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Abstract 

A Train Control System (TCS) is utilised to guard the operational safety of the trains in 

railway systems. With rapid developments in modern railway systems, more and more 

modern TCSs have been developed to protect system operation. Consequently, guaranteeing 

that the functions of a TCS satisfy the designed specification requirements is essential to 

affirm that a developed TCS can be adopted. Functional testing is applied to test the System 

Under Test (SUT) in order to verify consistency between the SUT and specification 

requirements. Traditional functional testing in TCSs is mainly based on manually designed 

test cases, which are derived from experienced experts who are familiar with system 

functional design and testing. For newly built or updated TCSs, the test case generation 

process can take a long time. Manually-written test cases may miss some scenarios that 

should have been tested, even when prepared by an experienced test designer. Model-Based 

Testing (MBT) methods have been introduced into TCS functional testing to improve the 

efficiency and coverage of TCS testing. However, existing MBT methods cannot 

independently test complex SUTs because the model complexity generated by the SUT can 

exceed the computational limit of the computer due to state explosion. 

To overcome the difficulties of applying MBT methods to test TCSs, the author introduces 

simulation combined MBT which combines an MBT method with simulation. To explain the 

MBT method introduced, related background knowledge is reviewed. Due to the limitations 

of the current functional testing and MBT methods, the author describes the research problem, 

and proposes methodology and development of the simulation combined MBT method, and 
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the validation and verification of the testing platform. 

To prove the feasibility and effectiveness of the proposed MBT method and developed MBT 

platform, two case studies were undertaken. The test results indicate that the SUT Vehicle 

On-Board Controller (VOBC) complies with the specification requirements so that it passed 

the test. The two case studies prove that the developed MBT platform can be utilised to 

implement the functional testing of TCSs. 

To prove that the MBT platform is effective in detecting errors in the SUT, validation and 

verification was undertaken, which included validation of the specification requirements and 

verification of the MBT platform. The verification results indicate that the MBT platform can 

cover more possible traces and variable values at the same search depth. The author also 

explores the possibilities of improving the coverage performance of the platform by 

improving its reachset coverage in key states. Various impact factors have been discovered to 

be effective in making the platform cover more possibilities in the same testing time.  
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1 Introduction 

1.1 Background 

The Train Control System (TCS) is a wide-ranging concept with numerous subsystems for 

different control objectives, such as guaranteeing system safety, improving efficiency and 

capacity, and optimising energy consumption [1-3]. Among all these subsystems, the TCS is 

one of the most essential because it is the key element to guaranteeing a system’s operational 

safety and protecting the system from potential dangerous situations such as collision or 

derailment [4, 5]. Since the railway is utilised to carry a large quantity of passengers or cargo, 

any dangerous situation can lead to disastrous consequences and huge economic losses. With 

the same purpose for different uses, there is much variation in the signalling systems adopted 

in different countries, such as the European Train Control System (ETCS) which is a unified 

standard and widely adopted in the railway systems of many European countries [6, 7], and 

the Communication-Based Train Control (CBTC) system which has been widely adopted in 

many countries.  

Since metro lines are usually less complicated than mainline railways in terms of track layout, 

rolling stock and timetables, moving blocks has been realised in CBTC systems to improve 

the capacity of metro operations [8, 9]. Different from the ETCS standard which have unified 

standards determined by authoritative organisations, CBTC system composition varies for 

different manufacturers, including different system components, structure and performance. 

Despite ETCS and CBTC being different from each other in many different aspects, they still 

share a lot in common. For example, the fundamental system structure of each contains 



2 
 

trackside equipment, train-borne equipment, and communication systems, which are used to 

guarantee the safety of train movements with determined train movement authority (MA) [10, 

11]. Based on data transmission between lineside equipment and train-borne equipment via 

communication channels [12], train movement safety is guaranteed by cooperation of these 

essential elements, though the cooperation modes may be different in different standards of 

TCS [13]. Therefore, it is possible to apply a unified method to test different types of 

signalling system. 

As one of the most essential protectors of railway systems operation, TCSs are required to 

contain no safety-relevant errors that could lead the system operation into dangerous 

situations [14]. As a result, TCSs consist of a series of Safety Integration Level (SIL) 3 and 

SIL 4 [15] subsystems and components, which makes a TCS a typical safety-critical system 

which must be fail-safe [16]. Therefore, functional testing plays an important role in verifying 

that all safety-related functions in TCSs are correctly designed and precisely realised. To 

achieve this goal, test cases are written to check against the system specification requirements, 

aiming to determine whether inconsistencies exist between the system specification and the 

System Under Test (SUT) [17]. To implement testing, test cases need to be drafted by experts 

in the testing field, who also need to be experienced in signalling system design. Based on this 

understanding of a certain signalling system, test cases are written to include a series of 

different scenarios in which failure or dangerous situations could happen during system 

operation. This procedure requires the test case drafter to completely master the whole system 

operation process so that he or she knows every function which needs to be tested. After test 
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case drafting is finished, the test cases must be translated into a set of test sequences which 

describe what actually happens in the testing procedure. Finally, the last step is to execute the 

test sequences generated to determine whether the SUT behaviour complies with the system 

specification requirements. The test process can be time-consuming because most steps in the 

process are performed manually, as shown in Fig 1: 

Test Cases

Test Sequence

Test execution

SUT Specification

Nature Language

Nature Language

Software/hardware

Test results

Within Test environment

 

Fig 1 General steps of manual testing 

According to Fig 1, test cases are written in natural language, according to the specification 

requirements of the SUT and the expertise of the tester. The test cases are then manually 

translated into test sequences which are also in natural language, describing the testing steps 

which happen in the testing process. To execute the testing sequence and eventually obtain the 

testing results, the testing sequences have to be transformed into a format which is 

recognisable by the SUT software or hardware; this can be realised by specific interfaces 

which can realise the translation between different types of data. Finally, the tests are 

implemented in a valid testing environment, and the testing results are obtained. Due to the 
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SUT specification requirements, the test case and the test sequence are all in natural language 

which is understandable for humans but is difficult for computers to process; testing 

efficiency relies significantly on the person who designs and implements the testing. 

Therefore, it is extremely difficult to improve testing performance, due to the human factor. 

Even worse, due to the complexity of TCSs, manually drafted test cases can miss essential 

testing steps and cause error omissions, even with experienced testers. If the system 

specification is modified in the system development stage, the test case must be accordingly 

modified to comply with the specification requirements, which means the test sequences and 

test executions must be modified as well. Without the assistance of computers, the 

modification process can take an extremely long time so that the extendibility of the testing 

can be reduced. Overall, manually oriented testing has become less appropriate for modern 

TCSs due to the growing demands for quicker product delivery with high quality [18]. 

Faced with the conflicts between the manual testing method and the requirements for 

functional testing of TCSs, automatic testing methods have been taken into the field from 

software testing [19]. Unlike manual testing, automatic testing methods can automatically 

generate test cases based on the formalised specification requirements of the SUT so that 

testing quality and duration can be significantly reduced with the assistance of computers [20, 

21]. As cutting-edge technology in the testing field, automatic testing has a wide range of 

realisation methods for different testing objectives, including stress testing [22, 23], usability 

testing [24], performance testing [25], functional testing, etc.  

To verify the functional correctness of the system, which is one of the key tasks in the testing 
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of TCSs, Model-Based Testing (MBT) is one of the most common automatic testing methods 

for functional testing [26, 27]. To implement MBT, the specification requirements need to be 

formally described by a specification model which is readable by a computer. The 

specification model is then analysed by the computer with integrated algorithms, and 

corresponding test cases are generated based on the properties that need to be verified. 

Compared with the manual testing method, the MBT method has several advantages which 

mean it can replace the current manual testing method utilised in TCS testing. Firstly, MBT 

test generation can be achieved as soon as the specification requirements are formally 

presented, which means the whole testing process period can be significantly shortened. 

Compared with test cases which are written in natural language, the formal models that 

describe an SUT according to its specification requirements are more precise because formal 

language is more logical and mathematical and has less ambiguity. This is extremely 

important for the testing of safety-critical systems such as TCSs because even a slight 

misunderstanding of the specification requirements can result in an incorrect testing verdict, 

leading to serious consequences [28]. That is why more and more manual testing adopts 

formal language to describe the specification requirements of the SUT, even though the test 

cases are still executed manually. Secondly, with MBT test generation algorithms based on 

formalised specification requirements, coverage of the generated test cases can be 

conveniently calculated and improved by the algorithm so that testing efficiency and coverage 

can be dramatically improved [29]. The research results of Utting and Legeard [30] show the 

significance of automating the process of functional testing. 
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Activity 
Total testing time 

Manual Replay Script Keyword MBT 
Test design 50 50 50 50 0 
Modelling -  -  -  -  30 
Initial configuration -  -  50 15 30 
Initial test execution 30 30 2 2 2 
Total testing time by version 1 80 80 102 67 62 
Total testing time by version 2 118 103 122 82 76 
Total testing time by version 3 160 128 143 97 90 
Total testing time by version 4 206 156 166 113 104 
Total testing time by version 5 257 187 191 129 118 
Total testing time by version 6 313 221 219 146 132 
Total testing time by version 7 374 258 249 164 146 
Total testing time by version 8 441 299 282 182 160 
Total testing time by version 9 515 344 318 201 174 
Total testing time by version 
10 

596 393 358 221 188 

Table 1 Testing time for each version of testing for each testing method [30] 

 

Fig 2 Efficiency comparison of different testing methods [30] 

As revealed by Table 1 and Fig 2, the total test duration increases along with an increasing 
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number of versions, where more and more functions are included in the testing so that more 

and more test cases need to be generated and executed. Obviously, for the initial versions, the 

duration of the five testing methods do not differ a lot compared with the following versions. 

However, the growth rates of manual testing, replay testing [31] and script-based testing [32, 

33] are much greater than those of keyword-driven testing [34] and MBT. As a result, when 

the testing versions are updated, which means that more and more functions are tested, 

keyword-driven testing and MBT can save a large amount of testing time compared to other 

testing methods. Since MBT is the only testing method that can automate the test design 

process, its advantages against keyword-driven testing appear when more and more functions 

need to be tested. For complex systems such as TCSs, the number of functions under test can 

be high so that MBT can play its strengths when testing such kinds of system. Furthermore, in 

manual testing, a single test sequence is assigned to one test case to ensure that the 

corresponding function in the SUT is covered by the testing. However, there can be a lot of 

different testing sequences contained in the same test case, which means that in some 

instances, one cannot stand for all of them. In manual testing, there are too many remaining 

valid test sequences to be fully covered by human design. Since formal models can be 

understood by computers, a computer can find out all the valid test cases from the 

specification requirements, and all the test sequences based on the test cases generated. As a 

result, coverage of the testing can be significantly improved with MBT test generation 

algorithms. Furthermore, the test cases generated can be easily transformed into test 

sequences, which can be used to realise automatic test execution with a specified interface 
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connecting the real SUT and the test tool. Consequently, the test execution efficiency can be 

greatly improved without any risk of affecting the accuracy of the testing results. Lastly, the 

generation and execution processes in MBT testing are all dependent on computer algorithms, 

which means that error omission caused by human factors is isolated from the testing 

procedure. In MBT testing, the only element which needs to be develop by humans is the 

formal model of the SUT  behaviour which is also known as the test oracle [35]. Provided 

the formal model is correctly built according to the specification requirements of the SUT, it 

promises to obtain a convincing testing result which determines whether SUT behaviour 

complies with the given specification requirements. Overall, MBT is more eligible than 

manual testing for testing safety-critical systems such as TCSs. 

Although MBT has been rapidly developing and has been proven to be suitable for testing 

large-scale systems including software and hardware, it is still challenging to apply MBT for 

testing industrial-sized systems with a high degree of complexity, such as TCSs which contain 

many subsystems and components with complex interactions and many nondeterministic 

situations. As one of the key steps in MBT methods, formal modelling is relatively difficult 

compared to manual test generation, especially when dealing with complex modelling 

subjects such as TCSs. Since formal language does not describe the modelling subjects in a 

natural manner which can be understood by most people, formal modelling can take longer 

than manual test case drafting, even for an experienced tester. When the modelling subjects 

are of industrial size, they can consist of numerous components with intricate structures for 

realising various functions by series of interactions, which exponentially increase the 
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difficulties of formal modelling. Even if formal models are constructed successfully, they can 

still be too complex to be processed by computers in an acceptable time frame. When a formal 

model becomes too complex, which means that there are too many possibilities contained in it, 

state explosion may happen when applying test generation and execution algorithms so that 

the computational resources of computers can be exhausted, which means the MBT cannot be 

applied to test industrial-sized SUTs without controlling the formal modelling scales. 

Different from manual testing methods which specifically emphasise sequences of valid 

inputs and corresponding expected outputs, the modelling methods of MBT model SUTs in a 

format of different types of formal expression, which is not understandable for nonexperts. 

Therefore, it is difficult for an inexperienced tester to determine whether the specification 

model correctly presents every essential element involved in the specification requirements of 

the SUT. However, without correct formal models, the test cases derived can be invalid or 

inaccurate for use in testing the SUT, so that the testing results obtained are meaningless.  

Compared with MBT methods, manual testing methods are mostly straightforward, 

conforming to natural human habits of testing, and are understandable for most testers who 

are familiar with the functional characteristics of the SUT. Unlike formal models, the 

correctness of which needs to be verified by relevant techniques such as model-checking [36, 

37] and theorem proven, test cases for manual testing are drafted by the experts from 

authoritative organisations such as UNISIG, which takes charge of standardising the Form Fit 

Functional Interface Specification (FFFIS) of all subsystems and key components contained 

in the ETCS system, and the corresponding test cases and test facility for those test 
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specifications. With technical support from the professional company members of UNISIG 

such as Alstom, Ansaldo, Bombardier, Siemens and Thales, the correctness of the test cases is 

convincing. That is why the testing of TCSs still depends mainly on manual testing, though it 

relies more and more on formal methods such as MBT. 

1.2 Motivation and Objectives 

To address the challenge of applying MBT methods in TCS testing, the limitations of formal 

modelling methods must firstly be overcome. Therefore, the author has developed a novel 

MBT method called simulation combined MBT, which overcomes the aforementioned 

difficulties of utilising the MBT method to test complex systems. In contrast with traditional 

MBT methods which describe SUT behaviour in a single formal language or in multi-layer 

formal language, simulation combined MBT obtains the SUT model from formal modelling 

combined with simulation, targeting two types of system behaviour in two models. To 

decrease the modelling difficulties as well as to control the model complexity under an 

acceptable level, the SUT model is divided into two models, the abstract models in charge of 

abstract and discrete system behaviour, and the simulation model in charge of concrete and 

continuous system behaviour. Based on the two-model-combined structure, the system 

behaviour for relatively complex SUTs can be modelled entirely without the risk of state 

explosion. Furthermore, it simplifies the process of building formal models by moving most 

of the continuous behaviour, which is difficult to model in formal language, from formal 

models into simulation models. 
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Compared with formal language, simulation is more applicable for describing continuous 

behaviour from a macroscopic view because of the flexible features of simulation. For a 

complex system with hybrid characteristics, such as a TCS, combining discrete 

condition-switching, such as the transition mode of the On-Board Unit (OBU), and 

continuous variable changes, such as the train speed varying in operational procedures, the 

two-model-combined structure takes advantage of both formal modelling, which is adept at 

describing discrete transition processes, and of simulation, which is good at depicting 

continuous variation processes. With the combination of both modelling methods, the 

modelling difficulties of the SUT and the processing difficulties of the SUT models are 

together reduced, which significantly increases the feasibility of applying MBT methods in 

complex system testing. Since the modelling method is different from those of traditional 

MBT, the test tool which is utilised to generate test sequences based on the analysis of formal 

models cannot be directly adopted in simulation combined MBT. Therefore, a customised 

interface has been developed for the application of an online MBT test tool, allowing the 

online testing of complex systems to be realised. 

In the field of MBT, online testing and offline testing are two contrary concepts of different 

kinds of testing implementation technique; offline testing generates test cases then executes 

them, while online testing generates and executes test cases simultaneously. Online testing 

can deal with nondeterminism contained in the formal model, but performs worse than offline 

testing in checking strict time restrictions because the test cases cannot be generated in time 

for execution when the formal model is too complex. By comparison, offline testing cannot 
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deal with nondeterminism contained in the formal model, but it is good at checking strict time 

restrictions, and the generation and execution processes are separated. Since a TCS is a 

typical nondeterministic system with a high degree of complexity, the author aims to 

implement online MBT testing based on the simulation combined MBT method introduced, 

considering testing accuracy and efficiency, which leads to the following objectives: 

• Discuss the main tasks of testing the functions of a TCS. 

• Based on the discussion, explore the feasibility of applying MBT to test TCSs. 

• According to the exploration results, develop a simulation combined MBT which is 

suitable for testing TCSs. 

• With application of the simulation combined MBT, build up an online MBT testing 

platform which can be applied to test different types of TCS in various railway 

networks. 

• Implement online testing based on a case study of a TCS utilised in real railway 

systems and draw an eventual testing verdict. 

• Verify the testing results obtained, determine the effectiveness of the simulation 

combined MBT, analyse whether testing performance is better than that of existing 

testing methods. 

With all the objectives achieved, the author expects that simulation combined MBT can be 

applied to test TCSs and other industrial-sized systems with complex functions and structures. 

With verification of the testing results, the online MBT platform developed by the author is 

expected to obtain better performance in terms of testing correctness, functional coverage and 
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time efficiency.  

1.3 Thesis Structure 

The thesis is presented with the following structure: 

• Chapter 2: 

Different types of TCSs, which are the SUTs, are introduced. Traditional MBT methods 

and traditional functional testing of TCSs are introduced. Based on the review, the 

research problem is formulated. 

• Chapter 3: 

The reason for choosing online MBT is explained. Evolved from the traditional 

modelling method for online MBT, the Simulation Combined Timed I/O Transition 

System (SCTIOTS) modelling theory is developed with formula derivation. Based on 

SCTIOTS, simulation combined MBT methodology is proposed. 

• Chapter 4: 

The method of implementing simulation combined MBT is introduced by developing a 

simulation combined MBT platform. The essential components of the platform are 

introduced, including the modelling tools, test tool, I/O sequence manager and 

Hardware-in-the-Loop (HIL) environment. The architecture of the platform is explained 

at the end of the chapter. 

• Chapter 5: 

Two case studies are undertaken to prove the feasibility of the proposed testing method 
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and developed platform. The first case concentrates on explaining the developed 

components of the simulation combined MBT platform. The second case concentrates on 

testing the overspeed protection function and the train location function of an SUT 

Vehicle On-Board Controller (VOBC). Testing results are recorded and analysed in both 

cases. 

• Chapter 6: 

The effectiveness and performance of the simulation combined MBT platform are 

verified, including validation of the specification requirements, verification of the 

effectiveness of the testing platform, and verification of the performance of the testing 

platform. Impact factors of test efficiency and quality are explored at the end of the 

chapter. 

• Chapter 7: 

The conclusion and contribution of the thesis are summarised. Future work is presented at 

the end of the chapter.  
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2 Literature Review of Functional Testing in Train Control 

Systems and Model-Based Testing Methods 

Testing is a broad concept with definitions that can vary from field to field, and each one can 

be quite different from the rest when considering different testing purposes and testing scales. 

Therefore, before MBT can be applied to test an SUT, three essential elements, the scale of 

the SUT, the scale of the testing and the purpose of the testing, must be specified to determine 

the appropriate type of test. Evolved from the model defined by Utting and Legeard [30], the 

concept of different types of testing is generally defined by Fig 3: 

System

Integration

Component

Unit

Black-box White-box

Functional

Robustness

Performance

Usability

SUT Scale

Testing Scale

Testing Purpose

Grey-box

Model-based 
Testing

 

Fig 3 Classification of different types of testing 
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As depicted in Fig 3, three key indices profile different types of testing by determining the 

testing purpose, testing scale and SUT scale of testing. For testing scale, black-box testing 

means that the tester does not have the access required to know the internal behaviour of the 

SUT, while white-box testing means that the tester does have access to the internal behaviour 

of the SUT [38]. That is to say, white-box testing aims to test the internal behaviour of the 

SUT, which means that the tester needs to understand its internal operating principles [39]. In 

grey-box testing, which is related to black-box testing and white-box testing, the tester only 

has partial knowledge of the internal SUT behaviour, so that it can have the characteristics of 

both black-box testing and white-box testing and can be a richer approach [40]. For SUT scale, 

testing has different meanings when it is implemented at different levels of SUTs, including 

unit testing, component testing, integration testing and system testing. Obviously, it is difficult 

to distinguish these four levels in complex systems with a complicated structure, such as 

TCSs which consist of a series of subsystems, components and units. For such a system, it 

necessary to define the boundary between the internal and external layers of the SUT, without 

necessarily defining which level the testing belongs to. In testing purposes which directly 

determine the testing type, testing is classified into different categories, including functional 

testing, robustness testing, performance testing and usability testing, each of which refers to 

corresponding testing methods. As mentioned above, functional testing aims to verify the 

system’s functional behaviour which is designed and developed within the system 

specification requirements so that it usually connects with black-box testing. As conclusively 

indicated by Fig 3, the relevant fields of MBT are restricted inside the dotted cube, indicating 
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that MBT is designed and implemented for functional testing with a black-box or grey-box 

testing scale, though it can be adopted to test any level of the SUT. It is worth noting that the 

dotted cube does not mean a strict restriction, which means that the MBT can still be utilised 

for other testing purposes, such as performance testing and robustness testing. However, 

functional black-box testing is the main application scenario. 

2.1 Introduction to Train Control Systems 

As mentioned in section 1.1, different types of TCS are selected for use in different countries 

based on national rulebooks and other constraints. To indicate that the proposed testing 

method can be adopted to test ETCS, CBTC or other TCSs, the author has generalised the 

system structures of the different TCSs to illustrate their similarities. 

On-Board Equipment

Train Driver

Trackside Equipment

Wireless communication network
Control 
Centre
(ATS)

Interlocking

Local network
Wireless network

 

Fig 4 Generalised system structure of ETCS, CBTC or other TCSs 
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As indicated by Fig 4, different types of TCS share a generalised system structure which 

includes the on-board equipment, trackside equipment and radio communication network. 

On-board equipment, such as the OBU in ETCS or the VOBC in CBTC, is responsible for 

guaranteeing the safe movement of the train and feeds back the operation conditions of the 

train to the trackside equipment. Trackside equipment, such as the Radio Block Centre (RBC) 

in ETCS or the Zone Controller (ZC) in CBTC, is responsible for indicating where the train 

should go along the track and feeds back the track conditions to the control centre or 

Automatic Train Supervision (ATS), in collaboration with the interlocking. ATS is responsible 

for supervising the operation conditions of the integrated railway system, and sends 

macro-control commands when necessary, such as sending a rescheduling command when a 

delay happens. The on-board equipment is installed on the train to control the train 

movements. The driver can send a command to the on-board equipment via the Driver–

Machine Interface (DMI) when necessary. Based on the generalised structure of different 

types of TCS, functions need to be realised collaboratively by two or more of the elements 

presented, which means that the functional behaviour of the systems can be complex, and the 

modelling difficulties can increase. Even so, TCSs can be modelled in the same framework, 

which means they can be tested by the same MBT method. The following table shows a 

comparison of the functions and system composition of ETCS and CBTC systems [41], where 

‘X’ denotes the presence of the component and ‘-’ denotes the absence of the component: 

ETCS CBTC 

Equipment 
Operation Level 

Equipment 
L0 L1 L2 L3 

OBU DMI X X X X VOBC TOD 
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BTM - X X X TIA 
TCR X X X - - 
ODO X X X X ODO 
EVC X X X X KVC 

Euroradio X X X X OBRU 
JRU X X X X DR 
TIU X X X X TIMS 

Trackside 

Eurobalise 
(or Euroloop) - X X X 

Trackside 

Balise 

TC (or axle 
counter) X X X - Axle Counter 

LEU - X - - - 
RBC - - X X ZC 

Wireless 
network GSM-R X X X X DCS (WLAN) 

Table 2 Comparison of ETCS and CBTC systems 

In ETCS and CBTC systems, some components with similar functions are given different 

names, such as the European Vital Computer (EVC) in ETCS and the Kernel Vital Computer 

(KVC) in CBTC, which are both vital computers providing the necessary computations for 

train control. Similarly, Euroradio and On-Board Radio Unit (OBRU) are both radio 

communication terminals for on-board equipment of ETCS and CBTC. Overall, ETCS and 

CBTC systems control train movements by the cooperation of on-board and trackside 

equipment. Bidirectional communication is established between the on-board and trackside 

equipment to exchange information essential for their operation. Four operational levels are 

included in ETCS systems to adapt to the operation of the legacy railway systems existing in 

different European countries.  

In order to fulfil the reviewed system requirements, companies such as Siemens, Bombardier, 
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Thales and the China Railway Rolling Stock Corporation (CRRC), have developed their own 

CBTC solutions. Although the CBTC systems developed share the same architecture as 

illustrated in Fig 4, the components used in each of the systems are different; the author has 

therefore not fully listed the components of the CBTC system, instead including only the 

main components and subsystems. One prominent feature of CBTC systems is that Wireless 

Local Area Networks (WLAN) are most commonly used as the radio communication network 

of the Data Communication System (DCS), while ETCS systems usually utilise GSM-R. Due 

to the different application scenarios, the specific functional performance of the subsystems 

and components in ETCS and CBTC systems can be different. Nevertheless, the 

macro-system architecture, specifically the cooperation of trackside and on-board subsystems 

by wireless communication via a radio network, is highly uniform. 

As revealed by Fig 4 and Table 2, ETCS and CBTC systems, which between them represent 

the majority of modern TCSs, share a united system structure and functional features. For 

black-box testing which aims to verify that the functions developed comply with the 

specification requirements, the similarities between the TCSs means that the I/O interface 

between the SUT and the testing tool can be used for testing different systems, with minor 

modifications. For HIL testing, similar system structures and composition mean that the 

simulation for an HIL environment can be used repeatedly without major modifications when 

testing different types of TCS. For MBT, formal modelling of TCSs with similar features 

means that modelling difficulties will not increase when testing different types of TCS. As a 

result, functional testing of modern TCSs based on a unified testing method can be 
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promisingly realised. 

2.2 Traditional MBT Methods 

Based on the discussion in section 1.1, MBT can significantly reduce the cost and time 

associated with testing, and achieve better quality performance by having better traceability 

and extendibility compared with traditional manual testing methods. Despite this, it is not a 

flawless testing method without limitations. Firstly, MBT does not enhance the ability to 

detect defects in the SUT, because it still relies the tester to build the specification model, 

which is the mechanism used to determine whether the test should pass, and to choose the test 

generation strategies; this means the performance of the MBT is determined by the skill and 

experience of the tester [30]. Further, MBT cannot be guaranteed to find all the errors 

contained in the SUT, which is the limitation for all other testing methods [26]. Nevertheless, 

with a well-modelled test oracle and a correctly selected test generation strategy, MBT 

increases the possibility of finding errors at a lower test cost and in a shorter test time. This 

leads to the second disadvantage of MBT, which is that it is more difficult to implement than 

manual testing because of difficulties in formal modelling and test generation algorithms [18]. 

To formalise the SUT behaviour, MBT demands that testers have a deep understanding of the 

operation principles of the SUT so that they can build a precise and unambiguous model 

which can be understood and processed by various test tools. It can take the tester years of 

practice to be familiar with one type of formal modelling method and the corresponding test 

generation algorithms. Furthermore, testers should understand how to test SUTs manually in 

order to build specification model for MBT because MBT is an automation of manual testing 
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methods.  

In addition, MBT is strongly associated with functional testing and is rarely utilised in other 

types of testing, except that it is occasionally used in stress testing [30]. Some kinds of SUT, 

such as those which involve plenty of man–machine interactions, are not eligible for applying 

MBT because of their unique characteristics. For example, the DMI which is one of the 

components in the OBU is not suitable for automatic testing methods such as MBT because it 

is designed to provide driving instructions for the driver via a screen. Although MBT can 

check whether the I/O data of the DMI is correct, it cannot prove that the corresponding 

screen display is correct. As a result, these kinds of SUT should be manually tested. Even 

worse, analysis of failed tests in MBT can be time-consuming because the testing results 

obtained are in a formal format, which can be understood by a computer but is not convenient 

for inexperienced people to understand. By comparison, testing results in manual black-box 

testing are easier to analyse because they are straightforward so that the tester can locate the 

errors by comparing the results with the specification requirements.  

Lastly, traditional MBT methods mostly require that the specification model is deterministic 

regardless of whether the SUT itself is deterministic. However, complex systems such as 

TCSs can be nondeterministic in some or all layers, including the unit layer, component layer, 

subsystem layer and system layer. Elimination of nondeterminism is not only a 

time-consuming and difficult process but can also be a risky operation leading to state 

explosion. Online MBT algorithms are designed to deal with nondeterministic SUTs, which 

further increases the difficulties in implementing MBT. As mentioned in section 1.1, online 
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testing is more appropriate for the implementation of TCS testing due to its ability to deal 

with nondeterminisms contained in the system with less strict time constraints. Since online 

testing needs to simultaneously generate and execute test cases, the test tools must be highly 

synchronised with the SUT to guarantee that the observed I/O sequences are valid for the 

defined outcome criteria. Therefore, the interfaces used for mapping the abstract I/O for test 

tools and real I/O for SUTs are one of the key elements in testing implementation, and any 

wrong I/O mapping or poor efficiency of translation can lead to a failure result. Another 

adverse factor is that a communication delay between the test tool and the SUT becomes 

non-negligible when the SUT is a timed system with a set of time constraints [42], especially 

when dealing with complex SUTs such as TCSs which include communications between 

hardware and software components. This increases the modelling difficulties in online MBT. 

Because of the difficulties and limitations mentioned, online MBT is only supported by a few 

MBT tools, such as QTronic and UPPAAL-TRON. 

Despite the limitations discussed, online MBT is still a feasible solution for automatic testing. 

Unlike other automatic testing methods such as script testing or keyword-driven testing, 

which incompletely automate the functional testing process, MBT can completely automate 

the test process: the test is automatically generated and executed, and the testing results are 

automatically qualitatively analysed. Therefore, MBT is adopted more and more to save 

testing time and resources, improve testing quality and guaranteeing its correctness. 

For MBT, modelling methods, test selection criteria and test tools are the three key elements, 

and the tester needs to make appropriate choices for each of these three according to the 
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characteristics of the SUT and its testing environment. Hundreds of different modelling 

methods have been used to describe SUT behaviour for MBT. As one modelling method 

commonly corresponds to one or more test generation tools, the author will first classify and 

introduce different MBT methods by introducing various modelling methods. Next, the author 

lists a series of test selection criteria for different types of model with different testing 

purposes. Finally, the author introduces several test tools which support the modelling 

methods and test selection criteria introduced. 

2.2.1 Introduction of Modelling Methods for MBT 

As a wide-ranging concept which can appear in many fields, modelling has a set of different 

meanings for different purposes. Since MBT mainly depends on formal modelling methods 

which can be used as the test oracle for test case generation and test result verdicts, the author 

focuses on formal modelling methods in this thesis [43]. The basis for classification can vary 

from person to person, and the author has adopted one proposed by Utting and Legeard [30]. 

The original classification targets the industrial field, introducing almost every modelling 

method involved with MBT in detail. In this thesis, the author has refined the original 

classification scheme by omitting modelling methods which are rarely utilised in MBT, and 

explains in detail those which are commonly adopted for research purposes. As a result, the 

modelling methods for MBT are divided into three categories; state-based modelling methods, 

transition-based modelling methods and other modelling methods. 
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2.2.1.1 State-Based Modelling Methods 

State-based, also known as pre/post, modelling methods depict a system based on a set of 

states with variables in and constraints on those states. In one state, actions or operations may 

happen when the corresponding conditions are satisfied, and the variables are then updated 

according to the defined relations. State-based modelling methods concentrate on describing 

the internal conditions in states, and therefore weaken the external transitions between two 

states. As a result, they are more suitable for modelling data flow-oriented SUTs of which 

functional testing emphasises correct data flow and is less concerned about control flow. 

Typical examples of state-based modelling methods include but are not limited to B/Event-B 

[44, 45], Z [46], Unified Modelling Language (UML), Object Constraint Language (OCL), 

Java Modelling Language (JML) [47], Spec# [48] and the Vienna Development Method 

(VDM) [30]. As one of the most typical state-based modelling methods, Event-B will now be 

introduced by the author with a modelling example. 

As an evolved version of the B method, Event-B makes it easier to perform refinement and 

verification processes with the help of developed software platforms [49]. Summarised by 

Cansell and Mery [45], the key elements of an Event-B model are illustrated by Fig 5: 

 machine
sets

properties
constants

axioms
end  

Fig 5 Elements of an Event-B model 
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As illustrated by Fig 5, Event-B is a contextual modelling notation in which a model consists 

of the following clauses: the machine, the sets, the constants, the properties and the axioms. 

The clause machine gives the model a name; the clause sets contains definitions of sets in the 

problem; the clause constants summarises the variables involved in the clause properties 

which are the detailed definition of the sets; the clause axioms contains the invariant rules that 

should be held by the developed model and which are going to be verified by the proof engine. 

Once the specification model of the SUT is obtained based on Event-B, the test cases can be 

derived from the specification model with the assistance of test tools along with selected test 

selection criteria. 

2.2.1.2 Transition-Based Modelling Methods 

Compared with state-based modelling methods, transition-based modelling methods 

emphasise transitions from state to state and concentrate less on the profiles of internal states. 

One of the typical representatives is the Finite State Machine (FSM), which is a graphical 

notation describing a system with the pattern node–transition–node. The node represents the 

essential states of a system, and the transition represents the actions or operations which 

happen when the transitions happen, as shown by Fig 6: 
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Fig 6 Schematic of finite state machines 

In practice, an FSM can be extended by adding snapshots of each state, configuring 

hierarchical structures for different layers, and establishing parallel connections between 

several state machines. Extended versions adapt to different characteristics of systems so that 

they can model the transition flow of the systems without losing other essential system 

information. Typical examples of transition-based modelling methods include FSM [50] and 

its varieties such as Labelled Transition Systems (LTS), I/O automata, Timed Automata (TA) 

and hybrid automata, and statecharts such as UML State Machines, STATEMATE statecharts 

and Simulink Stateflow charts [30]. Although the methods mentioned have specialisation use 

in particular scenarios, they share the common points that they are all transition-based; the 

main differences come from the different configurations of their platform. Therefore, the 

author introduces two of the methods to indicate the similarities and differences between 

different transition-based modelling methods. 

• Timed automata [51] 

As one of the varieties of FSM, TA evolves with a finite set of timed clocks which linearly 
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increase in states during the operation procedure. TA is suitable for modelling timed systems 

with linear time constraints. With the assistance of model checkers, TA models can be verified 

against formalised properties such as liveness which means some states are reachable and 

safety. The author will now introduce the UPPAAL platform, which models a system based on 

the TA format [52, 53]. 

 

Fig 7 Schematic of TA model on the UPPAAL platform 

As indicated by Fig 7 which is a formal model of a button, the TA model on the UPPAAL 

platform absorbs the features of labelled transitions systems and I/O automata, and the input 

and output are respectively indicated by specific labels. This configuration is specially 

designed so that it is more convenient for the test generation tool to recognise inputs and 

outputs. Another feature is that the TA modelling method models the SUT and its operational 

environment or user in a parallel structure of two or several automata, where two transitions 

are synchronised by an input/output pair to happen at the same time. With the corresponding 

test generation tools, the test cases or sequences can be derived from the TA models built. 

• Statecharts 

Statecharts are quite similar to FSM-based modelling methods such as the TA modelling 
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method. However, there are still some differences between them so that the tester should 

select the appropriate modelling method according to their specific testing purpose. As 

revealed by Fig 8 and Fig 9, which show a button model built on the MATLAB Simulink 

platform, statecharts on the Simulink platform can describe systems in a hierarchical structure, 

while the TA on the UPPAAL platform can only support a parallel structure. This could be an 

advantage when modelling complex systems consisting of numerous layers. Furthermore, 

with a more advanced graphical user interface, modelling difficulties can be reduced so that 

the modelling efficiency can be improved. 

 

Fig 8: Schematic of statechart model on the Simulink platform 

 

Fig 9 Complete model for the statechart model 

As shown in Fig 9, the external stimulus, which can be a continuous or discrete signal, can be 
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freely defined by the user; this is difficult to achieve with FSM-based tools such as UPPAAL. 

Based on more simulation models, Simulink statecharts can include more detailed information 

in the model. However, most of the matched test tools for Simulink statecharts stay at the 

stage of script testing or keyword-driven testing, both of which entirely or partially rely on the 

tester to design the test cases; neither of them provides genuine automatic test case generation. 

According to Fig 2, the efficiency advantage of MBT appears gradually along with an 

increasing number of test cases, in other words, with the complexity of the SUT. When testing 

systems like TCSs, automatic design of functional testing becomes more important. Although 

some of test tools are claimed to be able to realise automatic test case generation, they are still 

in immature forms. For example, Li and Kumar [54] developed an algorithm for automatic 

test case generation based on the Simulink statechart model that translated the statechart 

model into IO-EFA, a variety of FSM, then applied model-checking to generate test cases. 

The company T-Vec [55] claims that their product can automatically generate test cases, but 

the test tool is commercial making its performance difficult to verify. According to Blackburn 

et al. [56-58], their product aims to automatically generate test vectors, a set of various inputs 

desired for certain testing purposes, which belong to the fields of script testing and 

keyword-driven (table-driven) testing. In general, most of the test tools based on Simulink 

cannot realise automatic test case generation. 

2.2.1.3 Other Modelling Methods 

The author has gathered the remaining kinds of modelling method into this category because 

they are usually utilised in combination with one or several other modelling methods. 
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History-based modelling methods such as Message-Sequence Charts (MSC) [59] describe 

system behaviour by recording the message exchange process between two or more 

components. As a result, though it can be eligible for modelling communication protocols, the 

preferred usage is to present the test cases or test sequences generated by specifying the data 

exchanged between the tester and the SUT. As typical representatives of operational 

modelling methods which focus on describing interactions between concurrent systems [60], 

Communicating Sequential Processes (CSP) and Petri Nets (PN) [61] are often used in 

combination with other modelling methods, such as FSM-based methods, to formally obtain 

hierarchical system models [62, 63]. Other modelling methods such as functional notations, 

statistical notations such as Markov chains [64], and data-flow notations are occasionally 

adopted by some modelling tools for system modelling, verification and testing. 

2.2.1.4 Summary 

Countless modelling methods have been applied to the MBT field, and it would not be 

appropriate for the author to include all of them in this thesis. Instead, those most 

representative of the main categories have been introduced by the author. To automate the 

testing process, a specification model needs to be utilised to formally describe the SUT 

behaviour so that the computer can generate test cases by analysing the specification model. 

Therefore, choosing the appropriate modelling method is an essential foundation of successful 

implementation of MBT. One of the guiding principles of choosing a modelling method for 

MBT is to choose according to the characteristics [30] and emphasis of the SUT. For testing 

data-oriented SUTs where the tester focuses on the key parameters, it is recommended to 
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choose state-based modelling methods because methods such as the B method, as these 

support a wide range of data types allowing the tester to precisely describe the SUT behaviour. 

Transition-based modelling methods, such as LTS, can conveniently describe the complex 

transition relations between different nodes of the state machine based on the node–

transition–node format. However, state–based modelling methods have to specify the 

precondition and postcondition for every state so that the model becomes unnecessarily large 

when the transition relationship is complex. Therefore, for testing control-oriented SUTs 

where the tester is concerned about the transition flow of the SUT, it is recommended to 

utilise transition-based modelling methods to guarantee modelling efficiency.  

The classification between data-oriented and control-oriented systems becomes ambiguous 

when the SUT is an integrated system with a relatively high degree of complexity, such as a 

TCS, for which extensive data verification and control-flow verification are both required in 

the testing. Therefore, the tester should select a suitable modelling method that can fulfil the 

requirements of testing implementation for such systems. State-based modelling methods can 

still deal with control-oriented SUTs, and transition-based modelling methods can still deal 

with data-oriented SUTs. As a result, the type of SUT is not the only basis for determining the 

modelling method. In conclusion, a modelling method is appropriate if it can precisely 

describe the SUT behaviour. In Table 3, some modelling methods which have been frequently 

adopted for MBT are listed with their classification and a brief description. 
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Notation Classification Remarks 
B State-based Abstract machine notation 

Z State-based Based on first-order predicate logic and set 
theory 

JML State-based Behavioural specification language 
Spec# [65] State-based Object-oriented language, extension of C# 
SeC (C++) [66, 
67] State-based Applying contract approach, based on C, 

C# and Java 
OCL [30, 68] State-based Object-oriented language supporting UML 
VDM [69, 70] State-based Object-oriented specification language 
Statecharts [71] Transition-based Formal realisation of FSM 

UML SM [72, 73] Transition-based Behaviour description language based on 
UML 

Stateflow charts 
[74, 75]  Transition-based Supported by UML and MATLAB 

Simulink 

LTS [76, 77] Transition-based 
Behaviour description language, basis of 
I/O automata and other FSM-based 
varieties 

TA [51, 78] Transition-based Extended LTS with time constraints, 
supported by UPPAAL 

MSC History-based Often combined with SDL 

HOL [79] Functional 
notation Often combined with other software tools 

CSP Operational 
notation Often combined with PN 

CCS Operational 
notation Often combined with PN 

Petri net Operational 
notation Often combined with CSP, CCS 

Markov chains Statistical 
notation 

Good at describing a choice of input, weak 
at predicting expected output. So, needs to 
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be combined with other modelling methods 

Lustre [80, 81] Data-flow 
notation 

Describes concurrent systems, supported by 
MATLAB Simulink and SCADE 

Block diagram Data-flow 
notation For modelling continuous systems 

Table 3 Summary of formal modelling methods 

2.2.2 Introduction of Test Selection Criteria 

With the SUT formally modelled, the next step is to generate test cases from the formal 

models obtained. Since the formal model can be complex when modelling an industrial-sized 

SUT, it can be difficult to generate a set of test cases covering all the possibilities contained in 

the model, which means that the test generation process should be controlled based on a 

particularly emphasised field which is determined by the testing purpose or the specification 

requirements of the SUT. Test selection criteria guide the controlling process and are 

employed by the tester to measure the adequacy of the package of the test cases generated 

[82]. Given a specified criterion, the test generation tool has guidance on when to stop the 

generation process and how well the test cases have been generated. Although the ultimate 

goal of test generation is to generate a test suite which can fully cover the possibilities 

contained in the formal model, 100% coverage can be difficult to achieve [83]. Therefore, test 

selection criteria can give the tester an intuitive impression of the test generation performance 

by measuring what percentage of the requested coverage have been satisfied. Furthermore, 

during the test generation process, some test tools can cater to the given test selection criteria 

by applying corresponding test generation strategies so that unnecessary test cases can be 

omitted, and the test generation resources can be economised. This is extremely important for 
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test generation from complex models because full coverage can be difficult to achieve in such 

models, so the tester needs to know whether the test cases obtained are sufficient for 

functional testing. 

Depending on the modelling method chosen, selection criteria can become different concepts. 

Therefore, the modelling notations should be determined before any discussion of test 

selection criteria [84]. Since the author’s research is strongly related to FSM-based modelling 

methods, the modelling notations which correspond to the test selection criteria being 

discussed have been determined to be transition-based modelling methods and modelling 

methods which can be transformed into a transition-based format, such as state-based 

modelling methods. As a result, other test selection criteria are not introduced. 

Since there has been rapid development of MBT technologies recently, more and more refined 

test selection criteria are being proposed for specific testing purposes. As a result, the criteria 

for transition-based modelling methods comprise a large set of concepts including many 

branch criteria. Here, the author introduces the main kinds of criterion which are typically 

adopted in MBT. In transition-based modelling methods, the SUT is required to be modelled 

as an FSM which contains states and transitions. Although different modelling structures, 

such as hierarchical structure and parallel structure, can be realised by different 

transition-based modelling methods, the models can always be transformed into one FSM or 

an approximation of an FSM, as shown by Fig 10: 
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Fig 10 Schematic of finite state machines 

As revealed by Fig 10, an FSM consists of states and transitions, where {S1, S2, S3, S4, S5} 

presents all reachable states; the double circle is the initial state of the FSM, and 

{T1, T2, T3, T4, T5, T6, T7, T8}  stand for all accessible transitions. Based on the defined 

conditions, the test selection criteria are discussed in the following sub-sections: 

2.2.2.1 All-State Coverage 

All-state coverage requires that all reachable states of the FSM, which are {S1, S2, S3, S4, S5} 

in the case of Fig 10, should happen at least once in the test cases generated. It should be 

noted that, when applied to hierarchical structure and parallel structure, all-state coverage may 

have different meanings. In hierarchical structure, the states are divided into external states 

and internal states, and coverage of external states does not mean that all internal states are 

covered, so the hierarchical structure of the model needs to be transformed into an FSM 

format indicated by Fig 10 before proving all-state coverage. In parallel structures, two 

transitions can happen simultaneously so that more than one state can be activated at the same 
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time. Therefore, covering one of the states which are occupied at the same time along with all 

the other normal states is adequate for proving all-state coverage. 

2.2.2.2 All-Transition Coverage 

All-transition coverage requires that all accessible transitions, which are 

{T1, T2, T3, T4, T5, T6, T7, T8}, should happen at least once in the test cases generated. Similar to 

all-state coverage, when applied to hierarchical structure and parallel structure, all-transition 

coverage may have different meanings. In hierarchical structure, transitions between external 

states and transitions between internal states should all be covered. Therefore, the hierarchical 

structure of the model needs to be transformed into an FSM format indicated by Fig 10 before 

proving all-transition coverage. On the other hand, in parallel structures, two transitions can 

happen simultaneously so that more than one transition can be accessed at the same time. 

Therefore, covering one of the transitions which happen together along with all the other 

normal transitions is adequate for proving all-state coverage. All-transition coverage is a 

stronger criterion than all-state coverage, which means if all-transition coverage is achieved, 

all-state coverage will be always satisfied. 

2.2.2.3 All-Path Coverage 

In an FSM, a path is a sequence of states and transitions leading to a certain state. In an FSM, 

all-path coverage requires that all valid paths should happen in the test cases generated, which 

can be difficult to achieve because an FSM can contain an infinite number of paths. For 

example, in Fig 10, the paths are countable without transition ‘T7’ but are infinite with 
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transition ‘T7’ because the number of times that ‘T7’ happens is nondeterministic. Therefore, 

with a model which is more complex than the one in Fig 10, it is difficult to find out all valid 

paths and to cover them. All-path coverage is the strongest criterion, which means if all-path 

coverage is achieved, all-state coverage and all-transition coverage will be always satisfied. 

2.2.2.4 All Definition-Use Coverage 

In some varieties of FSM such as LTS and I/O automata, variables can be defined and used by 

the model expressions so that the variable values can be updated along with some of the 

transitions in the model. Definition-use coverage requires that all paths defining and executing 

all variables should be covered in the test cases generated. All definition-use coverage can be 

adopted in test generation for data-oriented SUTs to exhaustively inspect that all data-related 

operations are functionally correct. 

2.2.2.5 Summary 

Due to the diversity of modelling methods for MBT, test selection criteria are closely 

associated with specific modelling methods and are not compatible for other modelling 

methods. Since simulation combined MBT is based on FSM-based modelling methods, the 

author has only introduced the relevant test criteria and has omitted others. It should be noted 

that the criteria discussed can only be utilised for offline test generation where the test tool 

can record the states occupied, transitions triggered and variables executed during the whole 

testing procedure. For online test generation which randomly selects and verifies one of the 

valid inputs; the purpose of the criteria is to verify the test results by measuring what 
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percentage of the coverage expected has been covered in the testing. The detailed verification 

procedure is presented in Chapter 6 – Validation and Verification. 

2.2.3 Introduction of Test Tools 

In recent years, more and more test tools have been developed for automatic test generation in 

which test cases are algorithmically derived from specification models. Selection of tools is 

commonly based on the purpose of the testing, the characteristics of the SUT, and the tester’s 

maturity level for different modelling methods. For example, testing of an SUT with time 

constraints requires that the specification model supports the formal expression of a timed 

operation. In other words, the test tools should be determined by the modelling methods 

which are appropriate for modelling the SUTs. A test generation tool can support a single 

format of models or a set of similar types of model. Therefore, the author lists the test tools 

along with the modelling methods they support, whether they are for commercial or academic 

use, and whether or not they support online test generation. 

Name Modelling 
notation Commercial/academic Offline/online 

mode 

T-Vec Simulink, 
MATRIX Commercial Offline 

QTronic TTCN-3, UML Commercial Online/Offline 
LTG B, UML 2.0 Commercial Offline 

Reactis Stateflow 
(Simulink) Commercial Offline 

TAU Tester TTCN-3 Commercial Offline 
Spec Explorer C# Microsoft Offline/Online 
UPPAAL-TRON I/O automata Academic Online 
UPPAAL-COVER I/O automata Academic Offline 
Torx [20] SDL Academic Offline 
ASML XML, Word Academic Offline 
MulSaw JML Academic Offline 
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Table 4 Summary of test tools for model-based testing [85] 

As indicated by Table 4, only QTronic and Spec Explorer [65] can switch between online and 

offline modes, and can deal with nondeterministic models by implementing online test 

generation. UPPAAL-TRON [86] is the only academic tool which supports online test 

generation, and it cannot switch to offline mode. It is worth emphasising that test tools should 

service the modelling methods and should be selected depending on the specific requirements 

of the test. With a wisely chosen modelling method and the corresponding test generation tool, 

a tester can automate the design process of functional testing under the control of the test 

selection criteria determined. 

2.3 Functional Testing for Train Control Systems 

According to Fig 3, functional testing for TCSs commonly belongs to black-box testing, 

aiming to verify that the functions are correctly developed based on the system specifications. 

Nondeterminism can be observed during the procedure of black-box testing because the 

internal actions of the SUT are inaccessible or the testing environment are too complex to be 

determined. HIL and MBT have been introduced into the field of TCS testing to improve 

testing performance and reduce testing cost.  

2.3.1 Hardware-in-the-Loop testing for TCSs 

Since TCSs are highly integrated and complex systems containing many subsystems and 

components, functional testing of TCSs involves a wide range of different types of testing for 

different testing purposes and various SUTs. These different kinds of testing are implemented 
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at different development stages of the TCS, by those with different roles involved in the 

whole development procedure, such as the product manufacturer and the third-party tester. 

Therefore, a standard is needed to classify the specific testing responsibilities of every role at 

every development stage, as shown in Fig 11 [87]: 

All sub-functions of the railway control system need to be verified

Sub-functions fully verified by the 
manufacturer Sub-functions Not Fully Verified by the Manufacturer

Functional Testing on Test 
Network

Sub-functions fully verified on Test 
Lines

Sub-functions Not fully verified on 
Test Lines

Functional testing in Field

Functional Testing on 
Simulated Network

All sub-functions of the railway control system are fully verified

sub-functions Fully Verified in the Field
Sub-functions Fully Verified on 

Simulated Network

 

Fig 11 Classification of the testing process by different stages of system development 

As shown in Fig 11, the IEEE recommends that those with different roles in development of 

the system implement functional testing at different development stages to test different 

system functions [88]. Some of the functions should be tested by the product manufacturer 

before the subsystems or components are handed over to the third-party tester; this refers to 

the unit testing and component testing mentioned in Fig 3. It is more convenient and 

convincing for all such kinds of testing to be implemented by the manufacturers of SUTs 

because they are more familiar with the internal behaviour of the SUT than testers from 
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different departments or even different companies. After the internal behaviour of the SUT is 

verified, the SUT is then ready to be functionally tested in different types of testing scenario, 

including testing on test lines and testing on real lines. However, due to the high degree of 

complexity of TCSs, a lot of system functions need to be realised by more than one subsystem 

or component, which means site testing such as testing on testing lines or real lines can only 

be implemented after all the subsystems or components involved are ready. In the 

development of TCSs, it is common that different subsystems and components are developed 

separately and have different development periods. Therefore, off-site testing is necessary for 

the system developer to verify the developed part of the system as early as possible [89].  

The HIL testing method, which is illustrated in Fig 11, is a feasible solution to achieve off-site 

testing. Once development of a subsystem or component of the TCS is finished, it can be 

functionally tested in the HIL testing environment where all the other necessary subsystems, 

components and network infrastructure are simulated. Therefore, on the simulated network, 

several key subsystems such as the OBU, RBC, Computer-Based Interlocking (CBI) and ATS 

can be respectively tested in parallel then tested when integrated, which saves a lot of time. 

This configuration decreases the chances of damaging SUTs compared with site testing and 

increases the likelihood of locating errors because the testing scale is limited to subsystem or 

component level. However, it requires that the simulated HIL environment should be as 

comprehensive a copy as possible of the real network so that the SUT can operate as it would 

in a real network. The simulated HIL environment can be provided by a simulator which 

simulates all essential components in TCSs, such as infrastructure, vehicles, signalling, ATS, 
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etc. As more and more accurate simulation technologies are applied in the railway field, 

railway simulation is approximating real railway systems so that more and more functional 

testing can be realised by HIL testing which can be implemented in off-site scenarios. For 

example, in UNISIG Subset-094-0 [90], the functional requirements for an on-board ETCS 

test facility are standardised, and an HIL testing platform is accordingly established by Fig 12. 

As revealed by Fig 12, the HIL testing platform for the OBU consists of two main parts, the 

equipment under test and the test environment. The equipment under test contains the 

components of the OBU and the corresponding adapters. The test environment includes all the 

other simulated subsystems and components which are necessary to realise the OBU functions, 

such as lineside equipment and the communication protocol. During the testing procedure, all 

the equipment of the OBU under test works together with the testing environment by 

exchanging relevant data via the external communication channels. The condition of the 

testing environment influences the control command sent by the OBU and vice versa. By 

monitoring the data flows for each component of the OBU, the tester can judge what has 

happened in the testing procedure, and whether the test is passed according to the expected 

data flows derived from the test cases. 
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Fig 12 HIL testing platform for the OBU of CBTC systems [90] 

Obviously, HIL testing which tests SUTs within a simulated environment is more convenient 

than testing them on a real site, which means that most functional testing can be implemented 

in the laboratory environment. However, the testing is still undertaken by a traditional 

black-box testing method which means that the test cases are manually written, and test 

sequences are manually derived from the test cases. Although test execution can be automated 

by scripts, the efficiency of HIL testing is largely influenced by human factors, so that the 

workload is still heavy compared with automatic testing methods such as MBT. When testing 

complex SUTs such as TCSs, the functional testing for a single subsystem such as an OBU 

contains hundreds of test cases, let alone the full functional testing for all subsystems in a 

TCS. As mentioned in Fig 2, the duration of manual testing significantly increases with the 
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number of test cases, while the duration of MBT has a much lower growth rate along with the 

number of test cases. Therefore, to optimise the performance of functional testing for TCSs, 

HIL testing is merely the first step, and a series of improvements need to be achieved.  

2.3.2 Model-Based Testing for TCSs 

Due to the safety critical characteristic of modern TCSs, model-based approaches are widely 

applied to guarantee system safety in system design, verification and testing. Cullyer and 

Wong [91] combine HOL mentioned in Table 3 with the programming language Ada to 

automatically verify the signalling design on a given layout of railway network. By formally 

modelling the railway interlocking table designed for a junction and analysing the obtained 

formal model with software, the interlocking system is verified to inspect whether there exist 

any flaws leading to dangerous situations. Piccolo et al. [92] develops a customised formal 

modelling method for TCSs which can formally represent system behaviour in statechart 

diagram according to system specification requirements. By processing the formal model by 

software, system behaviour can be formally verified and test cases can be automatically 

generated. Dincel, Eris and Kurtulan [21] propose a systematic solution for model-based 

development of railway signalling and interlocking. With the assistance of model-based 

techniques, the control logic of the system is designed, verified and refined at system 

development stage, which significantly improves the system development efficiency and 

decrease safety flaws. Further research on the formal verification of safety critical 

components of TCSs are carried on by Ghosh et al. [93]. They develop a bounded model 

checking algorithm which can deal with a larger scale of signalling and interlocking systems 
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with a higher degree of complexity, which is helpful for global verification of an industrial 

sized system with a better flaw detection ability. Ding, Jiang, and Zhou [61] apply Petri Net to 

formalise the system specification requirements in natural language to eliminate potential 

ambiguity existing in the requirements, which is meaningful for improving the correctness of 

system description.  

Except system verification, formal methods are applied to undertake MBT in TCSs. Lv et al. 

[62] propose a layered modelling theory which adopts CSP and UPPAAL as the two 

modelling methods. Based on the obtained model, test cases of a SUT is automatically 

generated and coverage of the generated test cases is analysed. Wei Zhang et al. [82] discuss 

the optimal strategy of test generation for testing the function of MA handover between two 

adjacent RBCs. All-path coverage is achieved by the adopted test generation algorithms with 

different strategies and generation efficiencies. Chai et al. [94] propose a framework for 

runtime verification of TCSs of ETCS. With an integrated formal model of the system 

behaviour, their verification algorithm can determine whether the system behaviour complies 

with the specification requirements during system operation.  

2.3.3 Summary 

According to 2.3.1 and 2.3.2, HIL testing and MBT technologies partially resolve the 

challenges in functional testing of TCSs. HIL testing decomposes complex TCSs and reduces 

SUT complexity. MBT technologies automate system verification and testing with a better 

performance on efficiency and functional coverage. Therefore, a successful combination of 

HIL and MBT could be an effective solution of the challenges existing in the functional 
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testing of TCSs.  

2.4 Research Problem Description 

According to the reviewed background and literature, the existing research on functional 

testing approaches for TCSs and traditional MBT methods has the following outstanding 

problems: 

• TCSs are too complicate to be fully modelled in formal language; 

• The existing MBT technologies cannot process highly complex model due to state 

explosion; 

• Functional coverage of HIL testing cannot be guaranteed because test cases are manually 

designed in HIL testing. 

Therefore, the author of this thesis expects to address the following questions:  

• Can the modelling difficulties for complex SUTs be reduced? 

• Can state explosion be avoided in the implementation of MBT? 

• Can the functional coverage of HIL testing be improved? 

According to the problem description, a simulation combined MBT methodology is proposed 

in this thesis. The modelling and implementation methods are explained in Chapter 3 and 4 

respectively. Chapter 5 undertake two case study to explore whether the proposed simulation 

combined MBT is suitable to test functions of TCSs. Chapter 6 verifies the effectiveness and 

performance of the developed testing platform based on the obtained testing results, proving 

that the proposed simulation combined MBT can guarantee a better functional coverage 
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comparing with existing testing methods.   
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3 Modelling for Simulation Combined MBT 

3.1 Comparison of Online MBT and Offline MBT 

3.1.1 Overview of Online MBT and Offline MBT 

In Chapter 2.2, the author introduced different MBT methods in terms of different formal 

modelling methods, various test selection criteria and the existing test generation tools. 

According to the discussion, most of the methods introduced are offline testing methods 

which successively generate and execute test cases based on the specification model and test 

selection criteria [62, 95]. With the assistance of test generation tools, coverage of the test 

cases generated can be measured so that coverage performance can be improved in offline 

MBT. However, offline MBT requires that every input must correspond with only one output, 

which means it is necessary to obtain deterministic models when testing nondeterministic 

SUTs of which inputs and outputs do not have one-to-one correspondence [96]. 

Nondeterminism can be observed in black-box testing because of uncertainty of 

communication delays between test tools and SUTs and lacking details in abstract models. 

The transformation from nondeterminism to determinism is not only time-consuming but also 

carries a risk of state explosion. Even worse, some of the nondeterministic models are 

difficult to transform into deterministic models. To solve the conflict between MBT and 

nondeterminism, online MBT has been developed to realise automatic test generation based 

on nondeterministic models. 

As a solution for test generation based on nondeterministic models in MBT, online MBT 
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randomly generates one of the valid inputs from the specification model then executes it and 

compares the result obtained with the expected one [97, 98]. Due to the online feature, it is 

able to deal with nondeterministic or highly complex SUTs because it is not limited by the 

size of the specification model [99]. Within the testing time, online MBT exhaustively 

searches for all possibilities by randomly generating valid inputs, leading to the limitation that 

it cannot positively guarantee that all the possibilities can be covered in the testing. The 

testing verdict is determined by whether inconsistency can be found within the defined testing 

time, where ‘Pass’ means no inconsistency is found, and ‘Fail’ means inconsistency is found 

during the testing process. In contrast to offline testing, online testing generates inputs 

according to the next reachable set of states, without the influence of other test selection 

criteria adopted in offline testing. I/O interfaces between the test tools and SUT are necessary 

for online MBT to realise a synchronised process of test generation and test execution. 

Therefore, online MBT is significantly more difficult to implement than offline MBT. 

3.1.2 Online MBT for TCS 

The advantages of offline testing can be summarised as follows: 

• The test generation process can be controlled by the test selection criteria via test tools, 

which means that the tester can adjust the test generation strategy according to specific 

test requirements, such as some certain states having to be covered, or some important 

transitions having to be run through. 

• Coverage of the test cases generated can be conveniently measured by the test tools, 
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which means the tester can decide when to stop the test generation process based on 

the coverage performance obtained. Furthermore, the test selection criteria and 

specification model can be adjusted to improve the coverage performance if the 

coverage of the test cases generated does not satisfy the test requirements. 

• Test cases are separately generated and executed, which means that the two processes 

do not influence each other. This is important for testing SUTs which contain very 

strong time restrictions (at millisecond level), because the test generation time may be 

too long to obtain an output within the strict time constraint if the test is implemented 

in online mode [100, 101]. Therefore, for those SUTs, offline testing is more rational. 

However, the disadvantages of offline MBT are also obvious: 

• Offline MBT is not eligible to deal directly with nondeterministic SUTs. SUTs have to 

be modelled in a deterministic format in offline MBT, which decreases the testing 

efficiency and increases the modelling difficulties. 

• Although test generation can be controlled by test selection criteria, coverage may not 

be achieved as expected because the specification model is too complex for the 

computer to analyse. The reason is explained in detail in Chapter 6.3.1. 

• Since the test cases are generated separately in abstract format, the testing efficiency 

can be influenced by the translation process between the abstract and real I/O, which 

can be time-consuming for a large set of test cases. 

By comparison, online MBT can remedy the limitations of offline MBT, as summarised 
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below: 

• Online MBT can deal with nondeterministic SUTs according to a nondeterministic 

specification model. In online MBT, one input is generated based on the current states 

of the specification model; thereafter, the input generated is executed by the real SUT. 

Due to the nondeterministic characteristics, the expected output can be a set containing 

all acceptable output values, which is different from offline testing in which only one 

output corresponds to one input under the determined conditions. 

• Online MBT is suitable for exhaustive testing of SUTs [102]. Benefiting from 

simultaneous test generation and execution, the SUT can be continuously tested for a 

relatively long time, depending on an appropriately built specification model which 

does not contain any deadlock and has reachability in all states. Although the test 

generation process cannot be guided by different test selection criteria, a decent level 

of coverage can still be achieved with online MBT because of the exhaustive feature, 

the reason for which is discussed in section 6.3.1. 

• Without supervision of the test selection criteria, online MBT does not carry the risk of 

running out of memory because the test tools do not need to record any information to 

calculate coverage.  

Along with the benefits brought by online MBT, the disadvantages cannot be ignored: 

• For both online and offline MBT, an interface or adaptor is needed to map the abstract 

behaviour in the test generated and in the real data or command which is recognised 



53 
 

by the real SUT to execute it. Offline MBT translates the test cases generated into real 

data in offline mode, while online MBT needs to synchronise the translation process 

with the test generation process, which significantly increases the implementation 

difficulties. 

• Strict time constraints may lead to a failed testing result in online MBT. Since the 

input is generated then executed in online MBT, the output result derived from 

execution of the input may not be able to be collected in time if the time constraints 

are very critical, because the processing capacity of the computer is limited. For 

example, if the specification model requires that an output should be observed 1 

millisecond after the input is executed, the SUT may not pass the test because the 

input cannot be delivered to the SUT in time by a computer of average performance, 

even though in practice the output can be delivered in time by the SUT. Offline MBT 

does not suffer the same problem because the test cases are generated first and 

executed afterwards, which means the computer has sufficient time to generate the test 

cases, translate them into executable form, and directly execute them in the end. 

• Without the guidance of the test selection criteria, the tester cannot directly judge the 

performance of test generation according to the coverage. The only way to find out the 

coverage performance is to analyse the testing log file after the test is finished, which 

can be time-consuming and inaccurate compared with offline MBT. In offline MBT, 

the coverage performance can be obtained after the test generation process and before 

the test execution process, which is a great advantage over online MBT when testing 
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SUTs for which the test execution processes take a relatively long time. 

• To guarantee the testing efficiency for detecting errors, online MBT requires the tester 

to be more experienced in modelling and testing. As introduced in section 3.1.1, the 

testing process will be interrupted if an inconsistency is found between the SUT and 

the specification model, which means only one defect can be found in one 

implementation of online MBT. In offline MBT, a set of test cases are derived from 

the specification model and can be executed following a sequence. Assuming 10 errors 

contained in the SUT are evenly distributed into each test case, then offline MBT can 

locate all 10 errors by running the test process once, while online MBT needs to be run 

at least 10 times to locate all the errors. Even worse, online MBT can take far more 

time to run than offline MBT if the tester is not experienced enough to efficiently 

eliminate the errors located. Therefore, the tester’s ability to eliminate errors in time is 

more important in online MBT than in offline MBT. 

According to the advantages and disadvantages of offline and online MBT, the author chose 

online MBT as the MBT method. The reason is that the testing theme in this thesis mainly 

concentrates on the functional testing of TCSs implemented on a simulated network, which 

inevitably contains nondeterminism and has no strong time restrictions in the system 

specification [103]. The author has improved on existing MBT methods by introducing 

simulation combined MBT, which is explained in detail in the remaining sections of this 

chapter. To overcome coverage-related limitations, the methods of analysing the coverage 

performance of online testing are discussed in Chapter 6. 
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3.1.3 Introduction of Simulation Combined MBT 

As a branch of MBT, the recent development of online MBT for the solution of MBT for 

nondeterministic SUTs has been rapid. Different modelling methods and corresponding 

different test tools are used to implement online MBT in different fields of SUTs. No matter 

what kind of modelling method or test generation tool is adopted, online MBT faces an 

unavoidable problem which is equally challenging for other types of MBT: formally 

modelling the SUT behaviour according to its specification requirements. The functional 

specification requirements of a system describe its behaviour by specifying a series of system 

functions in a series of operational scenarios, which means that those system functions can 

only be realised or valid when the system is operating in the corresponding scenarios [104]. 

Therefore, the tester needs to take the operational scenarios into consideration when building 

the specification model for implementation of MBT. The specification model is also known as 

the model of Implementation Under Test (IUT), in which implementation means the 

integrated system behaviour combining the SUT and its operational environment [105]. As a 

result, an IUT model can be divided into two main components, the SUT model and the 

environment model, as depicted in the left-hand part of Fig 13. In this modelling structure, the 

SUT behaviour is formally described as interactions between the SUT and its operational 

environment. The benefit of the IUT modelling structure is that it agrees with the normal form 

of black-box testing where inputs are generated out of the black box (the SUT) and outputs 

are delivered to the external observer (the environment), which is convenient for the tester to 

build the specification model. However, the modelling structure expands the size of the 
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specification model when the SUT specification requirements contain complex functions and 

a vast amount of different operational scenarios. To avoid high processing loads on the 

computer, as well as to decrease modelling difficulties, the author introduces simulation 

combined MBT, which is an evolution of traditional online MBT methods. 

Real SUT Real Environment

Abstract model Abstract model

Testing tool

Real implementation

output

input

outputinput

parallel

Conformance Relationship: 
Pass; Fail

combine

Implementation 
model

Traditional Online MBT Simulation combined MBT

Abstract layer

Simulation layer

Combined model

 

Fig 13 Structure of traditional MBT and simulation combined MBT 

As shown in Fig 13, the differences between traditional MBT and simulation combined MBT 

are that they use different modelling methods to build the IUT model for the test tool. 

Traditional MBT models the SUT and its operational environment using the same formal 

method and uses the test tool to analyse the parallels of the models developed. Different from 

traditional MBT, the author proposes simulation combined MBT, which models the SUT and 

its operational environment in two models, the abstract model and the simulation model. As 
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shown by Fig 13, simulation combined MBT firstly combines the real SUT and environment 

into the real IUT, then build the IUT model in two models, where the abstract model is 

designed to describe the discrete and abstract behaviours of the IUT, and the simulation model 

is designed to deal with continuous variables and relatively complex calculations. Based on 

the combined model obtained, the test tool generates valid inputs and executes them 

simultaneously as it does in traditional online MBT. The outputs received are compared with 

the expected ones specified by the IUT model, to determine whether there is inconsistency. If 

no inconsistency is found, the conformance relation between the SUT and the implementation 

model is satisfied, and the test will end with a ‘Passed’ result [106]. If any inconsistency is 

found, the test will end with a ‘Failed’ result.  

Compared with traditional MBT, simulation combined MBT significantly reduces the size of 

the formal implementation model by moving some non-vital elements into the simulation 

model. As a result, the test tool can test a more complicated SUT with the assistance of 

simulation without the risk of state explosion. Since the kernel function of the SUT is still 

modelled by the formal modelling method, the accuracy of the testing results will not be 

influenced by a two-model-combined modelling structure. However, the evolved structure of 

simulation combined MBT means that existing MBT architecture is no longer feasible, and a 

new configuration of the elements in MBT must be developed to adapt the 

two-model-combined structure. As indicated by Fig 13, three elements are essential for 

realising MBT, the modelling method used to build the specification model, the conformance 

relation for determining whether the SUT complies with the IUT model, and the test tool for 



58 
 

test execution. These key elements are explained in detail in Chapters 3 and 4. 

3.2 Simulation Combined MBT 

As introduced in section 3.1.3, simulation combined MBT is an evaluation of from the 

traditional online MBT methods which have been developed by previous research, such as 

those introduced by Larsen et al. [107] and Keranen and Raty [100]. Their research includes 

combining online MBT with simulation environment for embedded system testing. However, 

IUTs are modelled only by a formal method, while it is modelled by formal methods and 

simulation methods in simulation combined MBT. Some other commercial test tools support 

online MBT, which can be found in Table 4.  

It should be noted that IUT in simulation combined MBT does not need to be modelled 

separately from the SUT and environment as it does in traditional MBT. In simulation 

combined MBT, IUT can be modelled in a combination of abstract and simulation models. 

With the two-model-combined structure, the tester can decide how to divide the SUT 

behaviour into the two models, which provides greater flexibility compared with traditional 

MBT. Especially for complex SUTs such as TCSs which contain intricate data-exchanging 

processes and state-transition flows; here, the advantages of the two-model-combined 

modelling structure can be better reflected because a single formal modelling method may not 

be able to individually accommodate all essential IUT factors. Unlike formal modelling 

methods, which model systems in abstract format, simulation builds system models from 

direct conversion of the system specification requirements, which is less difficult than formal 
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modelling because the complex conversions from natural language to formal expressions are 

unnecessary.  

Simulation combined MBT is still a form of online MBT, and as such it inherits some 

similarities from traditional MBT methods, including the essential elements of the 

implementation of online MBT. As one of the most important basics of online MBT, 

modelling method has a huge influence on testing implementation because the other elements 

of online MBT such as test selection criteria and test tools are all determined by the modelling 

method. Therefore, in the following sections of Chapter 3, the author focuses on introducing 

the modelling method with a series of formal definitions, including the formal definition of 

the conformance relation adopted. Eventually, the modelling method of simulation combined 

MBT is formally defined so that the modelling feasibility can be preliminarily proven in 

theory. 

3.2.1 Modelling for Online MBT 

As mentioned previously, simulation combined MBT models the IUT using an abstract model 

and a simulation model. The simulation model can be written by mainstream programming 

languages, leaving only the formal modelling language of the abstract model to be determined. 

According to the discussion in section 2.2.1, different modelling methods are adept at 

depicting various characteristics of systems, so that selecting an appropriate modelling 

method is one of the key issues in MBT if model precision is to be guaranteed, because an 

inappropriately chosen modelling method can not only increase modelling difficulties but also 
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lead to a model deficient of essential SUT information. As explained in section 2.2.1.4, 

state-based modelling methods are more suitable for modelling data-oriented SUTs, while 

transition-based modelling methods are more suitable for modelling control-oriented methods. 

However, TCSs are highly integrated systems with a large number of different functions that 

are realised by both complex data-exchanging process and state-transition controlling flows, 

which means that TCSs can be both data-oriented and control-oriented systems. In accordance 

with the introduction which contains analysis of the system characteristics of ETCS and 

CBTC systems, the functions of all modern TCSs contain continuous variable manipulations 

and discrete state transitions. For example, the OBU continuously monitors the vehicle speed 

and sends out the emergency brake (EB) command once the vehicle speed is found to exceed 

the maximum speed limit, which is realised by continuously manipulating the variable ‘speed’ 

and making a state transition happen when the condition is satisfied. To test such a function, 

both variable manipulation and state transition should be taken into the consideration. 

Although the formal modelling method is mainly applied to model discrete IUT behaviour in 

simulation combined MBT, it still needs to be capable of reflecting key variable 

manipulations when important state transitions happen. As a result, the author has selected TA 

as the modelling theory, which supports modelling of IUT in FSM format with time 

constraints. 

In the theory of TA, system behaviour can be described in the format of a Timed I/O 

Transition System (TIOTS) [43], which is an evolution of LTS by adding time constraints to 

states and transitions [108]. Definition 1-6 formally explain the modelling method of TIOTS 
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that is the modelling method for traditional MBT. In LTS, a system is divided into state nodes 

and transitions from node to node, where actions can happen when valid transitions are 

accessible. SUT behaviour is formally described in an LTS by profiling its static conditions 

with states and capturing its dynamic movements by actions on transitions. It should be noted 

that a transition can only happen when its conditions are satisfied. Definition 1 presents a 

formal definition of an LTS which is developed by [109], with an example given by Fig 14 

which is a schematic of an LTS with four states and three transitions: 

 

Fig 14 Schematic of an LTS 

Definition 1: An LTS 𝒜𝒜𝐿𝐿 is a quadruple tuple (𝑆𝑆, 𝑆𝑆𝑆𝑆,𝐴𝐴𝜏𝜏,𝑇𝑇𝑇𝑇), where 

• 𝑆𝑆 is a finite, non-empty set of states, where in Fig 14, 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3}; 

• 𝑆𝑆o is the initial state, where in Fig 14, 𝑆𝑆𝑆𝑆 = 𝑆𝑆0; 

• 𝐴𝐴𝜏𝜏 is a set of actions, including observable actions 𝐴𝐴 and unobservable actions {𝜏𝜏}, 

where 𝐴𝐴𝜏𝜏 = 𝐴𝐴 ∪ {𝜏𝜏}  and 𝜏𝜏 ∉ 𝐴𝐴  hold. It should be noted that the unobservable 

actions {𝜏𝜏} can be internal actions or silent actions indicating that 𝒜𝒜𝐿𝐿  is in a 

quiescent state [110]. In Fig 14, 𝐴𝐴 = {𝐴𝐴0,𝐴𝐴1,𝐴𝐴2}; 

A0

A1 A2

S0

S2 S3

S1
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• 𝑇𝑇𝑟𝑟 is set of transitions, where 𝑇𝑇𝑇𝑇 ⊆ 𝑆𝑆 × 𝐴𝐴𝐴𝐴 × 𝑆𝑆  holds. In Fig 14, 

𝑇𝑇𝑇𝑇 = {(𝑆𝑆0,𝐴𝐴0, 𝑆𝑆1), (𝑆𝑆1,𝐴𝐴1, 𝑆𝑆2), (𝑆𝑆1,𝐴𝐴2, 𝑆𝑆3)}. 

Therefore, the entire LTS given by Fig 14 and can be formally obtained by: 

𝒜𝒜𝐿𝐿 = ({𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3}, 𝑆𝑆0, {(𝑆𝑆0,𝐴𝐴0, 𝑆𝑆1), (𝑆𝑆1,𝐴𝐴1, 𝑆𝑆2), (𝑆𝑆1,𝐴𝐴2, 𝑆𝑆3)}) 

After the formal definition of the LTS is obtained, the state transition relations can be formally 

defined by Definition 2. 

Definition 2: A trace is a sequence of observable actions derived from a transition sequence 

of an LTS. 

Assuming the LTS 𝒜𝒜𝐿𝐿 in Definition 1 contains a transition sequence: 

 𝑠𝑠0
𝑎𝑎0→ 𝑠𝑠1

𝑎𝑎1→ 𝑠𝑠2
𝑎𝑎2→ … 𝑠𝑠𝑘𝑘−1

𝑎𝑎𝑘𝑘−1�⎯� 𝑠𝑠𝑘𝑘 (1) 

where 

 {𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘} ⊆ 𝑆𝑆, 𝑠𝑠0 ∈ 𝑆𝑆𝑆𝑆 (2) 

 {𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑘𝑘−2,𝑎𝑎𝑘𝑘−1} ⊆ 𝐴𝐴,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 ∈  ℕ (3) 

then a trace σ of the LTS 𝒜𝒜𝐿𝐿 can be written as: 

 𝜎𝜎 = 𝑎𝑎0 ∙ 𝑎𝑎1 ∙ … 𝑎𝑎𝑘𝑘−1 (4) 

where 𝑎𝑎𝑚𝑚 ∙ 𝑎𝑎𝑛𝑛 denotes the concatenation of 𝑎𝑎𝑚𝑚 and 𝑎𝑎𝑛𝑛. Assuming all traces contained in 

𝒜𝒜𝐿𝐿 are 𝐴𝐴∗, then σ ⊆ 𝐴𝐴∗. When 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠′ ∈ 𝑆𝑆 and  𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝜏𝜏, the following definition holds: 
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According to (1) and (4), then 

𝑠𝑠
𝜎𝜎
→ 𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃{𝑠𝑠𝑚𝑚, … , 𝑠𝑠𝑛𝑛}: 𝑠𝑠𝑚𝑚

𝑎𝑎𝑚𝑚��…
𝑎𝑎𝑛𝑛�� 𝑠𝑠𝑛𝑛 , 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝑠𝑠𝑚𝑚, 𝑠𝑠′ = 𝑠𝑠𝑛𝑛,𝜎𝜎 = (𝑎𝑎𝑚𝑚 ∙ … ∙ 𝑎𝑎𝑛𝑛),𝑚𝑚,𝑛𝑛 ∈ ℕ  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 < 𝑛𝑛 (5) 

According to (5), then 

 𝑠𝑠
𝜎𝜎
→ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃𝑠𝑠′: 𝑠𝑠

𝜎𝜎
→ 𝑠𝑠′ (6) 

 𝑠𝑠 ↛
𝜎𝜎
𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∄𝑠𝑠′: 𝑠𝑠

𝜎𝜎
→ 𝑠𝑠′ (7) 

In black-box testing, only external actions are observed, and internal actions are isolated from 

the view of the tester or test tool, which means that the tester can only observe quiescent IUT 

behaviour when internal actions or silent actions happen. Considering the remaining 

flexibility of test implementation, quiescent behaviour should be acceptable for testing so that 

the quiescent behaviour should be formally described in the LTS [110]. Therefore, the empty 

trace ℰ is introduced to formally define the quiescent behaviour of IUT in LTS. 

 𝑠𝑠
ℰ
⇒ 𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 𝑠𝑠 = 𝑠𝑠′ 𝑜𝑜𝑜𝑜 𝑠𝑠

𝜎𝜎𝜏𝜏→ 𝑠𝑠′,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜎𝜎𝜏𝜏 = (𝜏𝜏 ∙ … ∙ 𝜏𝜏) (8) 

 𝑠𝑠
𝑎𝑎𝑖𝑖⇒ 𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃{𝑠𝑠𝑚𝑚, 𝑠𝑠𝑛𝑛}: 𝑠𝑠

ℰ
⇒𝑠𝑠𝑚𝑚

𝑎𝑎𝑖𝑖→ 𝑠𝑠𝑛𝑛
ℰ
⇒ 𝑠𝑠′,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛, 𝑖𝑖 ∈ ℕ  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 < 𝑛𝑛  (9) 

According to (8) and (9), (5) and (6) can be redefined by including quiescent behaviour: 

 𝑠𝑠
𝜎𝜎
⇒𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
∃{𝑠𝑠𝑚𝑚, 𝑠𝑠𝑛𝑛}: 𝑠𝑠𝑚𝑚

𝑎𝑎𝑚𝑚+1���� 𝑠𝑠𝑚𝑚+1
𝑎𝑎𝑚𝑚+2����…

𝑎𝑎𝑛𝑛�� 𝑠𝑠𝑛𝑛,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛 ∈ ℕ  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 + 2 ≤ 𝑛𝑛  (10) 

 𝑠𝑠
𝜎𝜎
⇒ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃𝑠𝑠′: 𝑠𝑠

𝜎𝜎
⇒ 𝑠𝑠′ (11) 



64 
 

According to (10) and (11), then 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) =
𝒅𝒅𝒅𝒅𝒅𝒅

�𝜎𝜎 ∈ 𝐴𝐴∗| 𝑠𝑠
𝜎𝜎
⇒� (12) 

 𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎 =
𝒅𝒅𝒅𝒅𝒅𝒅

{𝑠𝑠′|𝑠𝑠′ ∈ 𝑆𝑆, 𝑠𝑠
𝜎𝜎
⇒𝑠𝑠′} (13) 

Therefore, the set of all observable traces starting from state 𝑠𝑠 can be defined by (12), and 

the reachable state 𝑠𝑠′ after a trace 𝜎𝜎 which starts from state 𝑠𝑠 can be defined by (13). 

According to the LTS given by Fig 14, the following equations can be obtained: 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑆𝑆0) = {ℰ,𝐴𝐴0,𝐴𝐴1,𝐴𝐴2, (𝐴𝐴0 ⋅ 𝐴𝐴1), (𝐴𝐴0 ⋅ 𝐴𝐴2)} 

𝑆𝑆0 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝐴𝐴0 = {𝑆𝑆1}, 𝑆𝑆1 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝐴𝐴1 = {𝑆𝑆2}, 𝑆𝑆1 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝐴𝐴2 = {𝑆𝑆3} 

After defining the relations between trace, state and action, IUT behaviour can be formally 

expressed in a format understandable by computers. However, to implement black-box testing 

in the MBT frame, the input actions and output actions need to be distinguished in the IUT 

model, indicating the communication process of I/O actions between the SUT and the 

environment. Therefore, the IOTS is introduced by [111] to refine the actions in LTS into I/O 

actions. 

Definition 3: An IOTS 𝒜𝒜𝐼𝐼𝐼𝐼 is an LTS (𝑆𝑆, 𝑆𝑆o, 𝐴𝐴𝜏𝜏, 𝑇𝑇𝑟𝑟) where I/O actions are disjointed for 

testing purposes. Assuming the input actions 𝐴𝐴𝐼𝐼 and the output actions 𝐴𝐴𝑂𝑂 are contained in 

𝐴𝐴 where 𝐴𝐴𝐴𝐴 = 𝐴𝐴⋃{𝜏𝜏}, 𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆 holds, then: 

𝐴𝐴 = 𝐴𝐴𝐼𝐼⋃𝐴𝐴𝑂𝑂,𝐴𝐴𝐼𝐼⋂𝐴𝐴𝑂𝑂 = Φ  
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For an IOTS, inputs are enabled in any state [105, 112]; from (10) and (11), then 

 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑠𝑠
𝜎𝜎
⇒ 𝑠𝑠′ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ∀𝑎𝑎 ∈ 𝐴𝐴𝐼𝐼: 𝑠𝑠′

𝑎𝑎
⇒ (14) 

According to (14), it is indicated that all inputs can be enabled through internal transitions or 

external transitions in IOTS, which is called weak input enabling [104, 110, 113]. In contrast, 

inputs can only be enabled via external transitions in I/O automata, which is called strong 

input enabling [114]. Input enabling requires that a system should never refuse an input when 

it is delivered. It should be noted that unobservable actions 𝜏𝜏 in LTS change their meaning in 

IOTS. In the IOTS frame, a trace ending with actions 𝜏𝜏 indicates that output actions are 

absent in the corresponding states, which becomes an observable event. It can happen when 

an output is refused after an input is delivered. In black-box testing, output refusal is 

sometimes expected to be observed in the test sequence, and other inputs need to follow that 

event according to the specification requirements. Therefore, the traces containing quiescent 

transitions should be formally defined: 

 𝑠𝑠
𝛿𝛿
→ 𝑠𝑠 =

𝒅𝒅𝒅𝒅𝒅𝒅
∀𝑎𝑎 ∈ 𝐴𝐴𝑂𝑂 ∪ {𝜏𝜏}: 𝑠𝑠 ↛

𝑎𝑎
,𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝛿𝛿 ∉ 𝐴𝐴 (15) 

where the action δ denotes the observable event of output absence. From (15), then (12) can 

be extended into the IOTS to describe observable traces. 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) =
𝒅𝒅𝒅𝒅𝒅𝒅

�𝜎𝜎 ∈ (𝐴𝐴 ∪ 𝛿𝛿)∗| 𝑠𝑠
𝜎𝜎
⇒� (16) 

Therefore, Trace(s)  includes the δ  transitions defined in ( 15 ) so that the formal 

descriptions of a trace with I/O actions and δ actions are obtained in the IOTS. The 
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expression of s 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 σ stays the same, where 
σ
⇒ now includes the s

δ
→ s defined in (15). 

By extending the LTS to the IOTS, IUT behaviour can be formally described with differing 

I/O actions, which are two of the main objects inspected in black-box testing. However, 

testing a timed system requires that the system behaviour under time constraints should be 

formally depicted. To achieve this, the concept of a timed I/O transition system (TIOTS) [107] 

is introduced to obtain an IUT model in the real-time region. A schematic of a TIOTS is given 

in Fig 15: 

AI0

Ao0 Ao1

S0

S2 S3

S1

 

Fig 15 Schematic of a TIOTS 

Definition 4: A TIOTS 𝒜𝒜𝑇𝑇 is a quintuple (𝑆𝑆, 𝑆𝑆𝑂𝑂,𝐴𝐴𝐼𝐼 ,𝐴𝐴𝑂𝑂,𝑇𝑇𝑟𝑟𝑇𝑇), where 

• 𝑆𝑆 is a finite, non-empty set of states, where in Fig 15, 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3}; 

• 𝑆𝑆𝑂𝑂 is the initial state, where in Fig 14, 𝑆𝑆𝑂𝑂 = 𝑆𝑆0; 

• 𝐴𝐴𝐼𝐼 and 𝐴𝐴𝑜𝑜 denote the observable I/O actions which have been defined in the IOTS. It 

should be noted that the action 𝛿𝛿 mentioned in the IOTS is extended to delay actions 

in the TIOTS because quiescent actions can be reflected as time delays in the time 
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region. 𝐴𝐴𝜏𝜏𝜏𝜏  is a set of actions containing observable actions 𝐴𝐴 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝑂𝑂 , 

unobservable actions {𝜏𝜏} and observable delay actions {𝛿𝛿}, where 

𝐴𝐴𝜏𝜏𝜏𝜏 = 𝐴𝐴 ∪ {𝜏𝜏} ∪ {𝛿𝛿|𝛿𝛿 ∈ ℝ ≥ 0}, 𝜏𝜏 ∉ 𝐴𝐴, 𝛿𝛿 ∉ 𝐴𝐴; 

𝐴𝐴𝜏𝜏 = 𝐴𝐴 ∪ {𝜏𝜏}, 𝐴𝐴𝛿𝛿 = 𝐴𝐴 ∪ {𝛿𝛿} 

In Fig 15, 𝐴𝐴 = �𝐴𝐴𝐼𝐼0 ,𝐴𝐴𝑂𝑂0 ,𝐴𝐴𝑂𝑂1�; 

• 𝑇𝑇𝑇𝑇𝑇𝑇  is a set of transitions, where 𝑇𝑇𝑇𝑇 ⊆ 𝑆𝑆 × 𝐴𝐴𝜏𝜏𝜏𝜏 × 𝑆𝑆  holds, presenting a set of 

transition relations under a set of time constraints. Therefore, the state transitions 

observed in the time region can be written as state sequences with time intervals 

𝑠𝑠0
δ0→  s1

δ1→… sn
δn��…. which should then satisfy the following properties: 

o Time determinism: 

 ∀𝑠𝑠 ∈ 𝑆𝑆,∃𝑠𝑠′, 𝑠𝑠′′ ∈ 𝑆𝑆: �𝑠𝑠
𝛿𝛿
→ 𝑠𝑠′�⋀ �𝑠𝑠

𝛿𝛿
→ 𝑠𝑠′′�  𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠′ = 𝑠𝑠′′ (17) 

o Time additivity: 

 ∀𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆,∃𝑠𝑠′′ ∈ 𝑆𝑆, 𝛿𝛿1, 𝛿𝛿2 ∈ 𝛿𝛿: 𝑠𝑠
𝛿𝛿1→ 𝑠𝑠′′

𝛿𝛿2→ 𝑠𝑠′ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠
𝛿𝛿1+𝛿𝛿2�⎯⎯� 𝑠𝑠′  (18) 

o Zero delay: 

 ∀𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
0
→𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝑠𝑠′ (19) 

Based on Definitions 1, 2 and 3, the I/O actions observable with observable time intervals can 

be formally defined as follows: 

Letting 𝑎𝑎,𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ∈ 𝐴𝐴, 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼,𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐴𝐴𝜏𝜏𝜏𝜏 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿, 𝛿𝛿0, 𝛿𝛿1, … , 𝛿𝛿𝑛𝑛 ∈ ℝ ≥ 0 , then 

according to (5) and (6), a transition sequence 𝒯𝒯 of the TIOTS 𝒜𝒜𝑇𝑇 can be obtained: 
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 𝒯𝒯 = 𝑠𝑠0
 𝛼𝛼0�� 𝑠𝑠1

 𝛼𝛼1�� 𝑠𝑠2
 𝛼𝛼2��…

 𝛼𝛼𝑛𝑛−1�⎯⎯� 𝑠𝑠𝑛𝑛 (20) 

As indicated by (20), the transition starts from 𝑠𝑠0 and ends in 𝑠𝑠𝑛𝑛, where 𝑠𝑠𝑛𝑛 ↛
𝛼𝛼  holds so that 

𝑠𝑠𝑛𝑛 is the destination state for the transition sequence in (20). Since 𝛼𝛼,𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐴𝐴𝜏𝜏𝜏𝜏, 𝒯𝒯 

can be decomposed into the I/O action-enabled transitions 𝑠𝑠
𝑎𝑎 
⇒𝑠𝑠′ and the delay-enabled 

transitions 𝑠𝑠
𝛿𝛿 
⇒𝑠𝑠′, which are defined by (21) and (22): 

 𝑠𝑠
𝑎𝑎 
⇒𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
∃{𝑠𝑠𝑚𝑚, 𝑠𝑠𝑛𝑛}: 𝑠𝑠

𝜏𝜏
⇒𝑠𝑠𝑚𝑚

𝑎𝑎
→𝑠𝑠𝑛𝑛

𝜏𝜏
⇒𝑠𝑠′,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛 ∈ ℕ  𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 < 𝑛𝑛(21) 

𝑠𝑠
𝛿𝛿 
⇒𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
𝑠𝑠

𝜏𝜏
⇒ 𝑠𝑠1

𝛿𝛿1→ 𝑠𝑠2
𝜏𝜏
⇒…

𝜏𝜏
⇒ 𝑠𝑠𝑚𝑚−1

𝛿𝛿𝑛𝑛�� 𝑠𝑠𝑚𝑚
𝜏𝜏
⇒𝑠𝑠′, 

  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛 ∈ ℕ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 = 2𝑛𝑛, 𝛿𝛿 = ∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1  (22) 

Based on (21) and (22), 𝑠𝑠
𝑎𝑎 
⇒ and 𝑠𝑠

𝛿𝛿 
⇒ are written to represent all transitions starting from 

state 𝑠𝑠. To model IUT with TIOTS, it is necessary to define the following properties: 

• Weak input enabling 

As defined in (14), input enabling systems cannot refuse input action. Strong input 

enabling can only enable input actions via external transitions, while weak input 

enabling can enable input actions via both external and internal transitions, which is 

proven below. 

Letting 𝒫𝒫𝑊𝑊𝑊𝑊𝑊𝑊(𝒜𝒜𝑇𝑇) be the property of weak input enabling of 𝒜𝒜𝑇𝑇, and 𝒫𝒫𝑆𝑆𝑆𝑆𝑆𝑆(𝒜𝒜𝑇𝑇) be 

the property of strong input enabling of 𝒜𝒜𝑇𝑇, which are defined by (23) and (24): 

 𝒫𝒫𝑆𝑆𝑆𝑆𝐸𝐸(𝒜𝒜𝑇𝑇) 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝐼𝐼: 𝑠𝑠
𝑎𝑎𝑖𝑖 �� (23) 
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 𝒫𝒫𝑊𝑊𝑊𝑊𝑊𝑊(𝒜𝒜𝑇𝑇) 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝐼𝐼: 𝑠𝑠
𝑎𝑎𝑖𝑖 ⇒ (24) 

• Non-blocking 

Letting 𝒫𝒫𝑁𝑁𝑁𝑁(𝒜𝒜𝑇𝑇) be the non-blocking property of 𝒜𝒜𝑇𝑇, then 

𝒫𝒫𝑁𝑁𝑁𝑁(𝒜𝒜𝑇𝑇) 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑎𝑎𝑜𝑜𝑖𝑖 ∈ 𝐴𝐴𝑂𝑂, 𝑡𝑡 ∈ ℝ ≥ 0: 𝑠𝑠
𝜎𝜎
⇒ , 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜎𝜎 = 𝛿𝛿0 ∙ 𝑎𝑎𝑜𝑜0 ∙ 𝛿𝛿1 ∙ 𝑎𝑎𝑜𝑜1 ∙ … ∙ 𝛿𝛿𝑛𝑛 ∙ 𝑎𝑎𝑜𝑜𝑛𝑛 ,∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≥ 𝑡𝑡 (25) 

According to (25), the time of the TIOTS 𝒜𝒜𝑇𝑇 is not blocked by the environment 

when its successor set of states is reachable after execution of a trace 𝜎𝜎 within an 

existing set of delays. Therefore, the TIOTS 𝒜𝒜𝑇𝑇 does not block the time process in 

any enabled environment, and the time process of 𝒜𝒜𝑇𝑇 cannot be influenced by the 

external environment either. This means that the TIOTS cannot urge input delivery 

from the environment, and the environment cannot force output generation from the 

TIOTS. As a result, the non-blocking property guarantees that the time passes 

equivalently in the TIOTS and the environment, neither being able to be interrupted by 

the other. 

• Output determinism 

Output determinism is an important property of the TIOTS to avoid obtaining 

ambiguous output results. Otherwise, one input corresponding with more than one 

outputs will make it difficult for the judgement logic of the test tool to determine 

which output is the correct one. 
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Letting 𝒫𝒫OD(𝒜𝒜T) be the output determinism property of the TIOTS 𝒜𝒜T, then 

 𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) =
𝒅𝒅𝒅𝒅𝒅𝒅

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∃𝛼𝛼′, 𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
𝛼𝛼
→𝑠𝑠′⋀ 𝑠𝑠

𝛼𝛼′
→ 𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝛼𝛼 = 𝛼𝛼′(26) 

According to (26), the successor state of an executed action is always deterministic, 

and only one state corresponds to one action. 

• Output isolation 

Another important property related to output actions is output isolation, which requires 

that the TIOTS should only deliver one output at a time and should never withdraw the 

output delivered by executing unobservable internal actions or observable delay 

actions. 

Letting 𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) be the output isolation property of the TIOTS 𝒜𝒜𝑇𝑇, then 

𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) =
𝒅𝒅𝒅𝒅𝒅𝒅

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝑎𝑎𝑜𝑜⇒  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 ∈ 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂 

 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑠𝑠 ⇏
𝜏𝜏

 ⋀ 𝑠𝑠 ⇏
𝛿𝛿  (27) 

Therefore, 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∃𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂, 𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
𝑎𝑎𝑜𝑜⇒ 𝑠𝑠′⋀ 𝑠𝑠

𝑎𝑎𝑜𝑜′⇒ 𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑎𝑎𝑜𝑜 = 𝑎𝑎𝑜𝑜′  (28) 

• Output urgency 

The last property is output urgency, which requires that the TIOTS should deliver the 

output immediately the output is ready, which means that delays do not exist between 
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the TIOTS and its environment. 

Letting 𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) be the output urgency property of the TIOTS 𝒜𝒜𝑇𝑇, then 

𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) =
𝒅𝒅𝒅𝒅𝒅𝒅

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝑎𝑎𝑜𝑜⇒  ⋁ 𝑠𝑠

𝜏𝜏
⇒  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂, 𝑠𝑠 ∈ 𝑆𝑆 

 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 ∀𝛿𝛿 ∈ ℝ > 0: 𝑠𝑠 ⇏
𝛿𝛿  (29) 

It should be noted that when modelling real IUT for the implementation of simulation 

combined MBT, the communication delay between the SUT and its operational 

environment should be included in the IUT model. The method of implementing 

modelling of communication delays is explained in section 5.1.1. 

Based on the defined TIOTS and the necessary properties for black-box testing, the relations 

between observable actions, delays and state transitions can be formally defined. 

Definition 5: A sequence of observable actions during implementation of black-box testing is 

an observable timed trace 𝜎𝜎 ∈ 𝐴𝐴𝛿𝛿∗ , where * denotes abstract transition relations where 

transitions can be triggered by 𝛼𝛼 ∈ 𝐴𝐴𝛿𝛿. As defined in Definition 4, 𝐴𝐴 = 𝐴𝐴𝐼𝐼⋃𝐴𝐴𝑂𝑂 denotes all 

observable I/O actions contained in the TIOTS, and 𝛿𝛿 ∈ ℝ ≥ 0 represents time delays 

between I/O actions. Therefore, the observable timed trace 𝜎𝜎 is defined below: 

 𝜎𝜎 = 𝑎𝑎0 ⋅ 𝛿𝛿0 ⋅ 𝑎𝑎1 ⋅ 𝛿𝛿1 ⋅ … ⋅ 𝑎𝑎𝑛𝑛 ⋅ 𝛿𝛿𝑛𝑛,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 ∈ ℕ+  (30) 

According to (30), all timed observable traces 𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) starting from state 𝑠𝑠 can be obtained: 

 𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝜎𝜎 ∈ 𝐴𝐴𝛿𝛿∗ : 𝑠𝑠
𝜎𝜎
⇒ (31) 
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Therefore, for the state s and trace σ, if there exists a reachable state after execution of σ in 

state s, which is written as 𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎, then 

 𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎 =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
𝜎𝜎
⇒ 𝑠𝑠′ (32) 

Hence, for the super set 𝑆𝑆′ of the state 𝑠𝑠, where 𝑆𝑆′ ⊆ 𝑆𝑆, the set of states reachable after 

execution of σ in state S′ can be obtained: 

 𝑆𝑆′𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎 = ⋃ (𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎)𝑠𝑠∈𝑆𝑆′  (33) 

According to (31) and (32), the observable input action and observable output action with 

delays which are derived from state 𝑠𝑠 can be obtained: 

 𝐼𝐼𝐼𝐼(𝑠𝑠) = {𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝐼𝐼|𝑠𝑠
𝑎𝑎𝑖𝑖⇒},𝑂𝑂𝑂𝑂𝑂𝑂(𝑠𝑠) = {𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂 ∪ 𝛿𝛿|𝑠𝑠

𝑎𝑎𝑜𝑜⇒} (34) 

According to (33) and (34), the set of observable input actions with delays derived from the 

set of states 𝑆𝑆′, where inputs are enabled, can be obtained: 

 𝐼𝐼𝐼𝐼(𝑆𝑆′) = ⋃ 𝐼𝐼𝐼𝐼(𝑠𝑠)𝑠𝑠∈𝑆𝑆′ ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆′ ⊆ 𝑆𝑆 (35) 

According to (33) and (34), the set of observable output actions with delays derived from the 

set of states 𝑆𝑆′, where outputs are enabled, can be obtained: 

 𝑂𝑂𝑂𝑂𝑂𝑂(𝑆𝑆′′) = ⋃ 𝑂𝑂𝑂𝑂𝑂𝑂(𝑠𝑠)𝑠𝑠∈𝑆𝑆′′ ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆′′ ⊆ 𝑆𝑆 (36) 

Using Definition 5, the elements which are necessary for modelling system behaviour based 

on TIOTS are formally defined. With expression of the relations between the actions which 
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can be observed during the functional black-box testing procedure and the state transitions, 

the essential information is provided for test tools to generate I/O sequences from the IUT 

model. One of the main tasks of online MBT is to maximally substitute manual functional 

black-box testing by automating the test case generation and execution processes. Therefore, 

it still adopts the classic implementation architecture of functional black-box testing in which 

the tester observes the externally observable actions happening between IUT and its 

operational environment, which means both IUT behaviour and its environment behaviour 

should be modelled in the TIOTS format. With Definition 5, single-system behaviour in 

TIOTS has been defined. To obtain a specification model suitable for black-box testing, 

parallel composition of the IUT and environment should be defined so that their interactions 

can be modelled in TIOTS format. Fig 16 depicts the two parallel TIOTSs of the IUT and its 

operational environment. 

AI0

Ao0 Ao1

S0

S2 S3

S1

AO0

AI0 AI1

E0

E2 E3

E1

IUT Environment||

 

Fig 16 Schematic of the parallel configuration of two TIOTSs 

Definition 6: Implementation of functional black-box testing 𝐼𝐼𝐵𝐵 is a closed system where 
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IUT 𝒮𝒮 and its operational environment ℰ interact with each other in parallel. 

 𝐼𝐼𝐵𝐵 = 𝒮𝒮 ∥ ℰ (37) 

In previous definitions, I/O actions are defined from the perspective of the IUT, where input 

actions are delivered by the environment and output actions are sent out from the IUT. 

Therefore, from the perspective of the environment, a reversed form of I/O actions can be 

obtained. According to Definition 4, the IUT and its operational environment can be formally 

expressed as two TIOTSs: 

 𝒮𝒮 = (𝑆𝑆, 𝑆𝑆0,𝐴𝐴𝐼𝐼 ,𝐴𝐴𝑂𝑂,𝑇𝑇𝑟𝑟𝑇𝑇),ℰ = (𝐸𝐸,𝐸𝐸0,𝐴𝐴𝑂𝑂,𝐴𝐴𝐼𝐼 ,𝑇𝑇𝑟𝑟𝑇𝑇) (38) 

In (38), S   and S0, respectively, denote all the states and the initial state of the IUT, and 

E and   E0 , respectively, denote all the states and the initial state of the operational 

environment of the IUT. According to (37) and (38), the following properties can be satisfied, 

where s ∈ S, e ∈ E, and a ∈ AI ∪ AO. 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝑎𝑎
→ 𝑠𝑠′⋀ 𝑒𝑒

𝑎𝑎
→𝑒𝑒′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝑎𝑎
→ (𝑠𝑠′, 𝑒𝑒′) (39) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝜏𝜏
→ 𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝜏𝜏
→ (𝑠𝑠′, 𝑒𝑒) (40) 

 𝑤𝑤ℎ𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒
𝜏𝜏
→𝑒𝑒′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝜏𝜏
→ (𝑠𝑠, 𝑒𝑒′) (41) 

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝛿𝛿
→ 𝑠𝑠′⋀ 𝑒𝑒

𝛿𝛿
→𝑒𝑒′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝛿𝛿
→ (𝑠𝑠′, 𝑒𝑒′) (42) 

Therefore, the behaviour of the system in the parallel TIOTS is formally defined. It should be 

noted that in the real implementation of online testing of a TCS, some further information is 
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required for observable actions, including variables along with related manipulations in states 

or transitions, guards controlling whether transitions are accessible based on the current 

values of variables, and clocks [115]. However, the fundamental framework of the formal 

model should abide by the defined composition based on TA theory, and the remaining 

information can be defined by specific modelling tools. To cope with the defined modelling 

format, the tester should focus on observable I/O actions with relevant time constraints and 

omit internal actions which are unobservable, which is similar to the implementation structure 

of black-box testing. 

3.2.2 Conformance relation in MBT [107] 

According to Fig 13, the objective of MBT is to determine whether the real behaviour of the 

SUT complies with that described by the IUT model, which needs to be determined by 

computer. Therefore, a criterion needs to be formally defined to provide a formal standard for 

the test tools, determining compliance between the formal model and the real SUT [106]. The 

formal criterion is called the conformance relation which is adopted to judge whether the SUT 

behaviour complies with the specification requirements of the IUT model [116]. As shown in 

Fig 17, to prove that the IUT conforms to the specification requirements, the IUT behaviour 

should be proven to be a subset of IUT model behaviour, which means that different manners 

of describing the IUT behaviour lead to different conformance relations. The trace defined in 

Definition 2 is adopted as the manner of describing the IUT behaviour for online MBT, so 

that the corresponding conformance relations are trace conformance relations [113]. To 

determine that the real IUT is trace conformant with the IUT model, various conformance 
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relations have been well developed for LTS-based models with different emphases. One 

relation, called the trace preorder relation, requires that IUT traces should not contain actions 

which are not included in the IUT model [117]. Another, stronger, relation requires that the 

IUT should not only perform the actions expected in the specification, but also refuse actions 

which cannot be performed in the IUT model [117]. The input–output conformance relation 

(ioco) requires that the IUT should produce an output only if it is one expected by the 

specification requirements which are presented by the IUT model [113]. Evolved from the 

ioco, symbolic ioco (sioco) is developed to define the conformance relations in a symbolic I/O 

system which is an extension of the IOTS [118]. 

IUT Model
behaviour

Real IUT
behaviour ⊆ Conformance

 

Fig 17 Schematic of the conformance relation in MBT 

Since the IUT model is based on TA theory in this thesis, the ioco relation needs to be 

extended into the time region, which is called the timed ioco (tioco). The tioco requires that 

the IUT should never perform an action unexpected by the specification requirements or the 

IUT model, where unexpected actions include not only unexpected outputs but also violations 

of time constraints. The reason for adopting the tioco instead of another conformance relation 

is that it satisfies the requirements of black-box testing which concern external I/O actions 

[119]. For complex SUTs such as TCSs, the tioco relation inspects the crucial information 

provided by the specification requirements, such as the I/O sequence with time constraints, 
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and omits inspection of other non-vital information, to control the computational load during 

testing implementation. As a result, the tioco is adopted as the conformance relation for 

simulation combined MBT. The formal description of the tioco which extends the ioco into 

the time region is defined below: 

𝑖𝑖 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝜎𝜎 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑒𝑒).𝑂𝑂𝑂𝑂𝑂𝑂((𝑖𝑖, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎) ⊆ 𝑂𝑂𝑂𝑂𝑂𝑂((𝑠𝑠, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎)(43) 

where 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 denotes: after executing any available timed trace 𝜎𝜎 based on the state 𝑒𝑒 ∈ 𝐸𝐸 

which is a state of the environment TIOTS, the set of destination states generated from the 

state 𝑖𝑖 of the implementation TIOTS and the environment state 𝑒𝑒 will always be a subset of 

the set of destination states generated from state 𝑠𝑠 of the specification TIOTS and the 

environment state 𝑒𝑒 [14]. ‘𝐀𝐀𝐅𝐅𝐓𝐓𝐄𝐄𝐑𝐑 𝜎𝜎’ denotes all the reachable destination states achieved by 

the parallel systems after executing a timed I/O trace 𝜎𝜎, which has been defined in (33). 

Whenever 𝑖𝑖 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑠𝑠  is true, implementation 𝑖𝑖  is determined to be conformant with 

specification 𝑠𝑠. It should be noted that the prerequisite of 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 is that both the IUT system 

𝑖𝑖 and the specification system 𝑠𝑠 should perform behaviour under the constraint of the same 

operational environment 𝑒𝑒. Based on the formal definition of 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, consistency between the 

real IUT and the IUT model can be determined automatically by the computer during 

execution of online MBT. 

3.2.3 Modelling method for Simulation Combined MBT 

In sections 3.2.1 and 3.2.2, the modelling method and conformance relation of typical online 

MBT have been formally defined, which means that online MBT can be implemented if IUT 
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behaviour can be modelled in the manner defined. However, TCSs are highly complex, with 

numerous safety-related components and various operational scenarios. Modelling such 

systems with the methods defined can easily lead the formal models to a state explosion 

situation where the possibilities contained in the IUT model exceed the computational 

capability of the computer so that the testing fails to obtain valid testing results [120]. To 

apply MBT and to automate the functional testing of TCSs, the simulation combined online 

MBT method addresses the challenge of testing complex integrated systems and takes the 

advantages of both simulation and formal methods. As shown in Fig 13, the key part of 

simulation combined MBT is to model implementation by two models with two different 

modelling methods, rather than to model it by a single formal modelling method such as the 

one introduced in section 3.2.1 which realises the parallel structure AS of the SUT and its 

environment defined by Definition 6. To realise automatic testing with the application of an 

online testing algorithm, the modelling method needs to be formally defined to adapt to the 

TIOTS format. According to Definitions 1–6, the refined modelling method for simulation 

combined MBT, which is an extension of the defined TIOTS, is formally defined by 

Definition 7. Considering the modelling method as dividing the system behaviour into a 

two-model-combined structure based on the current TIOTS frame, the author names it 

SCTIOTS. 



79 
 

A
0S

0

Ι
ΙA

0

Ι
OΑ

A
1S

A
2S

0

E
AΙΑ

A
3S

0

E
AOΑ

A
4S

S
0S

0

Ι
OΑ

0

Ι
ΙΑ

S
1S

S
2S

0

E
SΙΑ

S
3S

0

E
SOΑ

S
4S

   

 

Fig 18 Schematic of an SCTIOTS 

Definition 7: A Simulation Combined Timed I/O Transition System (SCTIOTS) is two 

TIOTSs in parallel, where 𝒜𝒜T
S = 𝒮𝒮A ∥ 𝒮𝒮S. 𝒮𝒮A = �𝑆𝑆𝐴𝐴, 𝑆𝑆𝑂𝑂𝐴𝐴,𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐴𝐴𝐼𝐼

𝐸𝐸 ,𝐴𝐴𝐴𝐴𝑂𝑂
𝐸𝐸 ,𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇� is a septuple, 

modelling the implementation behaviour of the abstract model. 

𝒮𝒮S = �𝑆𝑆𝑆𝑆, 𝑆𝑆𝑂𝑂𝑆𝑆,𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸 ,𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸 ,𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇�  is also a septuple, modelling the implementation 

behaviour of the simulation model. 

In the TIOTS 𝒮𝒮A: 

• 𝑆𝑆𝐴𝐴 is a finite, non-empty set of states, where in Fig 18, 𝑆𝑆𝐴𝐴 = {𝑆𝑆0𝐴𝐴, 𝑆𝑆1𝐴𝐴, 𝑆𝑆2𝐴𝐴, 𝑆𝑆3𝐴𝐴, 𝑆𝑆4𝐴𝐴}; 

• 𝑆𝑆𝑂𝑂𝐴𝐴 is the initial state, where in Fig 14, 𝑆𝑆𝑂𝑂𝐴𝐴 = 𝑆𝑆0𝐴𝐴;  

• 𝐴𝐴𝐼𝐼𝐼𝐼 and 𝐴𝐴𝑂𝑂𝐼𝐼  denote the observable internal I/O actions which are different from the 

internal actions defined in the TIOTS, where internal actions 𝜏𝜏 denote the internal 

unobservable actions in a TIOTS. The observable internal actions here refer to the I/O 

actions between the abstract model and the simulation model of the SCTIOTS. In 

contrast, 𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸 and 𝐴𝐴𝐴𝐴𝑂𝑂

𝐸𝐸  denote the observable external I/O which happen between the 
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𝒮𝒮A and the environment. Similar to that in the TIOTS, 𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴  is a set of actions in the 

TIOTS 𝒮𝒮A, containing observable actions 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝐴𝐴𝐸𝐸, unobservable actions {𝜏𝜏} 

and observable delay actions {𝛿𝛿}, where: 

𝐴𝐴𝐼𝐼 = 𝐴𝐴𝐼𝐼𝐼𝐼⋃𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐴𝐴𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸⋃𝐴𝐴𝐴𝐴𝑂𝑂

𝐸𝐸 ; 

𝐴𝐴𝐼𝐼𝐴𝐴 = 𝐴𝐴𝐼𝐼𝐼𝐼⋃𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸 ,𝐴𝐴𝑂𝑂𝐴𝐴 = 𝐴𝐴𝑂𝑂𝐼𝐼 ⋃𝐴𝐴𝐴𝐴𝑂𝑂

𝐸𝐸 ; 

𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∪ {𝜏𝜏} ∪ {𝛿𝛿|𝛿𝛿 ∈ ℝ ≥ 0}, 𝜏𝜏 ∉ 𝐴𝐴𝐴𝐴, 𝛿𝛿 ∉ 𝐴𝐴𝐴𝐴; 

 𝐴𝐴𝜏𝜏𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∪ {𝜏𝜏}, 𝐴𝐴𝛿𝛿𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∪ {𝛿𝛿}; 

In Fig 18, 𝐴𝐴𝐼𝐼𝐴𝐴 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸
0

} , 𝐴𝐴𝑂𝑂𝐴𝐴 = {𝐴𝐴𝑂𝑂𝐼𝐼 0,𝐴𝐴𝐴𝐴𝑂𝑂0
𝐸𝐸 } , 𝐴𝐴𝐼𝐼 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝑂𝑂𝐼𝐼 0}  and 𝐴𝐴𝐴𝐴𝐸𝐸 =

�𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸
0

,𝐴𝐴𝐴𝐴𝑂𝑂0
𝐸𝐸 �. 

• According to the defined TIOTS, 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 is a set of transitions in 𝒮𝒮A, where  𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 ⊆

𝑆𝑆𝐴𝐴 × 𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴 × 𝑆𝑆𝐴𝐴 holds, and the properties of time determinism, time additivity and zero 

delay should all be satisfied. Moreover, the input is still weakly enabled, and the time 

cannot be blocked in the TIOTS 𝒮𝒮A. Output properties such as output determinism, 

output isolation and output urgency still hold in 𝒮𝒮A. 

In the TIOTS 𝒮𝒮S: 

• 𝑆𝑆𝑆𝑆 is a finite, non-empty set of states, where in Fig 18, 𝑆𝑆𝑆𝑆 = {𝑆𝑆0𝑆𝑆, 𝑆𝑆1𝑆𝑆, 𝑆𝑆2𝑆𝑆, 𝑆𝑆3𝑆𝑆, 𝑆𝑆4𝑆𝑆}; 

• 𝑆𝑆𝑂𝑂𝑆𝑆 is the initial state, where in Fig 14, 𝑆𝑆𝑂𝑂𝑆𝑆 = 𝑆𝑆0𝑆𝑆;  

• Similar to 𝒮𝒮A, the observable internal I/O actions are 𝐴𝐴𝑂𝑂𝐼𝐼  and 𝐴𝐴𝐼𝐼𝐼𝐼 , which have a 

reversed order compared with 𝒮𝒮A to denote internal I/O actions in the parallel system 

of the two TIOTSs defined in Definition 6. Differently, 𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸 and 𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸  denote the 

observable external I/O which happen between 𝒮𝒮S and the environment. Similarly, 
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𝐴𝐴𝜏𝜏𝜏𝜏𝑆𝑆  is a set of actions in the TIOTS 𝒮𝒮S, containing observable actions 𝐴𝐴𝑆𝑆 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝑆𝑆𝐸𝐸, 

unobservable actions {𝜏𝜏} and observable delay actions {𝛿𝛿}, where: 

𝐴𝐴𝐼𝐼 = 𝐴𝐴𝑂𝑂𝐼𝐼 ⋃𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑆𝑆𝐸𝐸 = 𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸⋃𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸 ; 

𝐴𝐴𝐼𝐼𝑆𝑆 = 𝐴𝐴𝐼𝐼𝐼𝐼⋃𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸 ,𝐴𝐴𝑂𝑂𝑆𝑆 = 𝐴𝐴𝑂𝑂𝐼𝐼 ⋃𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸 ; 

𝐴𝐴𝜏𝜏𝜏𝜏𝑆𝑆 = 𝐴𝐴𝑆𝑆 ∪ {𝜏𝜏} ∪ {𝛿𝛿|𝛿𝛿 ∈ ℝ ≥ 0}, 𝜏𝜏 ∉ 𝐴𝐴𝑆𝑆, 𝛿𝛿 ∉ 𝐴𝐴𝑆𝑆; 

 𝐴𝐴𝜏𝜏𝑆𝑆 = 𝐴𝐴𝑆𝑆 ∪ {𝜏𝜏}, 𝐴𝐴𝛿𝛿𝑆𝑆 = 𝐴𝐴𝑆𝑆 ∪ {𝛿𝛿}; 

In Fig 18, 𝐴𝐴𝐼𝐼𝑆𝑆 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸
0

} , 𝐴𝐴𝑂𝑂𝑆𝑆 = {𝐴𝐴𝑂𝑂𝐼𝐼 0,𝐴𝐴𝑆𝑆𝑂𝑂0
𝐸𝐸 } , 𝐴𝐴𝐼𝐼 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝑂𝑂𝐼𝐼 0} and 𝐴𝐴𝑆𝑆𝐸𝐸 =

�𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸
0

,𝐴𝐴𝑆𝑆𝑂𝑂0
𝐸𝐸 �. 

Note that 𝒮𝒮A  and 𝒮𝒮S  share corresponding (reversed) internal I/O actions but 

individually they have different external I/O actions interacting with the environment. 

Therefore, the following equations hold: 

𝐴𝐴𝐼𝐼𝐴𝐴 ∩ 𝐴𝐴𝐼𝐼𝑆𝑆 = 𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑂𝑂𝐴𝐴 ∩ 𝐴𝐴𝑂𝑂𝑆𝑆 = 𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐴𝐴𝐸𝐸 ∩ 𝐴𝐴𝑆𝑆𝐸𝐸 = 𝛷𝛷  

• According to the defined TIOTS, 𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇 is a set of transitions in 𝒮𝒮S, where  𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇 ⊆

𝑆𝑆𝑆𝑆 × 𝐴𝐴𝜏𝜏𝜏𝜏𝑆𝑆 × 𝑆𝑆𝑆𝑆 holds, and the properties time determinism, time additivity and zero 

delay should all be satisfied. Moreover, the input is still weakly enabled, and the time 

cannot be blocked in the TIOTS 𝒮𝒮A. Output properties such as output determinism, 

output isolation and output urgency still hold in 𝒮𝒮S. 

Based on the defined SCTIOTS, IUT behaviour can be modelled in the form of two parallel 

TIOTSs. The TIOTS of the abstract model is utilised to describe the abstract behaviour of the 

IUT, and the TIOTS of the simulation model is utilised to model the concrete behaviour of the 

IUT. Only the abstract model is built by a formal modelling tool so that only the model of the 
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abstract model is analysed by the test tool in MBT implementation. As it has a connection 

with the abstract model, the IUT behaviour modelled in the simulation model can be tested 

indirectly. Since only the abstract model will be analysed by the test tool, the author has 

defined the relations between observable actions, delays and state transitions from the view of 

the abstract model of the SCTIOTS. Based on Definition 5, Definition 8 formally defines the 

necessary elements for online MBT. 

Definition 8: A sequence of observable actions during implementation of black-box testing is 

an observable timed trace 𝛴𝛴 ∈ �𝐴𝐴𝛿𝛿𝐴𝐴�
∗, where * denotes abstract transition relations where 

transitions can be triggered by 𝒶𝒶 ∈ 𝐴𝐴𝛿𝛿𝐴𝐴 . From Definition 7, 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝐴𝐴𝐸𝐸  denotes all 

observable I/O actions contained in 𝒮𝒮𝐴𝐴, including the observable internal I/O actions with 𝒮𝒮𝑆𝑆 

and the external I/O actions with the environment. 𝛿𝛿 ∈ ℝ ≥ 0  represents time delays 

observed in the transitions of 𝒮𝒮𝐴𝐴 . Letting 𝒶𝒶,𝒶𝒶0,𝒶𝒶1, … ,𝒶𝒶𝑛𝑛 ∈ 𝐴𝐴𝐴𝐴,𝛼𝛼,𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈

𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝛥𝛥,𝛥𝛥0,𝛥𝛥1, … ,𝛥𝛥𝑛𝑛 ∈ ℝ ≥ 0, the observable timed trace 𝛴𝛴 is defined as: 

 𝛴𝛴 = 𝒶𝒶0 ⋅ 𝛥𝛥0 ⋅ 𝒶𝒶1 ⋅ 𝛥𝛥1 ⋅ … ⋅ 𝒶𝒶𝑛𝑛 ⋅ 𝛥𝛥𝑛𝑛  (44) 

According to (44), all the timed observable traces 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇(𝑠𝑠) starting from state 𝑠𝑠𝐴𝐴 ∈ 𝑆𝑆𝐴𝐴 can 

be obtained with: 

 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇(𝑠𝑠𝐴𝐴) =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝛴𝛴 ∈ �𝐴𝐴𝛿𝛿𝐴𝐴�
∗: 𝑠𝑠𝐴𝐴

𝛴𝛴
⇒ (45) 

Therefore, if for the state sA and the trace Σ, there exists a reachable state after execution of 

Σ in state sA, which is written as 𝑠𝑠𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 Σ, then: 
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 𝑠𝑠𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴 =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝑠𝑠𝐴𝐴′ ∈ 𝑆𝑆𝐴𝐴: 𝑠𝑠𝐴𝐴
𝛴𝛴
⇒𝑠𝑠𝐴𝐴′ (46) 

Hence, for the super set 𝑆𝑆𝐴𝐴′ of the state 𝑠𝑠𝐴𝐴, where 𝑆𝑆𝐴𝐴′ ⊆ 𝑆𝑆𝐴𝐴, the reachable set of states 

after execution of Σ in state SA′ can be obtained using: 

 𝑆𝑆𝐴𝐴′𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴 = ⋃ (𝑠𝑠𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐴𝐴′  (47) 

According to (45) and (46), the internal input action and internal output action or the delay 

which are observable and derived from state 𝑠𝑠𝐴𝐴 can be obtained: 

 𝐼𝐼𝑁𝑁𝐼𝐼(𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑖𝑖𝐼𝐼 ∈ 𝐴𝐴𝐼𝐼𝐼𝐼|𝑠𝑠𝐴𝐴
𝑎𝑎𝑖𝑖
𝐼𝐼

⇒},𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼  (𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑜𝑜𝐼𝐼 ∈ 𝐴𝐴𝑂𝑂𝐼𝐼 ∪ 𝛥𝛥|𝑠𝑠𝐴𝐴
𝑎𝑎𝑜𝑜𝐼𝐼⇒} (48) 

According to (47) and (48), the internal input actions with delays derived from the set of 

states 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 where internal inputs are enabled can be obtained by: 

 𝐼𝐼𝑁𝑁𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴) = ⋃ 𝐼𝐼𝑁𝑁𝐼𝐼(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐼𝐼𝐼𝐼
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (49) 

According to (47) and (48), the internal output actions with delays derived from the set of 

states 𝑆𝑆𝐼𝐼𝑂𝑂𝐴𝐴  where internal outputs are enabled can be obtained by: 

 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 ) = ⋃ 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐼𝐼𝐼𝐼
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (50) 

Accordingly, the external input action and internal output action or delay which are 

observable and derived from state 𝑠𝑠𝐴𝐴 can be obtained: 

 𝐼𝐼𝑁𝑁𝐸𝐸(𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑖𝑖𝐸𝐸 ∈ 𝐴𝐴𝐼𝐼𝐸𝐸|𝑠𝑠𝐴𝐴
𝑎𝑎𝑖𝑖
𝐸𝐸

��},𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸  (𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑜𝑜𝐸𝐸 ∈ 𝐴𝐴𝑂𝑂𝐸𝐸 ∪ 𝛥𝛥|𝑠𝑠𝐴𝐴
𝑎𝑎𝑜𝑜𝐸𝐸��} (51) 

According to (47) and (51), the external input actions with delays derived from the set of 
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states 𝑆𝑆𝐸𝐸𝐼𝐼𝐴𝐴  where external inputs are enabled can be obtained by: 

 𝐼𝐼𝑁𝑁𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ) = ⋃ 𝐼𝐼𝑁𝑁𝐸𝐸(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐸𝐸𝐸𝐸
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (52) 

According to (47) and (51), the external output actions with delays derived from the set of 

states 𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴  where external outputs are enabled can be obtained by: 

 𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ) = ⋃ 𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐸𝐸𝐸𝐸
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (53) 

According to (50) and (52), all observable input actions with delays of 𝒮𝒮𝐴𝐴 can be obtained: 

 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 ) = 𝐼𝐼𝑁𝑁𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴)⋃𝐼𝐼𝑁𝑁𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 = 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴⋃𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (54) 

According to (50) and (53), all observable output actions with delays of 𝒮𝒮𝐴𝐴 can be obtained: 

 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 ) = 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 )⋃𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 = 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 ⋃𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴(55) 

Based on Definition 8, the observable actions and delays are formally defined, which 

provides the possibility of automatic test generation via analysis of the defined formal model. 

The 𝒮𝒮𝐴𝐴 of the SCTIOTS is still in the TIOTS architecture with classified internal I/O actions 

and external I/O actions. Therefore, the conformance relation between 𝒮𝒮𝐴𝐴 and its operational 

environment still satisfies the one defined in section 3.2.2. Based on the refined definitions in 

Definition 8, the conformance relation between 𝒮𝒮𝐴𝐴, which is the abstract model of the 

SCTIOTS 𝒜𝒜𝑇𝑇
𝑆𝑆 , and a given environment can be rewritten: 

𝑖𝑖 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝛴𝛴 ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇(𝑒𝑒).𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼𝐼𝐼((𝑖𝑖, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴) ⊆ 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼𝐼𝐼((𝑠𝑠, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴) (56) 
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where 𝑖𝑖 represents implementation of the SCTIOTS 𝒜𝒜𝑇𝑇
𝑆𝑆  and the other elements stay as 

defined in the previous definitions. Based on the defined SCTIOTS consisting of abstract and 

simulation models, only the system behaviour in the abstract model 𝒮𝒮𝐴𝐴 is formally modelled, 

which significantly reduces the formal model size. However, this modelling architecture 

cannot fully cover all the IUT behaviour included in the SCTIOTS model. The external I/O 

actions between the simulation model 𝒮𝒮𝑆𝑆 and the environment are not inspected by the test 

tool because computational power may not be sufficient to cover inspection of all the I/O 

actions. However, the interactions proceed internally between the abstract model and the 

simulation model so that inconsistencies between the simulation model and the environment 

caused by external I/O actions can be indirectly detected by the test tool.  

Based on the defined SCTIOTS and the corresponding conformance relation, the modelling 

framework of simulation combined MBT can be illustrated by Fig 19: 

IUT model

Verified by 
the online 
MBT tool

Abstract 
model

Simulation
Model

SUTInternal I/O

External I/O 1

External I/O 2

Environment

 

Fig 19 Modelling framework of simulation combined MBT 
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As revealed by Fig 19, simulation combined MBT is realised by a two-model-combined 

format of the IUT model. Meanwhile, I/O actions are divided into internal and external 

aspects as described in Definition 8. Different from the modelling method of typical MBT, 

which models individual components and obtains the implementation model by constructing 

parallel systems of the SUT and the environment, the SCTIOTS modelling method divides the 

original implementation into abstract and simulation models, where discrete and abstract 

actions are modelled by the abstract model, and continuous and specific variables are 

modelled in the simulation model. Based on the defined SCTIOTS, internal I/O actions 

between the abstract model and the simulation model can be formally described, and external 

I/O actions between the abstract model and the environment can be likewise described. 

According to the defined conformance relation, the I/O actions involving the abstract model 

can be automatically inspected by online MBT tools. As mentioned before, external I/O 

actions between the simulation model and the environment are exclusive of the inspections 

carried out by test tools but they can be indirectly and partially inspected via the internal I/O 

actions between the two models. Therefore, the consistency between the SUT and 

specification requirements can be determined. The remaining external I/O actions not covered 

are not verified during the test, but can be inspected according to the data recorded through 

the testing procedure. 

With a testing purpose of black-box testing, the modelling method of MBT is required to be 

capable of modelling the entire SUT behaviour with unambiguous information, which can 

expand the model size to exhaust the computational power. The state space of the formal 
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model can easily exceed the memory of the computer when the formal model is too complex. 

Traditional modelling methods of online MBT have explicit modelling boundaries and 

architecture, such as the two parallel TIOTS systems introduced by Definition 6. The benefit 

of this modelling system structure is that the formal model can completely describe the 

expected behaviour of the SUT and its operational environment if the model size is acceptable 

for computation. 

However, SUTs in industrial fields can be more complex than what can be afforded by 

computer. For example, an OBU should realise a series of functions involving other 

components or subsystems. Even for testing a single function, the OBU or its operational 

environment can be too complex for automatic test generation. To implement online MBT 

based on traditional modelling methods, both the SUT model and the environment need to be 

simplified to reduce the model size and complexity, which is time-consuming and carries a 

risk of losing information essential for testing. When applying SCTIOTS as the modelling 

method for online MBT, behaviour of the whole system can be modelled in two models, 

where a formal method builds the abstract model, and simulation builds the simulation model. 

With the SCTIOTS modelling framework, the formal modelling scale becomes adjustable so 

that that the tester can target the testing emphases of SUTs with limited computational power. 

This is especially significant for testing SUTs, such as TCSs, and other systems including 

numerous components with a complex structure. 

The SCTIOTS modelling method introduces new problems which need to be solved. Firstly, 

the two-model-combined framework requires the tester to have a higher degree of modelling 
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skill, because the boundary between the abstract model and the simulation model is not a 

physical boundary such as that between the IUT and its operational environment. Instead, 

boundary is a logical boundary which can be flexibly defined by the tester, which means that 

the tester must be proficient in formal modelling and very familiar with the SUT operating 

principle, otherwise the use of poorly partitioned models can lead to poor testing accuracy and 

efficiency. Secondly, the SCTIOTS modelling method contains three kinds of I/O action while 

the traditional TIOTS modelling method only contains one; this increases the difficulty of 

building interfaces for the I/O channels of those I/O actions. Additionally, the priority of the 

I/O actions must be determined to avoid overwritten data or logical contradictions, which 

requires a further complex interface to appropriately synchronise the three kinds of I/O action. 

Finally, the uncovered functions modelled in the simulation model should be verified after 

online MBT is finished, which may take extra effort to configure the verification well 

according to the characteristics of the SUT. 

3.3 Summary 

In this chapter, the formal modelling method of simulation combined MBT is introduced as 

SCTIOTS which is an evolution of the existing TIOTS method. SCTIOTS differs from the 

TIOTS model, as it models the SUT into parallel abstract and simulation models, where the 

abstract model is developed using a formal modelling tool, and the simulation model is built 

by a simulation tool. The combination of formal modelling with simulation can significantly 

reduce the formal model size to avoid state explosion, which may exceed the computational 

power of the computer. Compared with TIOTS, SCTIOTS can be applied to model more 
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kinds of complex SUT because its application is not limited by the complexity of the SUT. 

Although SCTIOTS does require a more profound understanding of formal modelling and the 

SUT operating principle, it can be applied to more scenarios because of its flexibility, high 

degree of efficiency and interoperability.  
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4 Implementation of Simulation Combined MBT 

4.1 Overview of the Simulation Combined MBT Platform 

In Chapter 3, the modelling method for simulation combined MBT is explained, which 

provides the possibility of realising online MBT based on a simulation combined model. 

Evolved from traditional TIOTS, SCTIOTS significantly reduces the complexity of the 

specification model by dividing the IUT model into abstract and simulation models. However, 

the division approach poses new issues, which means that the original solutions of online 

MBT based on TIOTS cannot be transplanted to simulation combined MBT. The 

implementation of simulation combined MBT is explained in this chapter, which includes the 

steps in realising simulation combined MBT based on the theoretical method introduced. Fig 

20 depicts a general solution of realising the simulation combined MBT introduced, which is 

named the simulation combined MBT platform. 

SUT
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I/O 
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manager

Internal I/O

External 
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Abstract 
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Test tool
Abstract 

I/O 

 

Fig 20 Architecture of the simulation combined MBT platform 

As shown by Fig 20, the abstract model is built within the test tool where TRON takes charge 

of test generation based on the abstract model built by UPPAAL. The simulation model is 
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built by a microscopic railway simulator where the I/O behaviour can be simulated according 

to different SUTs. The I/O sequence manager is designed to manage the synchronisation 

relations between the internal I/O channel and external I/O channels. The environment is 

simulated to provide the HIL testing environment where SUT can operate as it would in the 

real operational environment. According to the architecture in Fig 20, simulation combined 

MBT automates system testing within an HIL environment, which means it is feasible to test a 

wide range of components in TCSs with minor modifications for different SUTs. Based on the 

HIL environment, various testing scenarios for different types of SUT can be implemented on 

the same testing platform, supporting automatic test generation and execution. The online 

feature of the testing platform makes it possible for testing to include more elements, without 

the risk of decreasing its accuracy or explosively expanding the model size. The testing 

platform can be smoothly run on a portable computer which can be conveniently brought to 

the testing field to test real hardware or software utilised in TCSs. 

4.2 Modelling implementation of SUT 

Since the model of simulation combined MBT is built in a combined model with abstract and 

simulation models, two modelling tools have been adopted to build the specification model. 

UPPAAL was adopted as the modelling tool for building the abstract model, and a 

microscopic railway simulator was adopted as the modelling tool for building the simulation 

model. 
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4.2.1 Modelling implementation of the Abstract Model 

UPPAAL is a formal modelling and verification tool developed in collaboration between 

Uppsala University and Aalborg University. It supports modelling and verification of systems 

in real time, based on various types of formal model. Based on the theory of TA, UPPAAL 

perfectly supports the systems modelled in the TIOTS format. Since the abstract model of 

SCTIOTS is a variation of traditional TIOTS with division of internal and external I/O actions, 

UPPAAL is still suitable for building the abstract model in SCTIOTS format. Furthermore, 

UPPAAL integrates with a model-checking engine in the timed region, which is the basis of 

online test generation. Based on the known compatibility of UPPAAL with TIOTS, along with 

its well-developed toolboxes for system testing and verification, the author chose UPPAAL as 

the formal modelling tool to build the abstract model. The author will now present how to 

build an abstract model in UPPAAL by explaining elements contained by the model. 

 

Fig 21 Example of the TA network model built in UPPAAL 

Shown in Fig 21, a TA model network consists of one or more templates, the name of which is 
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given at the top left of each block, ‘SUT’ and ‘TESTER’, respectively in the case of Fig 21. In 

each template, the details of the system behaviour can be defined with a set of elements [121], 

which includes: 

• Locations denote the states in the TIOTS. In locations, only the clock can accumulate, 

and other variables cannot be changed. Initial locations denote the initial states of the 

system, which in Fig 21 are the locations {S0, T0}. Urgent locations are a special location 

where time is not allowed to pass. Committed locations are more restrictive than urgent 

locations, where time is not allowed to pass, and the next execution of the system must 

include an outgoing edge if the system is in committed locations. Since urgent locations 

and committed locations are time-restrictive, the author tended to avoid using them when 

building the specification model because it can increase the computational load of the 

computer if too many urgent or committed locations are included. 

• Invariant denotes the conditions that should be satisfied in locations. For example, the 

expression ‘x<=3’ in location ‘S0’ of the template SUT denotes that location ‘S0’ is only 

accessible when the time clock is no more than 3, which means that outgoing transitions 

must happen, and ingoing transitions must not happen when the time clock is more than 3. 

The author uses invariant to describe the time-out behaviour of the system where 

something must happen within a certain time. 

• Edges denote the transitions contained in the system, which are always from one state to 

another. Time cannot accumulate on edges so that no time passes on edges. The transition 

on an edge can only be triggered when its guards are satisfied and when its synchronised 
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transition is also ready. Variables including the time clock can be updated after the 

transition on an edge is finished. 

• Synchronisation is an expression denoting the synchronised behaviour between two or 

more templates, where two synchronised transitions must happen simultaneously with no 

order in succession. In Fig 21, ‘A!’ and ‘A?’ are a pair of synchronisations, which means 

the transition from ‘S0’ to ‘S1’ and the transition from ‘T0’ to ‘T1’ must happen together. 

If one of the transitions of the synchronised pair of transitions is not accessible, neither of 

the transitions in the synchronisation pair can happen. Synchronisation is a widely used 

expression in the specification model because it can denote the I/O channel where an 

output is sent from one component and received by another. In reality, however, the 

receiver side cannot receive the output immediately after it is sent out. Therefore, 

communication delays between each component should be taken into consideration when 

building the specification model. 

• Guard is the condition that must be satisfied on a triggered transition. Guards can be 

used to build the selection structure, where the system chooses one of the valid actions to 

perform based on the value of the variable. In Fig 21, the expression ‘x>1’ on the edge 

‘S0’ to ‘S1’ denotes that the transition can only happen when the time clock is more than 

1. 

• Update is the action that changes the variable values after a transition on an edge is 

finished. It is widely used in the specification model to denote a data value which is 

transmitted from one side to another or if the time clock of the system is reset by certain 
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actions. In Fig 21, the expression ‘x=0’ on the edge ‘S0’ to ‘S1’ denotes that the time 

clock will be reset to ‘0’ after the transition is finished and the system arrives at location 

‘S1’, which means that the time clock accumulates from zero at location ‘S1’. 

• Select is an expression that is adopted to denote nondeterministic values of a variable. By 

indicating the variable’s name and its accessible range of values, the system randomly 

updates a valid value when the corresponding transition happens. The author uses the 

select expression widely to describe the nondeterministic situations which can be 

observed during the testing procedure. The expression is explained in detail in section 

5.1.1. 

It should be noted that the model built by UPPAAL is a static model, which means that it 

cannot generate the inputs and outputs depicted in Fig 20. To generate the required inputs and 

outputs, the model established in UPPAAL needs to be analysed by the test tool TRON, which 

is explained in section 4.3. Based on UPPAAL with the expressions introduced, the system 

behaviour is formally described in the TIOTS format, which provides a specification for the 

test tool TRON to generate inputs and outputs. 

4.2.2 Modelling implementation of the Simulation Model 

To complete the SCTIOTS model for simulation combined MBT, the simulation model must 

be built to model complex data structure and manipulations. The simulation tool selected is a 

microscopic railway simulator which can build models of essential elements of various types 

of TCS, such as ETCS and CBTC. The simulator is written in Java and has been developed at 



96 
 

the University of Birmingham over a period of more than seven years, where it has been 

utilised in the virtual railway laboratory at the Birmingham Centre for Railway Research and 

Education (BCRRE) [122]. The feasibility and correctness of modelling using the simulator 

have been proven by the project Developing and Evaluating Dynamic Optimisation for Train 

Control Systems (DEDOTS) [123]. Using the library provided by the microscopic railway 

simulator, the I/O behaviour of a wide range of elements in TCSs, including the OBU, RBC 

and infrastructure components, can be simulated. During an MBT run, the simulation model 

performs calculations based on the data collected from the simulated environment and the 

abstract input received from the abstract model. Afterwards, it sends the required calculation 

results to the abstract model via internal I/O channels. An interface has been built to enable 

the translation between the simulation I/O and the abstract I/O, and this is introduced in 

section 4.4. According to the needs of different tests, different simulation models can be built 

in the simulator at varying levels of detail. In contrast with the abstract model, where system 

behaviour is modelled on an abstract level, system behaviour is modelled on a concrete level 

in the simulation model, which means that more detailed information can be included. This is 

a significant step for testing complex SUTs like TCSs, because the increased detail in the 

model can lead to a more accurate testing result. 
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Fig 22 Internal structure of implementation of the simulation model 

According to Fig 19 in section 3.2.3, the internal structure of the simulation model is designed, 

as shown in Fig 22: 

As indicated by Fig 22, the simulation model mainly consists of the internal processor unit 

and the external processor unit. The internal processor unit is responsible for processing the 

inputs derived from the abstract model and returning the required outputs. The external 

processor unit is responsible for processing the simulated inputs from the external 

environment and returning the required simulated outputs to the model. Translation of the data 

format is realised by the internal and external I/O ports, and processes inside the simulation 

model are all based on the simulation data type. Communication between the internal and 

external processor units can happen via the communication bus when necessary. Therefore, 

the outcome of an abstract input can be a processed result involving an interaction between 

the internal and external processor units. 
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4.3 Test Tool 

With the specification model obtained, the next important step is to apply the test tool to 

generate the inputs required for black-box testing and to inspect the outputs derived from the 

input executions. To achieve these automatically, the test tool needs to extract the I/O 

sequences from the specification model and to determine the consistency between the SUT 

and the specification according to the conformance relation. TRON is used to realise online 

MBT because it is compatible with the model in the TIOTS format, which is built on 

UPPAAL. TRON provides the online test algorithm which generates, executes and inspects 

the test simultaneously by connecting with the SUT. During the test implementation process, 

the outputs generated by the input executions are collected by TRON and compared with the 

outputs required by the specification model [99]. Because of the characteristics of online 

MBT, the test tool only needs to consider the next reachable set of symbolic states, RS ⊆ 𝑆𝑆 × 

𝐸𝐸, which is based on the current set of states that are occupied in the specification model after 

a timed trace is executed. If the observed output complies with the expected output, the test 

tool will accept the observed output and move on to the next states which belong to the 

reachable set [110]. Based on the defined SCTIOTS, only the abstract model of the 

specification model needs to be analysed by TRON. Therefore, the test tool TRON can be 

adopted as the test generation engine in the implementation of simulation combined MBT 

without modifying its internal composition and structure. The following pseudo-code 

describes the operation principle of the online MBT algorithm integrated in TRON [107, 

124]: 
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Algorithm 1. 
 𝑰𝑰𝒏𝒏𝒊𝒊𝒕𝒕𝒊𝒊𝒂𝒂𝒍𝒍: RS ≔ {(𝑠𝑠0, 𝑒𝑒0), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0} 

 𝒘𝒘𝒉𝒉𝒊𝒊𝒍𝒍𝒆𝒆 RS ≠ Φ and 𝑐𝑐𝑙𝑙𝑜𝑜𝑐𝑐𝑘𝑘 ≤ 𝑑𝑑𝑒𝑒𝑙𝑙𝑎𝑎𝑦𝑦 

 𝒅𝒅𝒐𝒐 choose randomly: 
  𝑨𝑨𝒄𝒄𝒕𝒕𝒊𝒊𝒐𝒐𝒏𝒏: 

   𝒊𝒊𝒇𝒇 Input (RS) ≠ Φ 

   𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑜𝑜𝑚𝑚𝑙𝑙𝑦𝑦 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒 𝑎𝑎𝐼𝐼 ∈ Input (RS) 
   𝑠𝑠𝑒𝑒𝑛𝑛𝑑𝑑 𝑎𝑎𝐼𝐼 𝑡𝑡𝑜𝑜 SUT 
   RS ≔ RS 𝐴𝐴𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟 𝑎𝑎𝐼𝐼 
  𝑫𝑫𝒆𝒆𝒍𝒍𝒂𝒂𝒚𝒚: 
   𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑜𝑜𝑚𝑚𝑙𝑙𝑦𝑦 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒 𝑑𝑑 ∈ 𝐷𝐷𝑒𝑒𝑙𝑙𝑎𝑎𝑦𝑦𝑠𝑠 (RS) 

   𝑤𝑤𝑎𝑎𝑖𝑖𝑡𝑡 𝑓𝑓𝑜𝑜𝑟𝑟 𝑑𝑑 𝑜𝑜𝑟𝑟 𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑣𝑣𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑 𝑏𝑏𝑦𝑦 𝑜𝑜𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡 𝑎𝑎𝑂𝑂 if 𝑑𝑑′ ≤ 𝑑𝑑 

   𝒊𝒊𝒇𝒇 𝑎𝑎𝑂𝑂 𝑎𝑎𝑟𝑟𝑟𝑟𝑖𝑖𝑣𝑣𝑒𝑒𝑠𝑠 when 𝑑𝑑′ ≤ 𝑑𝑑 

   𝒕𝒕𝒉𝒉𝒆𝒆𝒏𝒏 
    RS ≔ RS 𝑨𝑨𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓 𝑎𝑎𝑂𝑂 
    𝒊𝒊𝒇𝒇 𝑎𝑎𝑂𝑂 ∉ 𝑂𝑂𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢(RS) 𝒕𝒕𝒉𝒉𝒆𝒆𝒏𝒏 𝒓𝒓𝒆𝒆𝒕𝒕𝒖𝒖𝒓𝒓𝒏𝒏 𝑓𝑓𝑎𝑎𝑖𝑖𝑙𝑙 
    𝒆𝒆𝒍𝒍𝒔𝒔𝒆𝒆 RS ≔ RS 𝑨𝑨𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓 𝑎𝑎𝑂𝑂 
   𝒆𝒆𝒍𝒍𝒔𝒔𝒆𝒆 RS ≔ RS 𝑨𝑨𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓 𝑑𝑑 
  𝑹𝑹𝒆𝒆𝒔𝒔𝒕𝒕𝒂𝒂𝒓𝒓𝒕𝒕:  
   RS ≔ {(𝑠𝑠0, 𝑒𝑒0), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0} 
   𝒓𝒓𝒆𝒆𝒔𝒔𝒆𝒆𝒕𝒕 SUT 𝒊𝒊𝒇𝒇 RS = Φ 
   𝒕𝒕𝒉𝒉𝒆𝒆𝒏𝒏 𝒓𝒓𝒆𝒆𝒕𝒕𝒖𝒖𝒓𝒓𝒏𝒏 𝑓𝑓𝑎𝑎𝑖𝑖𝑙𝑙 
 𝒆𝒆𝒍𝒍𝒔𝒔𝒆𝒆 𝒓𝒓𝒆𝒆𝒕𝒕𝒖𝒖𝒓𝒓𝒏𝒏 𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠 

The algorithm illustrates the core operational principles of the online MBT test tool, TRON. 

During the initialisation process of the algorithm, TRON chooses one action from the three 

optional ones which are: a. randomly choosing a valid input from the current input set and 

sending it to the SUT; b. opening the output observation channel by choosing a legal amount 

of delay; c. resetting the SUT and restarting a new cycle. To cover as many possibilities as 

possible, TRON continuously repeats the process until inconsistency between outputs is 

detected, drawing a ‘Failed’ conclusion, or the testing time expires without finding 
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consistency, drawing a ‘Passed’ conclusion. 

From the description of TRON above, traditional application of the test tool is based on the 

fact that the entire abstract models of the SUT and its operational environment can be fully 

obtained; this is not achievable for the application scenario in this thesis. According to 

SCTIOTS modelling theory, part of the system behaviour is held within the simulation model 

and using the simulator’s data format. The SUT is embedded in the simulation environment to 

realise HIL testing during the testing procedure. Therefore, the test tool TRON should be 

capable of interacting with the simulation model and the HIL environment in implementation 

of simulation combined MBT, which can be realised by the following structural design: 

TIOTS model 
in UPPAAL

Testing engine

XML

Deliver

collect

Set of the valid 
inputs

Library of the 
expected outputs

update

generate

compare

Failed
Legal

Illegal 

Abstract inputs

Abstract outputs

TRON

 

Fig 23 Internal structure of the test tool UPPAAL-TRON 

As indicated by Fig 23, the test tool TRON extracts the valid inputs and expected outputs 

from the loaded TIOTS model in XML format. Based on the logic defined in Algorithm 1, 

the inputs are chosen to be executed, and derived outputs are collected and compared with the 



101 
 

expected ones. Until an illegal output is found by TRON or the testing time expires, the 

search loop will keep running. 

4.4 I/O Sequence Manager 

In keeping with the earlier description of the simulation combined MBT method, the abstract 

model should interact with the simulation model internally and interact with the IUT 

externally. Therefore, synchronisation needs to be established between internal and external 

interactions to avoid overwriting data, and causing issues in the I/O sequence. The inputs 

generated by the test tool and the outputs that can be recognised by it are all in the abstract 

format determined by the TIOTS model built in UPPAAL. As a result, to connect the test tool 

and the SUT or the simulation model, the inputs and outputs need to be dynamically 

translated between the abstract format and the simulation format during the test 

implementation process. To achieve this, an I/O sequence manager has been designed to 

realise the synchronisation relations between different I/O channels and to transform the 

inputs and outputs into the required formats. The manager is written in Java so that it is 

compatible with the simulation model and the microscopic railway simulator. The overall 

structure of the I/O sequence manager is presented in Fig 24: 
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Fig 24 Operation principle of the I/O sequence manager 

As indicated by Fig 24, three types of I/O channel are designed in the I/O sequence manager 

to realise data communication between the test tool, the simulation model and the SUT 

(within the HIL environment). The abstract I/O channel is designed for delivering abstract 

inputs generated by the test tool and collecting abstract outputs for test verdicts. The internal 

I/O channel is designed for transferring internal inputs in the delivered abstract inputs to the 

simulation model and collecting derived outputs, which are all in the simulation format. The 

external I/O channel 1 is designed for transferring external inputs to the SUT (within the HIL 

environment) in the delivered abstract inputs and collecting derived outputs, which are all in 

simulation format. To guarantee that the test result is correct, every output collected must be 

derived from execution of the correct input, which means only one input can be delivered at 

once, and no other inputs should be delivered before the corresponding output is collected. To 

illustrate the functional logic of the I/O sequence manager, the flow chart in Fig 25 is 

presented. 

As illustrated by Fig 24 and Fig 25, the I/O sequence relations between the abstract I/O 

actions, internal I/O actions and external I/O actions are managed by the I/O sequence 
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manager. After an abstract input is generated by the test tool, it is first delivered to the I/O 

sequence manager to determine the type of input action based on a predefined input library. 

Based on the input type determined, the corresponding I/O channel is assigned to the input to 

guarantee that it is dispatched to the correct terminal, which can be the simulation model via 

the internal I/O channel, or the SUT via external I/O channel 1 and the HIL environment. 

Meanwhile, the unused I/O channel is blocked to avoid data being overwritten. Once the input 

is observed to arrive, the input channel between the test tool and the I/O sequence manager is 

blocked to avoid the next input arriving before the output derived from the last input 

execution is collected. After the abstract input generated by the test tool is delivered to the 

simulation model or the SUT, the input channel of the internal I/O channel or external I/O 

channel 1 is blocked, and the corresponding output channel is activated to wait for output 

collection. After the output is sent from the simulation model or the SUT, it is collected and 

delivered to the test tool to identify whether it is valid or not. If the output is correct, the 

testing process will continue by generating the next input. If the output is incorrect, the test 

will be terminated with a failed test verdict.  
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Fig 25 Flow chart of the functional logic realised by the I/O sequence manager 

During the testing implementation procedure, the format of I/O actions needs to switch 
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between the abstract format which can be recognised by the test tool and the simulation 

format which can be recognised by the SUT or the simulation model; this is made possible by 

the I/O sequence manager. The I/O sequence manager is not only a controller for handling the 

sequence of opening and closing the two types of I/O channel, but also an interface for 

mapping abstract I/O actions and simulation I/O actions. It should be noted that external 

channel 2 in Fig 20 is not influenced by the I/O sequence manager, so that the simulation 

model can communicate with the HIL environment and the SUT periodically without 

interruption. External I/O channel 2 is out of synchronisation with external I/O channel 1 and 

the internal I/O channel because the I/O exchange period via external I/O channel 2 is 

significantly faster than the ones via the internal I/O channel and external I/O channel 1, 

which do not translate between the abstract format and the simulation format. As a result, 

isolating external I/O channel 2 from the other two types of channel is helpful for improving 

the operating efficiency of the entire testing process and reducing the design difficulty of the 

I/O sequence manager. 

4.5 HIL Environment 

As shown in Fig 24, the IUT is integrated with an interface and does not directly 

communicate with the test tools or the I/O sequence manager. Since a TCS is a complex 

integrated system containing wayside, on-board and communication-related equipment, 

testing individual components such as the EVC or RBC needs a corresponding testing 

environment because these individual components cannot work independently from their 

operational environment. Therefore, the HIL environment is designed to integrate the 
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individual SUTs in a simulated operational environment, making them work as they would in 

real operational environments. The simulated environment for SUTs is easier to reconfigure 

when testing different SUTs without the extra costs of using a real testing environment. The 

microscopic railway simulator introduced was used as the modelling tool for building the HIL 

environment. Since the simulation includes almost all the essential components in the 

different types of TCS, it can be easily transformed into an HIL environment by removing the 

simulated components representing the real SUT. Because it is a simulator written in Java, it 

has decent compatibility with other Java programmes such as the simulation model and the 

I/O sequence manager. Fig 26 presents an example of the environment for HIL testing, which 

is established by the microscopic railway simulator. Depending on different SUTs, the 

following elements can need to be modelled by the simulator. 

 

Fig 26 Schematic of the testing scenario for a single train 

• Vehicle Model 

The vehicle model simulates real trains running on a real track. As the vehicle is the 

controlled subject of the SUT VOBC, the factors influencing train movements must be 

included in the simulator. These factors include the train’s maximum speed, number of 

coaches, total vehicle length and weight, and the relations of the traction/resistance force and 
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the vehicle speed, etc. Some physical factors which require an enormous amount of 

experimental data to model, such as the friction between the vehicle wheels and the track 

surface, or the extra resistance caused by extreme weather, are not considered in the simulator. 

This is appropriate as these kinds of factor are not the focus of this thesis.  

• Infrastructure Model 

The infrastructure model is a key component of the environment model, and is necessary for 

TCS operation so that it needs to be simulated to generate necessary inputs during the test. 

Since the simulated infrastructure contains a wide range of different components, only the 

ones which are closely related to the testing are discussed in this thesis, which include signals, 

balises, point switches, and axel counters.  

• Timetable Model 

The timetable model is designed to indicate the time point at which the simulated train should 

arrive at a certain position, such as a station. All the trains controlled by the microscopic 

railway simulator should follow the timetable for operation, arriving at the destination in time. 

In the single-train scenario, the SUT train is controlled by the testing platform but not the 

microscopic railway simulator. Therefore, the timetable is not included in the testing 

environment. 

4.6 Data flow in the Simulation Combined MBT Platform 

In the previous sections of this chapter, the essential elements for implementation of 
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simulation combined MBT have been introduced. Based on the essential elements explained, 

the author summarises data transmissions between the components of the platform. 

As illustrated by Fig 20, the testing platform consists of the IUT model with a 

two-model-combined structure, the test tool TRON which is utilised to control the testing 

process, the I/O sequence manager which is designed to control the I/O sequence, and the HIL 

environment which is designed to provide a testing environment for SUTs. To explain in more 

detail the operating principle of the simulation combined MBT platform, data flow through all 

integrated components in the testing platform is illustrated in Fig 27: 
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Fig 27 Operating principle of the simulation combined MBT platform 

As indicated in Fig 27, the operating principle of the simulation combined MBT platform is 

explained by illustrating the direction of data flow through components of the testing platform. 

When the testing process starts, the abstract model is loaded by the test tool TRON in XML 
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format. By analysing the input model, TRON extracts the currently valid input and records the 

expected output derived from the input execution. Based on the type of the current input, the 

I/O sequence manager dispatches the current input to the SUT through the HIL environment 

via the external I/O channel, or to the simulation model via the internal I/O channel. On the 

external channel, the input is sent to the SUT and is executed by the SUT. The output 

generated is translated by the HIL environment and sent back to the test tool TRON via an 

external I/O channel. On the internal channel, the input is executed by the simulation model, 

and output is obtained by the test tool TRON. During the whole procedure, the simulation 

model periodically exchanges data with the SUT via the HIL environment and updates the 

variable changes for the test tool. The collected output is compared with the expected output 

desired by the abstract model. If the collected output complies with the specification, the 

testing process carries on and the next valid input will be tested until the testing time expires. 

If the output does not comply with the expected one, the testing process will be interrupted, 

and the testing is finished with a failed verdict. If no inconsistency is found during the whole 

testing process, the testing is finished with a passed verdict.  
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5 Functional Testing Case Study on a CBTC System  

In this chapter, two cases studies on a typical CBTC system are presents to explain how to 

apply the proposed simulation combined MBT methodology to undertake functional testing of 

TCSs. Case study 1 adopted a single train scenario, which is a close to ideal test scenario 

containing one train, aiming to explain steps to undertake functional testing on the simulation 

combined MBT platform in details. To study whether the proposed simulation combined MBT 

is suitable to test complex SUT in realistic scenarios, Case study 2 uses a multiple train 

scenario with three trains in operation.  

As a result of the sharing of functional architectures between CBTC and ETCS, which has 

been analysed in 2.1, the results of CBTC case studies chosen in this thesis could also be 

adopted for functional testing in ETCS. 

5.1 Case 1: Single Train Scenario 

In this chapter, the author applies the presented simulation combined MBT method in the 

testing of a VOBC which is simulated in the microscopic railway simulator. The real 

hardware of the SUT is in China but the simulation is built based on its specification. The 

simulated VOBC is used to realise the functions which are provided by the real hardware and 

software of the VOBC. Using simulation to replace the real equipment can decrease the risk 

of damage during the test procedure. An interface is built to transmit data between the SUT 

and the testing platform, and a communication delay is simulated at the interface to make it 

similar to real testing. In this case, a single train scenario is chosen as the testing scenario; the 
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purpose of the case study is to illustrate the detailed process of the testing platform. 

 

Fig 28 CAD map of Changsha Metro Line 5 

The author has selected a test line of Changsha Metro Line 5 which is designed for CBTC 

system development and testing. The test line contains four stations, three intervals and one 

simplified depot, as shown in Fig 28. To implement HIL testing, all the necessary elements in 

the design diagram are modelled in the microscopic railway simulator so that simulated trains 

can operate in the simulated network as real trains do in the real one. In a single train scenario, 

only one train runs in the network under the control of the tester. 

As indicated in Chapters 3 and 4, the author applies simulation combined MBT by modelling 

the SUT in two models, the abstract model built by UPPAAL and the simulation model built 

by the microscopic railway simulator. In this case, the detailed abstract model and simulation 

model which represent the abstract model and the simulation model, respectively, are 

presented, and their operating principle is explained. Testing results are recorded, and a testing 

verdict is drawn based on them. 

5.1.1 Abstract Model 

As one of the essential parts of simulation combined MBT, the abstract model describes the 
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key events which happen in the testing process. Associated with the traditional testing process 

described in Chapter 4, the abstract model plays a similar role to the test case in traditional 

testing. In traditional testing, the test case is written to specify the test environment, the SUT 

and the SUT/environment behaviour which should happen during the test procedure. In 

abstract modelling, the test case is divided into three parts, the SUT, the tester and the 

communication channels. The SUT and the tester model describe the system behaviour in 

terms of their interactions. The communication channels are used to describe the potential 

delays in interactions between the SUT and tester. 

5.1.1.1 Specification of the SUT 

In this case study, the SUT is a simulated VOBC with the specification of a real one used in 

the CBTC system of Changsha Metro Line 5. There are a lot of different functions provided 

by the VOBC, and the author concentrates on overspeed protection in this case. Overspeed 

protection is a vital CBTC function which protects the train from exceeding the safe speed 

limit. According to IEEE Standard 1474.1 for CBTC Performance & Functional 

Requirements, and the simulation specification from the developer of the Changsha Metro 

Line 5, the VOBC should trigger the EB within 1 second after it receives an overspeed signal 

(with an allowance of 5 km/h). This specification is associated with the functions of the 

VOBC, the ZC, signalling and the train, which generate a series of different testing scenarios 

including different reasons for train overspeed. No matter what factor makes the train 

overspeed, the VOBC should always comply with the rule that the train’s current speed should 

never be higher than the train’s current speed limit. Based on the simulation combined MBT 
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theory introduced in Chapter 3 and the detailed specification provided by the system 

developer, the author has refined the SUT specification into the following sub-specifications: 

a. The VOBC should receive the train current speed with a period of 200 ms. 

b. The VOBC should receive the train MA with a period of 200 ms. 

c. The VOBC should calculate the correct speed limit based on the received train MA. 

d. In every period, the VOBC should compare the received train speed with the calculated 

speed limit. If the train speed is over the speed limit, the VOBC should trigger the EB within 

1 second. 

Since the refined specifications b and c are related to MA, which is calculated using a 

relatively complex process, they potentially risk increasing the complexity of the abstract 

model. Therefore, the author has moved these two sub-specifications to the simulation model, 

and has refined the specification for the TA model as follows: 

a. The VOBC should receive the train current speed with a period of 200 ms. 

b. In every period, the VOBC should compare the received train speed with the calculated 

speed limit (from the simulation model). If the train current speed is over the current speed 

limit, the VOBC should trigger the EB within 1 second. 

Once refinement of the testing specification is finished, the abstract model can be built to 

formalise the testing specification. 
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5.1.1.2 Abstract Model of the SUT 

Based on the refined specification, the author has modelled the test implementation by 

dividing it into three components, which are the SUT, the tester and the I/O channels. The 

SUT is the subject that needs to be tested, and its behaviour should comply with the 

specification. The tester is the person who stimulates the specified inputs and collects the 

corresponding outputs. By comparing the collected outputs against the outputs expected from 

the specification, the tester can judge whether the SUT behaviour is correct. The I/O channel 

is used for the transmission of input and output data.  

By combining the refined specification and the expert modelling knowledge of the author , the 

author builds the abstract model of the SUT, as shown in Fig 29: 

  

Fig 29 TA model of the SUT for single-train scenario 
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As seen from Fig 29, the abstract model contains not only the VOBC functions but also some 

functions provided by the vehicle. In fact, only the states in green and the transitions to these 

states are related to the VOBC; the other states and transitions are designed to make the train 

move on the network. In theory, the SUT model should be divided into two models, which are 

the controller, the VOBC, and the controlled object, the vehicle. However, black-box testing is 

not concerned about the internal interactions between sub-components. In reality, the tester 

implements black-box testing and draws a conclusion by observing the train behaviour but not 

the control command sent by the VOBC. Furthermore, splitting the controller and the 

controlled object significantly increases the size of the state space and makes the abstract 

model over-detailed. As a result, the controller and controlled subject are merged, and only 

external actions are considered. The abstract model of the SUT consists of 12 states and 17 

edges, where the states are represented by dots and the edges are presented by arrows.  

There are two main parts to the SUT abstract model; the area in the blue dotted box represents 

the normal moving actions of the SUT, while the red dotted box represents the SUT actions 

related to the EB. To test the overspeed protection function of the SUT, which is the 

combination of the VOBC and the vehicle, the first step is to make the train move along the 

track. This event is realised by sending the command ‘Depart’. After receiving the ‘Depart’ 

command, the SUT executes it and feeds back a confirmation signal, notifying the tester that 

the command ‘Depart’ has been received and executed. This event is represented by the signal 

‘Departed’ (see section 5.1.1.4). After these two transitions, the SUT abstract model denotes 

that the train has changed its working condition from dwelling to moving and is ready to 
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accept further moving commands. In the blue dotted box, the SUT can trigger one of two 

transitions, which lead to the states ‘Accelerating’ and ‘Decelerating’, respectively. The 

condition which must be satisfied to make these transitions happen is a value of the variable 

‘SPEED’ always no less than zero. The variables ‘AC’ and ‘DC’ are special variables which 

have random values within a specified range each time the relevant edges are activated. The 

ranges of ‘AC’ and ‘DC’ are both integers [0,1] which are determined by the communication 

period and the train’s maximum acceleration and service deceleration. In every period of 

communication between the tester and the SUT, the variable ‘SPEED’ is observed at least 

once by the tester. When the maximum train acceleration and service deceleration is 1 m/s 

(specified by the system developer), the maximum integer increment or decrement of ‘SPEED’ 

should be no more than 1 m/s. Therefore, the ranges of ‘AC’ and ‘DC’ can be obtained as 

[0,1], which means the difference of the continuous two ‘SPEED’ values should not be more 

than 1 m/s . Each ‘Accelerating’ and ‘Decelerating’ is connected with two different 

transitions, with consideration of the former conditions. Due to the communication delay 

between the tester and the SUT, the train can be decelerating or accelerating before the state 

transits from ‘Moving’ to ‘Accelerating’ or ‘Decelerating’. As a result, the valid value of the 

current ‘SPEED’ should be in the range of �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓 − 1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓 + 1�, where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓 

stands for the last value of ‘SPEED’. 

After receiving the ‘ACC’ or ‘DCC’ command from the tester, the SUT should feedback a 

confirmation to notify that the command has been received and executed, which is 

represented by the signal ‘ACCed’ or ‘DCCed’ (see section 5.1.1.4). Similarly, the variable 
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values are updated while the transitions are happening. One more variable, ‘speedlim’, shows 

up, and its value is updated by the special variable. Different from the variables ‘AC’ and 

‘DC’, the author lets ‘speedlim’ be a constant value of 22 m/s, determined by the line speed 

limit from the specification. In a single train scenario, no train is ahead of the SUT, and the 

MA always extends to the destination of the track. As a result, the train speed limit should 

follow the line speed limit, which is always 22 m/s along the track of the test line. The 

benefit is that the possibility space can be significantly reduced without influencing operation 

of the SUT.  

After the SUT sends out the feedback signal, it can receive the command ‘Query’ from the 

tester, which makes the SUT go to the state ‘Reporting’ and updates the value of the variables 

‘SPEED’ and ‘speedlim’ again. In the state of ‘Reporting’, three edges can be activated 

depending on ‘SPEED’ and ‘speedlim’. If ‘SPEED’ is no more than ‘speedlim’, the SUT goes 

back to the state ‘Moving’ via two available edges, sending the feedback signal ‘Report’ (see 

section 5.1.1.4) and updating ‘SPEED’ and ‘speedlim’ one more time. If ‘SPEED’ is greater 

than ‘speedlim’, it indicates that the train is overspeeding; the EB should be triggered to 

protect the train so that the SUT sends the signal ‘EB’ (see section 5.1.1.4) to the tester and 

goes into the red dotted box, which means the train is in the EB condition. Therefore, in the 

blue dotted box, the SUT continuously accelerates or decelerates until the train overspeeds. In 

the red dotted box, the SUT continuously decelerates until the train completely stops, which 

means ‘SPEED’ is equal to zero. Then, the SUT notifies the tester that the train is completely 

stopped by sending ‘Stopped’ (see section 5.1.1.4), and is ready to be reset by the tester 
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command ‘Reset’. After receiving the reset command, the SUT executes it and feeds back the 

signal ‘Finished’ (see section 5.1.1.4), which indicates that a test circulation is finished, and a 

new one is ready to be implemented. 

5.1.1.3 Abstract Model of the Tester 

In traditional black-box testing, a tester should inject the specified inputs into the SUT and 

observe the corresponding outputs. By comparing the observed outputs with the outputs 

expected from the specification, the tester can judge whether the SUT behaviour complies 

with the specification. Therefore, the author has built the abstract model of the tester by 

specifying the commands which can be sent to the SUT, and the responses which can be 

observed from the SUT with a set of time restraints. One transition can only have one 

command or response activated, so that the computer can extract an input/output sequence 

from the abstract model. 
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Fig 30 TA model of the tester for single-train scenario 

As seen in Fig 30, there are 12 states and 15 edges in the abstract model of the tester, where 

the model always starts with an input action ‘Depart!’ in its initial state ‘Routed’. Every input 

action is followed by one of the available output actions which are determined by the current 

condition of the abstract model. The operation principle has been explained together with the 

abstract model of the SUT. In the state ‘Running’, two edges can be activated, and the 

probability of their activation is determined by the special variable ‘token’. The range of 

‘token’ is set to be (0, 99), giving the tester a 93% possibility of accelerating the train and a 7% 

possibility of decelerating the train. The purpose of designing the possibilities of acceleration 

and deceleration is to make the train tend to travel a longer distance before it exceeds the 

speed limit, and to make sure that the train can exceed the speed limit before it approaches the 

end of the track. If the train accelerates without any deceleration, it will trigger the emergency 
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stop quite soon so that the rest of the track cannot be covered in the testing. On the other hand, 

if the train decelerates too frequently, it will hardly exceed the speed limit because the train 

deceleration decreases along with the train speed. Another important parameter in the tester is 

the time constraints on states and edges, which are used to specify the time-related 

specification. The time constraint, for example ‘𝑥𝑥 ≤ 200’, requires that the system can wait 

for the next actions for no longer than 200 time-units, and the action must happen when the 

time limit is reached. Regarding the time constraints on different states, the tester must give a 

correct input and receive an expect output in time. In theory, there should be another set of 

time constraints to specify the time relations of the SUT. Since the author has focused on 

black-box testing, the time constraints of the SUT are again merged into the tester time 

constraints to reduce the possibility space of the abstract model. 

As seen from Fig 30, the abstract model of the tester contains a series of abstract inputs and 

outputs, where the inputs are represented by ‘!’ and outputs are represented by ‘?’. The initial 

action of the tester model is always an input (Depart!), and an input action is always followed 

by an output action. Table 5 summarises the input and output actions: 

Input actions Output actions 
Depart! Departed? 
ACC! ACCed? 
DCC! DCCed? 

Query! 
EB? 

Report? 

Query! 
EB? 

Stop? 
Reset! Finished? 

Table 5 Summary of the abstract input and output actions 
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As shown by Table 5 and discussed in section 4.2.1, all the I/O actions are in an abstract 

format and cannot be directly processed by the computer. The abstract actions only stand for 

the I/O channels used for data transmission on transitions. For example, when the SUT model 

transits from the state ‘Idle’ to ‘Departing’ (which is from ‘Routed’ to ’Departing’ in the tester 

model), the channel ‘Depart’ is activated, and a command ‘Depart’ is sent from the tester 

model to the SUT model. This action is assumed to happen instantaneously and to be finished 

immediately. 

5.1.1.4 Abstract Model of the Communication Channels 

As mentioned at the beginning of the chapter, a communication delay exists between the 

tester and the SUT in real testing scenarios. Different conclusions can be drawn from testing if 

the communication delay is ignored in the abstract model. For example, if the communication 

delay is non-negligible compared with the time constraints, the testing can draw a fail 

conclusion because the output arrives too late. Furthermore, nondeterminism can exist due to 

uncertain communication delays. Therefore, it is necessary to include the communication 

delay in the abstract model. 

 

Fig 31 TA model of the communication channels for single-train scenario 

As seen from Fig 31, the author has only included the communication delays of the output 
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channels. In reality, the input delays should be taken into consideration as well. The reason for 

ignoring the input delays is to reduce the possibility space of the abstract model. Therefore, 

the input delays are merged into the output delays, which will not influence the test results in 

black-box testing. According to Fig 31, all the abstract models of the communication delay 

share the same structure; the only difference is that they respond to different output actions. 

When an internal output action is given by the SUT model, the corresponding channel is 

activated and makes a transition from the state ‘Vacant’ to ‘Busy’, which equivalently holds 

the received message for a certain time. When a channel is in the state ‘Busy’, it cannot be 

activated again by receiving the message again. After a certain time of the clock ‘x’ within the 

time constraints passes, the channel in ‘Busy’ releases the received internal output by sending 

out a corresponding external output to the tester. When the clock time reaches the top limit of 

the time constraints, the channel must release the hold message and send out an external 

output to the tester. In this case, the time constraint is set to ‘𝑥𝑥 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

20, to represent that the communication delay should be no more than 20 time-units. This is 

determined by the communication period of the tester and SUT, which is 200 time-units. 

According to traditions in TCS functional testing, a communication delay should be no more 

than 10% of the communication period, to guarantee synchronisation between the tester and 

the SUT. With the combination of the abstract models introduced, the SUT behaviour in the 

testing scenario is described to follow the system specification. Fig 32 shows an example of a 

testing trace contained in the abstract model of the specification: 
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Fig 32 Schematic of a trace generated from the TA model of the specification 

5.1.2 Simulation Model 

As mentioned in section 5.1.1.1, the author has refined the specification for testing by 

removing the conditions related to complex calculations. The specification of the VOBC 

requires that it should be capable of determining whether the train is overspeeding based on 

the MA given by the ZC. To achieve this goal, the VOBC needs to do calculus to obtain the 

current speed limit determined by the current MA. The calculation procedure is relatively 

complex and is not eligible for modelling by the formal method chosen by the author. 

Simulation provides the solution by simulating the calculation procedure. Therefore, a model 

of VOBC functional simulation is developed on the platform of the microscopic railway 

simulator. The following picture is a schematic of typical braking curves for a moving block, 

which is the foundation of determining speed limit from the MA. 
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Fig 33 Calculation principle of braking curves 

As indicated by Fig 33, the current speed limit of the ‘behind train’ is decided by several 

parameters: the current distance between the two trains, the physical braking curve of the 

behind train, and the train position uncertainty of the two trains. The simulation periodically 

collects the values of these three variables and compares the calculated train speed limit with 

the line speed limit. The lower value is determined as the current speed limit of the behind 

train and is transmitted to the abstract model. The following figures explain the VOBC 

functional simulation procedure: 
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Fig 34 Illustration of the speed limit calculation modelled in the simulator 

As shown in Fig 34, the speed limit consists of two main kinds, the static speed limit and the 

dynamic speed limit. The straight red line at the top represents the static speed limit, the 

maximum line speed limit which is fixed along with the infrastructure. When the simulation 

model is activated, it automatically downloads the maximum line speed limit from the 

infrastructure information provided by the microscopic railway simulator. 

The red curve in Fig 35 illustrates the dynamic speed limit which is calculated by the VOBC 

based on the given MA. A braking curve is calculated with the consideration of several factors 

including the train parameters, physical laws and the distance between the train and the 

stopping point. The dynamic speed limit changes along with the changing MA given by the 

environment. During the testing procedure, the simulation model periodically sends its 

calculated speed limit to the MBT tool, TRON, and keeps updating the braking curve based 

on the new MAs. 
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Fig 35 Illustration of the overspeed protection function modelled in the simulator 

The two graphs in Fig 36 and Fig 37 depict two different overspeed scenarios in the 

Intermissive Automatic Train Protection (IATP) mode, where communication between the 

VOBC and the ZC is interrupted, and the train MA is determined by the signal condition in 

front. In Fig 36, when the train speed exceeds the dynamic speed limit determined by the MA, 

the VOBC should trigger the EB and slow down the train according to the braking curve, 

which is illustrated by the black curve in Fig 36. In Fig 37, when the train speed exceeds the 

static speed limit, the VOBC should trigger the EB and slow down the train according to the 

emergency braking curve. Since the SUT VOBC provided only performs EB when overspeed 

happens, the author has named both kinds of braking as emergency braking. 
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Fig 36 Overspeed scenario: exceeding the speed limit generated by MA 

 

Fig 37 Overspeed scenario: exceeding the speed limit generated by line speed limit 

After simulating calculation of the speed limit, the combination of the abstract model and the 

simulation model can describe the SUT behaviour according to the specification requirements. 

The two-model-combined structure of the specification model takes advantage of both formal 
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methods and simulation, simplifying the modelling operation and reducing the complexity of 

the abstract model. The next step is to build an essential environment for testing, which is 

modelled by the microscopic railway simulator. 

5.1.3 HIL Environment 

5.1.3.1 Vehicle Model 

According to section 4.5 and the performance parameters provided by the vehicle developer, 

the simulation of the vehicle adopted in the metro systems is built in the microscopic railway 

simulator, which is illustrated by Fig 38 and Fig 39 and Table 6. 

Based on the figures and table presented above, vehicle movement can be simulated by 

calculating the train speed and position periodically. During the test procedure, the SUT 

VOBC controls the simulated vehicle running on the track by detecting the train’s movement 

condition based on the reported train speed and train position. Before going to on-site testing, 

testing based on the simulated train can decrease the risk of damaging the SUT. 

 

Fig 38 Schematic of the vehicle model in the microscopic railway simulator 
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Fig 39 Traction power and resistance power along with various speeds 

Description 
Maximum 

speed (km/h) 
Coach 
number 

Length (m) Weight (t) Type 
Maximum acceleration 

(m/s2) 

Changsha 
Metro 

100 4 114.0 291.6 CBTC 1.1 

Table 6 Summary of the parameters in the vehicle model 

5.1.3.2 Infrastructure Model 

The infrastructure along the track is configured along the simulated network according to the 

design schematic provided by the system developer, which includes: balises, signals, axle 

counters and point switches. 
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• Balises 

In this case, the CBTC SUT includes two types of balise, the fixed balise and the variable 

balise. Fixed balises are designed to inform the VOBC of the train’s current location when the 

train is passing a fixed balise. The VOBC receives a telegraph including the balise ID and 

balise position sent by the passing balise and determines whether the received information 

matches with the database. According to the database, the train position will be determined if 

the balise ID and its position are correct; the train position will be determined as unknown if 

the received balise ID does not match with its position. As a result, the microscopic railway 

simulator models the fixed balise by making it send its ID and position when the TIA installed 

on the train head is approaching the valid receiving range of the balise telegraph. 

 

Fig 40 Schematic of a balise-passing event in the simulator 

As indicated by Fig 43, the VOBC receives the telegraph of the fixed balise ‘FB1522’ when 

the train is passing. According to the system specification requirements, the valid receiving 

range is set to ±2.6 m. 
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Since the variable balise function is irrelevant to the testing in both cases, its function is not 

simulated in the simulator so that it will not send its telegraph when the train is passing. 

• Signals, axle counters and points 

In the microscopic railway simulator, the interlocking system is simulated by defining the 

relations between signals, axle counters and points. When a train is passing a green signal, the 

axle counter detects the train and informs the interlocking of the train’s attendance. 

Afterwards, the interlocking changes the state of the corresponding signals to inform the 

following trains that the segment has been occupied. It should be noted that trains at CBTC 

level do not follow the displayed signal aspects because their movement is determined by the 

VOBC according to the distance of an obstacle in front of the train, and a ‘red’ signal is not an 

obstacle type when the system is operating at CBTC level. When communication between 

on-board and trackside equipment breaks down, and the CBTC mode is operating in IATP 

mode, the driver needs to control the train movement according to the signal aspect. However, 

when the direction of the point needs to be switched, it is necessary to check whether there is 

any train in the point area. As a result, the interlocking table is included to provide 

information for the simulator to determine when and whether a point direction can be 

switched. In Fig 41, a schematic of the signals, balises and points in the simulator is 

presented. 
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Fig 41 Schematic of signals, axle counters and points of the interlocking in the simulator 

5.1.3.3 Timetable Model 

In the single train scenario, a timetable is unnecessary because the train does not need to 

accurately arrive at stations on time. Details of the timetable model can be found in the 

multiple train scenario, which is in section 5.2.1.2. 

5.1.4 I/O Sequence Manager 

According to section 4.4, the I/O sequence manager manages the I/O actions which happen on 

the internal I/O channel and on external I/O channel 1. Therefore, it is necessary to explicitly 

determine which I/O actions are assigned to which I/O channel, which is summarised in Table 

7. 

Based on Table 7, the I/O actions involved in the testing are assigned to different I/O channels 

so that the input generated by the test tool can be correctly sent to the simulation model or HIL 

environment according to the flow chart in Fig 25. The I/O sequence manager is written in 

Java, so it can conveniently interact with the simulation model and the HIL environment. 
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Input Output I/O channel Description 
Depart Departed External Train departs when it receives departure command 

ACC 
ACCed External 

Train executes the acceleration command and informs the tester of 
the command execution 

EB Internal 
Train executes the acceleration command, which leads to train 
overspeed, and the VOBC triggers EB 

DCC 
DCCed External 

Train executes the deceleration command and informs the tester of 
the command execution 

EB Internal 
Train executes the deceleration command, which leads to train 
overspeed, and the VOBC triggers EB 

Query 

PosLost Internal 
The tester queries the train’s current operating condition and 
receives that the train position is lost 

Report Internal 
The tester queries the train current operating condition and is 
informed of the train’s current speed and position 

BaPass Internal 
The tester queries the train’s current operating condition and 
receives that the train is passing a valid balise 

Query 

EB Internal 
When the train is in the EB condition, the tester queries the train’s 
current operating condition and receives that the EB is being 
implemented 

Stop External 
When the train is in the EB condition, the tester queries the train 
current operating condition and receives that the train has been 
completed stopped 

Unlock Finished External 
After the train is completely stopped by the EB, the tester sends the 
EB unlocking command and receives that the EB has been 
unlocked 

Table 7 Summary of I/O actions on the internal I/O channel and external I/O channel 1 

5.1.5 Testing Results 

After configuration of all the elements is finished, the testing is ready to be implemented on 

the simulation combined MBT platform. In this case, the testing time is set to be 35000 

seconds, which means the testing continues until the test expires, or an error is found. Fig 42 

presents an example of the testing results, which is part of the train trajectories during the 

whole testing procedure: 
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Fig 42 Train trajectory during the testing process: 93% acceleration 

 

Fig 43 Train trajectory during the testing process: 100% acceleration 

As seen from Fig 42, the train triggers the EB twice before it arrives at the destination which 

is near the end of the track. When the train is completely stopped by the EB and has not 

arrived at its destination, the testing platform unlocks the implemented EB and the train 

departs again. When the train is stopped and has arrived at its destination, the testing platform 

automatically initialises test implementation by putting the train back to its initial position and 

starting testing again. After the testing period expires, the testing platform interrupts the 

testing implementation and draws a conclusion on whether the testing is passed or failed. Fig 

43 shows the influence of driver tendency. When the driver only accelerates the train, the train 
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movements are very predictable, and the diversity of the testing result is very poor. The train 

tends to stop at the same position on the track no matter how many times the testing 

implementation is run, which can be proven by Fig 44: 

 

Fig 44 Merged train trajectory run 24 times: 100% acceleration 

As can be seen from Fig 44, train trajectories with time do not completely coincide because of 

the uncertainty of the delay generated by the testing platform or communication delays. 

However, trajectories with distance perfectly coincide for 24 runs of the testing 

implementation, which is harmful for covering more possibilities in the testing. As a result, 

driver tendency is necessary to keep testing coverage. 

As revealed by Fig 42, the EB is not triggered immediately after the train exceeds the speed 

limit. The reason is that the VOBC judges whether the train is overspeeding according to the 

train speed adding up to an overspeed allowance, which means the VOBC allows the train to 

keep moving when it is slightly overspeeding. The allowance is designed to avoid the VOBC 

triggering the EB too frequently in some certain situations. Since a communication delay 
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exists between the testing platform and the SUT, the platform tends to receive a delayed speed 

after it finds that the EB is triggered, which means it can receive a speed exceeding the speed 

limit. Nondeterminism exists for received speed due to the nondeterministic communication 

delay. Furthermore, the formal methods adopted by the author can only deal with integer data 

which means that variable differences between the simulation and the testing platform also 

need to be taken into consideration. In summary, the speed allowance is set to be 1 m/s, 

which means the EB can be triggered when the train speed is over 82.7 km/h. According to 

the specification provided by the system developer, the vehicle can guarantee train safety 

when the allowance is under 5 km/h. As a result, the allowance applied in this case complies 

with the specification requirements. 

The testing implementation is finished after the testing time runs out and a ‘PASSED’ 

conclusion is drawn by the testing platform according to the testing results, which is shown 

below: 

 

Meanwhile, the log file recording all the I/O actions is generated by the online test tool TRON, 

which is shown by Fig 45: 
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Fig 45 Fragment of the testing log file 

Since the SUT is a VOBC simulation which is designed according to the specification, it is 

normal that no error is found during the testing process. In Chapter 6, verification of the 

testing platform is discussed, and its ability to detect error is proven. 

5.2 Case 2: Multiple Train Scenario 

In Chapter 5.1, the author explained the detailed implementation procedure of MBT online 

testing based on the simulation combined MBT platform. The testing results preliminarily 
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prove the effectiveness of the testing platform. However, the testing scenario adopted in that 

case is a relatively ideal scenario where only a single train operates in the network, which 

means that the train’s MA always extends to the destination of the train and the VOBC in fact 

protects the train based on the line speed limit. As a result of this, the testing results cannot 

prove that the VOBC would protect the train when following the dynamic train MA. To 

completely test the overspeed protection function in the specification, a multiple train scenario 

was built, introducing more trains into the network to vary train movements. Additional 

VOBC functions which are relevant to the overspeed protection were added into the 

specification model to create a more detailed scenario for the SUT. Fig 46 shows the 

schematic of the multiple-train scenario: 

 

Fig 46 Schematic of multiple-train scenario 

As shown in Fig 46, three trains are configured in the same network as adopted in single train 

scenario. The middle train is the test train which is controlled and monitored by the testing 

platform. The front train and behind train are both simulated trains, and they are controlled by 
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the microscopic railway simulator following a designed timetable. These two trains are not 

installed with the SUT VOBC so that they cannot realise all the functions supported by the 

middle one. But with the help of the microscopic railway simulator, the two trains can operate 

safely by following simulated MAs. The main purpose of the configuration is to provide the 

SUT train with an environment which is more like its real operational environment. In 

addition to this, the multiple train scenario can test whether the SUT VOBC is safe for whole 

system operation. In this case study, the author will explain the multiple train scenario by 

comparing it with the single train scenario, focusing on the differences between the two 

scenarios and ignoring repeated concepts. 

5.2.1 SUT Models and the HIL Environment 

To implement testing in the new scenario, the specification model needed to be modified to 

adapt to the multiple train scenario. At the same time, the HIL environment needed to be 

re-built to realise the environment for multiple trains. Both elements were evolution of the 

developed models introduced in the single train case. The train location function of the VOBC 

was introduced into the testing implementation to improve the operation conditions of the 

SUT VOBC. 

5.2.1.1 Abstract Model 

To realise the train location function, the abstract models of the SUT and the tester are 

modified based on the ones presented in single train case. The updated models are shown by 

the Fig 47 and Fig 48: 
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Fig 47 TA model of the SUT for multiple-train scenario 

 

Fig 48 TA model of the tester for multiple-train scenario 
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As shown by the figures above, the modified TA models keep the general structure of the ones 

in the single train case. One of the differences is that the train location is realised by adding 

the variables ‘BaID’ and ‘Distance’ and the I/O actions ‘Unlock’, ‘PosLost’ and ‘BaPass’. 

Another modification is that the values of the variables ‘SPEED’ and ‘speedlim’ are checked 

only on the output action ‘ACCed’. On the output action ‘Report’, the variables ‘SPEED’ 

and ‘speedlim’ are removed, and the variables ‘Distance’ and ‘BaID’ are checked by the test 

tool. The main purpose for the modification is to control the computational load of the test 

tool, TRON. The testing implementation can fail if the TA model is too complex for the test 

tool to analyse. If all the four variables (‘SPEED’, ‘speedlim’, ‘Distance’ and ‘BaID’) are 

checked with the same output action ‘Report’, the computational load caused by the 

combination of the four variable values will be too heavy for TRON to finish the analysis 

within the time constraints. Therefore, the computational task must be averagely assigned to 

different I/O actions to avoid the testing implementation becoming unstable.  

As presented by Fig 47, the SUT goes to the state ‘ACCed’ when ‘SPEED’ is lower than 

‘speedlim’, and it goes to ‘QueryEB’ when ‘SPEED’ is higher than ‘speedlim’. In the state 

‘Reporting’, the SUT decides which output action is available, by checking whether the 

received ‘BaID’ matches the received ‘Distance’ according to the line map embedded in the 

VOBC. The output ‘Report’ will be sent if no balise ID is received (which means ‘BaID’ 

equals 0). When the SUT receives a balise ID (which means ‘BaID’ is non-zero) and the 

received ‘Distance’ is in the valid range (±5 m) of receiving the corresponding balise ID, the 

output action ‘BaPass’ is activated, representing that the SUT is receiving and accepting a 
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balise. If ‘BaID’ is non-zero but the received ‘Distance’ is out of the valid range for the first 

time, it will be ignored, and the output action ‘Report’ will be activated to represent that the 

balise is not accepted. If two consecutive balises are rejected or the received ‘BaID’ is illegal, 

the output action ‘PosLost’ will be activated to represent that the train position is lost by the 

VOBC, and an EB should be triggered. The code below is embedded in the SUT model and 

realises part of the VOBC train location logic which determines whether the received balise 

ID is legal: 

 

Another modification is that ‘speedlim’ becomes a variable by setting it to a range of 

[0,22] m/s, which makes the SUT able to accept various speed limits generated by the 

changing train MA. The variable ‘speedlim’ is another reason that the author reconfigured the 

structure of the SUT model to reduce the possibility space in certain states. The final 

modification of the SUT model is that the EB can be released if it is triggered by overspeed. If 

the EB is triggered by a lost train location, the SUT will be reset and the testing 
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implementation will start from the initial state. The reason is that the VOBC needs the help of 

the ZC to recover from the train location being lost, while the ZC function is not included in 

the SUT model in this case. Since the train location function is realised by the abstract model 

in the specification model, the simulation model remains the same as in the single train 

scenario. 

5.2.1.2 HIL Environment Model 

To realise the multiple train scenario, the HIL needs to provide two more trains which can 

operate in the network. Since only the middle train is controlled and monitored by the testing 

platform, the other two trains should be controlled by the HIL environment and be able to 

operate as normal trains; this is supported by the existing functions of the microscopic railway 

simulator. The movements of the simulated trains are completely controlled by the simulator 

based on a defined timetable. 

As indicated by Table 8 which shows the timetables for the front train and behind train, the 

timetables rule the train movements by specifying the time point at which the trains should 

arrive at a certain position. The timetable also specifies the actions that the train should 

perform at a certain position, including PASS, STOP and NONE. PASS means the train should 

keep its operating condition and pass the certain point at the specified time point. STOP 

signifies that the train plans to stop at a certain position at a specific time point, and NONE 

means no plan is assigned to a certain position. The microscopic railway simulator guarantees 

that the simulated train follows the timetable when the conditions are satisfied, which means 
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that no barrier stops the train or that the time slot is long enough for the train to arrive in time. 

Except for the simulated trains being controlled by the simulator, the operation principles of 

the simulated trains are the same as those of the SUT train, which means they share the same 

kinetic equations and have the same influence on the other components in the network. 

Service name Train 
description Start date End date Drive type 

T1 VOBC train 2016-01-01 2016-01-01 UPPAAL driver 

S2 Simulation train 2016-01-01 2016-01-01 Simulation driver 

Node Minimum stop time Required departure time Type Stop ID 
N290 -- 09:00:00 NONE -- 
N82 -- -- NONE -- 
N76 -- -- NONE -- 
N288 30 09:02:20 STOP San Yi 
N50 -- -- NONE -- 
N285 -- 09:03:20 PASS Chao Yang 
N33 -- -- NONE -- 
N283 -- 09:05:40 STOP Wan Bao 
N14 -- -- NONE -- 
N1 -- -- NONE -- 

S3 Simulation train 2016-01-01 2016-01-01 Simulation driver 

Node Minimum stop time Required departure time Type Stop ID 
N290 30 09:00:50 STOP -- 
N82 -- -- NONE -- 
N76 -- -- NONE -- 
N288 -- -- NONE -- 
N50 -- -- NONE -- 
N285 30 09:02:30 STOP Chao Yang 
N33 -- -- NONE -- 
N283 -- -- NONE -- 
N14 -- -- NONE -- 
N1 -- -- NONE -- 

Table 8 Timetables for simulation trains built in the microscopic railway simulator 
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The reason that only three trains are included in the scenario is that three trains are enough to 

form a moving-block scenario. In essence, the testing goal is to determine whether the SUT 

VOBC can guarantee the train’s operational safety under the TCS of a moving block. With a 

simulated train in front of the SUT train and one behind, the testing implementation can find 

out whether the SUT train is at risk of crashing into the front train and whether the behind 

train can crash into the SUT train in some extreme situation. With all the potential risk factors 

considered by the testing environment, the testing results become more convincing than those 

of the single-train scenario. 

According to the modified specification model, the HIL environment is required to provide 

two more variables for the specification model, which are the balise ID and the central 

position of the balise (in the format of journey distance). The added variables are supported 

by the existing functions of the microscopic railway simulator, which is shown by Fig 49: 

 

Fig 49 Schematic of the testing environment for train location function 

As illustrated by Fig 49, when the SUT train is passing a balise represented by a purple 

triangle (which means the train head is running into the balise transmission range), the HIL 

environment sends the corresponding balise ID with the central position of the balise to the 

SUT train, as displayed by the green label. Based on the received balise ID and central 



146 
 

position, the specification model determines whether the combination is legal and makes the 

next move. If the received balise ID matches its central position, the SUT VOBC should 

accept that balise and reset the train uncertainty to zero. If the received balise ID is illegal, or 

two balises have been missed, the VOBC should trigger the EB because the train position is 

lost. Without a correct train position, the overspeed protection is meaningless, so that the train 

location function is a precondition of the overspeed protection function. After modification of 

the specification model and the HIL environment is finished, the testing platform is ready to 

execute the testing implementation. 

5.2.2 Testing Results 

Because the test environment for the multi-train scenario is more complex than that of the 

single train scenario, the author extended the testing time to 50000 seconds. No failure was 

found during the testing procedure, and the testing conclusion is shown by the log file below: 
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Since multiple trains run in the network, the platform should inspect whether the SUT VOBC 

can protect the train from overspeed and avoid the train going into a dangerous position where 

collisions can happen. A crash detection function has been developed on the testing platform 

to detect whether several train heads or tails appear at the same position on the track during 

the whole testing process. Fig 50 shows an example of a crash situation happening in the 

network: 

 

Fig 50 Schematic of the crash detection function 

As revealed by Fig 50, the front train crashes into the SUT train because its moving direction 

is reversed, and its overspeed protection function is artificially removed. Without detecting 

the SUT train is in front, the front train moves in a normal condition and finally crashes into 

the SUT train. When the crash happens, the testing platform detects the situation and freezes 

the two crashed trains to avoid further damage. The operation that causes the train crash is 

illegal in a real metro system because driving a train in reverse on the track needs a series of 

preconditions and permissions from other components in the CBTC system. The author uses 

the assumed case to show the operation principle of the crash detection function. Fig 51 
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shows part of the testing results, the distance–time graph of the three trains in the network for 

one run: 

 

Fig 51 Distance–time graph of the three trains in the network 

As can be seen from Fig 50, the distance–time graph clearly indicates that there is no collision 

happening during the time elapsed. The minimum distance between each two trains can be 

roughly obtained from the graph; it is about 100 metres, much more than the safety margin 

which is 40 metres according to the specification. After 50000 seconds running of the testing 

implementation, no crash was found, and the test was passed successfully. 

Another purpose of testing is to find out whether the SUT VOBC can protect the train from 

overspeed in the multiple-train operation scenario. The following group of graphs record the 

trajectories of the three trains in one run of the testing implementation: 
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Fig 52 Trajectory graphs of the SUT train in one loop of testing 

 

Fig 53 Trajectory graphs of the front train S2 in one loop of testing 

 

Fig 54 Trajectory graphs of the behind train S3 in one loop of testing 

In Fig 52, the SUT train speed tends to follow the various speed limits determined by the 
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train’s MA. The EB is triggered every time the train speed exceeds the speed limit. Since the 

SUT is the middle train, the speed limits of the front and rear trains are ignored, and only the 

line speed limit is recorded in their trajectories. When the SUT train arrives at the destination, 

the testing platform resets the testing implementation by reinitialising the positions of the 

three trains. Then the testing runs again until the testing time expires. 

In the testing scenario, the other reason for triggering the EB is that the train location is lost 

by the VOBC. Fig 55 shows an example of the EB being triggered by a lost train location: 

 

Fig 55 Trajectory graphs of the SUT train for the example of EB due to lost train location 

As recorded by Fig 55, the SUT train triggers a third EB after two EB caused by overspeed. 

The third EB is obviously not triggered by overspeed because the current train speed is far 

below the speed limit at which the EB is triggered, therefore the EB must have been triggered 

as a result of losing the train’s location. There are various situations in which the SUT VOBC 

can lose the train’s location. For example, if the VOBC has not lost balises before the EB is 

triggered, the EB is triggered on receiving an illegal balise ID. If there has been an adjacent 

balise (in front of the current one) lost by the VOBC, rejection of the current balise will 
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trigger the EB both for an incorrect balise ID, or an incorrect balise central position. In this 

case, according to the specification model and the HIL environment, the train triggers the EB 

because it receives an illegal balise ID. Since the HIL environment is not designed to send a 

wrong balise ID or a wrong balise central position, the reason the EB is triggered is that the 

second EB triggered by EB forces the VOBC to miss two balises. The following graph 

describes in detail how the third EB is triggered: 

 

Fig 56 Schematic of scenario in which a third EB is triggered 

According to the speed–distance graph in Fig 55, the SUT train triggers the second EB at 

around 3000 metres, which refers to a point marked in the red circle between the fixed balises 

‘FB1226’ and ‘FB1224’. The train eventually stops at the point at around 3250 metres, 

referring to the point marked with a green circle on the track. Since the VOBC cannot accept 

balise messages when the EB is being implemented, the two balise messages between the red 

circle and the green circle are missed. When the train departures again and passes the fixed 

balise ‘FB1220’, the VOBC determines it has received an illegal balise and triggers the EB 

for the third time. The deduction can be proven by the log file below and Fig 57: 
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Fig 57 Correspondence relations of balise ID between the abstract model and HIL environment 

Based on the log file recorded by the testing platform, the last received balise ID is ‘BaID=14’ 

at ‘Distance=555’ (actual distance equals 555 × 5 = 2775 m). After receiving balise ‘14’, 

the train triggers the EB because of overspeed and misses two continuous balises. When the 

train departs and comes across balise ‘17’, the EB is triggered again because the train’s 

location is lost. Fig 57 indicates the translation relations between the real balise IDs in the 

HIL environment and the abstract balise IDs (in the ‘Desc.’ column of the Infrastructure table) 

in the specification model. 
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5.2.3 Summary 

In this case, the author has extended the prototype of the testing scenario used in the case 

study in Chapter 0 into an advanced version which is closer to a real testing scenario 

containing multiple trains travelling on the network. By adding the train location function into 

the specification model, the prerequisites for overspeed protection are completed. Without a 

correct train location, the VOBC cannot make a convincing decision on whether the train is 

overspeeding. The multiple train case provides a relatively complicated environment for the 

SUT, testing the SUT’s ability to protect the SUT train as well as the other trains running in 

the same network. The testing results of the multiple train scenario are more convincing than 

those of the single train scenario as the multiple train scenario takes more impact factors into 

consideration, such as interactions between the three trains. With the help of simulation, more 

elements can be included in the testing process without decreasing its efficiency due to 

increased model complexity. By refining complex specifications into abstract format and 

simulating the rest of the SUT behaviour, the testing platform takes advantage of both MBT 

technologies and simulation. Although no failure was found during testing, the testing results 

still indicate the feasibility of the testing platform. 

5.3 Conclusion 

Two cases were implemented to inspect the testing ability of the developed simulation 

combined MBT platform. In the single train scenario, the implementation method in Chapter 

4 was realised. The author installed the SUT VOBC on a simulated train which can travel on a 
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simulated network. The overspeed protection function of the VOBC was tested, and the test 

results indicate that the SUT VOBC complies with the system specification. In the 

multiple-train scenario, three trains are travelling on the network and only the middle train is 

protected by the SUT VOBC. The overspeed protection function and the train location 

function were tested. Since multiple trains travelling on the same line is a necessary 

operational scenario in CBTC system operation, the author implemented the case to explore 

whether the developed testing platform is capable of testing the VOBC in such a scenario. The 

test results indicate that the SUT VOBC can still protect the train from the dangerous situation 

caused by train overspeed or loss of train location. Since the test scenario was simulated 

according to real data provided by the system developer, the two cases prove that the testing 

platform can be applied to test SUTs in an HIL environment. The MBT combined with 

simulation is proven to be a feasible solution to automate complex SUT testing without the 

risk of state explosion. Furthermore, the proposed simulation combined MBT decreases 

modelling difficulties by adopting the simulation model to describe complex system 

behaviour. 

6 Validation and Verification 

For black-box testing, only one of three conclusions can be drawn, Pass, Fail or Inconclusive. 

However, the three conclusions available cannot be quantised, which means the performance 

of a test tool cannot be analysed based on the conclusions. The simulation combined MBT 

platform is a comprehensive testing platform, integrating the formal model in UPPAAL, the 

simulation model in the microscopic railway simulator, and the online test tool 
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UPPAAL-TRON. To verify the testing platform, proving the correctness of all the 

components in the simulation combined MBT platform is necessary, which was done in 

Chapter 3 and 4. Based on the methodology introduced, Chapter 5 has introduced the 

simulation combined MBT performed and the testing results obtained. To further prove the 

effectiveness of the proposed methodology, validation and verification should be 

implemented.  

In engineering field, validation is the process of determining whether the system specification 

requirements are correctly built to satisfy customer’s demands. Verification is the process of 

determining whether a system is correctly built according to its system specification 

requirements [125]. Expanding the definition to the field of MBT, specification models should 

be validated to prove that they have been correctly built to achieve testing purposes and test 

results should be verified to prove that testing has been correctly implemented to draw valid 

testing verdict. Therefore, specification models built in Chapter 5 are validated in this chapter. 

The performance of the testing platform is then analysed in forms of quantised indices 

according to the specification models validated and the testing results obtained, to verify the 

effectiveness and performance of the simulation combined MBT platform. Two case studies 

have been undertaken in Chapter 5 and the author uses the data obtained from the multiple 

train case study to implement the validation and verification. The multiple train case is used 

based on the comprehensively rich data when compared with the single train case. 
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6.1 Validation of the Specification Requirement 

In MBT, the specification model represents the informal specification, and guides the 

computer in the execution of testing implementation. Therefore, the correctness of the 

specification model is one of the essential components in the MBT. An MBT can draw a 

wrong conclusion if the original specification is incorrectly modelled. Proving strict 

consistency between the specification model and the original specification is time-consuming; 

instead, the solution is to prove consistency within given constraints. As a result, the problem 

is transformed into the specification model having to comply with the original specification 

solely within context of the multiple-train testing scenario. According to the discussion in 

Chapter 5, the specification model consists of the abstract model and the simulation model. 

Since the abstract model is written in the formal format, it is more likely to contain mistakes 

made by human factors. The author focuses on validation of the abstract TA model in this 

chapter. Validation of the simulation model is discussed only briefly because it has been 

validated in the frame of microscopic railway simulator. 

6.1.1 Abstract Model Validation 

The abstract model is written in TA format on the modelling tool UPPAAL, which supports 

model verification by model-checking, a verification technology to automatically and 

exhaustively inspect whether the model satisfies given properties [93, 126]. To verify the TA 

model in UPPAAL, the key properties need to be written in first-order logic using the 

language format desired by UPPAAL. There are four main property formulae supported in 



157 
 

UPPAAL, used to check whether the property P is satisfied by the TA model, which are shown 

below: 

A[] PA[] P A<> PA<> P

E[] PE[] P E<> PE<> P

A[] P A<> P

E[] P E<> P  

Fig 58 Schematic of the four formulae supported by UPPAAL 

As presented in Fig 58, the four formulae of the property descriptions determine the checking 

scale of the TA model. The formula ‘𝐴𝐴 [] 𝑷𝑷’ requires that the property P should be satisfied in 

all states of all the traces contained in the TA model. The formula ‘𝐴𝐴 <>  𝑷𝑷’ requires that the 

property P should be satisfied in some states of all the traces contained in the TA model. The 

formula ‘𝐸𝐸 [] 𝑷𝑷’ requires that the property P should be satisfied in all the states of some traces 

contained in the TA model. The formula ‘𝐸𝐸 <>  𝑷𝑷’ requires that the property P should be 

satisfied in some states of some traces contained in the specification model. With the four 

specific formulae, UPPAAL can automatically check the safety and liveness properties of the 
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built model, determining whether these properties comply with the system specification. The 

safety property requires that unexpected events never happen during the system operation 

process, which means the corresponding formulae are ‘𝐴𝐴 [] 𝑷𝑷’ and ‘𝐸𝐸 [] 𝑷𝑷’. A special formula 

‘𝑷𝑷𝟏𝟏 → 𝑷𝑷𝟐𝟐’ for safety property verification is supported by UPPAAL, meaning that 𝑷𝑷𝟐𝟐 will 

be eventually satisfied whenever 𝑷𝑷𝟏𝟏 is satisfied. The liveness property requires that expected 

events can eventually happen during the system operation process, which means the 

corresponding formulae are ‘𝐴𝐴 <>  𝑷𝑷’ and ‘𝐸𝐸 <>  𝑷𝑷’. 

The purpose of validating the specification model is to confirm that it correctly describes the 

system specification so that the testing results are always obtained from the correct test oracle. 

The author validated the specification model by verifying whether it satisfies the safety and 

liveness properties which are desired by the system specification. Although consistency 

between the specification model and system specification cannot be completely proven in this 

way, validation of the specification model can guarantee that no safety or liveness errors exist 

in the specification model, which can adequately prove that the specification model is eligible 

to be used in black-box testing. Fig 59 shows an overview of all the verified properties in the 

specification model: 

 

Fig 59 Summary of all verified safety and liveness properties 



159 
 

Based on Fig 59, all the safety and liveness properties pass the verification via the integrated 

model-checking tool box in UPPAAL. The verification formulae are written in the format of 

first-order logic with a special grammar required by UPPAAL. For example, the formula 

‘SPEED > 0 →  𝑛𝑛𝑛𝑛𝑛𝑛 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 || 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)’ means that the states ‘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆’ and 

‘𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸’ in the TA ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ can never be available when ‘SPEED > 0’ holds, which 

requires that the SUT VOBC (train) can only be stopped and the EB released when the train 

speed is zero. The safety property is derived from the test specification with a different angle 

of description which can be intuitively comprehended by humans and read by computers. 

With the help of model-checking, the liveness and safety properties were verified, and the 

verification procedure is presented.  

6.1.1.1 Deadlock 

The first essential verification which should be implemented is to verify that the TA model 

built has no deadlock. It is the most important verification because a deadlock in the TA 

model may lead to inconclusive situations during the testing process, making all the covered 

situations meaningless. To verify the TA model is deadlock-free, the formula 

‘𝐴𝐴 []𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑’ is used in UPPAAL. 

6.1.1.2 Safety Properties 

In this section, the verified properties are explained in detail, in terms of the meaning of the 

properties, the reasons for verifying them, and the verification results. 
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6.1.1.2.1 𝐴𝐴[] 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 > 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 && 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

• Meaning: in all states in all the traces contained in the TA model, the condition ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 >

𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬’ being true implies that the TA models of ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ and ‘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑’ will eventually 

turn into the EB mode, which is presented by the states ‘𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸’ and ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’. 

• Reason: the key function of overspeed protection is to protect the train from overspeeding, by 

decelerating the train when the train speed is too fast. This property aims to verify whether the 

TA model goes into EB mode when the train is overspeeding because the EB function is only 

available in EB mode. 

6.1.1.2.2 𝐴𝐴[]𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 && 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 == 0 

• Meaning: when the TA model ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ is in the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’, and the TA model ‘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑’ is 

in the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’, the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is implied to be zero. 

• Reason: as required by the specification, the SUT train should eventually be stopped once the 

EB is triggered. The states ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ and ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ stand for the stopped states in the SUT 

and the tester, where the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ should always be zero. This property verifies 

that the SUT can achieve the stopped state only when the train speed is down to zero. 

6.1.1.2.3 𝐴𝐴[] 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 > 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

• Meaning: when the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is greater than the speed limit ‘𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬’, the state 

‘𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹’ which stands for the SUT being in the normal operation mode becomes 

unavailable. 
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• Reason: this property aims to check that the SUT cannot stay in the normal operation mode 

when the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ exceeds the speed limit ‘𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬’, which means that the 

SUT should enter EB implementation mode when overspeed happens. Satisfaction of the 

property guarantees that the SUT must go to EB mode when an overspeed situation is 

detected. 

6.1.1.2.4 𝐴𝐴[] 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 == 0 

• Meaning: when the SUT is in the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’, the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is always 

zero. 

• Reason: another safety-critical function related to overspeed protection is that the 

implemented EB can be released only when the train is completely stopped. State 

‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ stands for the condition where the implemented EB has been released from 

the SUT train, and the event can happen only when the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is zero. 

Satisfaction of the property guarantees that removal of the EB happens in safe conditions. 

6.1.1.2.5 𝐸𝐸[] 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 == 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝒔𝒔𝒔𝒔𝒔𝒔 == 1 &&  ( 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 < 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] − 1 ∨

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 > 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] + 1)) 

• Meaning: the Boolean variable ‘𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥’ being false implies that the variable ‘𝐬𝐬𝐬𝐬𝐬𝐬’ equals 1, and 

the variable ‘𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃’ is out of the valid receiving range of a certain balise. 

• Reason: one reason that train location is missed happens because the VOBC receives a valid 

balise ID without a valid balise central position. The Boolean variable ‘𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥’ being false 

represents that the train position is lost, and the variable ‘𝐬𝐬𝐬𝐬𝐬𝐬’ means that the SUT is receiving 
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a valid balise ID. Satisfaction of the property guarantees that the SUT can reject a received 

balise ID when its corresponding central position is wrong. The reason for using the formula 

‘𝐸𝐸[]’ but not ‘𝐴𝐴[]’ is that loss of train location happens in several situations, and the one 

presented by the property is only one of them. 

6.1.1.2.6 𝐴𝐴[] 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 >= 2 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑩𝑩 

• Meaning: when the variable ‘𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍’ is no less than 2, the SUT always goes to the state 

‘𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑩𝑩’ eventually. 

• Reason: when two continuous balises are found to be missed, the variable ‘𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍’ 

becomes 2, and the SUT should find that the train location is missed. In this situation, no 

matter what current state the SUT is in, it should trigger the EB immediately and stop the train 

eventually. Satisfaction of the property indicates that the SUT can detect that the train position 

is lost and go to the EB mode to keep the train safe. 

6.1.1.2.7 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 −>  𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 

• Meaning: the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ in the TA model ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ always leads to the state ‘𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰’. 

• Reason: when the EB is removed from the SUT train, the SUT should eventually be able to go 

to the initial state. Satisfaction of the property guarantees that the SUT TA model does not 

have deadlock in the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’. 

6.1.1.2.8 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 −>  𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 

• Meaning: the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ in the TA model ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ always leads to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’. 
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• Reason: the SUT will eventually go to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ if its current state is ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’, which 

indicates that the train should eventually be stopped once the EB is triggered. Satisfaction of 

the property guarantees that the EB is effective in stopping the train. 

6.1.1.2.9 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 > 0 −> 𝑛𝑛𝑛𝑛𝑛𝑛 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬) 

• Meaning: the variable ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ being greater than zero leads to the SUT not being able to go 

to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ or ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’. 

• Reason: the SUT should never go to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ or ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ before the train is 

completely stopped. As a result, satisfaction of the property guarantees that the SUT stays in 

the EB mode when the train speed is not zero. 

6.1.1.3 Liveness Properties 

6.1.1.3.1 𝐴𝐴 <> 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝒚𝒚𝑬𝑬𝑬𝑬 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝒐𝒐𝒑𝒑 

• Meaning: when the SUT is in the state ‘𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝒚𝒚𝑬𝑬𝑬𝑬’, it will eventually go to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’. 

• Reason: satisfaction of the property indicates that the SUT can be completely stopped by the 

EB, which means that the expected state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ can be achieved eventually. 

6.1.1.3.2 𝐴𝐴 <>  𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 

• Meaning: when the SUT is in the state ‘𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰’, it will eventually go to the state ‘𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫’. 

• Reason: the testing purpose requires that the train can departure eventually. Satisfaction of the 

property guarantees that the train will not always be stuck in the initial state ‘𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰’ and will 

eventually depart at some time. 
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6.1.1.3.3 𝐴𝐴 <> 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 

• Meaning: when the tester is in the state ‘𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 , it will eventually go to the state 

‘𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫’. 

• Reason: the testing purpose requires that the tester should send the departure command to the 

SUT at some time. Satisfaction of the property indicates that the tester will try to send the 

departure command to the SUT train and make the following testing steps available. 

6.1.1.3.4 𝐴𝐴 <>

 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ∨

𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑪𝑪 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 ∨

𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∨

𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 

• Meaning: all the states contained in the SUT TA model should be reachable in some traces. 

• Reason: satisfaction of the property indicates that there is no unreachable state in the SUT 

model so that everything defined in the model can be covered in the testing process at some 

time. 
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6.1.1.3.5 𝐴𝐴 <>  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑒𝑒.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨  ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 ∨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 ∨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 

• Meaning: all the states contained in the tester TA model should be reachable in some traces. 

• Reason: satisfaction of the property indicates that there is no unreachable state in the tester 

model so that everything defined in the model can be covered in the testing process at some 

time. 

6.1.1.3.6 𝐴𝐴 <>  𝒙𝒙 >

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨ 𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨

𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 

• Meaning: when the clock ‘𝒙𝒙’ is larger than the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’, one of the communication channels 

must be in the state ‘𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽’. 

• Reason: satisfaction of the property indicates that the clock can only be greater than the 

latency when in the state ‘𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽’. 
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6.1.1.3.7 𝐴𝐴 <>  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝒙𝒙 <= 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

• Meaning: when the communication channels are in the state ‘𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩’, the clock ‘𝒙𝒙’ must be no 

greater than the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’. 

• Reason: satisfaction of the property indicates that the state ‘𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩’ is only available when the 

clock ‘𝒙𝒙’ is within the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’, which means that all the communication channels must go 

from the state ‘𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩’ to the state ‘𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽’ once the clock exceeds the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’. 

6.1.1.3.8 𝐴𝐴 <>  𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 == 0 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝒔𝒔𝒔𝒔𝒔𝒔 == 1 &&  ( 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 >= 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] −

1 && 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 <= 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] + 1)) || (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝒔𝒔𝒔𝒔𝒔𝒔 == 0) 

• Meaning: the variable ‘𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍’ is equal to zero when the SUT receives a valid balise 

number with a valid balise central position, or the SUT does not come across balises. 

• Reason: when the SUT is running normally on the track without overspeed, it can receive a 

valid balise ID with a correct balise central position, or it can run without receiving balises. 

Satisfaction of the property indicates that the train location function of the SUT VOBC 

performs correctly according to the specification. 

6.1.2 Simulation Model Validation 

Unlike verification of the abstract model which is in TA format, the simulation model of the 

specification model cannot take advantage of the model-checking integrated into UPPAAL, 
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which makes its formal verification more expensive than that of the abstract model. The 

simulation models developed in this thesis is assumed to be correct and comply with the 

system specification to undertake the key testing tasks. In engineering practice, the simulation 

models could be either developed according to the system specification or adopted directly 

from the system software with addition of simulation control models.  

6.2 Effectiveness Verification 

To prove that the simulation combined MBT performs is better than existing testing 

approaches, effectiveness verification and performance verification are undertaken to prove 

that the developed testing platform can detect errors and achieve a better coverage. If the 

developed testing platform is evaluated to detect every error covered and to cover more 

possibilities, it is a better testing approach because it has a higher possibility to find error 

hidden in the SUT than existing ones. 

6.2.1 Mutation Testing 

With the specification model verified, the effectiveness of simulation combined MBT can be 

verified to determine whether the testing platform can find out errors in an SUT. Since the 

testing results in Chapter 5 indicate that there are no errors in the SUT VOBC, the author 

verified the testing platform further to see whether it can find existing errors in an SUT 

mutation, which is obtained by injecting known errors into the SUT. The verification process 

is called mutation testing in the computer science field and contains a set of different kinds of 

mutation operators corresponding to different errors [127, 128]. The application domain for 
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this thesis is the rail industry and as a result, the author has simplified the mutation testing by 

only selecting mutation operators which are meaningful in railway system testing. Table 9 

shows the summary of a set of mutation testing results: 

 

 

 

 

Mutation error Errors inserted into the SUT Test results 

Wrong output action 
e.g. make the SUT send out ‘ACCed’ 

when it receives ‘DCC’ from the testing 
platform 

Passed 

Incorrect output value 
e.g. make the train speed decelerate with 

the output action ‘ACCed’ when the 
SUT receives ‘ACC’ 

Passed 

Delay e.g. insert a major delay of 200 ms in the 
communication channel Passed 

Missing state e.g. remove the state ‘Accelerating (see 
Fig 47) in the SUT Passed 

Transition to wrong state e.g. change the transition ‘Reporting’ to 
“QueryEB” (see Fig 47) Passed 

Incorrect initial condition e.g. give the SUT a wrong initial state Passed 

Table 9 Summary of mutation testing results 

As shown in Table 9, six mutation tests were implemented to verify whether the simulation 

combined MBT platform can detect known errors. All the mutation testing presented typical 

errors which can be found in black-box testing, and the verification results indicate that the 
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SUT VOBC can detect all the errors inserted. The details of the six mutation testing are 

presented as follows: 

6.2.1.1 Wrong Output Action 

It is the most basic function that a testing platform should detect unexpected output actions. 

The author inserted the error by modifying the SUT code, making the SUT send out ‘ACCed’ 

when it receives a ‘DCC’ command. Therefore, the mutated SUT accelerates a train when it 

receives a decelerating command, which does not satisfy the specification. The verdict given 

by the testing platform indicates that the error was detected. 

 

As indicated by the verdict, the expected output action corresponding to the input command 

‘DCC’ is ‘EB’ or ‘DCCed’ while the received output action is ‘ACCed’. Therefore, the testing 

platform drew a failed conclusion and interrupted the testing process. 

6.2.1.2 Incorrect Output Value 

Another basic function for testing a platform in black-box testing is to check whether the 

output variable value is correct according to the testing specification. A wrong variable value 

along with a correct output action should be discovered. The author inserted the error by 

making the SUT train brake when it receives the input command ‘ACC’ and feeds back the 

output action ‘ACCed’. Although the input and output actions comply with the expected ones, 
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the testing platform should still find inconsistencies in train speed between the SUT and the 

specification. The verdict given by the testing platform indicates that the error was detected. 

 

As indicated by the verdict, the expected output value of the variable ‘SPEED’ should be no 

more than 12 according to the previous value of ‘SPEED’ along with the previous output 

action ‘ACCed’. The testing platform detected the error and drew a failed conclusion for the 

testing. 

6.2.1.3 Delay 

For testing of the SUT containing time constraints, the testing platform is required to 

determine whether delays between input and output actions comply with the specification 

requirement. In black-box testing, an output should arrive in time after the input action, which 

means a delayed output action should draw a failed conclusion. The author inserted the error 

by adding a response delay of 1000 time-units between the input action ‘ACC’ and its 

corresponding output action ‘ACCed’, which makes the ‘ACCed’ arrive later than the time 

constraints in the specification. The verdict given by the testing platform indicates that the 

error was detected. 
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As indicated by the verdict, the testing platform expects the output ‘ACCed’ to arrive with 

1000 time-units after the input action ‘ACC’ happens. The time stamp of the ‘ACC’ is 3018, 

and the testing platform did not receive the expected output action ‘ACCed’ until the time 

stamp went to 4019. Since overtime happened between the input and output actions, the 

testing platform detected the inconsistency and drew a failed conclusion. 

6.2.1.4 Missing State 

A missing state can happen when synchronisation of the SUT and testing platform is broken, 

making the SUT transition miss a certain state and jump over to a further one. It is important 

for a testing platform to detect this unusual situation in the implementation of black-box 

testing. Broken synchronisation should terminate the testing process immediately because the 

following testing results are all based on wrong synchronisation. The author inserted the error 

by making the SUT skip the state ‘Accelerating’ to arrive at state ‘QueryACC’ directly. The 

verdict given by the testing platform indicates that the error was detected. 

 

As indicated by the verdict, the missing state was found by the testing platform because the 
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testing platform received an unacceptable output action ‘Report’, missing the correct one 

which is ‘ACCed’. The reason this happens is that the output action ‘ACCed’ becomes invalid 

in any other state except for ‘Accelerating’. Therefore, the testing platform detected the 

inconsistency and drew a failed conclusion. 

6.2.1.5 Transition to Wrong State 

The error of the SUT transiting to a wrong state can happen when the internal logic of the 

SUT is falsified. Transition to a wrong state makes the following input and output actions 

conflict with the expected pattern. Therefore, the testing platform should detect this error in 

black-box testing. The author inserted the error by falsifying the state transition logic of the 

SUT, making it transit from the state ‘Reporting’ to ‘QueryEB’ no matter which output action 

is available. The verdict given by the testing platform indicates that the error was detected. 

 

As indicated by the verdict, the inserted error was found by the testing platform. Since the 

transition logic was falsified, the SUT was forced to go to state ‘QueryEB’, and make a series 

of wrong input and output actions. After the SUT went back to the correct state, the testing 
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platform detected the inconsistency in the variable ‘SPEED’ and drew a failed conclusion for 

the testing. 

6.2.1.6 Incorrect Initial state 

The last error is caused by incorrect initialisation of the SUT, which makes all the following 

testing results meaningless. Therefore, the testing platform should be able to find that the SUT 

is incorrectly initialised at the beginning of the testing process. The author inserted the error 

by giving the SUT a wrong initial state, ‘Reporting’. The verdict given by the testing platform 

indicates that the error was detected. 

 

As indicated by the verdict, the testing drew a failed conclusion at the beginning of testing 

because the first output action ‘Departed’ could not be observed by the testing platform. The 

wrong initial state blocked the SUT from sending out any valid output actions. Therefore, the 

testing platform detected the inconsistency. 

6.2.2 Reachset Conformance Relation 

The presented testing results for the mutation testing prove that the system can detect most of 

the known errors which may lead to dangerous situations of system operation such as 
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overspeed or lost train location. The soundness of the simulation combined MBT platform can 

be proven under the assumption that all the errors which potentially exist in the SUT are 

completely ascertained. However, even for an experienced tester, it is not possible to spot all 

potential errors that could lead to dangerous situations in the operation of complex systems 

such as TCSs. To verify that the testing platform can detect unknown errors, the testing results 

should be analysed to find out whether there is any inconsistency issue between the results 

obtained and the system specification. However, straightforward verification of the testing 

result is expensive (time and resource usage). The purpose of testing verification is to prove 

that the testing does not miss any errors which may become potential risks in the future. As a 

result, the verification can be transformed to prove that no errors violating the safety 

properties are missed in the testing process. To achieve that goal, the author applies a concept 

of conformance relation in the verification, which is less expensive than verifying the trace 

conformance relation adopted but strong enough to prove that the SUT satisfies the safety 

properties in the specifications. This relation is called Reachset Conformance Relation and 

has been defined by Roeahm et al. [129].  

Different from the trace conformance relation, the reachset conformance relation determines 

the conformance relationship between two systems (abstract system and real system) by 

proving the inclusion relationship of their reachable input set and output space. To explain the 

verification method using application of the reachset conformance relation, the author 

compared the traditional trace conformance relation and the reachset conformance relation, 

illustrated by Fig 64: 
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Reachset Conformance Trace Conformance  

Fig 60 Comparison between reachset conformance and trace conformance 

As revealed by Fig 60, different from the trace conformance relation which is applied to 

construct the testing platform, the reachset conformance relation recombines the states into a 

group of reachable sets by hiding the individual transitions from a certain state to another. 

Based on the concept of reachset, the definition of the reachset conformance relation in the 

field of black-box testing can be formally obtained: 

Letting 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  be implementation of the specification and the SUT, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  is 

reachset-conformant to 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 if the input set and output space of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 are a subset of the 

input set and output space of 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

Based on Fig 60, the reachset conformance relation holds if the trace conformance relation is 

satisfied between two implementations. Therefore, the reachset conformance relation is a 

weaker relation than the trace conformance relation, which means that trace conformance 

cannot be proven by verifying reachset conformance. However, the purpose of testing 

platform verification is to prove that the SUT complies with the safety properties desired by 

the specifications. Trace conformance is one way to achieve that goal. To verify the 
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conclusion drawn from the trace conformance relation, the reachset conformance relation can 

be used to check the result from another point of view. For the application of reachset 

conformance relation, the task is to check whether the safety properties are satisfied by the 

SUT with the reachset conformance relation, which means the SUT never enters a dangerous 

area. Since the input set of the SUT for black-box testing is derived from the specification, it 

is unnecessary to prove that the input set of the SUT is a subset of the input set of the 

specification, because any invalid input from the specification will be directly rejected by the 

test tool TRON without sending it to the SUT. Therefore, two main safety properties of the 

output space should be always satisfied during the system operation procedure: 

a. The train speed should never exceed the speed limit by the overspeed tolerance of 5 km/h. 

b. Two trains should never be at the same point along the track in the time region. 

Since verification of the two safety properties can be solved within the two-dimensional 

region (one variable versus testing time), the reachset of the system can be obtained directly 

from the SUT, from the data recorded during testing. By comparing the output reachset 

obtained from the SUT and the output reachset specified by the safety properties, the reachset 

conformance relationship between the SUT and the safety properties can be determined, as 

indicated by Fig 61 and Fig 62: 
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Fig 61 Example of differences between train speed and speed limit 

 

Fig 62 Verification results for the reachset conformance relation 

Based on the safety property ‘a’, the reachset of the specification can be obtained as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝜖𝜖 [0, 85] �
𝑘𝑘𝑘𝑘
ℎ �  ,∀ 𝑡𝑡 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  

According to the right-hand graph in Fig 61, the maximum difference between the train speed 

and speed limit during testing is obtained as 1.1 m/s , which is below the maximum 

overspeed allowance of 5 km/h (1.38 m/s). In the left-hand graph in Fig 61, the maximum 
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train speed can be obtained as 23 m/s  (82.8 km/h ), which is below the theoretical 

maximum speed which can be achieved by the train in the network, 23.6 m/s (80 + 5 =

85 km/h ). Therefore, according to the testing results shown in Fig 61, the SUT is 

reachset-conformant to the safety property ‘a’ in the recorded testing time, which means the 

SUT behaviour complies with the specification in the testing time. In Fig 62, the same 

verification method is applied to all the trajectories recorded in the testing. The straight red 

line represents the threshold which should not be surpassed by any train trajectory. The 

maximum train speed is obtained as shown in Fig 62, which indicates that the maximum 

difference between the train trajectory and the speed limit is 1.376 m/s. Therefore, the 

reachset conformance relation is satisfied between the SUT and the specification, since no 

counterexample is found. 

Similarly, the reachset of the specification for property ‘b’ can be obtained as below: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡), where ∀ 𝑡𝑡 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)

≠ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) or 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑏𝑏𝑏𝑏ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) 

Based on the reachset obtained from the SUT train location, the reachset conformance relation 

of the safety property ‘b’ can be verified by the distance–time graphs, as shown by Fig 63: 
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Fig 63 Example of a distance–time graph for verification 

As seen from Fig 63 and discussed in Chapter 6, no two trains appear at the same point along 

the track during testing, which means no collisions happen in the testing procedure. With the 

collision detection function applied, the safety property ‘b’ is automatically verified after the 

testing is finished. 

The verification results indicate that the SUT behaviour satisfies the specification 

requirements during testing. With both the trace conformance relation and reachset 

conformance relation satisfied, the conformance relationship between the SUT and the 

specification is dually proven. The reachset conformance for verification is a simplified 

application which only contains two-dimensional issues. As a result, the reachset of the SUT 

and the specification can be easily obtained without any further process. When there are more 

than two reachset dimensions, the reachset cannot be directly analysed before being 

approximated into a two-dimension issue, which makes reachset verification a far more 

complex verification method. As a result, a precondition of verification with reachset 

conformance is that the object under verification can be transformed into a set of 
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two-dimensional sub-objects. 

Compared with mutation testing which verifies whether the testing platform can detect errors 

of known type, reachset conformance verification aims to verify that no errors exist in the 

testing results so that no errors are missed by the testing platform, regardless of whether the 

types of errors are known or unknown. Since a correct testing result should contain no 

inconsistency with the specification, the testing platform can be proven to be effective if no 

counterexamples can be found in its testing results. With verification of the testing platform in 

the fields of known errors and unknown errors, the simulation combined MBT platform is 

proven to be capable of finding most of the significant errors in the SUT. However, all the 

verification is based on the recorded results, which means an error could still be missed if it is 

not covered by the testing platform. Therefore, the performance of the testing platform should 

be verified to find out its coverage ability. 

6.3 Performance Verification 

Coverage performance of the simulation combined MBT platform can directly influences its 

ability to find errors. With a low degree of coverage, the testing platform can miss a lot of 

errors which could be detected if the error situations are achieved. There are series of factors 

causing poor coverage in MBT testing, including inappropriate modelling, too large a model 

size, limited testing scenarios, inefficient test generation algorithm, etc. Compared with 

traditional manual testing, MBT can achieve more extensive coverage since the test 

generation process is automated with the help of a computer. However, existing offline test 
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case generation has limitations when coming across complex SUTs and testing scenarios, such 

as CBTC system testing. In this section, the author analyses the coverage of the simulation 

combined MBT platform by comparing it with the coverage of traditional offline testing. 

Different types of coverage are introduced to prove that the testing platform can 

comprehensively achieve better coverage than existing methods. 

6.3.1 Trace Coverage and Variable Coverage 

Coverage was originally a concept of offline MBT testing, measuring how many possibilities 

out of all valid possibilities have been covered by the implemented test. For offline MBT, 

coverage is obtained by generating test cases from the built specification model, without 

considering implementation of the generated test cases, which leads to two main limitations. 

Firstly, the SUT has to be deterministic without interacting with the testing environment, 

which makes the specification model too complex to achieve good coverage. Secondly, since 

the whole transition pattern needs to be recorded to calculate the coverage, coverage of offline 

testing can be limited by the size of the computer memory. In this situation, the computer 

memory can be exhaustively occupied when the model has a high degree of complexity. 

Therefore, there are two main factors influencing the coverage of offline MBT, abstract model 

complexity and search depth. Search depth indicates how far the test generation algorithm has 

reached to cover the possibilities, where one step means one transition from one location to 

another. Since a complex model contains a larger possibility space, it can take more steps to 

achieve equivalent coverage than a simple model, which takes up more computer memory. 

Even worse, to achieve better coverage, the computer memory cannot be adequate for offline 
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test generation. 

To determine the performance of the developed simulation combined MBT platform, the 

author compared the coverage measured from the testing results with the coverage derived 

from offline test generation under the specification model and testing scenarios. Offline 

testing coverage analysis was realised by a tool box integrated in UPPAAL, Yggdrasil, which 

applies the test selection criterion of all-transition coverage to generate a set of test cases 

within a desired search depth [130]. Given a TA model and a certain search depth, the tool 

box can calculate the number of accessible transitions and available variable values contained 

in the model and can record how many of them are covered by the generated test cases.  

Online testing coverage is obtained by analysing the recorded log file during the testing. Since 

all possible transitions and variable values have been obtained by offline test generation tool, 

coverage can be calculated by counting how many of them have been covered by online 

testing, which is realised by a MATLAB script searching for keywords which stand for 

transitions and variable values.  

To compare the coverage performances of online and offline testing, each coverage in the 

same search depth are recorded. Based on the graphs of coverage against search depth, the 

quantised performance comparison between the simulation combined MBT platform and the 

offline test generation tool can be obtained, as shown in Fig 64 and Fig 65. 
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Fig 64 Trace of coverage tendency with search depth 

 

Fig 65 Variable coverage tendency with search depth 

As revealed by Fig 64 and Fig 65, the coverage achieved by the simulation combined 
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platform for the two types of coverage is lower than that of the offline test generation tool 

when the search depth is low. However, when the search depth increases to 1443 in trace 

coverage and 211 steps in variable coverage, the coverage performance of the simulation 

combined MBT platform eventually surpasses that of the offline test generation tool. The 

reason is that the online test algorithm does not take up an increasing amount of computer 

memory when the search depth increases, while the offline test algorithm occupies more and 

more memory along with increasing search depth. Therefore, the offline test algorithm cannot 

search as deeply as the online test algorithm, as the information it is necessary to record can 

easily exceed the maximum computer memory with a complex model, which leads to 

coverage limitations. In the simulation combined MBT platform, abstract model size is 

extremely reduced by combining modelling with simulation. Furthermore, the online test 

algorithm simultaneously generates and executes inputs and verdicts for the obtained outputs 

without recording the information necessary for coverage. As a result, coverage of 100% can 

eventually be achieved with adequate testing time on the simulation combined MBT platform. 

However, since the online test generation algorithm randomly selects the valid input based on 

the current conditions, it cannot positively guarantee or optimise the coverage of test 

generation. As a result, the author included the simulation model to describe the SUT 

behaviour more specifically without expanding the size of the TA model, which to some 

extent strengthens the performance of the original online test generation algorithm, TRON. 

6.3.2 Reachset Coverage in Key States 

The trace and variable coverage presented is a standard coverage concept originating from 
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model-checking of the TA model, which can roughly describe the performance of online 

testing. However, online testing can contain many more possibilities than offline testing due 

to nondeterminism, which makes trace and variable coverage ineligible to evaluate its 

performance. The original coverage measures the coverage of the trace and variable values 

separately, which cannot prove that the whole possibility space is covered. For example, in the 

overspeed protection function, the two key parameters are train speed and the speed limit. To 

cover all possibilities, possible combinations of all values of train speed and speed limit 

should be checked. However, the current variable coverage still individually checks the 

coverage of the two variables, which misses a lot of potential possibilities contained in the TA 

model. Therefore, the author introduces a new type of coverage which considers the 

combination of two key parameters to evaluate variable coverage of the testing platform 

performance, which is named the reachset coverage in key states. 
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Fig 66 TA model of the SUT in multiple-train scenario 

As shown in Fig 66, in the circulation marked in the red dotted box, the values for train speed 

and speed limit are checked at the same time once for every single loop. Since the kernel 

function of the overspeed protection is to make different decisions based on the relationship 

between train speed and speed limit, covering all possible combinations of train speed and 

speed limit is an essential step to achieve the full coverage of test generation, which means the 

next reachable set of states from the state ‘Waiting’ can be used to determine the variable 

coverage performance of the overspeed protection. If the testing is passed and covers all 

possible combinations, the SUT VOBC is proven to be able to always make the correct 

decision for various speed limits against different train speeds, which means that the 
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overspeed protection of the SUT VOBC is completely error-free in the given testing 

environment. 

According to the TA model of the SUT VOBC which is presented in Fig 66, the valid value 

ranges of the speed limit and train speed are both [0,22] m/s. It should be noted that once 

variable ‘SPEED=23’ holds, the TA model breaks out of the circulation in the red box so that 

‘SPEED=23’ is removed from the reachable set when calculating the coverage, although it is 

reachable from the state ‘Waiting’ in reality. As a result, the coverage matrix can be obtained 

as a 23 × 23 matrix which stands for all possible combinations of train speed and speed 

limit. The reachset coverage calculation method is to search for all the combinations recorded 

in the testing result and calculate the percentage of the whole coverage matrix covered. The 

verification results are presented in Fig 67: 

 

Fig 67 Coverage matrix of testing platform run for 5000 seconds 
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As shown in Fig 67, the reachset coverage calculated is presented in a 23 × 23 matrix, 

where both axes go from 1 to 23, responding to [0,22] m/s, respectively (since the MATLAB 

index always starts from 1 not 0). The X-axis stands for the speed limit, and the Y-axis stands 

for the train speed. The yellow area indicates the combinations of the train speed and the 

speed limit which are covered in the testing according to the log file. Based on the result 

shown in Fig 67, the reachset coverage in the key states seems to perform poorly during 

testing, covering less than 50% of possible combinations. The reason is that the actual valid 

reachset in the key state ‘Waiting’ is not the whole 23 × 23 matrix, which is explained in the 

following figure: 

 

Fig 68 Maximum number of valid combinations of train speed and speed limit 
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According to the verification results with reachset conformance relation in Section 6.2.2, the 

valid combinations of the train speed and speed limit should be recalculated, as illustrated by 

Fig 68. Since the SUT VOBC triggers the EB when the train is overspeeding, the maximum 

speed which can be achieved by the train is (𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 + 1) m/s (considering the communication 

delays and overspeed allowance mentioned in the case study), where 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 stands for the 

current speed limit when the train goes to overspeed. As a result, the expected valid area of 

the combination of train speed and speed limit should be marked as the red area in Fig 68, 

which means that the train speed can be 1 m/s faster than the speed limit. Therefore, the 

number of valid combinations can be calculated by using the equation: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑅𝑅2 −
(1 + 𝑅𝑅 − 2) × (𝑅𝑅 − 2)

2
=
𝑅𝑅2 + 3𝑅𝑅 − 2

2
 

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is the number of valid combinations of train speed and speed limit, and 𝑅𝑅 

stands for the number of the matrix index and satisfies 𝑅𝑅 ∈  𝑵𝑵 and 𝑅𝑅 ≥ 1. Letting 𝑅𝑅 equal 

2𝑛𝑛 + 1 or 2𝑛𝑛 to represent the odd numbers and even numbers, then 

𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =

⎩
⎨

⎧(2𝑛𝑛 + 1)2 + 3(2𝑛𝑛 + 1) − 2
2

= 2𝑛𝑛2 + 5𝑛𝑛 + 1, where 𝑛𝑛 ≥ 0

(2𝑛𝑛)2 + 3(2𝑛𝑛) − 2
2

= 2𝑛𝑛2 + 3𝑛𝑛 − 1, where 𝑛𝑛 ≥ 1
 

Therefore, when 𝑛𝑛 is a natural number, 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is always a natural number. In this case, 

the number of the matrix index is 23, so the number of valid combinations can be obtained as 

298, which means only 298 out of all the combinations are valid under the testing scenario. As 

a result, the reachset coverage in key states should be calculated by comparing it with the 298 

valid combinations. In Fig 67, the reachset coverage in key states is 55.7%, which is an 
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acceptable number for 5000 seconds of testing.  

However, the purpose of testing is to cover as many possibilities as possible, to reduce the 

chance of missing errors caused by uncovered possibilities. To achieve that goal, the author 

implemented a series of experiments to improve the coverage and to find out the elements 

which may influence it. Based on the given testing environment, two elements were 

discovered to have an impact on the reachset coverage in key states, testing time and the 

intensity of the train interaction. Since the testing platform is designed to cause diversity, to 

cover as many possibilities as are contained in the specification model, it has more chance of 

covering more possibilities when it is given more time. As a result, testing time becomes the 

most influential factor of the reachset coverage in key states, which is shown by Fig 69 and 

Fig 70: 

 

Fig 69 Coverage matrices for different testing times (1000 seconds on the left and 50000 seconds on the 

right) 
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As shown in Fig 69, the reachset coverage of 1000-second testing is 42.0%, and the reachset 

coverage of 50000-second testing is 97.0%. The influence of testing time is obvious, and a 

longer testing time tends to achieve higher reachset coverage in key states. The relation of 

testing time and corresponding reachset coverage is shown by Fig 70: 

 

Fig 70 Relation between reachset coverage and testing time 

The graph in Fig 70 indicates the tendency of reachset coverage in key states to vary with 

increasing testing time. Since randomness exists in every individual testing process, Fig 70 

can simply prove that a longer testing time tends to obtain better reachset coverage. When the 

testing time is longer than 25000 seconds, the reachset coverage tends to reach the limitation 

which is approximately 97%. Furthermore, the growth rate of the reachset coverage slows 

down significantly after the coverage is above 92% and the testing time is longer than 20000 

seconds. Therefore, simply extending the testing time is not the most efficient way to reach 
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the maximum reachset overage in key states, and other influential factors should be 

reconfigured to improve it. 

Another factor influential in reachset coverage is the intensity of interaction of the two trains. 

With relatively weak interaction between the front train and the SUT train, the SUT train’s 

MA is less influenced by the front train, which makes it achieve fewer combinations of train 

speed and speed limit, as shown by Fig 71: 

 

Fig 71 Reachset coverage under different train interaction intensities (weak interaction on the left and 

strong interaction on the right) 

As indicated by Fig 71, weak interaction leads to a poor reachset coverage because the 

marked area is missed. The reason is that when the front train is far away from the SUT train, 

the SUT train has fewer opportunities to exceed the speed limit influenced by the front train 

position, which means that most of the speed limit of the SUT train is determined by the line 

speed limit which is a constant value. With the same testing time of 20000 seconds, the 
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left-hand graph has the low speed limit area missing which means the front train is relatively 

further away from the SUT train than in the right-hand graph. Therefore, the tester should 

configure a stronger interaction between the front train and the SUT in the testing 

implementation to achieve a higher reachset coverage in key states. In this thesis, the author 

strengthened the interactions by increasing the service delay of the front train, which means 

that the SUT train has more opportunities to approach the front train and to be blocked by it. 

In the right-hand graph of Fig 71, a service delay of 30 seconds is inserted for the front train, 

which improves the reachset coverage significantly for the same testing time. 

 

Fig 72 Reachset coverage matrix for the maximum percentage of 97% 

From Fig 70, which describes the relationship between testing and reachset coverage in key 
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states, improvements in the reachset coverage are no longer obvious when the testing time is 

longer than 25000 seconds. The maximum coverage of 97% tends to be achieved when the 

testing time reaches 50000 seconds, which is a relatively long time. Spending more time on 

testing to cover the missing 3% of combinations is not cost-effective. Therefore, the author 

covered the missing combinations by reconfiguring the testing scenario. 

From Fig 72, it is obvious that all the missing combinations are located on the boundary 

between valid and invalid combinations, meaning that the train speed is 1 m/s faster than 

the speed limit. The reason that these combinations are missed is that the SUT train does not 

overspeed seriously under certain values of the speed limit. Therefore, to cover the missing 

combinations, the author directly set the line speed limit to the certain values for which the 

combinations were missed, using the constant line speed limit to present the dynamic speed 

limit determined from the MA. With the purpose of verifying that all the possibilities 

contained in the specification are covered, this straightforward method is acceptable to prove 

that no corresponding errors of missed combinations are missed by the testing platform in the 

testing process. As a result, the author manually set the line speed limit to the speed limit 

values of the missed combinations and checked whether the SUT could make the correct 

decision in the configured situations. Fig 73 and Fig 74 show the verification results for one 

of the nine missed combinations, ‘SPEED=5, speedlim=4’: 
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Fig 73 Train trajectory for verifying the missed combination ‘SPEED=5, speedlim=4’ 

 

Fig 74 Verification result for the missed combination ‘SPEED=5, speedlim=4’ 

As shown by Fig 72 and Fig 73, the missed combination ‘SPEED=5, speedlim=4’ is covered 

in the reconfigured testing scenario where the line speed limit is set to a constant 4 m/s. As 

indicated by the left-hand graph of Fig 74, the originally missed combination ‘6,5’ 

(corresponding to ‘SPEED=5, speedlim=4’ in the real testing results) is covered in the 

reconfigured testing scenario without detecting any inconsistencies between the SUT and the 
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specification, which can be proven by Fig 73. By applying the same verification method to 

the other missed combinations, all the combinations originally missed are covered eventually, 

as summarised in Table 10: 

Missed combination Verification conclusion Verification time 
SPEED=4, speedlim=3 Verified 2000 seconds 
SPEED=5, speedlim=4 Verified 2000 seconds 
SPEED=6, speedlim=5 Verified 2000 seconds 
SPEED=7, speedlim=6 Verified 2000 seconds 
SPEED=8, speedlim=7 Verified 2000 seconds 
SPEED=9, speedlim=8 Verified 2000 seconds 
SPEED=10, speedlim=9 Verified 2000 seconds 
SPEED=12, speedlim=11 Verified 2000 seconds 
SPEED=13, speedlim=12 Verified 2000 seconds 

Table 10 Summary of the verification of missed combinations 

The verification results indicate that the SUT complies with the specification for those missed 

combinations. However, the limitation of the verification method is obvious in that it can only 

verify a limited number of missed combinations, and it becomes time-consuming when too 

many combinations are missed. Therefore, it is essential for the testing platform to cover as 

high a percentage as possible in one testing process. In this case, the maximum reachset 

coverage in key states is 97%, leaving nine combinations which need 18000 seconds to be 

verified manually, which is efficient compared with extending the testing time.  

However, simply counting the covered and missed combinations cannot fully illustrate the 

coverage ability of the testing platform because covering a combination 1000 times is no 

different to covering it only once. To indicate the covering tendency of the testing platform for 

every individual combination, the author extended the reachset coverage in key states to not 
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only check if a combination is covered in the testing results but also count the number of 

times that a combination is covered. Therefore, the covering tendency of the testing platform 

in a certain testing scenario can be obtained, as shown by Fig 75: 

 

Fig 75 Reachset coverage strength in key states for every combination 

As shown by the two 3D bar graphs in Fig 75, the reachset coverage strength is obviously 

high in two areas; one is on the line where the speed limit equals the line speed limit of 

22 m/s, and the other is near the matrix diagonal where the train speed is 4 to 5 m/s below 

the speed limit, which can be clearly illustrated by the yellow line in Fig 76: 
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Fig 76 Planar figure of the 3D bar graph of coverage strength 

As indicated by Fig 75 and Fig 76, the maximum number of times the combination is covered 

appears in the light green area in Fig 76. On the contrary, the minimum number of times a 

combination is covered is in the red ellipse where most of the combinations are covered less 

than 100 times in the whole testing process. As seen from Fig 76, the maximum number of 

cover times can be achieved when the speed limit equals the line speed limit. The reason is 

that the SUT train mostly overspeeds when it exceeds the line speed limit under the current 

configuration of the testing scenario. This phenomenon is reasonable in the current testing 

scenario where the interactions between the front train and the SUT train are not strong 

enough to cover the area marked with the red ellipse. To cover the marked area, the SUT train 

movements must be influenced more strongly by the front train, which can be achieved by 

decreasing the top speed of the front train, because a slower front train makes the SUT train’s 
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speed limit lower than the line speed limit. Improved reachset coverage strength is shown in 

Fig 77: 

 

Fig 77 Improved coverage strength with a lower top speed of the front train 

In the left-hand graph in Fig 77, the top speed of the front train is set to be 50 km/h which is 

lower than that in the original configuration (80 km/h). As a result, the impact of the front 

train on the MA of the SUT train becomes much stronger. Therefore, the reachset coverage 

strength significantly improves when the speed limit is [10, 20] m/s. Furthermore, within 

the same testing time of 20000 seconds, the left-hand graph achieves a reachset coverage of 

95.6% while that in the right-hand one is 90.9%, which proves that the top speed of the front 

train can influence performance of the reachset coverage in key states. A well-configured 

testing scenario can make the testing process cover all the combinations more evenly under 

the same testing time, which means that the testing efficiency is improved. 

6.4 Summary 

In this chapter, the effectiveness and performance of the simulation combined MBT platform 
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were verified by the author. According to the verification results, the testing platform is 

superior to the traditional manual testing methods and the traditional offline testing introduced 

in Chapter 2. Compared with traditional online MBT methods, the simulation combined MBT 

platform can automatically test more complex SUTs in an HIL environment, which allows 

off-site testing. With a verified specification model, the ability of the testing platform to detect 

known errors was verified by implementing a series of mutation tests. The results of the 

mutation testing indicate that the testing platform can find most of the common errors which 

can be found in TCS system testing. For unknown errors, the reachset conformance relation 

proves that the testing platform does not violate the safety properties required by the 

specifications. The verification results indicate that the testing platform does not miss known 

or unknown errors which can lead the system into dangerous situations, such as overspeed 

and collision.  

The effectiveness verification proves that the testing platform does not miss errors in the SUT, 

and the performance verification proves that the testing platform can cover all the possibilities 

contained in the specification model. The verification results show that the testing platform 

could cover 100% of traces and variables in the abstract model with sufficient search depth, 

performing better than traditional manual testing which covers a single trace, and offline 

testing which covers part of the traces and variables because of the high degree of complexity 

of the abstract model. Furthermore, to determine whether the SUT VOBC can make the 

correct decision under any accessible circumstance in the specification, the author introduced 

reachset coverage in key states to verify whether the testing platform can cover all possible 
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combinations of train speed and speed limit. The verification results show that the testing 

platform can cover a maximum of 97% of the possible combinations, and only 3% is lost in 

one-time testing. By reconfiguring the testing scenario, the missed combinations can be 

covered in another period of testing, to reach 100% coverage. In summary, with the validated 

specification model and verified effectiveness and performance, simulation combined MBT is 

proven to be effective for detecting errors with better performance.  
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7 Conclusion 

7.1 Conclusion 

In this thesis, the author has proposed a simulation combined MBT methodology and the 

implementation, which can perform automatic off-site testing of TCSs.  

Firstly, MBT methods were introduced as the solution for automatic TCS testing where state 

explosion and processing power limit the testing by conventional means. To address the 

limitations of current MBT methods, the simulation combined MBT method was proposed to 

overcome the difficulties of testing TCSs using existing MBT methods. The proposed 

methodology has the potential to be applied to test different types of TCSs because of the 

shared common functional features.  

To achieve automatic functional testing of TCSs, the modelling theory of simulation 

combined MBT, named SCTIOTS, was explained in detail. Through formula derivation, 

SCTIOTS was theoretically proven to be capable of describing system behaviour in a 

two-model-combined structure, which provides the possibility of realising simulation 

combined MBT. Afterwards, implementation of simulation combined MBT was introduced by 

developing a simulation combined MBT platform, which is an integrated testing platform for 

automating TCS functional testing in an HIL environment. Essential components of the 

testing platform were introduced, including the modelling tools, test tools, I/O sequence 

manager, HIL environment and data interfaces.  
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To prove the feasibility of the developed simulation combined MBT platform, two case 

studies were undertaken. A VOBC of the CBTC system was chosen to be the SUT, and its 

overspeed protection and train location functions were tested in the two cases. The single train 

scenario concentrated on explaining the built components of the simulation combined MBT 

platform, including the internal function of each component. The multiple train scenario was 

designed to reveal whether the VOBC can protect the train operating safety when travelling 

on the same line as other vehicles. The testing results for both cases were recorded by the 

testing platform through the whole testing procedure; they indicate that the proposed 

simulation combined MBT methodology and the developed platform are effective to 

undertake functional testing for TCSs. 

Lastly, the developed testing platform was validated and verified to prove its effectiveness and 

performance. Firstly, the TA model was verified by an integrated verification tool in UPPAAL. 

The safety and liveness properties were validated to see whether there is any error which can 

lead to wrong testing results. All the safety and liveness properties passed the validation. 

Afterwards, the testing platform was verified to inspect whether it can find known errors via 

six mutation tests. Furthermore, to inspect whether the testing platform can miss any 

unknown errors which could lead the SUT into dangerous situations, the testing results were 

verified to inspect whether the SUT complies with the reachset conformance relation. The 

verification results indicate that the testing platform can detect known errors and does not 

miss unknown errors. The last verification was to verify whether the testing platform achieves 

better results than existing testing methods. The contrast object chosen was an offline test 
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generation tool integrated in UPPAAL, which is capable of generating test cases according to 

test selection criteria. The comparison results indicate that the testing platform has better 

coverage than the offline test generation tool, as the simulation combined MBT platform can 

achieve 100% coverage on variables and traces within feasible search depth while the offline 

test generation can only achieve 91% trace coverage and 61% variable coverage. Lastly, the 

author explored whether the performance of the testing platform could potentially be 

improved. The concept of reachset coverage in key states was introduced to express the ability 

of the testing platform to cover all possibilities. The maximum reachset coverage in key states 

which can be achieved is 97%; 3% is lost due to inappropriate configuration of the test 

scenario. By adjusting the test scenario to strengthen the interaction between the three trains, 

the full reachset could be covered, which indicates that the coverage performance can be 

improved by well-configured test scenarios. 

From the testing results derived from the cases in Chapter 5, and the validation and 

verification results obtained in Chapter 6, the proposed simulation combined MBT method 

and the developed simulation combined MBT platform are proven to be feasible and effective 

for functional testing of TCSs. The testing platform can detect errors contained in the SUT 

with a better coverage performance than existing methods.  

7.2 Contribution 

The contribution of the author’s research can be summarised as follows: 

• The author has combined formal methods and simulation technologies in an HIL testing 
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framework and proposed a simulation combined MBT methodology to improve the 

current functional testing methods for TCSs. 

• Based on the existing MBT modelling theory, the author has developed a modelling 

approach named SCTIOTS, which supports formal modelling combined with simulation.  

• Based on the proposed modelling method, a simulation combined MBT platform has 

been developed for methodology implementation. The testing and verification results 

indicate that the testing platform is effective.  

• The reachset conformance relation has been introduced to verify the coverage 

performance of the testing platform. The reachset conformance relation in key states 

quantifies the coverage of online testing results by discretising the valid variable 

combinations in key states. Furthermore, it shows that the test scenario configurations 

have impact on test efficiency performance and coverage performance. 

7.3 Future Work 

The testing results for the case studies, and verification results in Chapter 6 indicate the 

benefits of applying simulation combined MBT to test TCSs. Likewise, it reveals the potential 

to improve the proposed research by extending it in the following directions: 

• Explore the possibilities of adopting a hierarchical structure in formal modelling to 

improve the modelling efficiency for large complex systems without losing system 

information. 

• The operating principle of online testing leads to a fatal flaw in testing performance. In 
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online testing, inputs are randomly chosen without guidance from the test selection 

criteria because the possibility space is too large to be restored in the computer memory. 

Based on the introduced reachset conformance relation, the possibility space can be 

reduced. The author aims to improve the online test algorithm by adding an input 

selection function, to achieve optimised coverage performance within a shorter testing 

time. 

• Currently, MBT methods still rely on humans to build formal models according to 

specification requirements in natural languages. The author aims to develop a modelling 

tool which supports the building of formal models by analysing formatted specification 

requirements in natural languages. As a result, the errors caused by human factors can be 

isolated so that testing efficiency and accuracy can be further improved. 

• The current online test generation algorithm adopted by the author in this thesis is a 

32-bit program that utilises no more than 4 GB of memory, which limits the algorithm 

capability of analysing large complex models. An improved online test algorithm capable 

of handling large complex models could be further developed. 

• The results in the thesis shows that test scenarios have an unneglectable influence on 

coverage performance and test efficiency. Developing a testing scenario optimiser which 

interacts with the HIL test environment and the SUT along with the online MBT 

algorithm could be further studied to improve the efficiency of the proposal simulation 

combined MBT methodology.
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