reached at time

t by executions of Ai that correspond to the trace βi.
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6.2.3 Global Predicate Detection

A global property (or predicate) is an expression P involving the variables V = ∪i∈IVi
of all the automata in the distributed system. Given a system A = ‖i∈IAi, a trace

β = {βi}i∈I , and a global predicate P , we can make the following two types of queries

to an SMT-solver:

(eventually) ∃t ∈ [0, dur(β)) : (∧i∈Ireachβi(t))⇒ P (6.6)

(always) ∀t ∈ [0, dur(β)) : (∧i∈Ireachβi(t))⇒ P. (6.7)

If the eventuality-query has a satisfying t, then from Lemma 26 it follows that all

executions of the system A corresponding to TraceInvβ, satisfy P at time t. For

example, if P captures an unsafe state of A, then this implies that all the executions

corresponding to β become unsafe at t, and therefore, points to a bug in A. The

negation of the always-query can be posed as an existential problem:

(always) ∃t ∈ [0, dur(β)) : (∧i∈Ireachβi(t)) ∧ ¬P. (6.8)

If this query is unsatisfiable, then from Lemma 26 it follows that all executions of the

system A corresponding to TraceInvβ satisfy P at all times in the interval [0, dur(β)).

For example, if P captures a safety invariant, then this implies that all the executions

corresponding to β are safe over this interval, and therefore, gives a proof of bounded

safety. On the other hand, if Equation (6.8) has a satisfying solution t, and if β and

A satisfy the requirements of Lemma 27 (completeness), then we can infer that there

exists an actual execution corresponding to β that violates P at time t.

These queries involve real-arithmetic and their decidability and tractability depend

on the nature of the Pre (, ), Post (, ) sub-formulas and the predicate P . For example,

if the Ai’s are hybrid automata with trajectories described by polynomial functions of

time, and P is a polynomial in the state variables, then this problem is decidable. Our

current strategy for solving these queries is to ship them to the SMT-solver Z3 [48].

Example 11: For global predicate detection in the running example, Figure 6.1

allows us to conclude that the x-coordinates of robots 2 (light green) and 3 (red)

never come closer together than about 0.25 units from one another. However, we

cannot reach the same conclusion for robots 1 (blue) and 2 (light green). In fact,

since we assumed in the example that message delivery intervals are disjoint and the

robots’ dynamics are rectangular, then the assumptions of Lemma 27 are satisfied,
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so we can conclude there is a real execution where the x-coordinates of robots 1 and

2 coincide. �

6.3 Experimental Evaluation

In this section, we describe the platform used for developing distributed hybrid sys-

tems and the type of applications used to evaluate our approach for verification of

global predicates. We also demonstrate the sensitivity of the algorithm with respect

to the different parameters computed both statically and dynamically. Further, we

demonstrate the applicability of the algorithm by presenting a deadlock detection

example.

6.3.1 Distributed Applications on StarL Android Platform

All the traces used in experimental evaluation of our technique are generated from

distributed programs written for Android devices [1] controlling mobile robots. In our

laboratory, we have implemented a Java-based framework, called StarL [170, 114], on

top of the Android operating system. StarL has implementations of (a) unicast and

multicast protocols, (b) a library of high-level functions for accomplishing common

distributed tasks (for example, mutual exclusion, leader election, synchronization,

etc.), (c) functions for accessing hardware sensors on the Android device (such as

GPS sensors, accelerometers, and cameras), and (d) motion-control functions (used

in applications where each Android device is paired via Bluetooth with a mobile robot,

such as an iRobot Create). For the purposes of the experiments in this chapter, StarL

provides a convenient abstraction for programming a swarm of mobile robots with

many sensors, in Java, and over a standard operating system. Over the past year, we

have used StarL to implement several applications such as peer-to-peer chat, geocast-

ing, coordinated distributed search, flocking, and distributed traffic control [170]. In

almost all cases, our initial implementations violated some of the expected safety and

progress properties of the application. Often the violations were not reproducible,

which made it difficult and time consuming to find their root cause. This experience,

at least in part, motivated the work reported in this chapter of thesis.

In this thesis, we use traces generated from three StarL applications:
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1. Waypoint tracking (WT): Each robot is assigned a sequence of waypoints in

the plane and they traverse these waypoints. The robots do not employ any

collision avoidance and do not exchange messages. This simple building block

is used in several other applications. The two global predicates of interest are

Separation and Collinear . A set of robots satisfy Separation(d) at a given time

if the minimum distance between all pairs is at least d. They satisfy Collinear(ε)

if there exists a straight line passing within ε distance of their positions.

2. Geocasting (GC): Each robot follows a sequence of waypoints as in WT and

some of the robots geocast a message m to a circular area C in the plane. The

key property of interest is that a robot receives this message iff it is located

within C during the time interval [t+ a, t+ b], where t is the time at which the

message was sent. We call this property Georeceive(a, b, C).

3. Distributed Traffic Control (DTC). Each robot has to traverse a specified se-

quence of segments as in WT, however, when two robots attempt to traverse

intersecting segments simultaneously (representing traffic intersections), then

one of them has to acquire a lock on that intersection. The robot succeeding

in obtaining the lock traverses its segment, while the others wait. Each inter-

section lock is managed by the robots executing a distributed mutual exclusion

algorithm. The important properties here are separation and deadlock freedom.

One important component of StarL is the trace writer that is called by functions

and applications to record observations. Observations after each message send and

receive are recorded by default. The frequency of other observations and the amount

of state information that is recorded at each observation are controlled by the obser-

vation recording functions. In our experiments, we use two types of traces. First,

for systems with four or fewer agents, the traces are recorded from the same number

of Android devices executing application code. In these experiments, the position

of each agent (wherever applicable) is obtained from a vision-based indoor position-

ing system. Secondly, for generating traces for systems with dozens of agents we

have created a StarL discrete event simulator that can execute many instances of a

StarL application. Specifically, the simulator executes the actual StarL application

code combined with harness functions that substitute Android’s hardware specific

functions and physical sensors, such as the WiFi interface, the local clock, and the lo-

cation sensors. For example, to generate traces for 20 robots, each robot is simulated

on a PC by a process (with several threads). Each process obtains the location of the
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simulated robot from a harness function that mimics the motion of the actual robot

(in our case, the iRobot Create) in the simulated environment. Simulated robots can

turn in place, move in straight lines, and travel in circular arcs. In a similar fashion,

other harness functions provide the agent process access to simulated communication

channels over which messages can be delayed and dropped. For the experiments per-

formed, we also record the “true execution” that generates each trace. For the traces

from the deployed system, the true execution is obtained from a log of the actual

positions and states of all the robots that is updated at a high sampling rate (higher

than the observation frequency) as is maintained in a central PC with an accurate

real-time clock. For the simulation traces, the simulator itself records snapshots of

the entire system as a record of the true execution.

Since StarL is written in Java for Android, real-time issues related to memory

management and garbage collection are a potential issue. However, recall that for

the soundness of our analysis (26), the only real-time requirement (from 31) is the

following. If an observation vi[j].clk appears in the trace β with sync accuracy µ > 0,

then the state vi must have been visited within the real time interval [ts− µ, ts+ µ].

Here ts is the time stamp derived from the (possibly inaccurate) local clock clki and µ

is the synchronization accuracy. Similar assumptions are made for trace observations

about messages sent and received.

When a trace writer instruction is executed in the Java program it first (1) creates

the vi[j] entry in memory (based on the current values of the program variables and

local clock) and then (2) issues an instruction to write this observation to the trace

stored on disk. Nondeterministic delays (such as the garbage collector starting, disk

write delays, etc.) may indeed appear between steps (1) and (2), but these delays

only affect when the vi[j] observation is written to the trace file, and does violate the

above assumption (31).

6.3.2 Scalability

The first set of experimental results serve to illustrate the scalability of the proposed

approach. We have collected a large number of traces from the three StarL applica-

tions, WT, GC, and LP, with 4-20 participating agents. The automaton model of

the application is obtained from the Java code, and includes details of the physical

motion model. Since the robots have simple turn-and-move dynamics, their motion

is modeled using simple rectangular differential inclusions (e.g., a ≤ ẋ ≤ b). Our
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tool attempts to automatically check the relevant properties by first constructing

appropriate formulas and then making the always or eventually queries to Z3.

Table 6.2 shows the total time and memory usage for checking global properties for

typical traces. For each property, we report the performance numbers for 4, 12, and 20

robots participating in the application. The size of the formula used to verifying the

global predicate (i.e., the formula for global predicate detection) is given in the last

column. In these traces, one observation is recorded roughly every 100 milliseconds,

so a trace of length 100 approximately corresponds to 10 seconds in real-time. For

all these traces with up to 20 robots, the properties are checked within a couple of

minutes, and in most cases within a few seconds! These figures suggest that the

approach can scale and in some cases may even be suitable for checking properties of

distributed cyber-physical systems in real-time.

For the Separation property, we check that all the participating robots always main-

tain a minimum separation of d centimeters. This requires a pair-wise comparison of

distances. Note that for the same trace with 12 (and 20) robots, Separation(d = 2.5)

holds, whereas Separation(d = 10) does not. We examined the true execution for

these traces (the fine-grained simulation log), and observed that, indeed, for a dura-

tion of about 200ms robots 6 and 11 came within 10cm of each other.

For the Collinear property, we check that all the robots never form a rough

straight line (within ε distance of an ideal line). This property is violated by the

robots, which implies that there exists a time, when, in some execution corresponding

to the recorded trace, all the robots form a rough line. The Collinear property has

more nonlinear terms than the Separation property and hence takes more time to

verify (note, these traces have only 10 observations).

For the Georeceive property, we check that for any time t if a message m is geocast

at t, then a robot receives m if and only it is located within a specified circle C during

the interval [t, t + 100ms]. Hence robot i will receive a message if and only if, for

some t′ ∈ [t, t + 100ms], the robot lies in C, and it does not receive the message if

and only if, for the entire duration [t, t+ 100ms], it is outside the region. Checking

whether the position of a robot is within the circle C at a given time involves checking

satisfiability of formulas involving real-valued polynomials. In theory, this problem is

decidable, but Z3 does not guarantee completeness. For some of the traces, Z3 returns

“Unknown” even when the predicate actually holds. Checking Georeceive is much

faster than Separation because it only involves checking the position of individual

robots over short time intervals, as opposed to the distance between all pairs over the
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Property Num. Trace Result Time Memory Formula

agents len. (sec) (Mb) Size (Kb)

Always 4 100 Yes 1.6 3.07 3.9

Separation 12 100 Yes 14.1 8.66 14.9

(d = 25) 20 100 Yes 81.1 18.6 31.6

Always 4 100 Yes 1.6 3.07 3.9

Separation 12 100 No 14.1 8.66 14.9

(d = 10) 20 100 No 81.1 18.6 31.6

Always Not 4 10 No 4.66 5.83 3.7

Collinear 12 10 No 12.21 12.91 10.9

(ε = 100) 20 10 No 25.68 25.66 18.4

Always 4 100 Yes 1.28 1.24 3.2

Georeceive 12 100 Yes 1.77 3.67 9.5

20 100 Yes 1.91 8.35 16

Table 6.2: Running time and memory requirements of distributed trace analysis.

Num. Sampling Time Sampling Time Sampling Time Sampling Time

agents 75 ms. 150 ms. 250 ms. 500 ms.

8 92.57 sec 48.26 sec 22.07 sec 9.58 sec

12 4 min 6 sec 114.23 sec 34.16 sec 16.43 sec

16 9 min 58 sec 3 min 52 sec 49.36 sec 24.18 sec

20 20 min 26 sec 8 min 24 sec 67.82 sec 34.94 sec

Table 6.3: Running time (in seconds) for verification of separation property for different
sampling periods.

entire duration.

The influence of sampling time (i.e. the time between two consecutive observations

of a robot) over the total time taken for verification is shown in Table 6.3. The

table reports the time taken to verify the Separation(d = 10) property for distributed

traces of real time 5 minutes. The verification time with sampling period of 500 ms are

always lesser than a minute for the traces of 5 mins even with 20 robots. This suggests

a promising approach for integrating this framework into run-time verification of

distributed hybrid systems. It can be clearly observed from Table 6.3 that verification

time is inversely proportional to the sampling time. This is because, as the sampling

time increases, the number of observation intervals decrease and hence the lower is

the verification time. Another key observation is that because of the soundness of the

analysis, the outputs with different sampling periods were always consistent. Hence,

one could adaptively change the sampling time based on the application in order to

improve the scalability of the approach with the benifits of sound analysis.
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6.3.3 Precision of Analysis

The precision of our analysis algorithm depends both on the precision of the static

analysis (i.e., Pre (, ) and Post (, ) computations) and the accuracy of the dynamic

information, namely the observation intervals inferred from the trace and bounds on

variation of velocity. In this section, we discuss how different levels of precision about

the static and the dynamic analysis can result in different answers. We consider traces

for WT and the GC with 4 robots. The table consists of three parts. The first part

shows the outcome of the analysis for Separation with d = 10cm. When the un-

certainty in the dynamically computed observation interval (OI) increases from local

clock ±10ms to ±20ms, Separation gets violated. With increased uncertainty in the

dynamically calculated values of the observation intervals, we get a more conservative

overapproximation of the set of executions which violates Separation. Analogously,

when the velocity bound (VB) increases from ±20 to ±50cm/s, for the same obser-

vation interval, the property gets violated. Of course, whether there exists a real

execution that violates the property depends on the tightness of the observation in-

terval and the velocity bounds.

The second part of Table 6.4 shows the outcome of analysis for Georeceive with vary-

ing the minimum message delays (i.e. a) from 0ms to 50ms in Georeceive(a, 100ms ,C )

while keeping the observation intervals constant at ±5ms. The final part of the table

varies the observation interval from ±5ms to ±20ms while keeping the minimum

message delay fixed at 0. The key observation here is that increasing either the static

(model) or the dynamical (execution) uncertainties gives more conservative overap-

proximations.

6.3.4 Experience with Deadlock Detection

As described earlier, the LP application traverses segments as in WT, however when

two robots attempt to traverse intersecting segments simultaneously, then one of them

acquires a lock on the intersection. It is not hard to imagine that a deadlock might

occur when a cycle is formed with each robot holding the lock on one intersection

and waiting for the lock on the next. We used our procedure to check for the global

predicate always (no-deadlock) . If the property is violated, then there is a potential

execution that deadlocks2.

2The feasibility of this execution will depend on whether the analysis is complete in this case.
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Separation VB = ±0cm/s VB = ±20cm/s VB = ±50cm/s

OI = ±5ms yes yes no

OI = ±10ms yes no no

OI = ±20ms no no no

Georeceive VB = ±0cm/s VB = ±20cm/s VB = ±50cm/s

delay = 0ms yes yes yes

delay = 20ms yes yes no

delay = 50ms no no no

Georeceive VB = ±0cm/s VB = ±20cm/s VB = ±50cm/s

OI = ±5ms yes yes yes

OI = ±10ms yes yes no

OI = ±20ms yes no no

Table 6.4: The same trace with different levels of precision in static and dynamic analyses
yield different conclusions.

Our tool was able to automatically detect distributed deadlocks in two traces with 4

robots. In the first trace, the algorithm detected that the property is violated because

robot 1 had obtained the token on all the intersections and it had halted because of its

proximity to robot 2. Then, since all the tokens were taken by robot 1, all the other

robots (i.e., robots 2, 3, and 4) were all waiting for robot 1. Examination of the true

execution revealed that this was indeed the case. In a second trace, the tool detected

a deadlock between robots 3 and 4. In this case, robot 3 had finished its traversal of

waypoints and robot 4 could not reach its intended intersection waypoint because it

was occupied by 3. These automatically discovered counterexamples illustrate that

the procedure can be useful for finding corner cases that are commonly missed by

programmers.

6.4 Conclusions And Related Work

In this chapter, we proposed a procedure for analyzing traces of distributed cyber-

physical systems to infer global properties. The procedure combines static analysis of

programs and analysis of traces generated at runtime. We showed that the procedure

is sound, and presented additional conditions that ensure it is also complete. We have

implemented the procedure in an automated software tool using the Z3 SMT solver

for satisfiability checks. Our tool can verify interesting properties—such as correct

geographic delivery in geocast and minimum separation—for 20 robots, in seconds.
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The problem of detecting a global predicate from traces of purely asynchronous

agents has been well-studied in the distributed computing literature [23, 72]. In these

systems, the events (observations) are in no way associated with real-time and are

related by Lamport’s happens-before relation [110] alone. This relation induces a par-

tial ordering on the events. The algorithms for detection of general global predicates

rely on traversing the lattice of all possible interleavings of the asynchronous events

(observations), and therefore, are exponential in the size of the trace [43, 125]. Thus,

much of the research in this area has focused on identifying subclasses of predicates

admitting efficient detection, such as conjunctions of local predicates [75, 92], linear

predicates [73], and regular predicates [74]. For example, in [36], Chandy and Lam-

port present an algorithm for detecting stable predicates by taking global snapshots.

For reducing the space of global states to be examined, techniques such as symbolic

methods [157], computational slicing [129, 155] and partial order methods [158] have

been investigated.

Though the same problem is studied in this chapter, our assumptions on agent

behavior is motivated by the capabilities of current devices used for embedded and

distributed computation, and these assumptions translate to solutions that use dif-

ferent strategies from those studied earlier. For example, our procedure uses static

analysis for computing overapproximations of the reachable set between the observa-

tions (or events). This leads to a combination of static and dynamic analysis that

has not been used earlier in the context of distributed systems.

Despite the challenges, in all of these cases, we would ideally like to build systems

that guarantee certain safety and real-time properties. While there is a large body of

work on performing verification for distributed cyber-physical systems [131, 119, 97],

these works generally focus on model verification or static analysis. In contrast,

in this work, we develop a method that can be used to help programmers debug

during the designing phase for such distributed systems, and also that can be used

as a means of performing runtime verification. Since traces correspond to actual

executions, properties are verified in spite of non-idealities, such as imperfect local

clock synchronization. Such non-idealities are essential to consider in realistic systems,

and are not usually considered in model verification studies.
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Chapter 7

Conclusions and Future Work

In this thesis we have presented new dynamic analysis techniques for verification of

Cyber-Physical Systems. The dynamic analysis techniques presented assume that

the hybrid system models of CPS are annotated with discrepancy functions. These

discrepancy functions capture the continuity property that “executions starting close

by stay close by’’. We have shown that discrepancy functions generalize routinely

used proof certificates in control theory for establishing convergence and divergence

of trajectories. Furthermore, we presented a new technique to compute discrepancy

function for time varying linear dynamical systems.

Using these discrepancy functions and validated simulations, we presented an algo-

rithm that computes the reachtree for bounded time and bounded number of discrete

transitions. We proved that this reachtree gives an overapproximation of the reach-

able set of states. The safety verification algorithm computes reachtrees of increasing

precision until either the safety property is established or a violating counterexample

is found. We showed that this algorithm gives theoretical guarantees such as sound-

ness and relative completeness. Given that the safety verification problem of hybrid

systems is undecidable, such theoretical guarantees are the strongest one can expect

from any automatic procedure.

We implemented the dynamic analysis technique in a tool called Compare-Execute-

Check-Engine (C2E2) and compared the verification results with state of the art tools.

Experimental results show that C2E2 outperforms its competitors and shows promise

for scalability. We presented the architecture of the tool, the input format of models,

and user experience of the tool.

To demonstrate the applicability of the dynamic analysis technique, we performed

two challenging case studies as a part of this thesis. The first case study was about

alerting mechanism ALAS in parallel landing protocol and the second case study was

about powertrain control systems. To verify the key property of alerting mechanism,

we presented a dynamic analysis technique that verifies temporal precedence proper-
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ties. Further, we extended the safety verification algorithm to handle the nonlinear

guarantee predicates that is used in ALAS. Experimental results show that verifica-

tion of alerting mechanism is scalable and C2E2 can identify scenarios such as false

alert and missed alert. For verifying powertrain control systems, we encoded the

specification as safety properties, implemented the algorithm for computing on-the-

fly discrepancy function, and used the safety verification algorithm. This thesis is the

first to formal verify powertrain control systems.

For distributed CPS implementations with message losses, clock skews, and sensor

inaccuracies, we presented a dynamic analysis technique that infers global predicates

of the system. For achieving this, we combined techniques from analysis of distributed

systems and CPS verification. Experimental evaluation on several applications such

as waypoint tracking, geo-cast, and distributed traffic control protocols demonstrate

that the approach us promising and has the potential to be integrated into inferring

global predicates in real-time.

To summarize, in this thesis we have investigated the potential of using dynamic

analysis for verifying CPS. The results presented in this thesis suggest that dynamic

analysis techniques are scalable and efficient without compromising on theoretical

guarantees. These advantages present a wide scope for future work.

7.1 Future Work

In this section, we describe several directions for future work. We mainly classify

these research directions into two groups: improvements and new avenues.

7.1.1 Improvements

In this section, we will present future research directions which are improvements of

the dynamic analysis technique presented in this thesis.

Automatic discovery of discrepancy functions: The dynamic analysis tech-

nique presented requires that the hybrid system model of CPS be equipped with dis-

crepancy functions as model annotations. While one could potentially use the proof

certificates in control theory to compute discrepancy functions, for CPS modeling

biological and chemical phenomenon, it is often the case that these proof certificates
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cannot be computed automatically. A promising step in this direction is presented in

Algorithm 3.1 where a discrepancy function for time varying linear dynamical system

is computed using n + 1 sample simulations. Computing the tightest possible anno-

tation for such linear systems would provide theoretical insights into the behavior of

linear dynamical systems and hence is an interesting direction of future work. Devel-

oping analogous techniques for general nonlinear dynamical systems would be a major

breakthrough in verification of CPS. However, given that nonlinear dynamical sys-

tems are a more general class than linear dynamical systems, such a technique seems

to be unlikely. Exploring such techniques for a restricted set of nonlinear systems

would be an interesting direction of future work.

Another interesting direction for computing discrepancy functions is to apply tech-

niques from machine learning and nonlinear real arithmetic solvers. While using

nonlinear real arithmetic solvers to discover proof certificates has recently been in-

vestigated in [103, 27], we believe that applying machine learning to improve the

search for a template for proof certificates would give rise to new techniques that are

applicable to a large class of systems.

Battling the curse of dimensionality: The dynamic analysis technique pre-

sented relies on computing a finite δ-cover of the initial set and then computing

the reachtree. Hence, as the number of real valued variables increases, the number of

validated simulations to compute a reachtree would increase exponentially. Further,

the refinement operations become progressively expensive as the number of dimen-

sions increases. To battle this curse of dimensionality, we present three directions of

future research.

Theoretical Lower Bounds: An interesting theoretical question to answer in dy-

namic analysis is the following. “Given a hybrid system (with or without dis-

crepancy function), what is the minimum number of numerical simulations that

have to be performed to compute a reachtree of ε accuracy.’’ One can con-

sider variants of the above problem such as, computing on-the-fly the minimum

number of additional simulations based on the analysis of simulations gener-

ated until now. After carefully observing algorithm 3.1, we conjecture that

O(n) simulations could be sufficient for linear systems.

Leveraging Cloud Computing: One way to battle the curse of dimensionality is

to develop parallel algorithms (or algorithms that leverage cloud computing)

123



and run these algorithms on supercomputers (or cloud computing platforms).

Although the current dynamic analysis technique can leverage the embarrassing

parallelism in generating sample simulations, subsequent computations seem to

require communication among different threads. One technique to solve this

problem is to leverage static analysis techniques and pre-determine the simula-

tions that would require minimum (or zero) communication among threads.

Accelerated Counterexample Search: While falsification techniques presented

in [17, 50] search for counterexamples that falsify the specification, we believe

that it is possible to leverage discrepancy functions for accelerating the search

for counterexamples. Such counterexample search strategies can also result in

new results in theoretical lower bounds required for verification.

7.1.2 New Avenues

In this section, we will present the future avenues of research where dynamic analysis

can yield promising results.

Properties: While in this thesis, we have presented techniques for safety verifica-

tion using dynamic analysis, we believe that dynamic analysis can be extended to a

more general set of properties. One such property of interest is conformance checking.

Informally, given a model A of the system S, conformance checking inspects several

behaviors of S, and infers whether A is indeed a faithful model of S. Another form

of checking conformance is to check whether there exists a simulation relation among

two models A and B. We believe that dynamic analysis techniques can be extended

for checking simulation relation and in turn be applicable for developing new abstrac-

tions for hybrid systems. This could in-turn lead to new dynamic analysis based

CEGAR techniques.

Generalized continuous behaviors: In this thesis, we have restricted our atten-

tion to trajectories that are deterministic and are defined as solutions of an ODE.

As a direction of future work, it would be interesting to extend these techniques to

systems with nondeterminism in trajectories. Delay differential equations and partial

differential equations are commonly used to model a vast class of CPS. Extending dy-

namic analysis techniques to such systems would help understand the disadvantages

of these techniques (if any).
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Probabilistic systems: Stochastic hybrid systems are widely used to model biolog-

ical systems, traffic patterns, and behavior of robots. Extending dynamic analysis to

these systems would require developing new extensions of discrepancy functions with

probabilities. We believe that such extensions would provide probabilistic guarantees

that are fundamentally different from the guarantees obtained using Monte-Carlo

techniques.
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