
i

SCHOOL OF ENGINEERING

SIMULATION COMBINED MODEL-BASED TESTING

METHOD FOR TRAIN CONTROL SYSTEMS

By

YUEMIAO WANG

A thesis submitted to the University of Birmingham

for the degree of

DOCTOR OF PHILOSOPHY

12th March 2018

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

ii

Abstract

A Train Control System (TCS) is utilised to guard the operational safety of the trains in

railway systems. With rapid developments in modern railway systems, more and more

modern TCSs have been developed to protect system operation. Consequently, guaranteeing

that the functions of a TCS satisfy the designed specification requirements is essential to

affirm that a developed TCS can be adopted. Functional testing is applied to test the System

Under Test (SUT) in order to verify consistency between the SUT and specification

requirements. Traditional functional testing in TCSs is mainly based on manually designed

test cases, which are derived from experienced experts who are familiar with system

functional design and testing. For newly built or updated TCSs, the test case generation

process can take a long time. Manually-written test cases may miss some scenarios that

should have been tested, even when prepared by an experienced test designer. Model-Based

Testing (MBT) methods have been introduced into TCS functional testing to improve the

efficiency and coverage of TCS testing. However, existing MBT methods cannot

independently test complex SUTs because the model complexity generated by the SUT can

exceed the computational limit of the computer due to state explosion.

To overcome the difficulties of applying MBT methods to test TCSs, the author introduces

simulation combined MBT which combines an MBT method with simulation. To explain the

MBT method introduced, related background knowledge is reviewed. Due to the limitations

of the current functional testing and MBT methods, the author describes the research problem,

and proposes methodology and development of the simulation combined MBT method, and

iii

the validation and verification of the testing platform.

To prove the feasibility and effectiveness of the proposed MBT method and developed MBT

platform, two case studies were undertaken. The test results indicate that the SUT Vehicle

On-Board Controller (VOBC) complies with the specification requirements so that it passed

the test. The two case studies prove that the developed MBT platform can be utilised to

implement the functional testing of TCSs.

To prove that the MBT platform is effective in detecting errors in the SUT, validation and

verification was undertaken, which included validation of the specification requirements and

verification of the MBT platform. The verification results indicate that the MBT platform can

cover more possible traces and variable values at the same search depth. The author also

explores the possibilities of improving the coverage performance of the platform by

improving its reachset coverage in key states. Various impact factors have been discovered to

be effective in making the platform cover more possibilities in the same testing time.

iv

Acknowledgements

I would like to give my sincere appreciation to my supervisors, Dr Lei Chen and Prof. Clive

Roberts, for their consistent guidance, support and encouragement during my PhD study. With

their help, I have moved firmly and in the correct direction toward my goal. The kind advice

and patience they have given me has increased my confidence to overcome difficulties

encountered in my PhD research. The knowledge they have given me has brought me benefits

in my research and future career.

I would like to extend my gratitude to the Dr Jidong Lv who has selflessly shared his

experience and knowledge with me, helping me successfully find the direction for my

research. I am also grateful to Dr David Kirkwood who has shared his professional

experiences and skills in Java programming and railway simulation with me. I would like to

thank Miss Katherine Slater for her great help for proof reading my academic writing. Many

thanks go to all the members of the Birmingham Centre for Railway Research and Education

for their help and support.

I am also grateful to my wife, parents and father-in-law for their great love and understanding.

Your love is the greatest motivation in my life.

Finally, I would like to express sincere appreciation of my much-missed mother-in-law, an

honest and selfless woman who lives in our hearts forever.

v

Table of Contents

Abstract ... ii

Acknowledgements ... iv

Table of Contents .. v

List of Figures .. ix

List of tables .. xiii

Abbreviations .. xiv

1 Introduction .. 1

1.1 Background ... 1

1.2 Motivation and Objectives ... 10

1.3 Thesis Structure .. 13

2 Literature Review of Functional Testing in Train Control Systems and Model-Based

Testing Methods ... 15

2.1 Introduction to Train Control Systems ... 17

2.2 Traditional MBT Methods .. 21

2.2.1 Introduction of Modelling Methods for MBT ... 24

2.2.2 Introduction of Test Selection Criteria .. 34

2.2.3 Introduction of Test Tools .. 39

vi

2.3 Functional Testing for Train Control Systems .. 40

2.3.1 Hardware-in-the-Loop testing for TCSs .. 40

2.3.2 Model-Based Testing for TCSs ... 45

2.3.3 Summary .. 46

2.4 Research Problem Description ... 47

3 Modelling for Simulation Combined MBT .. 49

3.1 Comparison of Online MBT and Offline MBT .. 49

3.1.1 Overview of Online MBT and Offline MBT ... 49

3.1.2 Online MBT for TCS ... 50

3.1.3 Introduction of Simulation Combined MBT ... 55

3.2 Simulation Combined MBT ... 58

3.2.1 Modelling for Online MBT ... 59

3.2.2 Conformance relation in MBT .. 75

3.2.3 Modelling method for Simulation Combined MBT .. 77

3.3 Summary ... 88

4 Implementation of Simulation Combined MBT ... 90

4.1 Overview of the Simulation Combined MBT Platform ... 90

4.2 Modelling implementation of SUT .. 91

vii

4.2.1 Modelling implementation of the Abstract Model .. 92

4.2.2 Modelling implementation of the Simulation Model .. 95

4.3 Test Tool ... 98

4.4 I/O Sequence Manager ... 101

4.5 HIL Environment .. 105

4.6 Data flow in the Simulation Combined MBT Platform ... 107

5 Functional Testing Case Study on a CBTC System ... 110

5.1 Case 1: Single Train Scenario ... 110

5.1.1 Abstract Model .. 111

5.1.2 Simulation Model .. 123

5.1.3 HIL Environment ... 128

5.1.4 I/O Sequence Manager .. 132

5.1.5 Testing Results ... 133

5.2 Case 2: Multiple Train Scenario ... 137

5.2.1 SUT Models and the HIL Environment ... 139

5.2.2 Testing Results ... 146

5.2.3 Summary .. 153

5.3 Conclusion .. 153

viii

6 Validation and Verification ... 154

6.1 Validation of the Specification Requirement .. 156

6.1.1 Abstract Model Validation ... 156

6.1.2 Simulation Model Validation ... 166

6.2 Effectiveness Verification ... 167

6.2.1 Mutation Testing .. 167

6.2.2 Reachset Conformance Relation ... 173

6.3 Performance Verification .. 180

6.3.1 Trace Coverage and Variable Coverage .. 181

6.3.2 Reachset Coverage in Key States .. 184

6.4 Summary ... 199

7 Conclusion .. 202

7.1 Conclusion .. 202

7.2 Contribution .. 204

7.3 Future Work .. 205

Appendix: Publications .. 207

References .. 208

ix

List of Figures

Fig 1 General steps of manual testing .. 3

Fig 2 Efficiency comparison of different testing methods [30] .. 6

Fig 3 Classification of different types of testing .. 15

Fig 4 Generalised system structure of ETCS, CBTC or other TCSs .. 17

Fig 5 Elements of an Event-B model ... 25

Fig 6 Schematic of finite state machines .. 27

Fig 7 Schematic of TA model on the UPPAAL platform ... 28

Fig 8: Schematic of statechart model on the Simulink platform .. 29

Fig 9 Complete model for the statechart model ... 29

Fig 10 Schematic of finite state machines .. 36

Fig 11 Classification of the testing process by different stages of system development.......... 41

Fig 12 HIL testing platform for the OBU of CBTC systems [90] .. 44

Fig 13 Structure of traditional MBT and simulation combined MBT 56

 Fig 14 Schematic of an LTS ... 61

Fig 15 Schematic of a TIOTS ... 66

Fig 16 Schematic of the parallel configuration of two TIOTSs ... 73

Fig 17 Schematic of the conformance relation in MBT ... 76

Fig 18 Schematic of an SCTIOTS .. 79

Fig 19 Modelling framework of simulation combined MBT ... 85

Fig 20 Architecture of the simulation combined MBT platform .. 90

x

Fig 21 Example of the TA network model built in UPPAAL ... 92

Fig 22 Internal structure of implementation of the simulation model 97

Fig 23 Internal structure of the test tool UPPAAL-TRON ... 100

Fig 24 Operation principle of the I/O sequence manager ... 102

Fig 25 Flow chart of the functional logic realised by the I/O sequence manager 104

Fig 26 Schematic of the testing scenario for a single train ... 106

Fig 27 Operating principle of the simulation combined MBT platform 108

Fig 28 CAD map of Changsha Metro Line 5 ... 111

Fig 29 TA model of the SUT for single-train scenario ... 114

Fig 30 TA model of the tester for single-train scenario .. 119

Fig 31 TA model of the communication channels for single-train scenario 121

Fig 32 Schematic of a trace generated from the TA model of the specification 123

Fig 33 Calculation principle of braking curves .. 124

Fig 34 Illustration of the speed limit calculation modelled in the simulator 125

Fig 35 Illustration of the overspeed protection function modelled in the simulator 126

Fig 36 Overspeed scenario: exceeding the speed limit generated by MA.............................. 127

Fig 37 Overspeed scenario: exceeding the speed limit generated by line speed limit 127

Fig 38 Schematic of the vehicle model in the microscopic railway simulator 128

Fig 39 Traction power and resistance power along with various speeds................................ 129

Fig 40 Schematic of a balise-passing event in the simulator .. 130

Fig 41 Schematic of signals, axle counters and points of the interlocking in the simulator .. 132

xi

Fig 42 Train trajectory during the testing process: 93% acceleration 134

Fig 43 Train trajectory during the testing process: 100% acceleration 134

Fig 44 Merged train trajectory run 24 times: 100% acceleration ... 135

Fig 45 Fragment of the testing log file ... 137

Fig 46 Schematic of multiple-train scenario .. 138

Fig 47 TA model of the SUT for multiple-train scenario ... 140

Fig 48 TA model of the tester for multiple-train scenario .. 140

Fig 49 Schematic of the testing environment for train location function 145

Fig 50 Schematic of the crash detection function... 147

Fig 51 Distance–time graph of the three trains in the network .. 148

Fig 52 Trajectory graphs of the SUT train in one loop of testing ... 149

Fig 53 Trajectory graphs of the front train S2 in one loop of testing 149

Fig 54 Trajectory graphs of the behind train S3 in one loop of testing 149

Fig 55 Trajectory graphs of the SUT train for the example of EB due to lost train location . 150

Fig 56 Schematic of scenario in which a third EB is triggered .. 151

Fig 57 Correspondence relations of balise ID between the abstract model and HIL

environment .. 152

Fig 58 Schematic of the four formulae supported by UPPAAL ... 157

Fig 59 Summary of all verified safety and liveness properties .. 158

Fig 60 Comparison between reachset conformance and trace conformance.......................... 175

Fig 61 Example of differences between train speed and speed limit 177

xii

Fig 62 Verification results for the reachset conformance relation .. 177

Fig 63 Example of a distance–time graph for verification ... 179

Fig 64 Trace of coverage tendency with search depth.. 183

Fig 65 Variable coverage tendency with search depth ... 183

Fig 66 TA model of the SUT in multiple-train scenario ... 186

Fig 67 Coverage matrix of testing platform run for 5000 seconds ... 187

Fig 68 Maximum number of valid combinations of train speed and speed limit 188

Fig 69 Coverage matrices for different testing times (1000 seconds on the left and 50000

seconds on the right) ... 190

Fig 70 Relation between reachset coverage and testing time ... 191

Fig 71 Reachset coverage under different train interaction intensities (weak interaction on the

left and strong interaction on the right) .. 192

Fig 72 Reachset coverage matrix for the maximum percentage of 97% 193

Fig 73 Train trajectory for verifying the missed combination ‘SPEED=5, speedlim=4’ 195

Fig 74 Verification result for the missed combination ‘SPEED=5, speedlim=4’ 195

Fig 75 Reachset coverage strength in key states for every combination 197

Fig 76 Planar figure of the 3D bar graph of coverage strength .. 198

Fig 77 Improved coverage strength with a lower top speed of the front train 199

xiii

List of tables

Table 1 Testing time for each version of testing for each testing method [30]........................... 6

Table 2 Comparison of ETCS and CBTC systems ... 19

Table 3 Summary of formal modelling methods .. 34

Table 4 Summary of test tools for model-based testing [85] .. 40

Table 5 Summary of the abstract input and output actions ... 120

Table 6 Summary of the parameters in the vehicle model ... 129

Table 7 Summary of I/O actions on the internal I/O channel and external I/O channel 1 133

Table 8 Timetables for simulation trains built in the microscopic railway simulator 144

Table 9 Summary of mutation testing results ... 168

Table 10 Summary of the verification of missed combinations ... 196

xiv

Abbreviations

ATP Automatic Train Protection

ATS Automatic Train Supervision

BTM Balise Transmission Module

CBI Computer-Based Interlocking

CBTC Communication-Based Train Control

CCS Calculus of Communication System

CRRC China Railway Rolling Stock Corporation

CSP Communicating Sequential Processes

CTC Centralised Traffic Control

DCS Data Communication System

DMI Driver Machine Interface

DR Data Recorder

EB Emergency Brake

ETCS European Train Control System

EVC European Vital Computer

FFFIS Form Fit Functional Interface Specification

FSM Finite State Machine

GSM-R Global System for Mobile Communications – Railway

HIL Hardware-in-the-Loop

HOL Higher-Order Logic

xv

IATP Intermissive Automatic Train Protection

ioco Input–output conformance relation

IOTS I/O Transition System

IUT Implementation Under Test

JML Java Modelling Language

JRU Juridical Recording Unit

KVC Kernel Vital Computer

LEU Lineside Electronic Unit

LTS Labelled Transition Systems

MA Movement Authority

MBT Model-Based Testing

MSC Message-Sequence Charts

OBRU On-Board Radio Unit

OBU On-Board Unit

OCL Object Constraint Language

ODO Odometer

PN Petri Net

RBC Radio Block Centre

RTM Radio Transmission Module

SCTIOTS Simulation Combined Model-Based Testing

SIL Safety Integration Level

xvi

sioco Symbolic input–output conformance relation

SUT System Under Test

TA Timed Automata

TC Track Circuit

TCC Train Control Centre

TCR Track Circuit Reader

TCS Train Control System

tioco Timed input–output conformance relation

TIA Transponder Interrogator Antennae

TIMS Train Information Management System

TIOTS Timed I/O Transition System

TIU Train Interface Unit

TOD Train Operator Display

UML Unified Modelling Language

UNISIG Union of Signalling Industry

VDM Vienna Development Method

VOBC Vehicle On-Board Controller

WLAN Wireless Local Area Network

ZC Zone Controller

1

1 Introduction

1.1 Background

The Train Control System (TCS) is a wide-ranging concept with numerous subsystems for

different control objectives, such as guaranteeing system safety, improving efficiency and

capacity, and optimising energy consumption [1-3]. Among all these subsystems, the TCS is

one of the most essential because it is the key element to guaranteeing a system’s operational

safety and protecting the system from potential dangerous situations such as collision or

derailment [4, 5]. Since the railway is utilised to carry a large quantity of passengers or cargo,

any dangerous situation can lead to disastrous consequences and huge economic losses. With

the same purpose for different uses, there is much variation in the signalling systems adopted

in different countries, such as the European Train Control System (ETCS) which is a unified

standard and widely adopted in the railway systems of many European countries [6, 7], and

the Communication-Based Train Control (CBTC) system which has been widely adopted in

many countries.

Since metro lines are usually less complicated than mainline railways in terms of track layout,

rolling stock and timetables, moving blocks has been realised in CBTC systems to improve

the capacity of metro operations [8, 9]. Different from the ETCS standard which have unified

standards determined by authoritative organisations, CBTC system composition varies for

different manufacturers, including different system components, structure and performance.

Despite ETCS and CBTC being different from each other in many different aspects, they still

share a lot in common. For example, the fundamental system structure of each contains

2

trackside equipment, train-borne equipment, and communication systems, which are used to

guarantee the safety of train movements with determined train movement authority (MA) [10,

11]. Based on data transmission between lineside equipment and train-borne equipment via

communication channels [12], train movement safety is guaranteed by cooperation of these

essential elements, though the cooperation modes may be different in different standards of

TCS [13]. Therefore, it is possible to apply a unified method to test different types of

signalling system.

As one of the most essential protectors of railway systems operation, TCSs are required to

contain no safety-relevant errors that could lead the system operation into dangerous

situations [14]. As a result, TCSs consist of a series of Safety Integration Level (SIL) 3 and

SIL 4 [15] subsystems and components, which makes a TCS a typical safety-critical system

which must be fail-safe [16]. Therefore, functional testing plays an important role in verifying

that all safety-related functions in TCSs are correctly designed and precisely realised. To

achieve this goal, test cases are written to check against the system specification requirements,

aiming to determine whether inconsistencies exist between the system specification and the

System Under Test (SUT) [17]. To implement testing, test cases need to be drafted by experts

in the testing field, who also need to be experienced in signalling system design. Based on this

understanding of a certain signalling system, test cases are written to include a series of

different scenarios in which failure or dangerous situations could happen during system

operation. This procedure requires the test case drafter to completely master the whole system

operation process so that he or she knows every function which needs to be tested. After test

3

case drafting is finished, the test cases must be translated into a set of test sequences which

describe what actually happens in the testing procedure. Finally, the last step is to execute the

test sequences generated to determine whether the SUT behaviour complies with the system

specification requirements. The test process can be time-consuming because most steps in the

process are performed manually, as shown in Fig 1:

Test Cases

Test Sequence

Test execution

SUT Specification

Nature Language

Nature Language

Software/hardware

Test results

Within Test environment

Fig 1 General steps of manual testing

According to Fig 1, test cases are written in natural language, according to the specification

requirements of the SUT and the expertise of the tester. The test cases are then manually

translated into test sequences which are also in natural language, describing the testing steps

which happen in the testing process. To execute the testing sequence and eventually obtain the

testing results, the testing sequences have to be transformed into a format which is

recognisable by the SUT software or hardware; this can be realised by specific interfaces

which can realise the translation between different types of data. Finally, the tests are

implemented in a valid testing environment, and the testing results are obtained. Due to the

4

SUT specification requirements, the test case and the test sequence are all in natural language

which is understandable for humans but is difficult for computers to process; testing

efficiency relies significantly on the person who designs and implements the testing.

Therefore, it is extremely difficult to improve testing performance, due to the human factor.

Even worse, due to the complexity of TCSs, manually drafted test cases can miss essential

testing steps and cause error omissions, even with experienced testers. If the system

specification is modified in the system development stage, the test case must be accordingly

modified to comply with the specification requirements, which means the test sequences and

test executions must be modified as well. Without the assistance of computers, the

modification process can take an extremely long time so that the extendibility of the testing

can be reduced. Overall, manually oriented testing has become less appropriate for modern

TCSs due to the growing demands for quicker product delivery with high quality [18].

Faced with the conflicts between the manual testing method and the requirements for

functional testing of TCSs, automatic testing methods have been taken into the field from

software testing [19]. Unlike manual testing, automatic testing methods can automatically

generate test cases based on the formalised specification requirements of the SUT so that

testing quality and duration can be significantly reduced with the assistance of computers [20,

21]. As cutting-edge technology in the testing field, automatic testing has a wide range of

realisation methods for different testing objectives, including stress testing [22, 23], usability

testing [24], performance testing [25], functional testing, etc.

To verify the functional correctness of the system, which is one of the key tasks in the testing

5

of TCSs, Model-Based Testing (MBT) is one of the most common automatic testing methods

for functional testing [26, 27]. To implement MBT, the specification requirements need to be

formally described by a specification model which is readable by a computer. The

specification model is then analysed by the computer with integrated algorithms, and

corresponding test cases are generated based on the properties that need to be verified.

Compared with the manual testing method, the MBT method has several advantages which

mean it can replace the current manual testing method utilised in TCS testing. Firstly, MBT

test generation can be achieved as soon as the specification requirements are formally

presented, which means the whole testing process period can be significantly shortened.

Compared with test cases which are written in natural language, the formal models that

describe an SUT according to its specification requirements are more precise because formal

language is more logical and mathematical and has less ambiguity. This is extremely

important for the testing of safety-critical systems such as TCSs because even a slight

misunderstanding of the specification requirements can result in an incorrect testing verdict,

leading to serious consequences [28]. That is why more and more manual testing adopts

formal language to describe the specification requirements of the SUT, even though the test

cases are still executed manually. Secondly, with MBT test generation algorithms based on

formalised specification requirements, coverage of the generated test cases can be

conveniently calculated and improved by the algorithm so that testing efficiency and coverage

can be dramatically improved [29]. The research results of Utting and Legeard [30] show the

significance of automating the process of functional testing.

6

Activity
Total testing time

Manual Replay Script Keyword MBT
Test design 50 50 50 50 0
Modelling - - - - 30
Initial configuration - - 50 15 30
Initial test execution 30 30 2 2 2
Total testing time by version 1 80 80 102 67 62
Total testing time by version 2 118 103 122 82 76
Total testing time by version 3 160 128 143 97 90
Total testing time by version 4 206 156 166 113 104
Total testing time by version 5 257 187 191 129 118
Total testing time by version 6 313 221 219 146 132
Total testing time by version 7 374 258 249 164 146
Total testing time by version 8 441 299 282 182 160
Total testing time by version 9 515 344 318 201 174
Total testing time by version
10

596 393 358 221 188

Table 1 Testing time for each version of testing for each testing method [30]

Fig 2 Efficiency comparison of different testing methods [30]

As revealed by Table 1 and Fig 2, the total test duration increases along with an increasing

7

number of versions, where more and more functions are included in the testing so that more

and more test cases need to be generated and executed. Obviously, for the initial versions, the

duration of the five testing methods do not differ a lot compared with the following versions.

However, the growth rates of manual testing, replay testing [31] and script-based testing [32,

33] are much greater than those of keyword-driven testing [34] and MBT. As a result, when

the testing versions are updated, which means that more and more functions are tested,

keyword-driven testing and MBT can save a large amount of testing time compared to other

testing methods. Since MBT is the only testing method that can automate the test design

process, its advantages against keyword-driven testing appear when more and more functions

need to be tested. For complex systems such as TCSs, the number of functions under test can

be high so that MBT can play its strengths when testing such kinds of system. Furthermore, in

manual testing, a single test sequence is assigned to one test case to ensure that the

corresponding function in the SUT is covered by the testing. However, there can be a lot of

different testing sequences contained in the same test case, which means that in some

instances, one cannot stand for all of them. In manual testing, there are too many remaining

valid test sequences to be fully covered by human design. Since formal models can be

understood by computers, a computer can find out all the valid test cases from the

specification requirements, and all the test sequences based on the test cases generated. As a

result, coverage of the testing can be significantly improved with MBT test generation

algorithms. Furthermore, the test cases generated can be easily transformed into test

sequences, which can be used to realise automatic test execution with a specified interface

8

connecting the real SUT and the test tool. Consequently, the test execution efficiency can be

greatly improved without any risk of affecting the accuracy of the testing results. Lastly, the

generation and execution processes in MBT testing are all dependent on computer algorithms,

which means that error omission caused by human factors is isolated from the testing

procedure. In MBT testing, the only element which needs to be develop by humans is the

formal model of the SUT behaviour which is also known as the test oracle [35]. Provided

the formal model is correctly built according to the specification requirements of the SUT, it

promises to obtain a convincing testing result which determines whether SUT behaviour

complies with the given specification requirements. Overall, MBT is more eligible than

manual testing for testing safety-critical systems such as TCSs.

Although MBT has been rapidly developing and has been proven to be suitable for testing

large-scale systems including software and hardware, it is still challenging to apply MBT for

testing industrial-sized systems with a high degree of complexity, such as TCSs which contain

many subsystems and components with complex interactions and many nondeterministic

situations. As one of the key steps in MBT methods, formal modelling is relatively difficult

compared to manual test generation, especially when dealing with complex modelling

subjects such as TCSs. Since formal language does not describe the modelling subjects in a

natural manner which can be understood by most people, formal modelling can take longer

than manual test case drafting, even for an experienced tester. When the modelling subjects

are of industrial size, they can consist of numerous components with intricate structures for

realising various functions by series of interactions, which exponentially increase the

9

difficulties of formal modelling. Even if formal models are constructed successfully, they can

still be too complex to be processed by computers in an acceptable time frame. When a formal

model becomes too complex, which means that there are too many possibilities contained in it,

state explosion may happen when applying test generation and execution algorithms so that

the computational resources of computers can be exhausted, which means the MBT cannot be

applied to test industrial-sized SUTs without controlling the formal modelling scales.

Different from manual testing methods which specifically emphasise sequences of valid

inputs and corresponding expected outputs, the modelling methods of MBT model SUTs in a

format of different types of formal expression, which is not understandable for nonexperts.

Therefore, it is difficult for an inexperienced tester to determine whether the specification

model correctly presents every essential element involved in the specification requirements of

the SUT. However, without correct formal models, the test cases derived can be invalid or

inaccurate for use in testing the SUT, so that the testing results obtained are meaningless.

Compared with MBT methods, manual testing methods are mostly straightforward,

conforming to natural human habits of testing, and are understandable for most testers who

are familiar with the functional characteristics of the SUT. Unlike formal models, the

correctness of which needs to be verified by relevant techniques such as model-checking [36,

37] and theorem proven, test cases for manual testing are drafted by the experts from

authoritative organisations such as UNISIG, which takes charge of standardising the Form Fit

Functional Interface Specification (FFFIS) of all subsystems and key components contained

in the ETCS system, and the corresponding test cases and test facility for those test

10

specifications. With technical support from the professional company members of UNISIG

such as Alstom, Ansaldo, Bombardier, Siemens and Thales, the correctness of the test cases is

convincing. That is why the testing of TCSs still depends mainly on manual testing, though it

relies more and more on formal methods such as MBT.

1.2 Motivation and Objectives

To address the challenge of applying MBT methods in TCS testing, the limitations of formal

modelling methods must firstly be overcome. Therefore, the author has developed a novel

MBT method called simulation combined MBT, which overcomes the aforementioned

difficulties of utilising the MBT method to test complex systems. In contrast with traditional

MBT methods which describe SUT behaviour in a single formal language or in multi-layer

formal language, simulation combined MBT obtains the SUT model from formal modelling

combined with simulation, targeting two types of system behaviour in two models. To

decrease the modelling difficulties as well as to control the model complexity under an

acceptable level, the SUT model is divided into two models, the abstract models in charge of

abstract and discrete system behaviour, and the simulation model in charge of concrete and

continuous system behaviour. Based on the two-model-combined structure, the system

behaviour for relatively complex SUTs can be modelled entirely without the risk of state

explosion. Furthermore, it simplifies the process of building formal models by moving most

of the continuous behaviour, which is difficult to model in formal language, from formal

models into simulation models.

11

Compared with formal language, simulation is more applicable for describing continuous

behaviour from a macroscopic view because of the flexible features of simulation. For a

complex system with hybrid characteristics, such as a TCS, combining discrete

condition-switching, such as the transition mode of the On-Board Unit (OBU), and

continuous variable changes, such as the train speed varying in operational procedures, the

two-model-combined structure takes advantage of both formal modelling, which is adept at

describing discrete transition processes, and of simulation, which is good at depicting

continuous variation processes. With the combination of both modelling methods, the

modelling difficulties of the SUT and the processing difficulties of the SUT models are

together reduced, which significantly increases the feasibility of applying MBT methods in

complex system testing. Since the modelling method is different from those of traditional

MBT, the test tool which is utilised to generate test sequences based on the analysis of formal

models cannot be directly adopted in simulation combined MBT. Therefore, a customised

interface has been developed for the application of an online MBT test tool, allowing the

online testing of complex systems to be realised.

In the field of MBT, online testing and offline testing are two contrary concepts of different

kinds of testing implementation technique; offline testing generates test cases then executes

them, while online testing generates and executes test cases simultaneously. Online testing

can deal with nondeterminism contained in the formal model, but performs worse than offline

testing in checking strict time restrictions because the test cases cannot be generated in time

for execution when the formal model is too complex. By comparison, offline testing cannot

12

deal with nondeterminism contained in the formal model, but it is good at checking strict time

restrictions, and the generation and execution processes are separated. Since a TCS is a

typical nondeterministic system with a high degree of complexity, the author aims to

implement online MBT testing based on the simulation combined MBT method introduced,

considering testing accuracy and efficiency, which leads to the following objectives:

• Discuss the main tasks of testing the functions of a TCS.

• Based on the discussion, explore the feasibility of applying MBT to test TCSs.

• According to the exploration results, develop a simulation combined MBT which is

suitable for testing TCSs.

• With application of the simulation combined MBT, build up an online MBT testing

platform which can be applied to test different types of TCS in various railway

networks.

• Implement online testing based on a case study of a TCS utilised in real railway

systems and draw an eventual testing verdict.

• Verify the testing results obtained, determine the effectiveness of the simulation

combined MBT, analyse whether testing performance is better than that of existing

testing methods.

With all the objectives achieved, the author expects that simulation combined MBT can be

applied to test TCSs and other industrial-sized systems with complex functions and structures.

With verification of the testing results, the online MBT platform developed by the author is

expected to obtain better performance in terms of testing correctness, functional coverage and

13

time efficiency.

1.3 Thesis Structure

The thesis is presented with the following structure:

• Chapter 2:

Different types of TCSs, which are the SUTs, are introduced. Traditional MBT methods

and traditional functional testing of TCSs are introduced. Based on the review, the

research problem is formulated.

• Chapter 3:

The reason for choosing online MBT is explained. Evolved from the traditional

modelling method for online MBT, the Simulation Combined Timed I/O Transition

System (SCTIOTS) modelling theory is developed with formula derivation. Based on

SCTIOTS, simulation combined MBT methodology is proposed.

• Chapter 4:

The method of implementing simulation combined MBT is introduced by developing a

simulation combined MBT platform. The essential components of the platform are

introduced, including the modelling tools, test tool, I/O sequence manager and

Hardware-in-the-Loop (HIL) environment. The architecture of the platform is explained

at the end of the chapter.

• Chapter 5:

Two case studies are undertaken to prove the feasibility of the proposed testing method

14

and developed platform. The first case concentrates on explaining the developed

components of the simulation combined MBT platform. The second case concentrates on

testing the overspeed protection function and the train location function of an SUT

Vehicle On-Board Controller (VOBC). Testing results are recorded and analysed in both

cases.

• Chapter 6:

The effectiveness and performance of the simulation combined MBT platform are

verified, including validation of the specification requirements, verification of the

effectiveness of the testing platform, and verification of the performance of the testing

platform. Impact factors of test efficiency and quality are explored at the end of the

chapter.

• Chapter 7:

The conclusion and contribution of the thesis are summarised. Future work is presented at

the end of the chapter.

15

2 Literature Review of Functional Testing in Train Control

Systems and Model-Based Testing Methods

Testing is a broad concept with definitions that can vary from field to field, and each one can

be quite different from the rest when considering different testing purposes and testing scales.

Therefore, before MBT can be applied to test an SUT, three essential elements, the scale of

the SUT, the scale of the testing and the purpose of the testing, must be specified to determine

the appropriate type of test. Evolved from the model defined by Utting and Legeard [30], the

concept of different types of testing is generally defined by Fig 3:

System

Integration

Component

Unit

Black-box White-box

Functional

Robustness

Performance

Usability

SUT Scale

Testing Scale

Testing Purpose

Grey-box

Model-based
Testing

Fig 3 Classification of different types of testing

16

As depicted in Fig 3, three key indices profile different types of testing by determining the

testing purpose, testing scale and SUT scale of testing. For testing scale, black-box testing

means that the tester does not have the access required to know the internal behaviour of the

SUT, while white-box testing means that the tester does have access to the internal behaviour

of the SUT [38]. That is to say, white-box testing aims to test the internal behaviour of the

SUT, which means that the tester needs to understand its internal operating principles [39]. In

grey-box testing, which is related to black-box testing and white-box testing, the tester only

has partial knowledge of the internal SUT behaviour, so that it can have the characteristics of

both black-box testing and white-box testing and can be a richer approach [40]. For SUT scale,

testing has different meanings when it is implemented at different levels of SUTs, including

unit testing, component testing, integration testing and system testing. Obviously, it is difficult

to distinguish these four levels in complex systems with a complicated structure, such as

TCSs which consist of a series of subsystems, components and units. For such a system, it

necessary to define the boundary between the internal and external layers of the SUT, without

necessarily defining which level the testing belongs to. In testing purposes which directly

determine the testing type, testing is classified into different categories, including functional

testing, robustness testing, performance testing and usability testing, each of which refers to

corresponding testing methods. As mentioned above, functional testing aims to verify the

system’s functional behaviour which is designed and developed within the system

specification requirements so that it usually connects with black-box testing. As conclusively

indicated by Fig 3, the relevant fields of MBT are restricted inside the dotted cube, indicating

17

that MBT is designed and implemented for functional testing with a black-box or grey-box

testing scale, though it can be adopted to test any level of the SUT. It is worth noting that the

dotted cube does not mean a strict restriction, which means that the MBT can still be utilised

for other testing purposes, such as performance testing and robustness testing. However,

functional black-box testing is the main application scenario.

2.1 Introduction to Train Control Systems

As mentioned in section 1.1, different types of TCS are selected for use in different countries

based on national rulebooks and other constraints. To indicate that the proposed testing

method can be adopted to test ETCS, CBTC or other TCSs, the author has generalised the

system structures of the different TCSs to illustrate their similarities.

On-Board Equipment

Train Driver

Trackside Equipment

Wireless communication network
Control
Centre
(ATS)

Interlocking

Local network
Wireless network

Fig 4 Generalised system structure of ETCS, CBTC or other TCSs

18

As indicated by Fig 4, different types of TCS share a generalised system structure which

includes the on-board equipment, trackside equipment and radio communication network.

On-board equipment, such as the OBU in ETCS or the VOBC in CBTC, is responsible for

guaranteeing the safe movement of the train and feeds back the operation conditions of the

train to the trackside equipment. Trackside equipment, such as the Radio Block Centre (RBC)

in ETCS or the Zone Controller (ZC) in CBTC, is responsible for indicating where the train

should go along the track and feeds back the track conditions to the control centre or

Automatic Train Supervision (ATS), in collaboration with the interlocking. ATS is responsible

for supervising the operation conditions of the integrated railway system, and sends

macro-control commands when necessary, such as sending a rescheduling command when a

delay happens. The on-board equipment is installed on the train to control the train

movements. The driver can send a command to the on-board equipment via the Driver–

Machine Interface (DMI) when necessary. Based on the generalised structure of different

types of TCS, functions need to be realised collaboratively by two or more of the elements

presented, which means that the functional behaviour of the systems can be complex, and the

modelling difficulties can increase. Even so, TCSs can be modelled in the same framework,

which means they can be tested by the same MBT method. The following table shows a

comparison of the functions and system composition of ETCS and CBTC systems [41], where

‘X’ denotes the presence of the component and ‘-’ denotes the absence of the component:

ETCS CBTC

Equipment
Operation Level

Equipment
L0 L1 L2 L3

OBU DMI X X X X VOBC TOD

19

BTM - X X X TIA
TCR X X X - -
ODO X X X X ODO
EVC X X X X KVC

Euroradio X X X X OBRU
JRU X X X X DR
TIU X X X X TIMS

Trackside

Eurobalise
(or Euroloop) - X X X

Trackside

Balise

TC (or axle
counter) X X X - Axle Counter

LEU - X - - -
RBC - - X X ZC

Wireless
network GSM-R X X X X DCS (WLAN)

Table 2 Comparison of ETCS and CBTC systems

In ETCS and CBTC systems, some components with similar functions are given different

names, such as the European Vital Computer (EVC) in ETCS and the Kernel Vital Computer

(KVC) in CBTC, which are both vital computers providing the necessary computations for

train control. Similarly, Euroradio and On-Board Radio Unit (OBRU) are both radio

communication terminals for on-board equipment of ETCS and CBTC. Overall, ETCS and

CBTC systems control train movements by the cooperation of on-board and trackside

equipment. Bidirectional communication is established between the on-board and trackside

equipment to exchange information essential for their operation. Four operational levels are

included in ETCS systems to adapt to the operation of the legacy railway systems existing in

different European countries.

In order to fulfil the reviewed system requirements, companies such as Siemens, Bombardier,

20

Thales and the China Railway Rolling Stock Corporation (CRRC), have developed their own

CBTC solutions. Although the CBTC systems developed share the same architecture as

illustrated in Fig 4, the components used in each of the systems are different; the author has

therefore not fully listed the components of the CBTC system, instead including only the

main components and subsystems. One prominent feature of CBTC systems is that Wireless

Local Area Networks (WLAN) are most commonly used as the radio communication network

of the Data Communication System (DCS), while ETCS systems usually utilise GSM-R. Due

to the different application scenarios, the specific functional performance of the subsystems

and components in ETCS and CBTC systems can be different. Nevertheless, the

macro-system architecture, specifically the cooperation of trackside and on-board subsystems

by wireless communication via a radio network, is highly uniform.

As revealed by Fig 4 and Table 2, ETCS and CBTC systems, which between them represent

the majority of modern TCSs, share a united system structure and functional features. For

black-box testing which aims to verify that the functions developed comply with the

specification requirements, the similarities between the TCSs means that the I/O interface

between the SUT and the testing tool can be used for testing different systems, with minor

modifications. For HIL testing, similar system structures and composition mean that the

simulation for an HIL environment can be used repeatedly without major modifications when

testing different types of TCS. For MBT, formal modelling of TCSs with similar features

means that modelling difficulties will not increase when testing different types of TCS. As a

result, functional testing of modern TCSs based on a unified testing method can be

21

promisingly realised.

2.2 Traditional MBT Methods

Based on the discussion in section 1.1, MBT can significantly reduce the cost and time

associated with testing, and achieve better quality performance by having better traceability

and extendibility compared with traditional manual testing methods. Despite this, it is not a

flawless testing method without limitations. Firstly, MBT does not enhance the ability to

detect defects in the SUT, because it still relies the tester to build the specification model,

which is the mechanism used to determine whether the test should pass, and to choose the test

generation strategies; this means the performance of the MBT is determined by the skill and

experience of the tester [30]. Further, MBT cannot be guaranteed to find all the errors

contained in the SUT, which is the limitation for all other testing methods [26]. Nevertheless,

with a well-modelled test oracle and a correctly selected test generation strategy, MBT

increases the possibility of finding errors at a lower test cost and in a shorter test time. This

leads to the second disadvantage of MBT, which is that it is more difficult to implement than

manual testing because of difficulties in formal modelling and test generation algorithms [18].

To formalise the SUT behaviour, MBT demands that testers have a deep understanding of the

operation principles of the SUT so that they can build a precise and unambiguous model

which can be understood and processed by various test tools. It can take the tester years of

practice to be familiar with one type of formal modelling method and the corresponding test

generation algorithms. Furthermore, testers should understand how to test SUTs manually in

order to build specification model for MBT because MBT is an automation of manual testing

22

methods.

In addition, MBT is strongly associated with functional testing and is rarely utilised in other

types of testing, except that it is occasionally used in stress testing [30]. Some kinds of SUT,

such as those which involve plenty of man–machine interactions, are not eligible for applying

MBT because of their unique characteristics. For example, the DMI which is one of the

components in the OBU is not suitable for automatic testing methods such as MBT because it

is designed to provide driving instructions for the driver via a screen. Although MBT can

check whether the I/O data of the DMI is correct, it cannot prove that the corresponding

screen display is correct. As a result, these kinds of SUT should be manually tested. Even

worse, analysis of failed tests in MBT can be time-consuming because the testing results

obtained are in a formal format, which can be understood by a computer but is not convenient

for inexperienced people to understand. By comparison, testing results in manual black-box

testing are easier to analyse because they are straightforward so that the tester can locate the

errors by comparing the results with the specification requirements.

Lastly, traditional MBT methods mostly require that the specification model is deterministic

regardless of whether the SUT itself is deterministic. However, complex systems such as

TCSs can be nondeterministic in some or all layers, including the unit layer, component layer,

subsystem layer and system layer. Elimination of nondeterminism is not only a

time-consuming and difficult process but can also be a risky operation leading to state

explosion. Online MBT algorithms are designed to deal with nondeterministic SUTs, which

further increases the difficulties in implementing MBT. As mentioned in section 1.1, online

23

testing is more appropriate for the implementation of TCS testing due to its ability to deal

with nondeterminisms contained in the system with less strict time constraints. Since online

testing needs to simultaneously generate and execute test cases, the test tools must be highly

synchronised with the SUT to guarantee that the observed I/O sequences are valid for the

defined outcome criteria. Therefore, the interfaces used for mapping the abstract I/O for test

tools and real I/O for SUTs are one of the key elements in testing implementation, and any

wrong I/O mapping or poor efficiency of translation can lead to a failure result. Another

adverse factor is that a communication delay between the test tool and the SUT becomes

non-negligible when the SUT is a timed system with a set of time constraints [42], especially

when dealing with complex SUTs such as TCSs which include communications between

hardware and software components. This increases the modelling difficulties in online MBT.

Because of the difficulties and limitations mentioned, online MBT is only supported by a few

MBT tools, such as QTronic and UPPAAL-TRON.

Despite the limitations discussed, online MBT is still a feasible solution for automatic testing.

Unlike other automatic testing methods such as script testing or keyword-driven testing,

which incompletely automate the functional testing process, MBT can completely automate

the test process: the test is automatically generated and executed, and the testing results are

automatically qualitatively analysed. Therefore, MBT is adopted more and more to save

testing time and resources, improve testing quality and guaranteeing its correctness.

For MBT, modelling methods, test selection criteria and test tools are the three key elements,

and the tester needs to make appropriate choices for each of these three according to the

24

characteristics of the SUT and its testing environment. Hundreds of different modelling

methods have been used to describe SUT behaviour for MBT. As one modelling method

commonly corresponds to one or more test generation tools, the author will first classify and

introduce different MBT methods by introducing various modelling methods. Next, the author

lists a series of test selection criteria for different types of model with different testing

purposes. Finally, the author introduces several test tools which support the modelling

methods and test selection criteria introduced.

2.2.1 Introduction of Modelling Methods for MBT

As a wide-ranging concept which can appear in many fields, modelling has a set of different

meanings for different purposes. Since MBT mainly depends on formal modelling methods

which can be used as the test oracle for test case generation and test result verdicts, the author

focuses on formal modelling methods in this thesis [43]. The basis for classification can vary

from person to person, and the author has adopted one proposed by Utting and Legeard [30].

The original classification targets the industrial field, introducing almost every modelling

method involved with MBT in detail. In this thesis, the author has refined the original

classification scheme by omitting modelling methods which are rarely utilised in MBT, and

explains in detail those which are commonly adopted for research purposes. As a result, the

modelling methods for MBT are divided into three categories; state-based modelling methods,

transition-based modelling methods and other modelling methods.

25

2.2.1.1 State-Based Modelling Methods

State-based, also known as pre/post, modelling methods depict a system based on a set of

states with variables in and constraints on those states. In one state, actions or operations may

happen when the corresponding conditions are satisfied, and the variables are then updated

according to the defined relations. State-based modelling methods concentrate on describing

the internal conditions in states, and therefore weaken the external transitions between two

states. As a result, they are more suitable for modelling data flow-oriented SUTs of which

functional testing emphasises correct data flow and is less concerned about control flow.

Typical examples of state-based modelling methods include but are not limited to B/Event-B

[44, 45], Z [46], Unified Modelling Language (UML), Object Constraint Language (OCL),

Java Modelling Language (JML) [47], Spec# [48] and the Vienna Development Method

(VDM) [30]. As one of the most typical state-based modelling methods, Event-B will now be

introduced by the author with a modelling example.

As an evolved version of the B method, Event-B makes it easier to perform refinement and

verification processes with the help of developed software platforms [49]. Summarised by

Cansell and Mery [45], the key elements of an Event-B model are illustrated by Fig 5:

 machine
sets

properties
constants

axioms
end

Fig 5 Elements of an Event-B model

26

As illustrated by Fig 5, Event-B is a contextual modelling notation in which a model consists

of the following clauses: the machine, the sets, the constants, the properties and the axioms.

The clause machine gives the model a name; the clause sets contains definitions of sets in the

problem; the clause constants summarises the variables involved in the clause properties

which are the detailed definition of the sets; the clause axioms contains the invariant rules that

should be held by the developed model and which are going to be verified by the proof engine.

Once the specification model of the SUT is obtained based on Event-B, the test cases can be

derived from the specification model with the assistance of test tools along with selected test

selection criteria.

2.2.1.2 Transition-Based Modelling Methods

Compared with state-based modelling methods, transition-based modelling methods

emphasise transitions from state to state and concentrate less on the profiles of internal states.

One of the typical representatives is the Finite State Machine (FSM), which is a graphical

notation describing a system with the pattern node–transition–node. The node represents the

essential states of a system, and the transition represents the actions or operations which

happen when the transitions happen, as shown by Fig 6:

27

T1

T2

T4

T5

T6

T3

S0

S1

S2

S3

S4

Fig 6 Schematic of finite state machines

In practice, an FSM can be extended by adding snapshots of each state, configuring

hierarchical structures for different layers, and establishing parallel connections between

several state machines. Extended versions adapt to different characteristics of systems so that

they can model the transition flow of the systems without losing other essential system

information. Typical examples of transition-based modelling methods include FSM [50] and

its varieties such as Labelled Transition Systems (LTS), I/O automata, Timed Automata (TA)

and hybrid automata, and statecharts such as UML State Machines, STATEMATE statecharts

and Simulink Stateflow charts [30]. Although the methods mentioned have specialisation use

in particular scenarios, they share the common points that they are all transition-based; the

main differences come from the different configurations of their platform. Therefore, the

author introduces two of the methods to indicate the similarities and differences between

different transition-based modelling methods.

• Timed automata [51]

As one of the varieties of FSM, TA evolves with a finite set of timed clocks which linearly

28

increase in states during the operation procedure. TA is suitable for modelling timed systems

with linear time constraints. With the assistance of model checkers, TA models can be verified

against formalised properties such as liveness which means some states are reachable and

safety. The author will now introduce the UPPAAL platform, which models a system based on

the TA format [52, 53].

Fig 7 Schematic of TA model on the UPPAAL platform

As indicated by Fig 7 which is a formal model of a button, the TA model on the UPPAAL

platform absorbs the features of labelled transitions systems and I/O automata, and the input

and output are respectively indicated by specific labels. This configuration is specially

designed so that it is more convenient for the test generation tool to recognise inputs and

outputs. Another feature is that the TA modelling method models the SUT and its operational

environment or user in a parallel structure of two or several automata, where two transitions

are synchronised by an input/output pair to happen at the same time. With the corresponding

test generation tools, the test cases or sequences can be derived from the TA models built.

• Statecharts

Statecharts are quite similar to FSM-based modelling methods such as the TA modelling

29

method. However, there are still some differences between them so that the tester should

select the appropriate modelling method according to their specific testing purpose. As

revealed by Fig 8 and Fig 9, which show a button model built on the MATLAB Simulink

platform, statecharts on the Simulink platform can describe systems in a hierarchical structure,

while the TA on the UPPAAL platform can only support a parallel structure. This could be an

advantage when modelling complex systems consisting of numerous layers. Furthermore,

with a more advanced graphical user interface, modelling difficulties can be reduced so that

the modelling efficiency can be improved.

Fig 8: Schematic of statechart model on the Simulink platform

Fig 9 Complete model for the statechart model

As shown in Fig 9, the external stimulus, which can be a continuous or discrete signal, can be

30

freely defined by the user; this is difficult to achieve with FSM-based tools such as UPPAAL.

Based on more simulation models, Simulink statecharts can include more detailed information

in the model. However, most of the matched test tools for Simulink statecharts stay at the

stage of script testing or keyword-driven testing, both of which entirely or partially rely on the

tester to design the test cases; neither of them provides genuine automatic test case generation.

According to Fig 2, the efficiency advantage of MBT appears gradually along with an

increasing number of test cases, in other words, with the complexity of the SUT. When testing

systems like TCSs, automatic design of functional testing becomes more important. Although

some of test tools are claimed to be able to realise automatic test case generation, they are still

in immature forms. For example, Li and Kumar [54] developed an algorithm for automatic

test case generation based on the Simulink statechart model that translated the statechart

model into IO-EFA, a variety of FSM, then applied model-checking to generate test cases.

The company T-Vec [55] claims that their product can automatically generate test cases, but

the test tool is commercial making its performance difficult to verify. According to Blackburn

et al. [56-58], their product aims to automatically generate test vectors, a set of various inputs

desired for certain testing purposes, which belong to the fields of script testing and

keyword-driven (table-driven) testing. In general, most of the test tools based on Simulink

cannot realise automatic test case generation.

2.2.1.3 Other Modelling Methods

The author has gathered the remaining kinds of modelling method into this category because

they are usually utilised in combination with one or several other modelling methods.

31

History-based modelling methods such as Message-Sequence Charts (MSC) [59] describe

system behaviour by recording the message exchange process between two or more

components. As a result, though it can be eligible for modelling communication protocols, the

preferred usage is to present the test cases or test sequences generated by specifying the data

exchanged between the tester and the SUT. As typical representatives of operational

modelling methods which focus on describing interactions between concurrent systems [60],

Communicating Sequential Processes (CSP) and Petri Nets (PN) [61] are often used in

combination with other modelling methods, such as FSM-based methods, to formally obtain

hierarchical system models [62, 63]. Other modelling methods such as functional notations,

statistical notations such as Markov chains [64], and data-flow notations are occasionally

adopted by some modelling tools for system modelling, verification and testing.

2.2.1.4 Summary

Countless modelling methods have been applied to the MBT field, and it would not be

appropriate for the author to include all of them in this thesis. Instead, those most

representative of the main categories have been introduced by the author. To automate the

testing process, a specification model needs to be utilised to formally describe the SUT

behaviour so that the computer can generate test cases by analysing the specification model.

Therefore, choosing the appropriate modelling method is an essential foundation of successful

implementation of MBT. One of the guiding principles of choosing a modelling method for

MBT is to choose according to the characteristics [30] and emphasis of the SUT. For testing

data-oriented SUTs where the tester focuses on the key parameters, it is recommended to

32

choose state-based modelling methods because methods such as the B method, as these

support a wide range of data types allowing the tester to precisely describe the SUT behaviour.

Transition-based modelling methods, such as LTS, can conveniently describe the complex

transition relations between different nodes of the state machine based on the node–

transition–node format. However, state–based modelling methods have to specify the

precondition and postcondition for every state so that the model becomes unnecessarily large

when the transition relationship is complex. Therefore, for testing control-oriented SUTs

where the tester is concerned about the transition flow of the SUT, it is recommended to

utilise transition-based modelling methods to guarantee modelling efficiency.

The classification between data-oriented and control-oriented systems becomes ambiguous

when the SUT is an integrated system with a relatively high degree of complexity, such as a

TCS, for which extensive data verification and control-flow verification are both required in

the testing. Therefore, the tester should select a suitable modelling method that can fulfil the

requirements of testing implementation for such systems. State-based modelling methods can

still deal with control-oriented SUTs, and transition-based modelling methods can still deal

with data-oriented SUTs. As a result, the type of SUT is not the only basis for determining the

modelling method. In conclusion, a modelling method is appropriate if it can precisely

describe the SUT behaviour. In Table 3, some modelling methods which have been frequently

adopted for MBT are listed with their classification and a brief description.

33

Notation Classification Remarks
B State-based Abstract machine notation

Z State-based Based on first-order predicate logic and set
theory

JML State-based Behavioural specification language
Spec# [65] State-based Object-oriented language, extension of C#
SeC (C++) [66,
67] State-based Applying contract approach, based on C,

C# and Java
OCL [30, 68] State-based Object-oriented language supporting UML
VDM [69, 70] State-based Object-oriented specification language
Statecharts [71] Transition-based Formal realisation of FSM

UML SM [72, 73] Transition-based Behaviour description language based on
UML

Stateflow charts
[74, 75] Transition-based Supported by UML and MATLAB

Simulink

LTS [76, 77] Transition-based
Behaviour description language, basis of
I/O automata and other FSM-based
varieties

TA [51, 78] Transition-based Extended LTS with time constraints,
supported by UPPAAL

MSC History-based Often combined with SDL

HOL [79] Functional
notation Often combined with other software tools

CSP Operational
notation Often combined with PN

CCS Operational
notation Often combined with PN

Petri net Operational
notation Often combined with CSP, CCS

Markov chains Statistical
notation

Good at describing a choice of input, weak
at predicting expected output. So, needs to

34

be combined with other modelling methods

Lustre [80, 81] Data-flow
notation

Describes concurrent systems, supported by
MATLAB Simulink and SCADE

Block diagram Data-flow
notation For modelling continuous systems

Table 3 Summary of formal modelling methods

2.2.2 Introduction of Test Selection Criteria

With the SUT formally modelled, the next step is to generate test cases from the formal

models obtained. Since the formal model can be complex when modelling an industrial-sized

SUT, it can be difficult to generate a set of test cases covering all the possibilities contained in

the model, which means that the test generation process should be controlled based on a

particularly emphasised field which is determined by the testing purpose or the specification

requirements of the SUT. Test selection criteria guide the controlling process and are

employed by the tester to measure the adequacy of the package of the test cases generated

[82]. Given a specified criterion, the test generation tool has guidance on when to stop the

generation process and how well the test cases have been generated. Although the ultimate

goal of test generation is to generate a test suite which can fully cover the possibilities

contained in the formal model, 100% coverage can be difficult to achieve [83]. Therefore, test

selection criteria can give the tester an intuitive impression of the test generation performance

by measuring what percentage of the requested coverage have been satisfied. Furthermore,

during the test generation process, some test tools can cater to the given test selection criteria

by applying corresponding test generation strategies so that unnecessary test cases can be

omitted, and the test generation resources can be economised. This is extremely important for

35

test generation from complex models because full coverage can be difficult to achieve in such

models, so the tester needs to know whether the test cases obtained are sufficient for

functional testing.

Depending on the modelling method chosen, selection criteria can become different concepts.

Therefore, the modelling notations should be determined before any discussion of test

selection criteria [84]. Since the author’s research is strongly related to FSM-based modelling

methods, the modelling notations which correspond to the test selection criteria being

discussed have been determined to be transition-based modelling methods and modelling

methods which can be transformed into a transition-based format, such as state-based

modelling methods. As a result, other test selection criteria are not introduced.

Since there has been rapid development of MBT technologies recently, more and more refined

test selection criteria are being proposed for specific testing purposes. As a result, the criteria

for transition-based modelling methods comprise a large set of concepts including many

branch criteria. Here, the author introduces the main kinds of criterion which are typically

adopted in MBT. In transition-based modelling methods, the SUT is required to be modelled

as an FSM which contains states and transitions. Although different modelling structures,

such as hierarchical structure and parallel structure, can be realised by different

transition-based modelling methods, the models can always be transformed into one FSM or

an approximation of an FSM, as shown by Fig 10:

36

T3 T4

T5T6

T8

T1 T2

S1

S2

S4S3

S5

T7

Fig 10 Schematic of finite state machines

As revealed by Fig 10, an FSM consists of states and transitions, where {S1, S2, S3, S4, S5}

presents all reachable states; the double circle is the initial state of the FSM, and

{T1, T2, T3, T4, T5, T6, T7, T8} stand for all accessible transitions. Based on the defined

conditions, the test selection criteria are discussed in the following sub-sections:

2.2.2.1 All-State Coverage

All-state coverage requires that all reachable states of the FSM, which are {S1, S2, S3, S4, S5}

in the case of Fig 10, should happen at least once in the test cases generated. It should be

noted that, when applied to hierarchical structure and parallel structure, all-state coverage may

have different meanings. In hierarchical structure, the states are divided into external states

and internal states, and coverage of external states does not mean that all internal states are

covered, so the hierarchical structure of the model needs to be transformed into an FSM

format indicated by Fig 10 before proving all-state coverage. In parallel structures, two

transitions can happen simultaneously so that more than one state can be activated at the same

37

time. Therefore, covering one of the states which are occupied at the same time along with all

the other normal states is adequate for proving all-state coverage.

2.2.2.2 All-Transition Coverage

All-transition coverage requires that all accessible transitions, which are

{T1, T2, T3, T4, T5, T6, T7, T8}, should happen at least once in the test cases generated. Similar to

all-state coverage, when applied to hierarchical structure and parallel structure, all-transition

coverage may have different meanings. In hierarchical structure, transitions between external

states and transitions between internal states should all be covered. Therefore, the hierarchical

structure of the model needs to be transformed into an FSM format indicated by Fig 10 before

proving all-transition coverage. On the other hand, in parallel structures, two transitions can

happen simultaneously so that more than one transition can be accessed at the same time.

Therefore, covering one of the transitions which happen together along with all the other

normal transitions is adequate for proving all-state coverage. All-transition coverage is a

stronger criterion than all-state coverage, which means if all-transition coverage is achieved,

all-state coverage will be always satisfied.

2.2.2.3 All-Path Coverage

In an FSM, a path is a sequence of states and transitions leading to a certain state. In an FSM,

all-path coverage requires that all valid paths should happen in the test cases generated, which

can be difficult to achieve because an FSM can contain an infinite number of paths. For

example, in Fig 10, the paths are countable without transition ‘T7’ but are infinite with

38

transition ‘T7’ because the number of times that ‘T7’ happens is nondeterministic. Therefore,

with a model which is more complex than the one in Fig 10, it is difficult to find out all valid

paths and to cover them. All-path coverage is the strongest criterion, which means if all-path

coverage is achieved, all-state coverage and all-transition coverage will be always satisfied.

2.2.2.4 All Definition-Use Coverage

In some varieties of FSM such as LTS and I/O automata, variables can be defined and used by

the model expressions so that the variable values can be updated along with some of the

transitions in the model. Definition-use coverage requires that all paths defining and executing

all variables should be covered in the test cases generated. All definition-use coverage can be

adopted in test generation for data-oriented SUTs to exhaustively inspect that all data-related

operations are functionally correct.

2.2.2.5 Summary

Due to the diversity of modelling methods for MBT, test selection criteria are closely

associated with specific modelling methods and are not compatible for other modelling

methods. Since simulation combined MBT is based on FSM-based modelling methods, the

author has only introduced the relevant test criteria and has omitted others. It should be noted

that the criteria discussed can only be utilised for offline test generation where the test tool

can record the states occupied, transitions triggered and variables executed during the whole

testing procedure. For online test generation which randomly selects and verifies one of the

valid inputs; the purpose of the criteria is to verify the test results by measuring what

39

percentage of the coverage expected has been covered in the testing. The detailed verification

procedure is presented in Chapter 6 – Validation and Verification.

2.2.3 Introduction of Test Tools

In recent years, more and more test tools have been developed for automatic test generation in

which test cases are algorithmically derived from specification models. Selection of tools is

commonly based on the purpose of the testing, the characteristics of the SUT, and the tester’s

maturity level for different modelling methods. For example, testing of an SUT with time

constraints requires that the specification model supports the formal expression of a timed

operation. In other words, the test tools should be determined by the modelling methods

which are appropriate for modelling the SUTs. A test generation tool can support a single

format of models or a set of similar types of model. Therefore, the author lists the test tools

along with the modelling methods they support, whether they are for commercial or academic

use, and whether or not they support online test generation.

Name Modelling
notation Commercial/academic Offline/online

mode

T-Vec Simulink,
MATRIX Commercial Offline

QTronic TTCN-3, UML Commercial Online/Offline
LTG B, UML 2.0 Commercial Offline

Reactis Stateflow
(Simulink) Commercial Offline

TAU Tester TTCN-3 Commercial Offline
Spec Explorer C# Microsoft Offline/Online
UPPAAL-TRON I/O automata Academic Online
UPPAAL-COVER I/O automata Academic Offline
Torx [20] SDL Academic Offline
ASML XML, Word Academic Offline
MulSaw JML Academic Offline

40

Table 4 Summary of test tools for model-based testing [85]

As indicated by Table 4, only QTronic and Spec Explorer [65] can switch between online and

offline modes, and can deal with nondeterministic models by implementing online test

generation. UPPAAL-TRON [86] is the only academic tool which supports online test

generation, and it cannot switch to offline mode. It is worth emphasising that test tools should

service the modelling methods and should be selected depending on the specific requirements

of the test. With a wisely chosen modelling method and the corresponding test generation tool,

a tester can automate the design process of functional testing under the control of the test

selection criteria determined.

2.3 Functional Testing for Train Control Systems

According to Fig 3, functional testing for TCSs commonly belongs to black-box testing,

aiming to verify that the functions are correctly developed based on the system specifications.

Nondeterminism can be observed during the procedure of black-box testing because the

internal actions of the SUT are inaccessible or the testing environment are too complex to be

determined. HIL and MBT have been introduced into the field of TCS testing to improve

testing performance and reduce testing cost.

2.3.1 Hardware-in-the-Loop testing for TCSs

Since TCSs are highly integrated and complex systems containing many subsystems and

components, functional testing of TCSs involves a wide range of different types of testing for

different testing purposes and various SUTs. These different kinds of testing are implemented

41

at different development stages of the TCS, by those with different roles involved in the

whole development procedure, such as the product manufacturer and the third-party tester.

Therefore, a standard is needed to classify the specific testing responsibilities of every role at

every development stage, as shown in Fig 11 [87]:

All sub-functions of the railway control system need to be verified

Sub-functions fully verified by the
manufacturer Sub-functions Not Fully Verified by the Manufacturer

Functional Testing on Test
Network

Sub-functions fully verified on Test
Lines

Sub-functions Not fully verified on
Test Lines

Functional testing in Field

Functional Testing on
Simulated Network

All sub-functions of the railway control system are fully verified

sub-functions Fully Verified in the Field
Sub-functions Fully Verified on

Simulated Network

Fig 11 Classification of the testing process by different stages of system development

As shown in Fig 11, the IEEE recommends that those with different roles in development of

the system implement functional testing at different development stages to test different

system functions [88]. Some of the functions should be tested by the product manufacturer

before the subsystems or components are handed over to the third-party tester; this refers to

the unit testing and component testing mentioned in Fig 3. It is more convenient and

convincing for all such kinds of testing to be implemented by the manufacturers of SUTs

because they are more familiar with the internal behaviour of the SUT than testers from

42

different departments or even different companies. After the internal behaviour of the SUT is

verified, the SUT is then ready to be functionally tested in different types of testing scenario,

including testing on test lines and testing on real lines. However, due to the high degree of

complexity of TCSs, a lot of system functions need to be realised by more than one subsystem

or component, which means site testing such as testing on testing lines or real lines can only

be implemented after all the subsystems or components involved are ready. In the

development of TCSs, it is common that different subsystems and components are developed

separately and have different development periods. Therefore, off-site testing is necessary for

the system developer to verify the developed part of the system as early as possible [89].

The HIL testing method, which is illustrated in Fig 11, is a feasible solution to achieve off-site

testing. Once development of a subsystem or component of the TCS is finished, it can be

functionally tested in the HIL testing environment where all the other necessary subsystems,

components and network infrastructure are simulated. Therefore, on the simulated network,

several key subsystems such as the OBU, RBC, Computer-Based Interlocking (CBI) and ATS

can be respectively tested in parallel then tested when integrated, which saves a lot of time.

This configuration decreases the chances of damaging SUTs compared with site testing and

increases the likelihood of locating errors because the testing scale is limited to subsystem or

component level. However, it requires that the simulated HIL environment should be as

comprehensive a copy as possible of the real network so that the SUT can operate as it would

in a real network. The simulated HIL environment can be provided by a simulator which

simulates all essential components in TCSs, such as infrastructure, vehicles, signalling, ATS,

43

etc. As more and more accurate simulation technologies are applied in the railway field,

railway simulation is approximating real railway systems so that more and more functional

testing can be realised by HIL testing which can be implemented in off-site scenarios. For

example, in UNISIG Subset-094-0 [90], the functional requirements for an on-board ETCS

test facility are standardised, and an HIL testing platform is accordingly established by Fig 12.

As revealed by Fig 12, the HIL testing platform for the OBU consists of two main parts, the

equipment under test and the test environment. The equipment under test contains the

components of the OBU and the corresponding adapters. The test environment includes all the

other simulated subsystems and components which are necessary to realise the OBU functions,

such as lineside equipment and the communication protocol. During the testing procedure, all

the equipment of the OBU under test works together with the testing environment by

exchanging relevant data via the external communication channels. The condition of the

testing environment influences the control command sent by the OBU and vice versa. By

monitoring the data flows for each component of the OBU, the tester can judge what has

happened in the testing procedure, and whether the test is passed according to the expected

data flows derived from the test cases.

44

ON BOARD
INDUSTRIAL
EQUIPMENT

JRU DMI ODO

LOOP

STM

BTM

TIU

EURORADIO

ETCS LEVEL STM
TRACKSIDE
SIMULATOR

(LSTMTS)

STM CODING &
COMMUNICATION

(STMCC)

ODO
ADAPTER

TIU
ADAPTOR

SPEED SENSOR
SIMULATOR

(SSS)

TRAIN MOTION
SIMULATOR

(TMS)

SCENARIO
CONTROLLER

(SC)

SCENARIO
GENERATOR

(SG)

JRU DOWNLOAD
EVALUATION

MODULE
(DEM)

DRIVER OR
EMULATOR

DMI EVENT
RECORDER

(DER)

TIU SIMULATOR
(TIUS)

ETCS L2 TRACKSIDE
SIMULATOR

(L2TS)

EURORADIO COM.
SIMULATOR

(RCS)

ETCS L1 TRACKSIDE
SIMULATOR

(L1TS)

EUROBALISE SIGNAL
GENERATOR

(BSG)

EUROLOOP SIGNAL
GENERATOR

(LSG)

MODULE EVENT
RECORDER

(MER)

TRIP ANALYSIS
& VALIDATION

(TAV)

DATA EXCHANGE

Equipment Under Test

Test Environment

FFFIS
(AIRGAP)

FFFIS
(AIRGAP)

FFFIS

FFFIS

FFFIS (WIRED)

SPEED

TIU
SIGNALS

ADAPTOR FFFIS

ADAPTOR FFFIS

Fig 12 HIL testing platform for the OBU of CBTC systems [90]

Obviously, HIL testing which tests SUTs within a simulated environment is more convenient

than testing them on a real site, which means that most functional testing can be implemented

in the laboratory environment. However, the testing is still undertaken by a traditional

black-box testing method which means that the test cases are manually written, and test

sequences are manually derived from the test cases. Although test execution can be automated

by scripts, the efficiency of HIL testing is largely influenced by human factors, so that the

workload is still heavy compared with automatic testing methods such as MBT. When testing

complex SUTs such as TCSs, the functional testing for a single subsystem such as an OBU

contains hundreds of test cases, let alone the full functional testing for all subsystems in a

TCS. As mentioned in Fig 2, the duration of manual testing significantly increases with the

45

number of test cases, while the duration of MBT has a much lower growth rate along with the

number of test cases. Therefore, to optimise the performance of functional testing for TCSs,

HIL testing is merely the first step, and a series of improvements need to be achieved.

2.3.2 Model-Based Testing for TCSs

Due to the safety critical characteristic of modern TCSs, model-based approaches are widely

applied to guarantee system safety in system design, verification and testing. Cullyer and

Wong [91] combine HOL mentioned in Table 3 with the programming language Ada to

automatically verify the signalling design on a given layout of railway network. By formally

modelling the railway interlocking table designed for a junction and analysing the obtained

formal model with software, the interlocking system is verified to inspect whether there exist

any flaws leading to dangerous situations. Piccolo et al. [92] develops a customised formal

modelling method for TCSs which can formally represent system behaviour in statechart

diagram according to system specification requirements. By processing the formal model by

software, system behaviour can be formally verified and test cases can be automatically

generated. Dincel, Eris and Kurtulan [21] propose a systematic solution for model-based

development of railway signalling and interlocking. With the assistance of model-based

techniques, the control logic of the system is designed, verified and refined at system

development stage, which significantly improves the system development efficiency and

decrease safety flaws. Further research on the formal verification of safety critical

components of TCSs are carried on by Ghosh et al. [93]. They develop a bounded model

checking algorithm which can deal with a larger scale of signalling and interlocking systems

46

with a higher degree of complexity, which is helpful for global verification of an industrial

sized system with a better flaw detection ability. Ding, Jiang, and Zhou [61] apply Petri Net to

formalise the system specification requirements in natural language to eliminate potential

ambiguity existing in the requirements, which is meaningful for improving the correctness of

system description.

Except system verification, formal methods are applied to undertake MBT in TCSs. Lv et al.

[62] propose a layered modelling theory which adopts CSP and UPPAAL as the two

modelling methods. Based on the obtained model, test cases of a SUT is automatically

generated and coverage of the generated test cases is analysed. Wei Zhang et al. [82] discuss

the optimal strategy of test generation for testing the function of MA handover between two

adjacent RBCs. All-path coverage is achieved by the adopted test generation algorithms with

different strategies and generation efficiencies. Chai et al. [94] propose a framework for

runtime verification of TCSs of ETCS. With an integrated formal model of the system

behaviour, their verification algorithm can determine whether the system behaviour complies

with the specification requirements during system operation.

2.3.3 Summary

According to 2.3.1 and 2.3.2, HIL testing and MBT technologies partially resolve the

challenges in functional testing of TCSs. HIL testing decomposes complex TCSs and reduces

SUT complexity. MBT technologies automate system verification and testing with a better

performance on efficiency and functional coverage. Therefore, a successful combination of

HIL and MBT could be an effective solution of the challenges existing in the functional

47

testing of TCSs.

2.4 Research Problem Description

According to the reviewed background and literature, the existing research on functional

testing approaches for TCSs and traditional MBT methods has the following outstanding

problems:

• TCSs are too complicate to be fully modelled in formal language;

• The existing MBT technologies cannot process highly complex model due to state

explosion;

• Functional coverage of HIL testing cannot be guaranteed because test cases are manually

designed in HIL testing.

Therefore, the author of this thesis expects to address the following questions:

• Can the modelling difficulties for complex SUTs be reduced?

• Can state explosion be avoided in the implementation of MBT?

• Can the functional coverage of HIL testing be improved?

According to the problem description, a simulation combined MBT methodology is proposed

in this thesis. The modelling and implementation methods are explained in Chapter 3 and 4

respectively. Chapter 5 undertake two case study to explore whether the proposed simulation

combined MBT is suitable to test functions of TCSs. Chapter 6 verifies the effectiveness and

performance of the developed testing platform based on the obtained testing results, proving

that the proposed simulation combined MBT can guarantee a better functional coverage

48

comparing with existing testing methods.

49

3 Modelling for Simulation Combined MBT

3.1 Comparison of Online MBT and Offline MBT

3.1.1 Overview of Online MBT and Offline MBT

In Chapter 2.2, the author introduced different MBT methods in terms of different formal

modelling methods, various test selection criteria and the existing test generation tools.

According to the discussion, most of the methods introduced are offline testing methods

which successively generate and execute test cases based on the specification model and test

selection criteria [62, 95]. With the assistance of test generation tools, coverage of the test

cases generated can be measured so that coverage performance can be improved in offline

MBT. However, offline MBT requires that every input must correspond with only one output,

which means it is necessary to obtain deterministic models when testing nondeterministic

SUTs of which inputs and outputs do not have one-to-one correspondence [96].

Nondeterminism can be observed in black-box testing because of uncertainty of

communication delays between test tools and SUTs and lacking details in abstract models.

The transformation from nondeterminism to determinism is not only time-consuming but also

carries a risk of state explosion. Even worse, some of the nondeterministic models are

difficult to transform into deterministic models. To solve the conflict between MBT and

nondeterminism, online MBT has been developed to realise automatic test generation based

on nondeterministic models.

As a solution for test generation based on nondeterministic models in MBT, online MBT

50

randomly generates one of the valid inputs from the specification model then executes it and

compares the result obtained with the expected one [97, 98]. Due to the online feature, it is

able to deal with nondeterministic or highly complex SUTs because it is not limited by the

size of the specification model [99]. Within the testing time, online MBT exhaustively

searches for all possibilities by randomly generating valid inputs, leading to the limitation that

it cannot positively guarantee that all the possibilities can be covered in the testing. The

testing verdict is determined by whether inconsistency can be found within the defined testing

time, where ‘Pass’ means no inconsistency is found, and ‘Fail’ means inconsistency is found

during the testing process. In contrast to offline testing, online testing generates inputs

according to the next reachable set of states, without the influence of other test selection

criteria adopted in offline testing. I/O interfaces between the test tools and SUT are necessary

for online MBT to realise a synchronised process of test generation and test execution.

Therefore, online MBT is significantly more difficult to implement than offline MBT.

3.1.2 Online MBT for TCS

The advantages of offline testing can be summarised as follows:

• The test generation process can be controlled by the test selection criteria via test tools,

which means that the tester can adjust the test generation strategy according to specific

test requirements, such as some certain states having to be covered, or some important

transitions having to be run through.

• Coverage of the test cases generated can be conveniently measured by the test tools,

51

which means the tester can decide when to stop the test generation process based on

the coverage performance obtained. Furthermore, the test selection criteria and

specification model can be adjusted to improve the coverage performance if the

coverage of the test cases generated does not satisfy the test requirements.

• Test cases are separately generated and executed, which means that the two processes

do not influence each other. This is important for testing SUTs which contain very

strong time restrictions (at millisecond level), because the test generation time may be

too long to obtain an output within the strict time constraint if the test is implemented

in online mode [100, 101]. Therefore, for those SUTs, offline testing is more rational.

However, the disadvantages of offline MBT are also obvious:

• Offline MBT is not eligible to deal directly with nondeterministic SUTs. SUTs have to

be modelled in a deterministic format in offline MBT, which decreases the testing

efficiency and increases the modelling difficulties.

• Although test generation can be controlled by test selection criteria, coverage may not

be achieved as expected because the specification model is too complex for the

computer to analyse. The reason is explained in detail in Chapter 6.3.1.

• Since the test cases are generated separately in abstract format, the testing efficiency

can be influenced by the translation process between the abstract and real I/O, which

can be time-consuming for a large set of test cases.

By comparison, online MBT can remedy the limitations of offline MBT, as summarised

52

below:

• Online MBT can deal with nondeterministic SUTs according to a nondeterministic

specification model. In online MBT, one input is generated based on the current states

of the specification model; thereafter, the input generated is executed by the real SUT.

Due to the nondeterministic characteristics, the expected output can be a set containing

all acceptable output values, which is different from offline testing in which only one

output corresponds to one input under the determined conditions.

• Online MBT is suitable for exhaustive testing of SUTs [102]. Benefiting from

simultaneous test generation and execution, the SUT can be continuously tested for a

relatively long time, depending on an appropriately built specification model which

does not contain any deadlock and has reachability in all states. Although the test

generation process cannot be guided by different test selection criteria, a decent level

of coverage can still be achieved with online MBT because of the exhaustive feature,

the reason for which is discussed in section 6.3.1.

• Without supervision of the test selection criteria, online MBT does not carry the risk of

running out of memory because the test tools do not need to record any information to

calculate coverage.

Along with the benefits brought by online MBT, the disadvantages cannot be ignored:

• For both online and offline MBT, an interface or adaptor is needed to map the abstract

behaviour in the test generated and in the real data or command which is recognised

53

by the real SUT to execute it. Offline MBT translates the test cases generated into real

data in offline mode, while online MBT needs to synchronise the translation process

with the test generation process, which significantly increases the implementation

difficulties.

• Strict time constraints may lead to a failed testing result in online MBT. Since the

input is generated then executed in online MBT, the output result derived from

execution of the input may not be able to be collected in time if the time constraints

are very critical, because the processing capacity of the computer is limited. For

example, if the specification model requires that an output should be observed 1

millisecond after the input is executed, the SUT may not pass the test because the

input cannot be delivered to the SUT in time by a computer of average performance,

even though in practice the output can be delivered in time by the SUT. Offline MBT

does not suffer the same problem because the test cases are generated first and

executed afterwards, which means the computer has sufficient time to generate the test

cases, translate them into executable form, and directly execute them in the end.

• Without the guidance of the test selection criteria, the tester cannot directly judge the

performance of test generation according to the coverage. The only way to find out the

coverage performance is to analyse the testing log file after the test is finished, which

can be time-consuming and inaccurate compared with offline MBT. In offline MBT,

the coverage performance can be obtained after the test generation process and before

the test execution process, which is a great advantage over online MBT when testing

54

SUTs for which the test execution processes take a relatively long time.

• To guarantee the testing efficiency for detecting errors, online MBT requires the tester

to be more experienced in modelling and testing. As introduced in section 3.1.1, the

testing process will be interrupted if an inconsistency is found between the SUT and

the specification model, which means only one defect can be found in one

implementation of online MBT. In offline MBT, a set of test cases are derived from

the specification model and can be executed following a sequence. Assuming 10 errors

contained in the SUT are evenly distributed into each test case, then offline MBT can

locate all 10 errors by running the test process once, while online MBT needs to be run

at least 10 times to locate all the errors. Even worse, online MBT can take far more

time to run than offline MBT if the tester is not experienced enough to efficiently

eliminate the errors located. Therefore, the tester’s ability to eliminate errors in time is

more important in online MBT than in offline MBT.

According to the advantages and disadvantages of offline and online MBT, the author chose

online MBT as the MBT method. The reason is that the testing theme in this thesis mainly

concentrates on the functional testing of TCSs implemented on a simulated network, which

inevitably contains nondeterminism and has no strong time restrictions in the system

specification [103]. The author has improved on existing MBT methods by introducing

simulation combined MBT, which is explained in detail in the remaining sections of this

chapter. To overcome coverage-related limitations, the methods of analysing the coverage

performance of online testing are discussed in Chapter 6.

55

3.1.3 Introduction of Simulation Combined MBT

As a branch of MBT, the recent development of online MBT for the solution of MBT for

nondeterministic SUTs has been rapid. Different modelling methods and corresponding

different test tools are used to implement online MBT in different fields of SUTs. No matter

what kind of modelling method or test generation tool is adopted, online MBT faces an

unavoidable problem which is equally challenging for other types of MBT: formally

modelling the SUT behaviour according to its specification requirements. The functional

specification requirements of a system describe its behaviour by specifying a series of system

functions in a series of operational scenarios, which means that those system functions can

only be realised or valid when the system is operating in the corresponding scenarios [104].

Therefore, the tester needs to take the operational scenarios into consideration when building

the specification model for implementation of MBT. The specification model is also known as

the model of Implementation Under Test (IUT), in which implementation means the

integrated system behaviour combining the SUT and its operational environment [105]. As a

result, an IUT model can be divided into two main components, the SUT model and the

environment model, as depicted in the left-hand part of Fig 13. In this modelling structure, the

SUT behaviour is formally described as interactions between the SUT and its operational

environment. The benefit of the IUT modelling structure is that it agrees with the normal form

of black-box testing where inputs are generated out of the black box (the SUT) and outputs

are delivered to the external observer (the environment), which is convenient for the tester to

build the specification model. However, the modelling structure expands the size of the

56

specification model when the SUT specification requirements contain complex functions and

a vast amount of different operational scenarios. To avoid high processing loads on the

computer, as well as to decrease modelling difficulties, the author introduces simulation

combined MBT, which is an evolution of traditional online MBT methods.

Real SUT Real Environment

Abstract model Abstract model

Testing tool

Real implementation

output

input

outputinput

parallel

Conformance Relationship:
Pass; Fail

combine

Implementation
model

Traditional Online MBT Simulation combined MBT

Abstract layer

Simulation layer

Combined model

Fig 13 Structure of traditional MBT and simulation combined MBT

As shown in Fig 13, the differences between traditional MBT and simulation combined MBT

are that they use different modelling methods to build the IUT model for the test tool.

Traditional MBT models the SUT and its operational environment using the same formal

method and uses the test tool to analyse the parallels of the models developed. Different from

traditional MBT, the author proposes simulation combined MBT, which models the SUT and

its operational environment in two models, the abstract model and the simulation model. As

57

shown by Fig 13, simulation combined MBT firstly combines the real SUT and environment

into the real IUT, then build the IUT model in two models, where the abstract model is

designed to describe the discrete and abstract behaviours of the IUT, and the simulation model

is designed to deal with continuous variables and relatively complex calculations. Based on

the combined model obtained, the test tool generates valid inputs and executes them

simultaneously as it does in traditional online MBT. The outputs received are compared with

the expected ones specified by the IUT model, to determine whether there is inconsistency. If

no inconsistency is found, the conformance relation between the SUT and the implementation

model is satisfied, and the test will end with a ‘Passed’ result [106]. If any inconsistency is

found, the test will end with a ‘Failed’ result.

Compared with traditional MBT, simulation combined MBT significantly reduces the size of

the formal implementation model by moving some non-vital elements into the simulation

model. As a result, the test tool can test a more complicated SUT with the assistance of

simulation without the risk of state explosion. Since the kernel function of the SUT is still

modelled by the formal modelling method, the accuracy of the testing results will not be

influenced by a two-model-combined modelling structure. However, the evolved structure of

simulation combined MBT means that existing MBT architecture is no longer feasible, and a

new configuration of the elements in MBT must be developed to adapt the

two-model-combined structure. As indicated by Fig 13, three elements are essential for

realising MBT, the modelling method used to build the specification model, the conformance

relation for determining whether the SUT complies with the IUT model, and the test tool for

58

test execution. These key elements are explained in detail in Chapters 3 and 4.

3.2 Simulation Combined MBT

As introduced in section 3.1.3, simulation combined MBT is an evaluation of from the

traditional online MBT methods which have been developed by previous research, such as

those introduced by Larsen et al. [107] and Keranen and Raty [100]. Their research includes

combining online MBT with simulation environment for embedded system testing. However,

IUTs are modelled only by a formal method, while it is modelled by formal methods and

simulation methods in simulation combined MBT. Some other commercial test tools support

online MBT, which can be found in Table 4.

It should be noted that IUT in simulation combined MBT does not need to be modelled

separately from the SUT and environment as it does in traditional MBT. In simulation

combined MBT, IUT can be modelled in a combination of abstract and simulation models.

With the two-model-combined structure, the tester can decide how to divide the SUT

behaviour into the two models, which provides greater flexibility compared with traditional

MBT. Especially for complex SUTs such as TCSs which contain intricate data-exchanging

processes and state-transition flows; here, the advantages of the two-model-combined

modelling structure can be better reflected because a single formal modelling method may not

be able to individually accommodate all essential IUT factors. Unlike formal modelling

methods, which model systems in abstract format, simulation builds system models from

direct conversion of the system specification requirements, which is less difficult than formal

59

modelling because the complex conversions from natural language to formal expressions are

unnecessary.

Simulation combined MBT is still a form of online MBT, and as such it inherits some

similarities from traditional MBT methods, including the essential elements of the

implementation of online MBT. As one of the most important basics of online MBT,

modelling method has a huge influence on testing implementation because the other elements

of online MBT such as test selection criteria and test tools are all determined by the modelling

method. Therefore, in the following sections of Chapter 3, the author focuses on introducing

the modelling method with a series of formal definitions, including the formal definition of

the conformance relation adopted. Eventually, the modelling method of simulation combined

MBT is formally defined so that the modelling feasibility can be preliminarily proven in

theory.

3.2.1 Modelling for Online MBT

As mentioned previously, simulation combined MBT models the IUT using an abstract model

and a simulation model. The simulation model can be written by mainstream programming

languages, leaving only the formal modelling language of the abstract model to be determined.

According to the discussion in section 2.2.1, different modelling methods are adept at

depicting various characteristics of systems, so that selecting an appropriate modelling

method is one of the key issues in MBT if model precision is to be guaranteed, because an

inappropriately chosen modelling method can not only increase modelling difficulties but also

60

lead to a model deficient of essential SUT information. As explained in section 2.2.1.4,

state-based modelling methods are more suitable for modelling data-oriented SUTs, while

transition-based modelling methods are more suitable for modelling control-oriented methods.

However, TCSs are highly integrated systems with a large number of different functions that

are realised by both complex data-exchanging process and state-transition controlling flows,

which means that TCSs can be both data-oriented and control-oriented systems. In accordance

with the introduction which contains analysis of the system characteristics of ETCS and

CBTC systems, the functions of all modern TCSs contain continuous variable manipulations

and discrete state transitions. For example, the OBU continuously monitors the vehicle speed

and sends out the emergency brake (EB) command once the vehicle speed is found to exceed

the maximum speed limit, which is realised by continuously manipulating the variable ‘speed’

and making a state transition happen when the condition is satisfied. To test such a function,

both variable manipulation and state transition should be taken into the consideration.

Although the formal modelling method is mainly applied to model discrete IUT behaviour in

simulation combined MBT, it still needs to be capable of reflecting key variable

manipulations when important state transitions happen. As a result, the author has selected TA

as the modelling theory, which supports modelling of IUT in FSM format with time

constraints.

In the theory of TA, system behaviour can be described in the format of a Timed I/O

Transition System (TIOTS) [43], which is an evolution of LTS by adding time constraints to

states and transitions [108]. Definition 1-6 formally explain the modelling method of TIOTS

61

that is the modelling method for traditional MBT. In LTS, a system is divided into state nodes

and transitions from node to node, where actions can happen when valid transitions are

accessible. SUT behaviour is formally described in an LTS by profiling its static conditions

with states and capturing its dynamic movements by actions on transitions. It should be noted

that a transition can only happen when its conditions are satisfied. Definition 1 presents a

formal definition of an LTS which is developed by [109], with an example given by Fig 14

which is a schematic of an LTS with four states and three transitions:

Fig 14 Schematic of an LTS

Definition 1: An LTS 𝒜𝒜𝐿𝐿 is a quadruple tuple (𝑆𝑆, 𝑆𝑆𝑆𝑆,𝐴𝐴𝜏𝜏,𝑇𝑇𝑇𝑇), where

• 𝑆𝑆 is a finite, non-empty set of states, where in Fig 14, 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3};

• 𝑆𝑆o is the initial state, where in Fig 14, 𝑆𝑆𝑆𝑆 = 𝑆𝑆0;

• 𝐴𝐴𝜏𝜏 is a set of actions, including observable actions 𝐴𝐴 and unobservable actions {𝜏𝜏},

where 𝐴𝐴𝜏𝜏 = 𝐴𝐴 ∪ {𝜏𝜏} and 𝜏𝜏 ∉ 𝐴𝐴 hold. It should be noted that the unobservable

actions {𝜏𝜏} can be internal actions or silent actions indicating that 𝒜𝒜𝐿𝐿 is in a

quiescent state [110]. In Fig 14, 𝐴𝐴 = {𝐴𝐴0,𝐴𝐴1,𝐴𝐴2};

A0

A1 A2

S0

S2 S3

S1

62

• 𝑇𝑇𝑟𝑟 is set of transitions, where 𝑇𝑇𝑇𝑇 ⊆ 𝑆𝑆 × 𝐴𝐴𝐴𝐴 × 𝑆𝑆 holds. In Fig 14,

𝑇𝑇𝑇𝑇 = {(𝑆𝑆0,𝐴𝐴0, 𝑆𝑆1), (𝑆𝑆1,𝐴𝐴1, 𝑆𝑆2), (𝑆𝑆1,𝐴𝐴2, 𝑆𝑆3)}.

Therefore, the entire LTS given by Fig 14 and can be formally obtained by:

𝒜𝒜𝐿𝐿 = ({𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3}, 𝑆𝑆0, {(𝑆𝑆0,𝐴𝐴0, 𝑆𝑆1), (𝑆𝑆1,𝐴𝐴1, 𝑆𝑆2), (𝑆𝑆1,𝐴𝐴2, 𝑆𝑆3)})

After the formal definition of the LTS is obtained, the state transition relations can be formally

defined by Definition 2.

Definition 2: A trace is a sequence of observable actions derived from a transition sequence

of an LTS.

Assuming the LTS 𝒜𝒜𝐿𝐿 in Definition 1 contains a transition sequence:

 𝑠𝑠0
𝑎𝑎0→ 𝑠𝑠1

𝑎𝑎1→ 𝑠𝑠2
𝑎𝑎2→ … 𝑠𝑠𝑘𝑘−1

𝑎𝑎𝑘𝑘−1�⎯� 𝑠𝑠𝑘𝑘 (1)

where

 {𝑠𝑠0, 𝑠𝑠1, … , 𝑠𝑠𝑘𝑘−1, 𝑠𝑠𝑘𝑘} ⊆ 𝑆𝑆, 𝑠𝑠0 ∈ 𝑆𝑆𝑆𝑆 (2)

 {𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑘𝑘−2,𝑎𝑎𝑘𝑘−1} ⊆ 𝐴𝐴,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑘𝑘 ∈ ℕ (3)

then a trace σ of the LTS 𝒜𝒜𝐿𝐿 can be written as:

 𝜎𝜎 = 𝑎𝑎0 ∙ 𝑎𝑎1 ∙ … 𝑎𝑎𝑘𝑘−1 (4)

where 𝑎𝑎𝑚𝑚 ∙ 𝑎𝑎𝑛𝑛 denotes the concatenation of 𝑎𝑎𝑚𝑚 and 𝑎𝑎𝑛𝑛. Assuming all traces contained in

𝒜𝒜𝐿𝐿 are 𝐴𝐴∗, then σ ⊆ 𝐴𝐴∗. When 𝑠𝑠 ∈ 𝑆𝑆, 𝑠𝑠′ ∈ 𝑆𝑆 and 𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝜏𝜏, the following definition holds:

63

According to (1) and (4), then

𝑠𝑠
𝜎𝜎
→ 𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃{𝑠𝑠𝑚𝑚, … , 𝑠𝑠𝑛𝑛}: 𝑠𝑠𝑚𝑚

𝑎𝑎𝑚𝑚��…
𝑎𝑎𝑛𝑛�� 𝑠𝑠𝑛𝑛 ,

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝑠𝑠𝑚𝑚, 𝑠𝑠′ = 𝑠𝑠𝑛𝑛,𝜎𝜎 = (𝑎𝑎𝑚𝑚 ∙ … ∙ 𝑎𝑎𝑛𝑛),𝑚𝑚,𝑛𝑛 ∈ ℕ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 < 𝑛𝑛 (5)

According to (5), then

 𝑠𝑠
𝜎𝜎
→ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃𝑠𝑠′: 𝑠𝑠

𝜎𝜎
→ 𝑠𝑠′ (6)

 𝑠𝑠 ↛
𝜎𝜎
𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∄𝑠𝑠′: 𝑠𝑠

𝜎𝜎
→ 𝑠𝑠′ (7)

In black-box testing, only external actions are observed, and internal actions are isolated from

the view of the tester or test tool, which means that the tester can only observe quiescent IUT

behaviour when internal actions or silent actions happen. Considering the remaining

flexibility of test implementation, quiescent behaviour should be acceptable for testing so that

the quiescent behaviour should be formally described in the LTS [110]. Therefore, the empty

trace ℰ is introduced to formally define the quiescent behaviour of IUT in LTS.

 𝑠𝑠
ℰ
⇒ 𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 𝑠𝑠 = 𝑠𝑠′ 𝑜𝑜𝑜𝑜 𝑠𝑠

𝜎𝜎𝜏𝜏→ 𝑠𝑠′,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜎𝜎𝜏𝜏 = (𝜏𝜏 ∙ … ∙ 𝜏𝜏) (8)

 𝑠𝑠
𝑎𝑎𝑖𝑖⇒ 𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃{𝑠𝑠𝑚𝑚, 𝑠𝑠𝑛𝑛}: 𝑠𝑠

ℰ
⇒𝑠𝑠𝑚𝑚

𝑎𝑎𝑖𝑖→ 𝑠𝑠𝑛𝑛
ℰ
⇒ 𝑠𝑠′,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛, 𝑖𝑖 ∈ ℕ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 < 𝑛𝑛 (9)

According to (8) and (9), (5) and (6) can be redefined by including quiescent behaviour:

 𝑠𝑠
𝜎𝜎
⇒𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
∃{𝑠𝑠𝑚𝑚, 𝑠𝑠𝑛𝑛}: 𝑠𝑠𝑚𝑚

𝑎𝑎𝑚𝑚+1���� 𝑠𝑠𝑚𝑚+1
𝑎𝑎𝑚𝑚+2����…

𝑎𝑎𝑛𝑛�� 𝑠𝑠𝑛𝑛,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛 ∈ ℕ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 + 2 ≤ 𝑛𝑛 (10)

 𝑠𝑠
𝜎𝜎
⇒ =

𝒅𝒅𝒅𝒅𝒅𝒅
 ∃𝑠𝑠′: 𝑠𝑠

𝜎𝜎
⇒ 𝑠𝑠′ (11)

64

According to (10) and (11), then

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) =
𝒅𝒅𝒅𝒅𝒅𝒅

�𝜎𝜎 ∈ 𝐴𝐴∗| 𝑠𝑠
𝜎𝜎
⇒� (12)

 𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎 =
𝒅𝒅𝒅𝒅𝒅𝒅

{𝑠𝑠′|𝑠𝑠′ ∈ 𝑆𝑆, 𝑠𝑠
𝜎𝜎
⇒𝑠𝑠′} (13)

Therefore, the set of all observable traces starting from state 𝑠𝑠 can be defined by (12), and

the reachable state 𝑠𝑠′ after a trace 𝜎𝜎 which starts from state 𝑠𝑠 can be defined by (13).

According to the LTS given by Fig 14, the following equations can be obtained:

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑆𝑆0) = {ℰ,𝐴𝐴0,𝐴𝐴1,𝐴𝐴2, (𝐴𝐴0 ⋅ 𝐴𝐴1), (𝐴𝐴0 ⋅ 𝐴𝐴2)}

𝑆𝑆0 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝐴𝐴0 = {𝑆𝑆1}, 𝑆𝑆1 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝐴𝐴1 = {𝑆𝑆2}, 𝑆𝑆1 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝐴𝐴2 = {𝑆𝑆3}

After defining the relations between trace, state and action, IUT behaviour can be formally

expressed in a format understandable by computers. However, to implement black-box testing

in the MBT frame, the input actions and output actions need to be distinguished in the IUT

model, indicating the communication process of I/O actions between the SUT and the

environment. Therefore, the IOTS is introduced by [111] to refine the actions in LTS into I/O

actions.

Definition 3: An IOTS 𝒜𝒜𝐼𝐼𝐼𝐼 is an LTS (𝑆𝑆, 𝑆𝑆o, 𝐴𝐴𝜏𝜏, 𝑇𝑇𝑟𝑟) where I/O actions are disjointed for

testing purposes. Assuming the input actions 𝐴𝐴𝐼𝐼 and the output actions 𝐴𝐴𝑂𝑂 are contained in

𝐴𝐴 where 𝐴𝐴𝐴𝐴 = 𝐴𝐴⋃{𝜏𝜏}, 𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆 holds, then:

𝐴𝐴 = 𝐴𝐴𝐼𝐼⋃𝐴𝐴𝑂𝑂,𝐴𝐴𝐼𝐼⋂𝐴𝐴𝑂𝑂 = Φ

65

For an IOTS, inputs are enabled in any state [105, 112]; from (10) and (11), then

 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑠𝑠
𝜎𝜎
⇒ 𝑠𝑠′ 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 ∀𝑎𝑎 ∈ 𝐴𝐴𝐼𝐼: 𝑠𝑠′

𝑎𝑎
⇒ (14)

According to (14), it is indicated that all inputs can be enabled through internal transitions or

external transitions in IOTS, which is called weak input enabling [104, 110, 113]. In contrast,

inputs can only be enabled via external transitions in I/O automata, which is called strong

input enabling [114]. Input enabling requires that a system should never refuse an input when

it is delivered. It should be noted that unobservable actions 𝜏𝜏 in LTS change their meaning in

IOTS. In the IOTS frame, a trace ending with actions 𝜏𝜏 indicates that output actions are

absent in the corresponding states, which becomes an observable event. It can happen when

an output is refused after an input is delivered. In black-box testing, output refusal is

sometimes expected to be observed in the test sequence, and other inputs need to follow that

event according to the specification requirements. Therefore, the traces containing quiescent

transitions should be formally defined:

 𝑠𝑠
𝛿𝛿
→ 𝑠𝑠 =

𝒅𝒅𝒅𝒅𝒅𝒅
∀𝑎𝑎 ∈ 𝐴𝐴𝑂𝑂 ∪ {𝜏𝜏}: 𝑠𝑠 ↛

𝑎𝑎
,𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝛿𝛿 ∉ 𝐴𝐴 (15)

where the action δ denotes the observable event of output absence. From (15), then (12) can

be extended into the IOTS to describe observable traces.

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) =
𝒅𝒅𝒅𝒅𝒅𝒅

�𝜎𝜎 ∈ (𝐴𝐴 ∪ 𝛿𝛿)∗| 𝑠𝑠
𝜎𝜎
⇒� (16)

Therefore, Trace(s) includes the δ transitions defined in (15) so that the formal

descriptions of a trace with I/O actions and δ actions are obtained in the IOTS. The

66

expression of s 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 σ stays the same, where
σ
⇒ now includes the s

δ
→ s defined in (15).

By extending the LTS to the IOTS, IUT behaviour can be formally described with differing

I/O actions, which are two of the main objects inspected in black-box testing. However,

testing a timed system requires that the system behaviour under time constraints should be

formally depicted. To achieve this, the concept of a timed I/O transition system (TIOTS) [107]

is introduced to obtain an IUT model in the real-time region. A schematic of a TIOTS is given

in Fig 15:

AI0

Ao0 Ao1

S0

S2 S3

S1

Fig 15 Schematic of a TIOTS

Definition 4: A TIOTS 𝒜𝒜𝑇𝑇 is a quintuple (𝑆𝑆, 𝑆𝑆𝑂𝑂,𝐴𝐴𝐼𝐼 ,𝐴𝐴𝑂𝑂,𝑇𝑇𝑟𝑟𝑇𝑇), where

• 𝑆𝑆 is a finite, non-empty set of states, where in Fig 15, 𝑆𝑆 = {𝑆𝑆0, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3};

• 𝑆𝑆𝑂𝑂 is the initial state, where in Fig 14, 𝑆𝑆𝑂𝑂 = 𝑆𝑆0;

• 𝐴𝐴𝐼𝐼 and 𝐴𝐴𝑜𝑜 denote the observable I/O actions which have been defined in the IOTS. It

should be noted that the action 𝛿𝛿 mentioned in the IOTS is extended to delay actions

in the TIOTS because quiescent actions can be reflected as time delays in the time

67

region. 𝐴𝐴𝜏𝜏𝜏𝜏 is a set of actions containing observable actions 𝐴𝐴 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝑂𝑂 ,

unobservable actions {𝜏𝜏} and observable delay actions {𝛿𝛿}, where

𝐴𝐴𝜏𝜏𝜏𝜏 = 𝐴𝐴 ∪ {𝜏𝜏} ∪ {𝛿𝛿|𝛿𝛿 ∈ ℝ ≥ 0}, 𝜏𝜏 ∉ 𝐴𝐴, 𝛿𝛿 ∉ 𝐴𝐴;

𝐴𝐴𝜏𝜏 = 𝐴𝐴 ∪ {𝜏𝜏}, 𝐴𝐴𝛿𝛿 = 𝐴𝐴 ∪ {𝛿𝛿}

In Fig 15, 𝐴𝐴 = �𝐴𝐴𝐼𝐼0 ,𝐴𝐴𝑂𝑂0 ,𝐴𝐴𝑂𝑂1�;

• 𝑇𝑇𝑇𝑇𝑇𝑇 is a set of transitions, where 𝑇𝑇𝑇𝑇 ⊆ 𝑆𝑆 × 𝐴𝐴𝜏𝜏𝜏𝜏 × 𝑆𝑆 holds, presenting a set of

transition relations under a set of time constraints. Therefore, the state transitions

observed in the time region can be written as state sequences with time intervals

𝑠𝑠0
δ0→ s1

δ1→… sn
δn��…. which should then satisfy the following properties:

o Time determinism:

 ∀𝑠𝑠 ∈ 𝑆𝑆,∃𝑠𝑠′, 𝑠𝑠′′ ∈ 𝑆𝑆: �𝑠𝑠
𝛿𝛿
→ 𝑠𝑠′�⋀ �𝑠𝑠

𝛿𝛿
→ 𝑠𝑠′′� 𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠′ = 𝑠𝑠′′ (17)

o Time additivity:

 ∀𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆,∃𝑠𝑠′′ ∈ 𝑆𝑆, 𝛿𝛿1, 𝛿𝛿2 ∈ 𝛿𝛿: 𝑠𝑠
𝛿𝛿1→ 𝑠𝑠′′

𝛿𝛿2→ 𝑠𝑠′ 𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠
𝛿𝛿1+𝛿𝛿2�⎯⎯� 𝑠𝑠′ (18)

o Zero delay:

 ∀𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
0
→𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑠𝑠 = 𝑠𝑠′ (19)

Based on Definitions 1, 2 and 3, the I/O actions observable with observable time intervals can

be formally defined as follows:

Letting 𝑎𝑎,𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑛𝑛 ∈ 𝐴𝐴, 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼,𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐴𝐴𝜏𝜏𝜏𝜏 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿, 𝛿𝛿0, 𝛿𝛿1, … , 𝛿𝛿𝑛𝑛 ∈ ℝ ≥ 0 , then

according to (5) and (6), a transition sequence 𝒯𝒯 of the TIOTS 𝒜𝒜𝑇𝑇 can be obtained:

68

 𝒯𝒯 = 𝑠𝑠0
 𝛼𝛼0�� 𝑠𝑠1

 𝛼𝛼1�� 𝑠𝑠2
 𝛼𝛼2��…

 𝛼𝛼𝑛𝑛−1�⎯⎯� 𝑠𝑠𝑛𝑛 (20)

As indicated by (20), the transition starts from 𝑠𝑠0 and ends in 𝑠𝑠𝑛𝑛, where 𝑠𝑠𝑛𝑛 ↛
𝛼𝛼 holds so that

𝑠𝑠𝑛𝑛 is the destination state for the transition sequence in (20). Since 𝛼𝛼,𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈ 𝐴𝐴𝜏𝜏𝜏𝜏, 𝒯𝒯

can be decomposed into the I/O action-enabled transitions 𝑠𝑠
𝑎𝑎
⇒𝑠𝑠′ and the delay-enabled

transitions 𝑠𝑠
𝛿𝛿
⇒𝑠𝑠′, which are defined by (21) and (22):

 𝑠𝑠
𝑎𝑎
⇒𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
∃{𝑠𝑠𝑚𝑚, 𝑠𝑠𝑛𝑛}: 𝑠𝑠

𝜏𝜏
⇒𝑠𝑠𝑚𝑚

𝑎𝑎
→𝑠𝑠𝑛𝑛

𝜏𝜏
⇒𝑠𝑠′,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛 ∈ ℕ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 < 𝑛𝑛(21)

𝑠𝑠
𝛿𝛿
⇒𝑠𝑠′ =

𝒅𝒅𝒅𝒅𝒅𝒅
𝑠𝑠

𝜏𝜏
⇒ 𝑠𝑠1

𝛿𝛿1→ 𝑠𝑠2
𝜏𝜏
⇒…

𝜏𝜏
⇒ 𝑠𝑠𝑚𝑚−1

𝛿𝛿𝑛𝑛�� 𝑠𝑠𝑚𝑚
𝜏𝜏
⇒𝑠𝑠′,

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚,𝑛𝑛 ∈ ℕ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚 = 2𝑛𝑛, 𝛿𝛿 = ∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 (22)

Based on (21) and (22), 𝑠𝑠
𝑎𝑎
⇒ and 𝑠𝑠

𝛿𝛿
⇒ are written to represent all transitions starting from

state 𝑠𝑠. To model IUT with TIOTS, it is necessary to define the following properties:

• Weak input enabling

As defined in (14), input enabling systems cannot refuse input action. Strong input

enabling can only enable input actions via external transitions, while weak input

enabling can enable input actions via both external and internal transitions, which is

proven below.

Letting 𝒫𝒫𝑊𝑊𝑊𝑊𝑊𝑊(𝒜𝒜𝑇𝑇) be the property of weak input enabling of 𝒜𝒜𝑇𝑇, and 𝒫𝒫𝑆𝑆𝑆𝑆𝑆𝑆(𝒜𝒜𝑇𝑇) be

the property of strong input enabling of 𝒜𝒜𝑇𝑇, which are defined by (23) and (24):

 𝒫𝒫𝑆𝑆𝑆𝑆𝐸𝐸(𝒜𝒜𝑇𝑇) 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝐼𝐼: 𝑠𝑠
𝑎𝑎𝑖𝑖 �� (23)

69

 𝒫𝒫𝑊𝑊𝑊𝑊𝑊𝑊(𝒜𝒜𝑇𝑇) 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝐼𝐼: 𝑠𝑠
𝑎𝑎𝑖𝑖 ⇒ (24)

• Non-blocking

Letting 𝒫𝒫𝑁𝑁𝑁𝑁(𝒜𝒜𝑇𝑇) be the non-blocking property of 𝒜𝒜𝑇𝑇, then

𝒫𝒫𝑁𝑁𝑁𝑁(𝒜𝒜𝑇𝑇) 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑎𝑎𝑜𝑜𝑖𝑖 ∈ 𝐴𝐴𝑂𝑂, 𝑡𝑡 ∈ ℝ ≥ 0: 𝑠𝑠
𝜎𝜎
⇒ ,

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜎𝜎 = 𝛿𝛿0 ∙ 𝑎𝑎𝑜𝑜0 ∙ 𝛿𝛿1 ∙ 𝑎𝑎𝑜𝑜1 ∙ … ∙ 𝛿𝛿𝑛𝑛 ∙ 𝑎𝑎𝑜𝑜𝑛𝑛 ,∑ 𝛿𝛿𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≥ 𝑡𝑡 (25)

According to (25), the time of the TIOTS 𝒜𝒜𝑇𝑇 is not blocked by the environment

when its successor set of states is reachable after execution of a trace 𝜎𝜎 within an

existing set of delays. Therefore, the TIOTS 𝒜𝒜𝑇𝑇 does not block the time process in

any enabled environment, and the time process of 𝒜𝒜𝑇𝑇 cannot be influenced by the

external environment either. This means that the TIOTS cannot urge input delivery

from the environment, and the environment cannot force output generation from the

TIOTS. As a result, the non-blocking property guarantees that the time passes

equivalently in the TIOTS and the environment, neither being able to be interrupted by

the other.

• Output determinism

Output determinism is an important property of the TIOTS to avoid obtaining

ambiguous output results. Otherwise, one input corresponding with more than one

outputs will make it difficult for the judgement logic of the test tool to determine

which output is the correct one.

70

Letting 𝒫𝒫OD(𝒜𝒜T) be the output determinism property of the TIOTS 𝒜𝒜T, then

 𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) =
𝒅𝒅𝒅𝒅𝒅𝒅

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∃𝛼𝛼′, 𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
𝛼𝛼
→𝑠𝑠′⋀ 𝑠𝑠

𝛼𝛼′
→ 𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝛼𝛼 = 𝛼𝛼′(26)

According to (26), the successor state of an executed action is always deterministic,

and only one state corresponds to one action.

• Output isolation

Another important property related to output actions is output isolation, which requires

that the TIOTS should only deliver one output at a time and should never withdraw the

output delivered by executing unobservable internal actions or observable delay

actions.

Letting 𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) be the output isolation property of the TIOTS 𝒜𝒜𝑇𝑇, then

𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) =
𝒅𝒅𝒅𝒅𝒅𝒅

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝑎𝑎𝑜𝑜⇒ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 ∈ 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂

 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑠𝑠 ⇏
𝜏𝜏

 ⋀ 𝑠𝑠 ⇏
𝛿𝛿 (27)

Therefore,

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∃𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂, 𝑠𝑠, 𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
𝑎𝑎𝑜𝑜⇒ 𝑠𝑠′⋀ 𝑠𝑠

𝑎𝑎𝑜𝑜′⇒ 𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑎𝑎𝑜𝑜 = 𝑎𝑎𝑜𝑜′ (28)

• Output urgency

The last property is output urgency, which requires that the TIOTS should deliver the

output immediately the output is ready, which means that delays do not exist between

71

the TIOTS and its environment.

Letting 𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) be the output urgency property of the TIOTS 𝒜𝒜𝑇𝑇, then

𝒫𝒫𝑂𝑂𝑂𝑂(𝒜𝒜𝑇𝑇) =
𝒅𝒅𝒅𝒅𝒅𝒅

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝑎𝑎𝑜𝑜⇒ ⋁ 𝑠𝑠

𝜏𝜏
⇒ 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂, 𝑠𝑠 ∈ 𝑆𝑆

 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 ∀𝛿𝛿 ∈ ℝ > 0: 𝑠𝑠 ⇏
𝛿𝛿 (29)

It should be noted that when modelling real IUT for the implementation of simulation

combined MBT, the communication delay between the SUT and its operational

environment should be included in the IUT model. The method of implementing

modelling of communication delays is explained in section 5.1.1.

Based on the defined TIOTS and the necessary properties for black-box testing, the relations

between observable actions, delays and state transitions can be formally defined.

Definition 5: A sequence of observable actions during implementation of black-box testing is

an observable timed trace 𝜎𝜎 ∈ 𝐴𝐴𝛿𝛿∗ , where * denotes abstract transition relations where

transitions can be triggered by 𝛼𝛼 ∈ 𝐴𝐴𝛿𝛿. As defined in Definition 4, 𝐴𝐴 = 𝐴𝐴𝐼𝐼⋃𝐴𝐴𝑂𝑂 denotes all

observable I/O actions contained in the TIOTS, and 𝛿𝛿 ∈ ℝ ≥ 0 represents time delays

between I/O actions. Therefore, the observable timed trace 𝜎𝜎 is defined below:

 𝜎𝜎 = 𝑎𝑎0 ⋅ 𝛿𝛿0 ⋅ 𝑎𝑎1 ⋅ 𝛿𝛿1 ⋅ … ⋅ 𝑎𝑎𝑛𝑛 ⋅ 𝛿𝛿𝑛𝑛,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛 ∈ ℕ+ (30)

According to (30), all timed observable traces 𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) starting from state 𝑠𝑠 can be obtained:

 𝑇𝑇𝑇𝑇𝑇𝑇(𝑠𝑠) =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝜎𝜎 ∈ 𝐴𝐴𝛿𝛿∗ : 𝑠𝑠
𝜎𝜎
⇒ (31)

72

Therefore, for the state s and trace σ, if there exists a reachable state after execution of σ in

state s, which is written as 𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎, then

 𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎 =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝑠𝑠′ ∈ 𝑆𝑆: 𝑠𝑠
𝜎𝜎
⇒ 𝑠𝑠′ (32)

Hence, for the super set 𝑆𝑆′ of the state 𝑠𝑠, where 𝑆𝑆′ ⊆ 𝑆𝑆, the set of states reachable after

execution of σ in state S′ can be obtained:

 𝑆𝑆′𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎 = ⋃ (𝑠𝑠 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎)𝑠𝑠∈𝑆𝑆′ (33)

According to (31) and (32), the observable input action and observable output action with

delays which are derived from state 𝑠𝑠 can be obtained:

 𝐼𝐼𝐼𝐼(𝑠𝑠) = {𝑎𝑎𝑖𝑖 ∈ 𝐴𝐴𝐼𝐼|𝑠𝑠
𝑎𝑎𝑖𝑖⇒},𝑂𝑂𝑂𝑂𝑂𝑂(𝑠𝑠) = {𝑎𝑎𝑜𝑜 ∈ 𝐴𝐴𝑂𝑂 ∪ 𝛿𝛿|𝑠𝑠

𝑎𝑎𝑜𝑜⇒} (34)

According to (33) and (34), the set of observable input actions with delays derived from the

set of states 𝑆𝑆′, where inputs are enabled, can be obtained:

 𝐼𝐼𝐼𝐼(𝑆𝑆′) = ⋃ 𝐼𝐼𝐼𝐼(𝑠𝑠)𝑠𝑠∈𝑆𝑆′ ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆′ ⊆ 𝑆𝑆 (35)

According to (33) and (34), the set of observable output actions with delays derived from the

set of states 𝑆𝑆′, where outputs are enabled, can be obtained:

 𝑂𝑂𝑂𝑂𝑂𝑂(𝑆𝑆′′) = ⋃ 𝑂𝑂𝑂𝑂𝑂𝑂(𝑠𝑠)𝑠𝑠∈𝑆𝑆′′ ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆′′ ⊆ 𝑆𝑆 (36)

Using Definition 5, the elements which are necessary for modelling system behaviour based

on TIOTS are formally defined. With expression of the relations between the actions which

73

can be observed during the functional black-box testing procedure and the state transitions,

the essential information is provided for test tools to generate I/O sequences from the IUT

model. One of the main tasks of online MBT is to maximally substitute manual functional

black-box testing by automating the test case generation and execution processes. Therefore,

it still adopts the classic implementation architecture of functional black-box testing in which

the tester observes the externally observable actions happening between IUT and its

operational environment, which means both IUT behaviour and its environment behaviour

should be modelled in the TIOTS format. With Definition 5, single-system behaviour in

TIOTS has been defined. To obtain a specification model suitable for black-box testing,

parallel composition of the IUT and environment should be defined so that their interactions

can be modelled in TIOTS format. Fig 16 depicts the two parallel TIOTSs of the IUT and its

operational environment.

AI0

Ao0 Ao1

S0

S2 S3

S1

AO0

AI0 AI1

E0

E2 E3

E1

IUT Environment||

Fig 16 Schematic of the parallel configuration of two TIOTSs

Definition 6: Implementation of functional black-box testing 𝐼𝐼𝐵𝐵 is a closed system where

74

IUT 𝒮𝒮 and its operational environment ℰ interact with each other in parallel.

 𝐼𝐼𝐵𝐵 = 𝒮𝒮 ∥ ℰ (37)

In previous definitions, I/O actions are defined from the perspective of the IUT, where input

actions are delivered by the environment and output actions are sent out from the IUT.

Therefore, from the perspective of the environment, a reversed form of I/O actions can be

obtained. According to Definition 4, the IUT and its operational environment can be formally

expressed as two TIOTSs:

 𝒮𝒮 = (𝑆𝑆, 𝑆𝑆0,𝐴𝐴𝐼𝐼 ,𝐴𝐴𝑂𝑂,𝑇𝑇𝑟𝑟𝑇𝑇),ℰ = (𝐸𝐸,𝐸𝐸0,𝐴𝐴𝑂𝑂,𝐴𝐴𝐼𝐼 ,𝑇𝑇𝑟𝑟𝑇𝑇) (38)

In (38), S and S0, respectively, denote all the states and the initial state of the IUT, and

E and E0 , respectively, denote all the states and the initial state of the operational

environment of the IUT. According to (37) and (38), the following properties can be satisfied,

where s ∈ S, e ∈ E, and a ∈ AI ∪ AO.

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝑎𝑎
→ 𝑠𝑠′⋀ 𝑒𝑒

𝑎𝑎
→𝑒𝑒′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝑎𝑎
→ (𝑠𝑠′, 𝑒𝑒′) (39)

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝜏𝜏
→ 𝑠𝑠′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝜏𝜏
→ (𝑠𝑠′, 𝑒𝑒) (40)

 𝑤𝑤ℎ𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒
𝜏𝜏
→𝑒𝑒′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝜏𝜏
→ (𝑠𝑠, 𝑒𝑒′) (41)

 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠
𝛿𝛿
→ 𝑠𝑠′⋀ 𝑒𝑒

𝛿𝛿
→𝑒𝑒′ 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 (𝑠𝑠, 𝑒𝑒)

𝛿𝛿
→ (𝑠𝑠′, 𝑒𝑒′) (42)

Therefore, the behaviour of the system in the parallel TIOTS is formally defined. It should be

noted that in the real implementation of online testing of a TCS, some further information is

75

required for observable actions, including variables along with related manipulations in states

or transitions, guards controlling whether transitions are accessible based on the current

values of variables, and clocks [115]. However, the fundamental framework of the formal

model should abide by the defined composition based on TA theory, and the remaining

information can be defined by specific modelling tools. To cope with the defined modelling

format, the tester should focus on observable I/O actions with relevant time constraints and

omit internal actions which are unobservable, which is similar to the implementation structure

of black-box testing.

3.2.2 Conformance relation in MBT [107]

According to Fig 13, the objective of MBT is to determine whether the real behaviour of the

SUT complies with that described by the IUT model, which needs to be determined by

computer. Therefore, a criterion needs to be formally defined to provide a formal standard for

the test tools, determining compliance between the formal model and the real SUT [106]. The

formal criterion is called the conformance relation which is adopted to judge whether the SUT

behaviour complies with the specification requirements of the IUT model [116]. As shown in

Fig 17, to prove that the IUT conforms to the specification requirements, the IUT behaviour

should be proven to be a subset of IUT model behaviour, which means that different manners

of describing the IUT behaviour lead to different conformance relations. The trace defined in

Definition 2 is adopted as the manner of describing the IUT behaviour for online MBT, so

that the corresponding conformance relations are trace conformance relations [113]. To

determine that the real IUT is trace conformant with the IUT model, various conformance

76

relations have been well developed for LTS-based models with different emphases. One

relation, called the trace preorder relation, requires that IUT traces should not contain actions

which are not included in the IUT model [117]. Another, stronger, relation requires that the

IUT should not only perform the actions expected in the specification, but also refuse actions

which cannot be performed in the IUT model [117]. The input–output conformance relation

(ioco) requires that the IUT should produce an output only if it is one expected by the

specification requirements which are presented by the IUT model [113]. Evolved from the

ioco, symbolic ioco (sioco) is developed to define the conformance relations in a symbolic I/O

system which is an extension of the IOTS [118].

IUT Model
behaviour

Real IUT
behaviour ⊆ Conformance

Fig 17 Schematic of the conformance relation in MBT

Since the IUT model is based on TA theory in this thesis, the ioco relation needs to be

extended into the time region, which is called the timed ioco (tioco). The tioco requires that

the IUT should never perform an action unexpected by the specification requirements or the

IUT model, where unexpected actions include not only unexpected outputs but also violations

of time constraints. The reason for adopting the tioco instead of another conformance relation

is that it satisfies the requirements of black-box testing which concern external I/O actions

[119]. For complex SUTs such as TCSs, the tioco relation inspects the crucial information

provided by the specification requirements, such as the I/O sequence with time constraints,

77

and omits inspection of other non-vital information, to control the computational load during

testing implementation. As a result, the tioco is adopted as the conformance relation for

simulation combined MBT. The formal description of the tioco which extends the ioco into

the time region is defined below:

𝑖𝑖 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝜎𝜎 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇(𝑒𝑒).𝑂𝑂𝑂𝑂𝑂𝑂((𝑖𝑖, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎) ⊆ 𝑂𝑂𝑂𝑂𝑂𝑂((𝑠𝑠, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝜎𝜎)(43)

where 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 denotes: after executing any available timed trace 𝜎𝜎 based on the state 𝑒𝑒 ∈ 𝐸𝐸

which is a state of the environment TIOTS, the set of destination states generated from the

state 𝑖𝑖 of the implementation TIOTS and the environment state 𝑒𝑒 will always be a subset of

the set of destination states generated from state 𝑠𝑠 of the specification TIOTS and the

environment state 𝑒𝑒 [14]. ‘𝐀𝐀𝐅𝐅𝐓𝐓𝐄𝐄𝐑𝐑 𝜎𝜎’ denotes all the reachable destination states achieved by

the parallel systems after executing a timed I/O trace 𝜎𝜎, which has been defined in (33).

Whenever 𝑖𝑖 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑠𝑠 is true, implementation 𝑖𝑖 is determined to be conformant with

specification 𝑠𝑠. It should be noted that the prerequisite of 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 is that both the IUT system

𝑖𝑖 and the specification system 𝑠𝑠 should perform behaviour under the constraint of the same

operational environment 𝑒𝑒. Based on the formal definition of 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, consistency between the

real IUT and the IUT model can be determined automatically by the computer during

execution of online MBT.

3.2.3 Modelling method for Simulation Combined MBT

In sections 3.2.1 and 3.2.2, the modelling method and conformance relation of typical online

MBT have been formally defined, which means that online MBT can be implemented if IUT

78

behaviour can be modelled in the manner defined. However, TCSs are highly complex, with

numerous safety-related components and various operational scenarios. Modelling such

systems with the methods defined can easily lead the formal models to a state explosion

situation where the possibilities contained in the IUT model exceed the computational

capability of the computer so that the testing fails to obtain valid testing results [120]. To

apply MBT and to automate the functional testing of TCSs, the simulation combined online

MBT method addresses the challenge of testing complex integrated systems and takes the

advantages of both simulation and formal methods. As shown in Fig 13, the key part of

simulation combined MBT is to model implementation by two models with two different

modelling methods, rather than to model it by a single formal modelling method such as the

one introduced in section 3.2.1 which realises the parallel structure AS of the SUT and its

environment defined by Definition 6. To realise automatic testing with the application of an

online testing algorithm, the modelling method needs to be formally defined to adapt to the

TIOTS format. According to Definitions 1–6, the refined modelling method for simulation

combined MBT, which is an extension of the defined TIOTS, is formally defined by

Definition 7. Considering the modelling method as dividing the system behaviour into a

two-model-combined structure based on the current TIOTS frame, the author names it

SCTIOTS.

79

A
0S

0

Ι
ΙA

0

Ι
OΑ

A
1S

A
2S

0

E
AΙΑ

A
3S

0

E
AOΑ

A
4S

S
0S

0

Ι
OΑ

0

Ι
ΙΑ

S
1S

S
2S

0

E
SΙΑ

S
3S

0

E
SOΑ

S
4S

Fig 18 Schematic of an SCTIOTS

Definition 7: A Simulation Combined Timed I/O Transition System (SCTIOTS) is two

TIOTSs in parallel, where 𝒜𝒜T
S = 𝒮𝒮A ∥ 𝒮𝒮S. 𝒮𝒮A = �𝑆𝑆𝐴𝐴, 𝑆𝑆𝑂𝑂𝐴𝐴,𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐴𝐴𝐼𝐼

𝐸𝐸 ,𝐴𝐴𝐴𝐴𝑂𝑂
𝐸𝐸 ,𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇� is a septuple,

modelling the implementation behaviour of the abstract model.

𝒮𝒮S = �𝑆𝑆𝑆𝑆, 𝑆𝑆𝑂𝑂𝑆𝑆,𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸 ,𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸 ,𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇� is also a septuple, modelling the implementation

behaviour of the simulation model.

In the TIOTS 𝒮𝒮A:

• 𝑆𝑆𝐴𝐴 is a finite, non-empty set of states, where in Fig 18, 𝑆𝑆𝐴𝐴 = {𝑆𝑆0𝐴𝐴, 𝑆𝑆1𝐴𝐴, 𝑆𝑆2𝐴𝐴, 𝑆𝑆3𝐴𝐴, 𝑆𝑆4𝐴𝐴};

• 𝑆𝑆𝑂𝑂𝐴𝐴 is the initial state, where in Fig 14, 𝑆𝑆𝑂𝑂𝐴𝐴 = 𝑆𝑆0𝐴𝐴;

• 𝐴𝐴𝐼𝐼𝐼𝐼 and 𝐴𝐴𝑂𝑂𝐼𝐼 denote the observable internal I/O actions which are different from the

internal actions defined in the TIOTS, where internal actions 𝜏𝜏 denote the internal

unobservable actions in a TIOTS. The observable internal actions here refer to the I/O

actions between the abstract model and the simulation model of the SCTIOTS. In

contrast, 𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸 and 𝐴𝐴𝐴𝐴𝑂𝑂

𝐸𝐸 denote the observable external I/O which happen between the

80

𝒮𝒮A and the environment. Similar to that in the TIOTS, 𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴 is a set of actions in the

TIOTS 𝒮𝒮A, containing observable actions 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝐴𝐴𝐸𝐸, unobservable actions {𝜏𝜏}

and observable delay actions {𝛿𝛿}, where:

𝐴𝐴𝐼𝐼 = 𝐴𝐴𝐼𝐼𝐼𝐼⋃𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐴𝐴𝐸𝐸 = 𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸⋃𝐴𝐴𝐴𝐴𝑂𝑂

𝐸𝐸 ;

𝐴𝐴𝐼𝐼𝐴𝐴 = 𝐴𝐴𝐼𝐼𝐼𝐼⋃𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸 ,𝐴𝐴𝑂𝑂𝐴𝐴 = 𝐴𝐴𝑂𝑂𝐼𝐼 ⋃𝐴𝐴𝐴𝐴𝑂𝑂

𝐸𝐸 ;

𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∪ {𝜏𝜏} ∪ {𝛿𝛿|𝛿𝛿 ∈ ℝ ≥ 0}, 𝜏𝜏 ∉ 𝐴𝐴𝐴𝐴, 𝛿𝛿 ∉ 𝐴𝐴𝐴𝐴;

 𝐴𝐴𝜏𝜏𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∪ {𝜏𝜏}, 𝐴𝐴𝛿𝛿𝐴𝐴 = 𝐴𝐴𝐴𝐴 ∪ {𝛿𝛿};

In Fig 18, 𝐴𝐴𝐼𝐼𝐴𝐴 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸
0

} , 𝐴𝐴𝑂𝑂𝐴𝐴 = {𝐴𝐴𝑂𝑂𝐼𝐼 0,𝐴𝐴𝐴𝐴𝑂𝑂0
𝐸𝐸 } , 𝐴𝐴𝐼𝐼 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝑂𝑂𝐼𝐼 0} and 𝐴𝐴𝐴𝐴𝐸𝐸 =

�𝐴𝐴𝐴𝐴𝐼𝐼
𝐸𝐸
0

,𝐴𝐴𝐴𝐴𝑂𝑂0
𝐸𝐸 �.

• According to the defined TIOTS, 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 is a set of transitions in 𝒮𝒮A, where 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇 ⊆

𝑆𝑆𝐴𝐴 × 𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴 × 𝑆𝑆𝐴𝐴 holds, and the properties of time determinism, time additivity and zero

delay should all be satisfied. Moreover, the input is still weakly enabled, and the time

cannot be blocked in the TIOTS 𝒮𝒮A. Output properties such as output determinism,

output isolation and output urgency still hold in 𝒮𝒮A.

In the TIOTS 𝒮𝒮S:

• 𝑆𝑆𝑆𝑆 is a finite, non-empty set of states, where in Fig 18, 𝑆𝑆𝑆𝑆 = {𝑆𝑆0𝑆𝑆, 𝑆𝑆1𝑆𝑆, 𝑆𝑆2𝑆𝑆, 𝑆𝑆3𝑆𝑆, 𝑆𝑆4𝑆𝑆};

• 𝑆𝑆𝑂𝑂𝑆𝑆 is the initial state, where in Fig 14, 𝑆𝑆𝑂𝑂𝑆𝑆 = 𝑆𝑆0𝑆𝑆;

• Similar to 𝒮𝒮A, the observable internal I/O actions are 𝐴𝐴𝑂𝑂𝐼𝐼 and 𝐴𝐴𝐼𝐼𝐼𝐼 , which have a

reversed order compared with 𝒮𝒮A to denote internal I/O actions in the parallel system

of the two TIOTSs defined in Definition 6. Differently, 𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸 and 𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸 denote the

observable external I/O which happen between 𝒮𝒮S and the environment. Similarly,

81

𝐴𝐴𝜏𝜏𝜏𝜏𝑆𝑆 is a set of actions in the TIOTS 𝒮𝒮S, containing observable actions 𝐴𝐴𝑆𝑆 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝑆𝑆𝐸𝐸,

unobservable actions {𝜏𝜏} and observable delay actions {𝛿𝛿}, where:

𝐴𝐴𝐼𝐼 = 𝐴𝐴𝑂𝑂𝐼𝐼 ⋃𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑆𝑆𝐸𝐸 = 𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸⋃𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸 ;

𝐴𝐴𝐼𝐼𝑆𝑆 = 𝐴𝐴𝐼𝐼𝐼𝐼⋃𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸 ,𝐴𝐴𝑂𝑂𝑆𝑆 = 𝐴𝐴𝑂𝑂𝐼𝐼 ⋃𝐴𝐴𝑆𝑆𝑂𝑂

𝐸𝐸 ;

𝐴𝐴𝜏𝜏𝜏𝜏𝑆𝑆 = 𝐴𝐴𝑆𝑆 ∪ {𝜏𝜏} ∪ {𝛿𝛿|𝛿𝛿 ∈ ℝ ≥ 0}, 𝜏𝜏 ∉ 𝐴𝐴𝑆𝑆, 𝛿𝛿 ∉ 𝐴𝐴𝑆𝑆;

 𝐴𝐴𝜏𝜏𝑆𝑆 = 𝐴𝐴𝑆𝑆 ∪ {𝜏𝜏}, 𝐴𝐴𝛿𝛿𝑆𝑆 = 𝐴𝐴𝑆𝑆 ∪ {𝛿𝛿};

In Fig 18, 𝐴𝐴𝐼𝐼𝑆𝑆 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸
0

} , 𝐴𝐴𝑂𝑂𝑆𝑆 = {𝐴𝐴𝑂𝑂𝐼𝐼 0,𝐴𝐴𝑆𝑆𝑂𝑂0
𝐸𝐸 } , 𝐴𝐴𝐼𝐼 = {𝐴𝐴𝐼𝐼𝐼𝐼0,𝐴𝐴𝑂𝑂𝐼𝐼 0} and 𝐴𝐴𝑆𝑆𝐸𝐸 =

�𝐴𝐴𝑆𝑆𝐼𝐼
𝐸𝐸
0

,𝐴𝐴𝑆𝑆𝑂𝑂0
𝐸𝐸 �.

Note that 𝒮𝒮A and 𝒮𝒮S share corresponding (reversed) internal I/O actions but

individually they have different external I/O actions interacting with the environment.

Therefore, the following equations hold:

𝐴𝐴𝐼𝐼𝐴𝐴 ∩ 𝐴𝐴𝐼𝐼𝑆𝑆 = 𝐴𝐴𝐼𝐼𝐼𝐼 ,𝐴𝐴𝑂𝑂𝐴𝐴 ∩ 𝐴𝐴𝑂𝑂𝑆𝑆 = 𝐴𝐴𝑂𝑂𝐼𝐼 ,𝐴𝐴𝐴𝐴𝐸𝐸 ∩ 𝐴𝐴𝑆𝑆𝐸𝐸 = 𝛷𝛷

• According to the defined TIOTS, 𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇 is a set of transitions in 𝒮𝒮S, where 𝑇𝑇𝑇𝑇𝑆𝑆𝑇𝑇 ⊆

𝑆𝑆𝑆𝑆 × 𝐴𝐴𝜏𝜏𝜏𝜏𝑆𝑆 × 𝑆𝑆𝑆𝑆 holds, and the properties time determinism, time additivity and zero

delay should all be satisfied. Moreover, the input is still weakly enabled, and the time

cannot be blocked in the TIOTS 𝒮𝒮A. Output properties such as output determinism,

output isolation and output urgency still hold in 𝒮𝒮S.

Based on the defined SCTIOTS, IUT behaviour can be modelled in the form of two parallel

TIOTSs. The TIOTS of the abstract model is utilised to describe the abstract behaviour of the

IUT, and the TIOTS of the simulation model is utilised to model the concrete behaviour of the

IUT. Only the abstract model is built by a formal modelling tool so that only the model of the

82

abstract model is analysed by the test tool in MBT implementation. As it has a connection

with the abstract model, the IUT behaviour modelled in the simulation model can be tested

indirectly. Since only the abstract model will be analysed by the test tool, the author has

defined the relations between observable actions, delays and state transitions from the view of

the abstract model of the SCTIOTS. Based on Definition 5, Definition 8 formally defines the

necessary elements for online MBT.

Definition 8: A sequence of observable actions during implementation of black-box testing is

an observable timed trace 𝛴𝛴 ∈ �𝐴𝐴𝛿𝛿𝐴𝐴�
∗, where * denotes abstract transition relations where

transitions can be triggered by 𝒶𝒶 ∈ 𝐴𝐴𝛿𝛿𝐴𝐴 . From Definition 7, 𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐼𝐼 ∪ 𝐴𝐴𝐴𝐴𝐸𝐸 denotes all

observable I/O actions contained in 𝒮𝒮𝐴𝐴, including the observable internal I/O actions with 𝒮𝒮𝑆𝑆

and the external I/O actions with the environment. 𝛿𝛿 ∈ ℝ ≥ 0 represents time delays

observed in the transitions of 𝒮𝒮𝐴𝐴 . Letting 𝒶𝒶,𝒶𝒶0,𝒶𝒶1, … ,𝒶𝒶𝑛𝑛 ∈ 𝐴𝐴𝐴𝐴,𝛼𝛼,𝛼𝛼0,𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 ∈

𝐴𝐴𝜏𝜏𝜏𝜏𝐴𝐴 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝛥𝛥,𝛥𝛥0,𝛥𝛥1, … ,𝛥𝛥𝑛𝑛 ∈ ℝ ≥ 0, the observable timed trace 𝛴𝛴 is defined as:

 𝛴𝛴 = 𝒶𝒶0 ⋅ 𝛥𝛥0 ⋅ 𝒶𝒶1 ⋅ 𝛥𝛥1 ⋅ … ⋅ 𝒶𝒶𝑛𝑛 ⋅ 𝛥𝛥𝑛𝑛 (44)

According to (44), all the timed observable traces 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇(𝑠𝑠) starting from state 𝑠𝑠𝐴𝐴 ∈ 𝑆𝑆𝐴𝐴 can

be obtained with:

 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇(𝑠𝑠𝐴𝐴) =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝛴𝛴 ∈ �𝐴𝐴𝛿𝛿𝐴𝐴�
∗: 𝑠𝑠𝐴𝐴

𝛴𝛴
⇒ (45)

Therefore, if for the state sA and the trace Σ, there exists a reachable state after execution of

Σ in state sA, which is written as 𝑠𝑠𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 Σ, then:

83

 𝑠𝑠𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴 =
𝒅𝒅𝒅𝒅𝒅𝒅

∃𝑠𝑠𝐴𝐴′ ∈ 𝑆𝑆𝐴𝐴: 𝑠𝑠𝐴𝐴
𝛴𝛴
⇒𝑠𝑠𝐴𝐴′ (46)

Hence, for the super set 𝑆𝑆𝐴𝐴′ of the state 𝑠𝑠𝐴𝐴, where 𝑆𝑆𝐴𝐴′ ⊆ 𝑆𝑆𝐴𝐴, the reachable set of states

after execution of Σ in state SA′ can be obtained using:

 𝑆𝑆𝐴𝐴′𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴 = ⋃ (𝑠𝑠𝐴𝐴 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐴𝐴′ (47)

According to (45) and (46), the internal input action and internal output action or the delay

which are observable and derived from state 𝑠𝑠𝐴𝐴 can be obtained:

 𝐼𝐼𝑁𝑁𝐼𝐼(𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑖𝑖𝐼𝐼 ∈ 𝐴𝐴𝐼𝐼𝐼𝐼|𝑠𝑠𝐴𝐴
𝑎𝑎𝑖𝑖
𝐼𝐼

⇒},𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼 (𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑜𝑜𝐼𝐼 ∈ 𝐴𝐴𝑂𝑂𝐼𝐼 ∪ 𝛥𝛥|𝑠𝑠𝐴𝐴
𝑎𝑎𝑜𝑜𝐼𝐼⇒} (48)

According to (47) and (48), the internal input actions with delays derived from the set of

states 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 where internal inputs are enabled can be obtained by:

 𝐼𝐼𝑁𝑁𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴) = ⋃ 𝐼𝐼𝑁𝑁𝐼𝐼(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐼𝐼𝐼𝐼
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (49)

According to (47) and (48), the internal output actions with delays derived from the set of

states 𝑆𝑆𝐼𝐼𝑂𝑂𝐴𝐴 where internal outputs are enabled can be obtained by:

 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴) = ⋃ 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐼𝐼𝐼𝐼
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (50)

Accordingly, the external input action and internal output action or delay which are

observable and derived from state 𝑠𝑠𝐴𝐴 can be obtained:

 𝐼𝐼𝑁𝑁𝐸𝐸(𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑖𝑖𝐸𝐸 ∈ 𝐴𝐴𝐼𝐼𝐸𝐸|𝑠𝑠𝐴𝐴
𝑎𝑎𝑖𝑖
𝐸𝐸

��},𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸 (𝑠𝑠𝐴𝐴) = {𝑎𝑎𝑜𝑜𝐸𝐸 ∈ 𝐴𝐴𝑂𝑂𝐸𝐸 ∪ 𝛥𝛥|𝑠𝑠𝐴𝐴
𝑎𝑎𝑜𝑜𝐸𝐸��} (51)

According to (47) and (51), the external input actions with delays derived from the set of

84

states 𝑆𝑆𝐸𝐸𝐼𝐼𝐴𝐴 where external inputs are enabled can be obtained by:

 𝐼𝐼𝑁𝑁𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴) = ⋃ 𝐼𝐼𝑁𝑁𝐸𝐸(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐸𝐸𝐸𝐸
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (52)

According to (47) and (51), the external output actions with delays derived from the set of

states 𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 where external outputs are enabled can be obtained by:

 𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴) = ⋃ 𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸(𝑠𝑠𝐴𝐴)𝑠𝑠𝐴𝐴∈𝑆𝑆𝐸𝐸𝐸𝐸
𝐴𝐴 ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (53)

According to (50) and (52), all observable input actions with delays of 𝒮𝒮𝐴𝐴 can be obtained:

 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴) = 𝐼𝐼𝑁𝑁𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴)⋃𝐼𝐼𝑁𝑁𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 = 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴⋃𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴 (54)

According to (50) and (53), all observable output actions with delays of 𝒮𝒮𝐴𝐴 can be obtained:

 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴) = 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼(𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴)⋃𝑂𝑂𝑂𝑂𝑇𝑇𝐸𝐸(𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴),𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑆𝑆𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴 = 𝑆𝑆𝐼𝐼𝐼𝐼𝐴𝐴 ⋃𝑆𝑆𝐸𝐸𝐸𝐸𝐴𝐴 ⊆ 𝑆𝑆𝐴𝐴(55)

Based on Definition 8, the observable actions and delays are formally defined, which

provides the possibility of automatic test generation via analysis of the defined formal model.

The 𝒮𝒮𝐴𝐴 of the SCTIOTS is still in the TIOTS architecture with classified internal I/O actions

and external I/O actions. Therefore, the conformance relation between 𝒮𝒮𝐴𝐴 and its operational

environment still satisfies the one defined in section 3.2.2. Based on the refined definitions in

Definition 8, the conformance relation between 𝒮𝒮𝐴𝐴, which is the abstract model of the

SCTIOTS 𝒜𝒜𝑇𝑇
𝑆𝑆 , and a given environment can be rewritten:

𝑖𝑖 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖 ∀𝛴𝛴 ∈ 𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇(𝑒𝑒).𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼𝐼𝐼((𝑖𝑖, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴) ⊆ 𝑂𝑂𝑂𝑂𝑇𝑇𝐼𝐼𝐼𝐼((𝑠𝑠, 𝑒𝑒) 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝛴𝛴) (56)

85

where 𝑖𝑖 represents implementation of the SCTIOTS 𝒜𝒜𝑇𝑇
𝑆𝑆 and the other elements stay as

defined in the previous definitions. Based on the defined SCTIOTS consisting of abstract and

simulation models, only the system behaviour in the abstract model 𝒮𝒮𝐴𝐴 is formally modelled,

which significantly reduces the formal model size. However, this modelling architecture

cannot fully cover all the IUT behaviour included in the SCTIOTS model. The external I/O

actions between the simulation model 𝒮𝒮𝑆𝑆 and the environment are not inspected by the test

tool because computational power may not be sufficient to cover inspection of all the I/O

actions. However, the interactions proceed internally between the abstract model and the

simulation model so that inconsistencies between the simulation model and the environment

caused by external I/O actions can be indirectly detected by the test tool.

Based on the defined SCTIOTS and the corresponding conformance relation, the modelling

framework of simulation combined MBT can be illustrated by Fig 19:

IUT model

Verified by
the online
MBT tool

Abstract
model

Simulation
Model

SUTInternal I/O

External I/O 1

External I/O 2

Environment

Fig 19 Modelling framework of simulation combined MBT

86

As revealed by Fig 19, simulation combined MBT is realised by a two-model-combined

format of the IUT model. Meanwhile, I/O actions are divided into internal and external

aspects as described in Definition 8. Different from the modelling method of typical MBT,

which models individual components and obtains the implementation model by constructing

parallel systems of the SUT and the environment, the SCTIOTS modelling method divides the

original implementation into abstract and simulation models, where discrete and abstract

actions are modelled by the abstract model, and continuous and specific variables are

modelled in the simulation model. Based on the defined SCTIOTS, internal I/O actions

between the abstract model and the simulation model can be formally described, and external

I/O actions between the abstract model and the environment can be likewise described.

According to the defined conformance relation, the I/O actions involving the abstract model

can be automatically inspected by online MBT tools. As mentioned before, external I/O

actions between the simulation model and the environment are exclusive of the inspections

carried out by test tools but they can be indirectly and partially inspected via the internal I/O

actions between the two models. Therefore, the consistency between the SUT and

specification requirements can be determined. The remaining external I/O actions not covered

are not verified during the test, but can be inspected according to the data recorded through

the testing procedure.

With a testing purpose of black-box testing, the modelling method of MBT is required to be

capable of modelling the entire SUT behaviour with unambiguous information, which can

expand the model size to exhaust the computational power. The state space of the formal

87

model can easily exceed the memory of the computer when the formal model is too complex.

Traditional modelling methods of online MBT have explicit modelling boundaries and

architecture, such as the two parallel TIOTS systems introduced by Definition 6. The benefit

of this modelling system structure is that the formal model can completely describe the

expected behaviour of the SUT and its operational environment if the model size is acceptable

for computation.

However, SUTs in industrial fields can be more complex than what can be afforded by

computer. For example, an OBU should realise a series of functions involving other

components or subsystems. Even for testing a single function, the OBU or its operational

environment can be too complex for automatic test generation. To implement online MBT

based on traditional modelling methods, both the SUT model and the environment need to be

simplified to reduce the model size and complexity, which is time-consuming and carries a

risk of losing information essential for testing. When applying SCTIOTS as the modelling

method for online MBT, behaviour of the whole system can be modelled in two models,

where a formal method builds the abstract model, and simulation builds the simulation model.

With the SCTIOTS modelling framework, the formal modelling scale becomes adjustable so

that that the tester can target the testing emphases of SUTs with limited computational power.

This is especially significant for testing SUTs, such as TCSs, and other systems including

numerous components with a complex structure.

The SCTIOTS modelling method introduces new problems which need to be solved. Firstly,

the two-model-combined framework requires the tester to have a higher degree of modelling

88

skill, because the boundary between the abstract model and the simulation model is not a

physical boundary such as that between the IUT and its operational environment. Instead,

boundary is a logical boundary which can be flexibly defined by the tester, which means that

the tester must be proficient in formal modelling and very familiar with the SUT operating

principle, otherwise the use of poorly partitioned models can lead to poor testing accuracy and

efficiency. Secondly, the SCTIOTS modelling method contains three kinds of I/O action while

the traditional TIOTS modelling method only contains one; this increases the difficulty of

building interfaces for the I/O channels of those I/O actions. Additionally, the priority of the

I/O actions must be determined to avoid overwritten data or logical contradictions, which

requires a further complex interface to appropriately synchronise the three kinds of I/O action.

Finally, the uncovered functions modelled in the simulation model should be verified after

online MBT is finished, which may take extra effort to configure the verification well

according to the characteristics of the SUT.

3.3 Summary

In this chapter, the formal modelling method of simulation combined MBT is introduced as

SCTIOTS which is an evolution of the existing TIOTS method. SCTIOTS differs from the

TIOTS model, as it models the SUT into parallel abstract and simulation models, where the

abstract model is developed using a formal modelling tool, and the simulation model is built

by a simulation tool. The combination of formal modelling with simulation can significantly

reduce the formal model size to avoid state explosion, which may exceed the computational

power of the computer. Compared with TIOTS, SCTIOTS can be applied to model more

89

kinds of complex SUT because its application is not limited by the complexity of the SUT.

Although SCTIOTS does require a more profound understanding of formal modelling and the

SUT operating principle, it can be applied to more scenarios because of its flexibility, high

degree of efficiency and interoperability.

90

4 Implementation of Simulation Combined MBT

4.1 Overview of the Simulation Combined MBT Platform

In Chapter 3, the modelling method for simulation combined MBT is explained, which

provides the possibility of realising online MBT based on a simulation combined model.

Evolved from traditional TIOTS, SCTIOTS significantly reduces the complexity of the

specification model by dividing the IUT model into abstract and simulation models. However,

the division approach poses new issues, which means that the original solutions of online

MBT based on TIOTS cannot be transplanted to simulation combined MBT. The

implementation of simulation combined MBT is explained in this chapter, which includes the

steps in realising simulation combined MBT based on the theoretical method introduced. Fig

20 depicts a general solution of realising the simulation combined MBT introduced, which is

named the simulation combined MBT platform.

SUT

EnvironmentSimulation
model

I/O
sequence
manager

Internal I/O

External
I/O 2

Abstract
model

Test tool
Abstract

I/O

Fig 20 Architecture of the simulation combined MBT platform

As shown by Fig 20, the abstract model is built within the test tool where TRON takes charge

of test generation based on the abstract model built by UPPAAL. The simulation model is

91

built by a microscopic railway simulator where the I/O behaviour can be simulated according

to different SUTs. The I/O sequence manager is designed to manage the synchronisation

relations between the internal I/O channel and external I/O channels. The environment is

simulated to provide the HIL testing environment where SUT can operate as it would in the

real operational environment. According to the architecture in Fig 20, simulation combined

MBT automates system testing within an HIL environment, which means it is feasible to test a

wide range of components in TCSs with minor modifications for different SUTs. Based on the

HIL environment, various testing scenarios for different types of SUT can be implemented on

the same testing platform, supporting automatic test generation and execution. The online

feature of the testing platform makes it possible for testing to include more elements, without

the risk of decreasing its accuracy or explosively expanding the model size. The testing

platform can be smoothly run on a portable computer which can be conveniently brought to

the testing field to test real hardware or software utilised in TCSs.

4.2 Modelling implementation of SUT

Since the model of simulation combined MBT is built in a combined model with abstract and

simulation models, two modelling tools have been adopted to build the specification model.

UPPAAL was adopted as the modelling tool for building the abstract model, and a

microscopic railway simulator was adopted as the modelling tool for building the simulation

model.

92

4.2.1 Modelling implementation of the Abstract Model

UPPAAL is a formal modelling and verification tool developed in collaboration between

Uppsala University and Aalborg University. It supports modelling and verification of systems

in real time, based on various types of formal model. Based on the theory of TA, UPPAAL

perfectly supports the systems modelled in the TIOTS format. Since the abstract model of

SCTIOTS is a variation of traditional TIOTS with division of internal and external I/O actions,

UPPAAL is still suitable for building the abstract model in SCTIOTS format. Furthermore,

UPPAAL integrates with a model-checking engine in the timed region, which is the basis of

online test generation. Based on the known compatibility of UPPAAL with TIOTS, along with

its well-developed toolboxes for system testing and verification, the author chose UPPAAL as

the formal modelling tool to build the abstract model. The author will now present how to

build an abstract model in UPPAAL by explaining elements contained by the model.

Fig 21 Example of the TA network model built in UPPAAL

Shown in Fig 21, a TA model network consists of one or more templates, the name of which is

93

given at the top left of each block, ‘SUT’ and ‘TESTER’, respectively in the case of Fig 21. In

each template, the details of the system behaviour can be defined with a set of elements [121],

which includes:

• Locations denote the states in the TIOTS. In locations, only the clock can accumulate,

and other variables cannot be changed. Initial locations denote the initial states of the

system, which in Fig 21 are the locations {S0, T0}. Urgent locations are a special location

where time is not allowed to pass. Committed locations are more restrictive than urgent

locations, where time is not allowed to pass, and the next execution of the system must

include an outgoing edge if the system is in committed locations. Since urgent locations

and committed locations are time-restrictive, the author tended to avoid using them when

building the specification model because it can increase the computational load of the

computer if too many urgent or committed locations are included.

• Invariant denotes the conditions that should be satisfied in locations. For example, the

expression ‘x<=3’ in location ‘S0’ of the template SUT denotes that location ‘S0’ is only

accessible when the time clock is no more than 3, which means that outgoing transitions

must happen, and ingoing transitions must not happen when the time clock is more than 3.

The author uses invariant to describe the time-out behaviour of the system where

something must happen within a certain time.

• Edges denote the transitions contained in the system, which are always from one state to

another. Time cannot accumulate on edges so that no time passes on edges. The transition

on an edge can only be triggered when its guards are satisfied and when its synchronised

94

transition is also ready. Variables including the time clock can be updated after the

transition on an edge is finished.

• Synchronisation is an expression denoting the synchronised behaviour between two or

more templates, where two synchronised transitions must happen simultaneously with no

order in succession. In Fig 21, ‘A!’ and ‘A?’ are a pair of synchronisations, which means

the transition from ‘S0’ to ‘S1’ and the transition from ‘T0’ to ‘T1’ must happen together.

If one of the transitions of the synchronised pair of transitions is not accessible, neither of

the transitions in the synchronisation pair can happen. Synchronisation is a widely used

expression in the specification model because it can denote the I/O channel where an

output is sent from one component and received by another. In reality, however, the

receiver side cannot receive the output immediately after it is sent out. Therefore,

communication delays between each component should be taken into consideration when

building the specification model.

• Guard is the condition that must be satisfied on a triggered transition. Guards can be

used to build the selection structure, where the system chooses one of the valid actions to

perform based on the value of the variable. In Fig 21, the expression ‘x>1’ on the edge

‘S0’ to ‘S1’ denotes that the transition can only happen when the time clock is more than

1.

• Update is the action that changes the variable values after a transition on an edge is

finished. It is widely used in the specification model to denote a data value which is

transmitted from one side to another or if the time clock of the system is reset by certain

95

actions. In Fig 21, the expression ‘x=0’ on the edge ‘S0’ to ‘S1’ denotes that the time

clock will be reset to ‘0’ after the transition is finished and the system arrives at location

‘S1’, which means that the time clock accumulates from zero at location ‘S1’.

• Select is an expression that is adopted to denote nondeterministic values of a variable. By

indicating the variable’s name and its accessible range of values, the system randomly

updates a valid value when the corresponding transition happens. The author uses the

select expression widely to describe the nondeterministic situations which can be

observed during the testing procedure. The expression is explained in detail in section

5.1.1.

It should be noted that the model built by UPPAAL is a static model, which means that it

cannot generate the inputs and outputs depicted in Fig 20. To generate the required inputs and

outputs, the model established in UPPAAL needs to be analysed by the test tool TRON, which

is explained in section 4.3. Based on UPPAAL with the expressions introduced, the system

behaviour is formally described in the TIOTS format, which provides a specification for the

test tool TRON to generate inputs and outputs.

4.2.2 Modelling implementation of the Simulation Model

To complete the SCTIOTS model for simulation combined MBT, the simulation model must

be built to model complex data structure and manipulations. The simulation tool selected is a

microscopic railway simulator which can build models of essential elements of various types

of TCS, such as ETCS and CBTC. The simulator is written in Java and has been developed at

96

the University of Birmingham over a period of more than seven years, where it has been

utilised in the virtual railway laboratory at the Birmingham Centre for Railway Research and

Education (BCRRE) [122]. The feasibility and correctness of modelling using the simulator

have been proven by the project Developing and Evaluating Dynamic Optimisation for Train

Control Systems (DEDOTS) [123]. Using the library provided by the microscopic railway

simulator, the I/O behaviour of a wide range of elements in TCSs, including the OBU, RBC

and infrastructure components, can be simulated. During an MBT run, the simulation model

performs calculations based on the data collected from the simulated environment and the

abstract input received from the abstract model. Afterwards, it sends the required calculation

results to the abstract model via internal I/O channels. An interface has been built to enable

the translation between the simulation I/O and the abstract I/O, and this is introduced in

section 4.4. According to the needs of different tests, different simulation models can be built

in the simulator at varying levels of detail. In contrast with the abstract model, where system

behaviour is modelled on an abstract level, system behaviour is modelled on a concrete level

in the simulation model, which means that more detailed information can be included. This is

a significant step for testing complex SUTs like TCSs, because the increased detail in the

model can lead to a more accurate testing result.

97

Internal processor
unit

External processor
unit

Communication bus

simulated inputs

simulated outputs

Internal
I/O port

External
I/O port

simulated input

simulated output

simulated input

simulated output

Simulation model

abstract inputs

abstract outputs

Fig 22 Internal structure of implementation of the simulation model

According to Fig 19 in section 3.2.3, the internal structure of the simulation model is designed,

as shown in Fig 22:

As indicated by Fig 22, the simulation model mainly consists of the internal processor unit

and the external processor unit. The internal processor unit is responsible for processing the

inputs derived from the abstract model and returning the required outputs. The external

processor unit is responsible for processing the simulated inputs from the external

environment and returning the required simulated outputs to the model. Translation of the data

format is realised by the internal and external I/O ports, and processes inside the simulation

model are all based on the simulation data type. Communication between the internal and

external processor units can happen via the communication bus when necessary. Therefore,

the outcome of an abstract input can be a processed result involving an interaction between

the internal and external processor units.

98

4.3 Test Tool

With the specification model obtained, the next important step is to apply the test tool to

generate the inputs required for black-box testing and to inspect the outputs derived from the

input executions. To achieve these automatically, the test tool needs to extract the I/O

sequences from the specification model and to determine the consistency between the SUT

and the specification according to the conformance relation. TRON is used to realise online

MBT because it is compatible with the model in the TIOTS format, which is built on

UPPAAL. TRON provides the online test algorithm which generates, executes and inspects

the test simultaneously by connecting with the SUT. During the test implementation process,

the outputs generated by the input executions are collected by TRON and compared with the

outputs required by the specification model [99]. Because of the characteristics of online

MBT, the test tool only needs to consider the next reachable set of symbolic states, RS ⊆ 𝑆𝑆 ×

𝐸𝐸, which is based on the current set of states that are occupied in the specification model after

a timed trace is executed. If the observed output complies with the expected output, the test

tool will accept the observed output and move on to the next states which belong to the

reachable set [110]. Based on the defined SCTIOTS, only the abstract model of the

specification model needs to be analysed by TRON. Therefore, the test tool TRON can be

adopted as the test generation engine in the implementation of simulation combined MBT

without modifying its internal composition and structure. The following pseudo-code

describes the operation principle of the online MBT algorithm integrated in TRON [107,

124]:

99

Algorithm 1.
 𝑰𝑰𝒏𝒏𝒊𝒊𝒕𝒕𝒊𝒊𝒂𝒂𝒍𝒍: RS ≔ {(𝑠𝑠0, 𝑒𝑒0), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0}

 𝒘𝒘𝒉𝒉𝒊𝒊𝒍𝒍𝒆𝒆 RS ≠ Φ and 𝑐𝑐𝑙𝑙𝑜𝑜𝑐𝑐𝑘𝑘 ≤ 𝑑𝑑𝑒𝑒𝑙𝑙𝑎𝑎𝑦𝑦

 𝒅𝒅𝒐𝒐 choose randomly:
 𝑨𝑨𝒄𝒄𝒕𝒕𝒊𝒊𝒐𝒐𝒏𝒏:

 𝒊𝒊𝒇𝒇 Input (RS) ≠ Φ

 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑜𝑜𝑚𝑚𝑙𝑙𝑦𝑦 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒 𝑎𝑎𝐼𝐼 ∈ Input (RS)
 𝑠𝑠𝑒𝑒𝑛𝑛𝑑𝑑 𝑎𝑎𝐼𝐼 𝑡𝑡𝑜𝑜 SUT
 RS ≔ RS 𝐴𝐴𝑓𝑓𝑡𝑡𝑒𝑒𝑟𝑟 𝑎𝑎𝐼𝐼
 𝑫𝑫𝒆𝒆𝒍𝒍𝒂𝒂𝒚𝒚:
 𝑟𝑟𝑎𝑎𝑛𝑛𝑑𝑑𝑜𝑜𝑚𝑚𝑙𝑙𝑦𝑦 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑒𝑒 𝑑𝑑 ∈ 𝐷𝐷𝑒𝑒𝑙𝑙𝑎𝑎𝑦𝑦𝑠𝑠 (RS)

 𝑤𝑤𝑎𝑎𝑖𝑖𝑡𝑡 𝑓𝑓𝑜𝑜𝑟𝑟 𝑑𝑑 𝑜𝑜𝑟𝑟 𝑎𝑎𝑐𝑐𝑡𝑡𝑖𝑖𝑣𝑣𝑎𝑎𝑡𝑡𝑒𝑒𝑑𝑑 𝑏𝑏𝑦𝑦 𝑜𝑜𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢𝑡𝑡 𝑎𝑎𝑂𝑂 if 𝑑𝑑′ ≤ 𝑑𝑑

 𝒊𝒊𝒇𝒇 𝑎𝑎𝑂𝑂 𝑎𝑎𝑟𝑟𝑟𝑟𝑖𝑖𝑣𝑣𝑒𝑒𝑠𝑠 when 𝑑𝑑′ ≤ 𝑑𝑑

 𝒕𝒕𝒉𝒉𝒆𝒆𝒏𝒏
 RS ≔ RS 𝑨𝑨𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓 𝑎𝑎𝑂𝑂
 𝒊𝒊𝒇𝒇 𝑎𝑎𝑂𝑂 ∉ 𝑂𝑂𝑢𝑢𝑡𝑡𝑝𝑝𝑢𝑢(RS) 𝒕𝒕𝒉𝒉𝒆𝒆𝒏𝒏 𝒓𝒓𝒆𝒆𝒕𝒕𝒖𝒖𝒓𝒓𝒏𝒏 𝑓𝑓𝑎𝑎𝑖𝑖𝑙𝑙
 𝒆𝒆𝒍𝒍𝒔𝒔𝒆𝒆 RS ≔ RS 𝑨𝑨𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓 𝑎𝑎𝑂𝑂
 𝒆𝒆𝒍𝒍𝒔𝒔𝒆𝒆 RS ≔ RS 𝑨𝑨𝒇𝒇𝒕𝒕𝒆𝒆𝒓𝒓 𝑑𝑑
 𝑹𝑹𝒆𝒆𝒔𝒔𝒕𝒕𝒂𝒂𝒓𝒓𝒕𝒕:
 RS ≔ {(𝑠𝑠0, 𝑒𝑒0), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0}
 𝒓𝒓𝒆𝒆𝒔𝒔𝒆𝒆𝒕𝒕 SUT 𝒊𝒊𝒇𝒇 RS = Φ
 𝒕𝒕𝒉𝒉𝒆𝒆𝒏𝒏 𝒓𝒓𝒆𝒆𝒕𝒕𝒖𝒖𝒓𝒓𝒏𝒏 𝑓𝑓𝑎𝑎𝑖𝑖𝑙𝑙
 𝒆𝒆𝒍𝒍𝒔𝒔𝒆𝒆 𝒓𝒓𝒆𝒆𝒕𝒕𝒖𝒖𝒓𝒓𝒏𝒏 𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠

The algorithm illustrates the core operational principles of the online MBT test tool, TRON.

During the initialisation process of the algorithm, TRON chooses one action from the three

optional ones which are: a. randomly choosing a valid input from the current input set and

sending it to the SUT; b. opening the output observation channel by choosing a legal amount

of delay; c. resetting the SUT and restarting a new cycle. To cover as many possibilities as

possible, TRON continuously repeats the process until inconsistency between outputs is

detected, drawing a ‘Failed’ conclusion, or the testing time expires without finding

100

consistency, drawing a ‘Passed’ conclusion.

From the description of TRON above, traditional application of the test tool is based on the

fact that the entire abstract models of the SUT and its operational environment can be fully

obtained; this is not achievable for the application scenario in this thesis. According to

SCTIOTS modelling theory, part of the system behaviour is held within the simulation model

and using the simulator’s data format. The SUT is embedded in the simulation environment to

realise HIL testing during the testing procedure. Therefore, the test tool TRON should be

capable of interacting with the simulation model and the HIL environment in implementation

of simulation combined MBT, which can be realised by the following structural design:

TIOTS model
in UPPAAL

Testing engine

XML

Deliver

collect

Set of the valid
inputs

Library of the
expected outputs

update

generate

compare

Failed
Legal

Illegal

Abstract inputs

Abstract outputs

TRON

Fig 23 Internal structure of the test tool UPPAAL-TRON

As indicated by Fig 23, the test tool TRON extracts the valid inputs and expected outputs

from the loaded TIOTS model in XML format. Based on the logic defined in Algorithm 1,

the inputs are chosen to be executed, and derived outputs are collected and compared with the

101

expected ones. Until an illegal output is found by TRON or the testing time expires, the

search loop will keep running.

4.4 I/O Sequence Manager

In keeping with the earlier description of the simulation combined MBT method, the abstract

model should interact with the simulation model internally and interact with the IUT

externally. Therefore, synchronisation needs to be established between internal and external

interactions to avoid overwriting data, and causing issues in the I/O sequence. The inputs

generated by the test tool and the outputs that can be recognised by it are all in the abstract

format determined by the TIOTS model built in UPPAAL. As a result, to connect the test tool

and the SUT or the simulation model, the inputs and outputs need to be dynamically

translated between the abstract format and the simulation format during the test

implementation process. To achieve this, an I/O sequence manager has been designed to

realise the synchronisation relations between different I/O channels and to transform the

inputs and outputs into the required formats. The manager is written in Java so that it is

compatible with the simulation model and the microscopic railway simulator. The overall

structure of the I/O sequence manager is presented in Fig 24:

102

External I/O 1

Internal I/OAbstract inputs

Abstract outputs

I/O
sequence
manager

Fig 24 Operation principle of the I/O sequence manager

As indicated by Fig 24, three types of I/O channel are designed in the I/O sequence manager

to realise data communication between the test tool, the simulation model and the SUT

(within the HIL environment). The abstract I/O channel is designed for delivering abstract

inputs generated by the test tool and collecting abstract outputs for test verdicts. The internal

I/O channel is designed for transferring internal inputs in the delivered abstract inputs to the

simulation model and collecting derived outputs, which are all in the simulation format. The

external I/O channel 1 is designed for transferring external inputs to the SUT (within the HIL

environment) in the delivered abstract inputs and collecting derived outputs, which are all in

simulation format. To guarantee that the test result is correct, every output collected must be

derived from execution of the correct input, which means only one input can be delivered at

once, and no other inputs should be delivered before the corresponding output is collected. To

illustrate the functional logic of the I/O sequence manager, the flow chart in Fig 25 is

presented.

As illustrated by Fig 24 and Fig 25, the I/O sequence relations between the abstract I/O

actions, internal I/O actions and external I/O actions are managed by the I/O sequence

103

manager. After an abstract input is generated by the test tool, it is first delivered to the I/O

sequence manager to determine the type of input action based on a predefined input library.

Based on the input type determined, the corresponding I/O channel is assigned to the input to

guarantee that it is dispatched to the correct terminal, which can be the simulation model via

the internal I/O channel, or the SUT via external I/O channel 1 and the HIL environment.

Meanwhile, the unused I/O channel is blocked to avoid data being overwritten. Once the input

is observed to arrive, the input channel between the test tool and the I/O sequence manager is

blocked to avoid the next input arriving before the output derived from the last input

execution is collected. After the abstract input generated by the test tool is delivered to the

simulation model or the SUT, the input channel of the internal I/O channel or external I/O

channel 1 is blocked, and the corresponding output channel is activated to wait for output

collection. After the output is sent from the simulation model or the SUT, it is collected and

delivered to the test tool to identify whether it is valid or not. If the output is correct, the

testing process will continue by generating the next input. If the output is incorrect, the test

will be terminated with a failed test verdict.

104

Waiting for input

Determine the input
type

Receive an input

Internal input

Activate internal I/O
channel

Block external I/O
channel 1

Transform the input
to simulation format

Searching the input
mapping relations

Block internal input
channel

Output arrives

Transform the output
to abstract format

Searching the output
mapping relations

Deliver the output to
TRON

Valid output

Test failed with error
detected

Yes

Yes

Yes

Searching the input
library

Block internal I/O
channel

Activate external I/O
channel 1

Transform the input
to simulation format

Block external input
channel 1

Output arrives

Transform the output
to abstract format

Deliver the output to
TRON

Valid output

Yes

No No

Test terminated with
exceptionsNo No

Time outNo

No

Yes

External input 1No

Yes

No

Searching the input
mapping relations

Searching the output
mapping relations

Test time expires

Yes

Yes

No

Test passed

Yes

Input monitor Maximum waiting
time

Output monitor Output monitor

TRON

Fig 25 Flow chart of the functional logic realised by the I/O sequence manager

During the testing implementation procedure, the format of I/O actions needs to switch

105

between the abstract format which can be recognised by the test tool and the simulation

format which can be recognised by the SUT or the simulation model; this is made possible by

the I/O sequence manager. The I/O sequence manager is not only a controller for handling the

sequence of opening and closing the two types of I/O channel, but also an interface for

mapping abstract I/O actions and simulation I/O actions. It should be noted that external

channel 2 in Fig 20 is not influenced by the I/O sequence manager, so that the simulation

model can communicate with the HIL environment and the SUT periodically without

interruption. External I/O channel 2 is out of synchronisation with external I/O channel 1 and

the internal I/O channel because the I/O exchange period via external I/O channel 2 is

significantly faster than the ones via the internal I/O channel and external I/O channel 1,

which do not translate between the abstract format and the simulation format. As a result,

isolating external I/O channel 2 from the other two types of channel is helpful for improving

the operating efficiency of the entire testing process and reducing the design difficulty of the

I/O sequence manager.

4.5 HIL Environment

As shown in Fig 24, the IUT is integrated with an interface and does not directly

communicate with the test tools or the I/O sequence manager. Since a TCS is a complex

integrated system containing wayside, on-board and communication-related equipment,

testing individual components such as the EVC or RBC needs a corresponding testing

environment because these individual components cannot work independently from their

operational environment. Therefore, the HIL environment is designed to integrate the

106

individual SUTs in a simulated operational environment, making them work as they would in

real operational environments. The simulated environment for SUTs is easier to reconfigure

when testing different SUTs without the extra costs of using a real testing environment. The

microscopic railway simulator introduced was used as the modelling tool for building the HIL

environment. Since the simulation includes almost all the essential components in the

different types of TCS, it can be easily transformed into an HIL environment by removing the

simulated components representing the real SUT. Because it is a simulator written in Java, it

has decent compatibility with other Java programmes such as the simulation model and the

I/O sequence manager. Fig 26 presents an example of the environment for HIL testing, which

is established by the microscopic railway simulator. Depending on different SUTs, the

following elements can need to be modelled by the simulator.

Fig 26 Schematic of the testing scenario for a single train

• Vehicle Model

The vehicle model simulates real trains running on a real track. As the vehicle is the

controlled subject of the SUT VOBC, the factors influencing train movements must be

included in the simulator. These factors include the train’s maximum speed, number of

coaches, total vehicle length and weight, and the relations of the traction/resistance force and

107

the vehicle speed, etc. Some physical factors which require an enormous amount of

experimental data to model, such as the friction between the vehicle wheels and the track

surface, or the extra resistance caused by extreme weather, are not considered in the simulator.

This is appropriate as these kinds of factor are not the focus of this thesis.

• Infrastructure Model

The infrastructure model is a key component of the environment model, and is necessary for

TCS operation so that it needs to be simulated to generate necessary inputs during the test.

Since the simulated infrastructure contains a wide range of different components, only the

ones which are closely related to the testing are discussed in this thesis, which include signals,

balises, point switches, and axel counters.

• Timetable Model

The timetable model is designed to indicate the time point at which the simulated train should

arrive at a certain position, such as a station. All the trains controlled by the microscopic

railway simulator should follow the timetable for operation, arriving at the destination in time.

In the single-train scenario, the SUT train is controlled by the testing platform but not the

microscopic railway simulator. Therefore, the timetable is not included in the testing

environment.

4.6 Data flow in the Simulation Combined MBT Platform

In the previous sections of this chapter, the essential elements for implementation of

108

simulation combined MBT have been introduced. Based on the essential elements explained,

the author summarises data transmissions between the components of the platform.

As illustrated by Fig 20, the testing platform consists of the IUT model with a

two-model-combined structure, the test tool TRON which is utilised to control the testing

process, the I/O sequence manager which is designed to control the I/O sequence, and the HIL

environment which is designed to provide a testing environment for SUTs. To explain in more

detail the operating principle of the simulation combined MBT platform, data flow through all

integrated components in the testing platform is illustrated in Fig 27:

SUT

InterfaceIn
te

rfa
ce

External
inputs

HIL
environment

HIL
environment

Simulated inputs Simulated outputs

External
outputs

Test platform

Outputs
(abstract)

Abstract model

UPPAAL-TRON

XML file

Test generation module

IO sequence
manager

Simulation
model

Abstract
inputs

Simulation
model

IO sequence
manager

Internal
inputs

Internal
outputs

External inputs External outputs

Fig 27 Operating principle of the simulation combined MBT platform

As indicated in Fig 27, the operating principle of the simulation combined MBT platform is

explained by illustrating the direction of data flow through components of the testing platform.

When the testing process starts, the abstract model is loaded by the test tool TRON in XML

109

format. By analysing the input model, TRON extracts the currently valid input and records the

expected output derived from the input execution. Based on the type of the current input, the

I/O sequence manager dispatches the current input to the SUT through the HIL environment

via the external I/O channel, or to the simulation model via the internal I/O channel. On the

external channel, the input is sent to the SUT and is executed by the SUT. The output

generated is translated by the HIL environment and sent back to the test tool TRON via an

external I/O channel. On the internal channel, the input is executed by the simulation model,

and output is obtained by the test tool TRON. During the whole procedure, the simulation

model periodically exchanges data with the SUT via the HIL environment and updates the

variable changes for the test tool. The collected output is compared with the expected output

desired by the abstract model. If the collected output complies with the specification, the

testing process carries on and the next valid input will be tested until the testing time expires.

If the output does not comply with the expected one, the testing process will be interrupted,

and the testing is finished with a failed verdict. If no inconsistency is found during the whole

testing process, the testing is finished with a passed verdict.

110

5 Functional Testing Case Study on a CBTC System

In this chapter, two cases studies on a typical CBTC system are presents to explain how to

apply the proposed simulation combined MBT methodology to undertake functional testing of

TCSs. Case study 1 adopted a single train scenario, which is a close to ideal test scenario

containing one train, aiming to explain steps to undertake functional testing on the simulation

combined MBT platform in details. To study whether the proposed simulation combined MBT

is suitable to test complex SUT in realistic scenarios, Case study 2 uses a multiple train

scenario with three trains in operation.

As a result of the sharing of functional architectures between CBTC and ETCS, which has

been analysed in 2.1, the results of CBTC case studies chosen in this thesis could also be

adopted for functional testing in ETCS.

5.1 Case 1: Single Train Scenario

In this chapter, the author applies the presented simulation combined MBT method in the

testing of a VOBC which is simulated in the microscopic railway simulator. The real

hardware of the SUT is in China but the simulation is built based on its specification. The

simulated VOBC is used to realise the functions which are provided by the real hardware and

software of the VOBC. Using simulation to replace the real equipment can decrease the risk

of damage during the test procedure. An interface is built to transmit data between the SUT

and the testing platform, and a communication delay is simulated at the interface to make it

similar to real testing. In this case, a single train scenario is chosen as the testing scenario; the

111

purpose of the case study is to illustrate the detailed process of the testing platform.

Fig 28 CAD map of Changsha Metro Line 5

The author has selected a test line of Changsha Metro Line 5 which is designed for CBTC

system development and testing. The test line contains four stations, three intervals and one

simplified depot, as shown in Fig 28. To implement HIL testing, all the necessary elements in

the design diagram are modelled in the microscopic railway simulator so that simulated trains

can operate in the simulated network as real trains do in the real one. In a single train scenario,

only one train runs in the network under the control of the tester.

As indicated in Chapters 3 and 4, the author applies simulation combined MBT by modelling

the SUT in two models, the abstract model built by UPPAAL and the simulation model built

by the microscopic railway simulator. In this case, the detailed abstract model and simulation

model which represent the abstract model and the simulation model, respectively, are

presented, and their operating principle is explained. Testing results are recorded, and a testing

verdict is drawn based on them.

5.1.1 Abstract Model

As one of the essential parts of simulation combined MBT, the abstract model describes the

112

key events which happen in the testing process. Associated with the traditional testing process

described in Chapter 4, the abstract model plays a similar role to the test case in traditional

testing. In traditional testing, the test case is written to specify the test environment, the SUT

and the SUT/environment behaviour which should happen during the test procedure. In

abstract modelling, the test case is divided into three parts, the SUT, the tester and the

communication channels. The SUT and the tester model describe the system behaviour in

terms of their interactions. The communication channels are used to describe the potential

delays in interactions between the SUT and tester.

5.1.1.1 Specification of the SUT

In this case study, the SUT is a simulated VOBC with the specification of a real one used in

the CBTC system of Changsha Metro Line 5. There are a lot of different functions provided

by the VOBC, and the author concentrates on overspeed protection in this case. Overspeed

protection is a vital CBTC function which protects the train from exceeding the safe speed

limit. According to IEEE Standard 1474.1 for CBTC Performance & Functional

Requirements, and the simulation specification from the developer of the Changsha Metro

Line 5, the VOBC should trigger the EB within 1 second after it receives an overspeed signal

(with an allowance of 5 km/h). This specification is associated with the functions of the

VOBC, the ZC, signalling and the train, which generate a series of different testing scenarios

including different reasons for train overspeed. No matter what factor makes the train

overspeed, the VOBC should always comply with the rule that the train’s current speed should

never be higher than the train’s current speed limit. Based on the simulation combined MBT

113

theory introduced in Chapter 3 and the detailed specification provided by the system

developer, the author has refined the SUT specification into the following sub-specifications:

a. The VOBC should receive the train current speed with a period of 200 ms.

b. The VOBC should receive the train MA with a period of 200 ms.

c. The VOBC should calculate the correct speed limit based on the received train MA.

d. In every period, the VOBC should compare the received train speed with the calculated

speed limit. If the train speed is over the speed limit, the VOBC should trigger the EB within

1 second.

Since the refined specifications b and c are related to MA, which is calculated using a

relatively complex process, they potentially risk increasing the complexity of the abstract

model. Therefore, the author has moved these two sub-specifications to the simulation model,

and has refined the specification for the TA model as follows:

a. The VOBC should receive the train current speed with a period of 200 ms.

b. In every period, the VOBC should compare the received train speed with the calculated

speed limit (from the simulation model). If the train current speed is over the current speed

limit, the VOBC should trigger the EB within 1 second.

Once refinement of the testing specification is finished, the abstract model can be built to

formalise the testing specification.

114

5.1.1.2 Abstract Model of the SUT

Based on the refined specification, the author has modelled the test implementation by

dividing it into three components, which are the SUT, the tester and the I/O channels. The

SUT is the subject that needs to be tested, and its behaviour should comply with the

specification. The tester is the person who stimulates the specified inputs and collects the

corresponding outputs. By comparing the collected outputs against the outputs expected from

the specification, the tester can judge whether the SUT behaviour is correct. The I/O channel

is used for the transmission of input and output data.

By combining the refined specification and the expert modelling knowledge of the author , the

author builds the abstract model of the SUT, as shown in Fig 29:

Fig 29 TA model of the SUT for single-train scenario

115

As seen from Fig 29, the abstract model contains not only the VOBC functions but also some

functions provided by the vehicle. In fact, only the states in green and the transitions to these

states are related to the VOBC; the other states and transitions are designed to make the train

move on the network. In theory, the SUT model should be divided into two models, which are

the controller, the VOBC, and the controlled object, the vehicle. However, black-box testing is

not concerned about the internal interactions between sub-components. In reality, the tester

implements black-box testing and draws a conclusion by observing the train behaviour but not

the control command sent by the VOBC. Furthermore, splitting the controller and the

controlled object significantly increases the size of the state space and makes the abstract

model over-detailed. As a result, the controller and controlled subject are merged, and only

external actions are considered. The abstract model of the SUT consists of 12 states and 17

edges, where the states are represented by dots and the edges are presented by arrows.

There are two main parts to the SUT abstract model; the area in the blue dotted box represents

the normal moving actions of the SUT, while the red dotted box represents the SUT actions

related to the EB. To test the overspeed protection function of the SUT, which is the

combination of the VOBC and the vehicle, the first step is to make the train move along the

track. This event is realised by sending the command ‘Depart’. After receiving the ‘Depart’

command, the SUT executes it and feeds back a confirmation signal, notifying the tester that

the command ‘Depart’ has been received and executed. This event is represented by the signal

‘Departed’ (see section 5.1.1.4). After these two transitions, the SUT abstract model denotes

that the train has changed its working condition from dwelling to moving and is ready to

116

accept further moving commands. In the blue dotted box, the SUT can trigger one of two

transitions, which lead to the states ‘Accelerating’ and ‘Decelerating’, respectively. The

condition which must be satisfied to make these transitions happen is a value of the variable

‘SPEED’ always no less than zero. The variables ‘AC’ and ‘DC’ are special variables which

have random values within a specified range each time the relevant edges are activated. The

ranges of ‘AC’ and ‘DC’ are both integers [0,1] which are determined by the communication

period and the train’s maximum acceleration and service deceleration. In every period of

communication between the tester and the SUT, the variable ‘SPEED’ is observed at least

once by the tester. When the maximum train acceleration and service deceleration is 1 m/s

(specified by the system developer), the maximum integer increment or decrement of ‘SPEED’

should be no more than 1 m/s. Therefore, the ranges of ‘AC’ and ‘DC’ can be obtained as

[0,1], which means the difference of the continuous two ‘SPEED’ values should not be more

than 1 m/s . Each ‘Accelerating’ and ‘Decelerating’ is connected with two different

transitions, with consideration of the former conditions. Due to the communication delay

between the tester and the SUT, the train can be decelerating or accelerating before the state

transits from ‘Moving’ to ‘Accelerating’ or ‘Decelerating’. As a result, the valid value of the

current ‘SPEED’ should be in the range of �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓 − 1, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓 + 1�, where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓

stands for the last value of ‘SPEED’.

After receiving the ‘ACC’ or ‘DCC’ command from the tester, the SUT should feedback a

confirmation to notify that the command has been received and executed, which is

represented by the signal ‘ACCed’ or ‘DCCed’ (see section 5.1.1.4). Similarly, the variable

117

values are updated while the transitions are happening. One more variable, ‘speedlim’, shows

up, and its value is updated by the special variable. Different from the variables ‘AC’ and

‘DC’, the author lets ‘speedlim’ be a constant value of 22 m/s, determined by the line speed

limit from the specification. In a single train scenario, no train is ahead of the SUT, and the

MA always extends to the destination of the track. As a result, the train speed limit should

follow the line speed limit, which is always 22 m/s along the track of the test line. The

benefit is that the possibility space can be significantly reduced without influencing operation

of the SUT.

After the SUT sends out the feedback signal, it can receive the command ‘Query’ from the

tester, which makes the SUT go to the state ‘Reporting’ and updates the value of the variables

‘SPEED’ and ‘speedlim’ again. In the state of ‘Reporting’, three edges can be activated

depending on ‘SPEED’ and ‘speedlim’. If ‘SPEED’ is no more than ‘speedlim’, the SUT goes

back to the state ‘Moving’ via two available edges, sending the feedback signal ‘Report’ (see

section 5.1.1.4) and updating ‘SPEED’ and ‘speedlim’ one more time. If ‘SPEED’ is greater

than ‘speedlim’, it indicates that the train is overspeeding; the EB should be triggered to

protect the train so that the SUT sends the signal ‘EB’ (see section 5.1.1.4) to the tester and

goes into the red dotted box, which means the train is in the EB condition. Therefore, in the

blue dotted box, the SUT continuously accelerates or decelerates until the train overspeeds. In

the red dotted box, the SUT continuously decelerates until the train completely stops, which

means ‘SPEED’ is equal to zero. Then, the SUT notifies the tester that the train is completely

stopped by sending ‘Stopped’ (see section 5.1.1.4), and is ready to be reset by the tester

118

command ‘Reset’. After receiving the reset command, the SUT executes it and feeds back the

signal ‘Finished’ (see section 5.1.1.4), which indicates that a test circulation is finished, and a

new one is ready to be implemented.

5.1.1.3 Abstract Model of the Tester

In traditional black-box testing, a tester should inject the specified inputs into the SUT and

observe the corresponding outputs. By comparing the observed outputs with the outputs

expected from the specification, the tester can judge whether the SUT behaviour complies

with the specification. Therefore, the author has built the abstract model of the tester by

specifying the commands which can be sent to the SUT, and the responses which can be

observed from the SUT with a set of time restraints. One transition can only have one

command or response activated, so that the computer can extract an input/output sequence

from the abstract model.

119

Fig 30 TA model of the tester for single-train scenario

As seen in Fig 30, there are 12 states and 15 edges in the abstract model of the tester, where

the model always starts with an input action ‘Depart!’ in its initial state ‘Routed’. Every input

action is followed by one of the available output actions which are determined by the current

condition of the abstract model. The operation principle has been explained together with the

abstract model of the SUT. In the state ‘Running’, two edges can be activated, and the

probability of their activation is determined by the special variable ‘token’. The range of

‘token’ is set to be (0, 99), giving the tester a 93% possibility of accelerating the train and a 7%

possibility of decelerating the train. The purpose of designing the possibilities of acceleration

and deceleration is to make the train tend to travel a longer distance before it exceeds the

speed limit, and to make sure that the train can exceed the speed limit before it approaches the

end of the track. If the train accelerates without any deceleration, it will trigger the emergency

120

stop quite soon so that the rest of the track cannot be covered in the testing. On the other hand,

if the train decelerates too frequently, it will hardly exceed the speed limit because the train

deceleration decreases along with the train speed. Another important parameter in the tester is

the time constraints on states and edges, which are used to specify the time-related

specification. The time constraint, for example ‘𝑥𝑥 ≤ 200’, requires that the system can wait

for the next actions for no longer than 200 time-units, and the action must happen when the

time limit is reached. Regarding the time constraints on different states, the tester must give a

correct input and receive an expect output in time. In theory, there should be another set of

time constraints to specify the time relations of the SUT. Since the author has focused on

black-box testing, the time constraints of the SUT are again merged into the tester time

constraints to reduce the possibility space of the abstract model.

As seen from Fig 30, the abstract model of the tester contains a series of abstract inputs and

outputs, where the inputs are represented by ‘!’ and outputs are represented by ‘?’. The initial

action of the tester model is always an input (Depart!), and an input action is always followed

by an output action. Table 5 summarises the input and output actions:

Input actions Output actions
Depart! Departed?
ACC! ACCed?
DCC! DCCed?

Query!
EB?

Report?

Query!
EB?

Stop?
Reset! Finished?

Table 5 Summary of the abstract input and output actions

121

As shown by Table 5 and discussed in section 4.2.1, all the I/O actions are in an abstract

format and cannot be directly processed by the computer. The abstract actions only stand for

the I/O channels used for data transmission on transitions. For example, when the SUT model

transits from the state ‘Idle’ to ‘Departing’ (which is from ‘Routed’ to ’Departing’ in the tester

model), the channel ‘Depart’ is activated, and a command ‘Depart’ is sent from the tester

model to the SUT model. This action is assumed to happen instantaneously and to be finished

immediately.

5.1.1.4 Abstract Model of the Communication Channels

As mentioned at the beginning of the chapter, a communication delay exists between the

tester and the SUT in real testing scenarios. Different conclusions can be drawn from testing if

the communication delay is ignored in the abstract model. For example, if the communication

delay is non-negligible compared with the time constraints, the testing can draw a fail

conclusion because the output arrives too late. Furthermore, nondeterminism can exist due to

uncertain communication delays. Therefore, it is necessary to include the communication

delay in the abstract model.

Fig 31 TA model of the communication channels for single-train scenario

As seen from Fig 31, the author has only included the communication delays of the output

122

channels. In reality, the input delays should be taken into consideration as well. The reason for

ignoring the input delays is to reduce the possibility space of the abstract model. Therefore,

the input delays are merged into the output delays, which will not influence the test results in

black-box testing. According to Fig 31, all the abstract models of the communication delay

share the same structure; the only difference is that they respond to different output actions.

When an internal output action is given by the SUT model, the corresponding channel is

activated and makes a transition from the state ‘Vacant’ to ‘Busy’, which equivalently holds

the received message for a certain time. When a channel is in the state ‘Busy’, it cannot be

activated again by receiving the message again. After a certain time of the clock ‘x’ within the

time constraints passes, the channel in ‘Busy’ releases the received internal output by sending

out a corresponding external output to the tester. When the clock time reaches the top limit of

the time constraints, the channel must release the hold message and send out an external

output to the tester. In this case, the time constraint is set to ‘𝑥𝑥 ≤ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, where 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =

20, to represent that the communication delay should be no more than 20 time-units. This is

determined by the communication period of the tester and SUT, which is 200 time-units.

According to traditions in TCS functional testing, a communication delay should be no more

than 10% of the communication period, to guarantee synchronisation between the tester and

the SUT. With the combination of the abstract models introduced, the SUT behaviour in the

testing scenario is described to follow the system specification. Fig 32 shows an example of a

testing trace contained in the abstract model of the specification:

123

Fig 32 Schematic of a trace generated from the TA model of the specification

5.1.2 Simulation Model

As mentioned in section 5.1.1.1, the author has refined the specification for testing by

removing the conditions related to complex calculations. The specification of the VOBC

requires that it should be capable of determining whether the train is overspeeding based on

the MA given by the ZC. To achieve this goal, the VOBC needs to do calculus to obtain the

current speed limit determined by the current MA. The calculation procedure is relatively

complex and is not eligible for modelling by the formal method chosen by the author.

Simulation provides the solution by simulating the calculation procedure. Therefore, a model

of VOBC functional simulation is developed on the platform of the microscopic railway

simulator. The following picture is a schematic of typical braking curves for a moving block,

which is the foundation of determining speed limit from the MA.

124

Behind
train Front train

Lp

Lp

Emergency braking curve

Overspeed allowance
of the ATP

A B C D E
LdLcLbLA Le Location

uncertainty

Location
uncertainty

LEB

LS
Safety margin

Train speed

Location

ATP monitor curve

Service braking curve

Fig 33 Calculation principle of braking curves

As indicated by Fig 33, the current speed limit of the ‘behind train’ is decided by several

parameters: the current distance between the two trains, the physical braking curve of the

behind train, and the train position uncertainty of the two trains. The simulation periodically

collects the values of these three variables and compares the calculated train speed limit with

the line speed limit. The lower value is determined as the current speed limit of the behind

train and is transmitted to the abstract model. The following figures explain the VOBC

functional simulation procedure:

125

Fig 34 Illustration of the speed limit calculation modelled in the simulator

As shown in Fig 34, the speed limit consists of two main kinds, the static speed limit and the

dynamic speed limit. The straight red line at the top represents the static speed limit, the

maximum line speed limit which is fixed along with the infrastructure. When the simulation

model is activated, it automatically downloads the maximum line speed limit from the

infrastructure information provided by the microscopic railway simulator.

The red curve in Fig 35 illustrates the dynamic speed limit which is calculated by the VOBC

based on the given MA. A braking curve is calculated with the consideration of several factors

including the train parameters, physical laws and the distance between the train and the

stopping point. The dynamic speed limit changes along with the changing MA given by the

environment. During the testing procedure, the simulation model periodically sends its

calculated speed limit to the MBT tool, TRON, and keeps updating the braking curve based

on the new MAs.

126

Fig 35 Illustration of the overspeed protection function modelled in the simulator

The two graphs in Fig 36 and Fig 37 depict two different overspeed scenarios in the

Intermissive Automatic Train Protection (IATP) mode, where communication between the

VOBC and the ZC is interrupted, and the train MA is determined by the signal condition in

front. In Fig 36, when the train speed exceeds the dynamic speed limit determined by the MA,

the VOBC should trigger the EB and slow down the train according to the braking curve,

which is illustrated by the black curve in Fig 36. In Fig 37, when the train speed exceeds the

static speed limit, the VOBC should trigger the EB and slow down the train according to the

emergency braking curve. Since the SUT VOBC provided only performs EB when overspeed

happens, the author has named both kinds of braking as emergency braking.

127

Fig 36 Overspeed scenario: exceeding the speed limit generated by MA

Fig 37 Overspeed scenario: exceeding the speed limit generated by line speed limit

After simulating calculation of the speed limit, the combination of the abstract model and the

simulation model can describe the SUT behaviour according to the specification requirements.

The two-model-combined structure of the specification model takes advantage of both formal

128

methods and simulation, simplifying the modelling operation and reducing the complexity of

the abstract model. The next step is to build an essential environment for testing, which is

modelled by the microscopic railway simulator.

5.1.3 HIL Environment

5.1.3.1 Vehicle Model

According to section 4.5 and the performance parameters provided by the vehicle developer,

the simulation of the vehicle adopted in the metro systems is built in the microscopic railway

simulator, which is illustrated by Fig 38 and Fig 39 and Table 6.

Based on the figures and table presented above, vehicle movement can be simulated by

calculating the train speed and position periodically. During the test procedure, the SUT

VOBC controls the simulated vehicle running on the track by detecting the train’s movement

condition based on the reported train speed and train position. Before going to on-site testing,

testing based on the simulated train can decrease the risk of damaging the SUT.

Fig 38 Schematic of the vehicle model in the microscopic railway simulator

129

Fig 39 Traction power and resistance power along with various speeds

Description
Maximum

speed (km/h)
Coach
number

Length (m) Weight (t) Type
Maximum acceleration

(m/s2)

Changsha
Metro

100 4 114.0 291.6 CBTC 1.1

Table 6 Summary of the parameters in the vehicle model

5.1.3.2 Infrastructure Model

The infrastructure along the track is configured along the simulated network according to the

design schematic provided by the system developer, which includes: balises, signals, axle

counters and point switches.

130

• Balises

In this case, the CBTC SUT includes two types of balise, the fixed balise and the variable

balise. Fixed balises are designed to inform the VOBC of the train’s current location when the

train is passing a fixed balise. The VOBC receives a telegraph including the balise ID and

balise position sent by the passing balise and determines whether the received information

matches with the database. According to the database, the train position will be determined if

the balise ID and its position are correct; the train position will be determined as unknown if

the received balise ID does not match with its position. As a result, the microscopic railway

simulator models the fixed balise by making it send its ID and position when the TIA installed

on the train head is approaching the valid receiving range of the balise telegraph.

Fig 40 Schematic of a balise-passing event in the simulator

As indicated by Fig 43, the VOBC receives the telegraph of the fixed balise ‘FB1522’ when

the train is passing. According to the system specification requirements, the valid receiving

range is set to ±2.6 m.

131

Since the variable balise function is irrelevant to the testing in both cases, its function is not

simulated in the simulator so that it will not send its telegraph when the train is passing.

• Signals, axle counters and points

In the microscopic railway simulator, the interlocking system is simulated by defining the

relations between signals, axle counters and points. When a train is passing a green signal, the

axle counter detects the train and informs the interlocking of the train’s attendance.

Afterwards, the interlocking changes the state of the corresponding signals to inform the

following trains that the segment has been occupied. It should be noted that trains at CBTC

level do not follow the displayed signal aspects because their movement is determined by the

VOBC according to the distance of an obstacle in front of the train, and a ‘red’ signal is not an

obstacle type when the system is operating at CBTC level. When communication between

on-board and trackside equipment breaks down, and the CBTC mode is operating in IATP

mode, the driver needs to control the train movement according to the signal aspect. However,

when the direction of the point needs to be switched, it is necessary to check whether there is

any train in the point area. As a result, the interlocking table is included to provide

information for the simulator to determine when and whether a point direction can be

switched. In Fig 41, a schematic of the signals, balises and points in the simulator is

presented.

132

Fig 41 Schematic of signals, axle counters and points of the interlocking in the simulator

5.1.3.3 Timetable Model

In the single train scenario, a timetable is unnecessary because the train does not need to

accurately arrive at stations on time. Details of the timetable model can be found in the

multiple train scenario, which is in section 5.2.1.2.

5.1.4 I/O Sequence Manager

According to section 4.4, the I/O sequence manager manages the I/O actions which happen on

the internal I/O channel and on external I/O channel 1. Therefore, it is necessary to explicitly

determine which I/O actions are assigned to which I/O channel, which is summarised in Table

7.

Based on Table 7, the I/O actions involved in the testing are assigned to different I/O channels

so that the input generated by the test tool can be correctly sent to the simulation model or HIL

environment according to the flow chart in Fig 25. The I/O sequence manager is written in

Java, so it can conveniently interact with the simulation model and the HIL environment.

133

Input Output I/O channel Description
Depart Departed External Train departs when it receives departure command

ACC
ACCed External

Train executes the acceleration command and informs the tester of
the command execution

EB Internal
Train executes the acceleration command, which leads to train
overspeed, and the VOBC triggers EB

DCC
DCCed External

Train executes the deceleration command and informs the tester of
the command execution

EB Internal
Train executes the deceleration command, which leads to train
overspeed, and the VOBC triggers EB

Query

PosLost Internal
The tester queries the train’s current operating condition and
receives that the train position is lost

Report Internal
The tester queries the train current operating condition and is
informed of the train’s current speed and position

BaPass Internal
The tester queries the train’s current operating condition and
receives that the train is passing a valid balise

Query

EB Internal
When the train is in the EB condition, the tester queries the train’s
current operating condition and receives that the EB is being
implemented

Stop External
When the train is in the EB condition, the tester queries the train
current operating condition and receives that the train has been
completed stopped

Unlock Finished External
After the train is completely stopped by the EB, the tester sends the
EB unlocking command and receives that the EB has been
unlocked

Table 7 Summary of I/O actions on the internal I/O channel and external I/O channel 1

5.1.5 Testing Results

After configuration of all the elements is finished, the testing is ready to be implemented on

the simulation combined MBT platform. In this case, the testing time is set to be 35000

seconds, which means the testing continues until the test expires, or an error is found. Fig 42

presents an example of the testing results, which is part of the train trajectories during the

whole testing procedure:

134

Fig 42 Train trajectory during the testing process: 93% acceleration

Fig 43 Train trajectory during the testing process: 100% acceleration

As seen from Fig 42, the train triggers the EB twice before it arrives at the destination which

is near the end of the track. When the train is completely stopped by the EB and has not

arrived at its destination, the testing platform unlocks the implemented EB and the train

departs again. When the train is stopped and has arrived at its destination, the testing platform

automatically initialises test implementation by putting the train back to its initial position and

starting testing again. After the testing period expires, the testing platform interrupts the

testing implementation and draws a conclusion on whether the testing is passed or failed. Fig

43 shows the influence of driver tendency. When the driver only accelerates the train, the train

135

movements are very predictable, and the diversity of the testing result is very poor. The train

tends to stop at the same position on the track no matter how many times the testing

implementation is run, which can be proven by Fig 44:

Fig 44 Merged train trajectory run 24 times: 100% acceleration

As can be seen from Fig 44, train trajectories with time do not completely coincide because of

the uncertainty of the delay generated by the testing platform or communication delays.

However, trajectories with distance perfectly coincide for 24 runs of the testing

implementation, which is harmful for covering more possibilities in the testing. As a result,

driver tendency is necessary to keep testing coverage.

As revealed by Fig 42, the EB is not triggered immediately after the train exceeds the speed

limit. The reason is that the VOBC judges whether the train is overspeeding according to the

train speed adding up to an overspeed allowance, which means the VOBC allows the train to

keep moving when it is slightly overspeeding. The allowance is designed to avoid the VOBC

triggering the EB too frequently in some certain situations. Since a communication delay

136

exists between the testing platform and the SUT, the platform tends to receive a delayed speed

after it finds that the EB is triggered, which means it can receive a speed exceeding the speed

limit. Nondeterminism exists for received speed due to the nondeterministic communication

delay. Furthermore, the formal methods adopted by the author can only deal with integer data

which means that variable differences between the simulation and the testing platform also

need to be taken into consideration. In summary, the speed allowance is set to be 1 m/s,

which means the EB can be triggered when the train speed is over 82.7 km/h. According to

the specification provided by the system developer, the vehicle can guarantee train safety

when the allowance is under 5 km/h. As a result, the allowance applied in this case complies

with the specification requirements.

The testing implementation is finished after the testing time runs out and a ‘PASSED’

conclusion is drawn by the testing platform according to the testing results, which is shown

below:

Meanwhile, the log file recording all the I/O actions is generated by the online test tool TRON,

which is shown by Fig 45:

137

Fig 45 Fragment of the testing log file

Since the SUT is a VOBC simulation which is designed according to the specification, it is

normal that no error is found during the testing process. In Chapter 6, verification of the

testing platform is discussed, and its ability to detect error is proven.

5.2 Case 2: Multiple Train Scenario

In Chapter 5.1, the author explained the detailed implementation procedure of MBT online

testing based on the simulation combined MBT platform. The testing results preliminarily

138

prove the effectiveness of the testing platform. However, the testing scenario adopted in that

case is a relatively ideal scenario where only a single train operates in the network, which

means that the train’s MA always extends to the destination of the train and the VOBC in fact

protects the train based on the line speed limit. As a result of this, the testing results cannot

prove that the VOBC would protect the train when following the dynamic train MA. To

completely test the overspeed protection function in the specification, a multiple train scenario

was built, introducing more trains into the network to vary train movements. Additional

VOBC functions which are relevant to the overspeed protection were added into the

specification model to create a more detailed scenario for the SUT. Fig 46 shows the

schematic of the multiple-train scenario:

Fig 46 Schematic of multiple-train scenario

As shown in Fig 46, three trains are configured in the same network as adopted in single train

scenario. The middle train is the test train which is controlled and monitored by the testing

platform. The front train and behind train are both simulated trains, and they are controlled by

139

the microscopic railway simulator following a designed timetable. These two trains are not

installed with the SUT VOBC so that they cannot realise all the functions supported by the

middle one. But with the help of the microscopic railway simulator, the two trains can operate

safely by following simulated MAs. The main purpose of the configuration is to provide the

SUT train with an environment which is more like its real operational environment. In

addition to this, the multiple train scenario can test whether the SUT VOBC is safe for whole

system operation. In this case study, the author will explain the multiple train scenario by

comparing it with the single train scenario, focusing on the differences between the two

scenarios and ignoring repeated concepts.

5.2.1 SUT Models and the HIL Environment

To implement testing in the new scenario, the specification model needed to be modified to

adapt to the multiple train scenario. At the same time, the HIL environment needed to be

re-built to realise the environment for multiple trains. Both elements were evolution of the

developed models introduced in the single train case. The train location function of the VOBC

was introduced into the testing implementation to improve the operation conditions of the

SUT VOBC.

5.2.1.1 Abstract Model

To realise the train location function, the abstract models of the SUT and the tester are

modified based on the ones presented in single train case. The updated models are shown by

the Fig 47 and Fig 48:

140

Fig 47 TA model of the SUT for multiple-train scenario

Fig 48 TA model of the tester for multiple-train scenario

141

As shown by the figures above, the modified TA models keep the general structure of the ones

in the single train case. One of the differences is that the train location is realised by adding

the variables ‘BaID’ and ‘Distance’ and the I/O actions ‘Unlock’, ‘PosLost’ and ‘BaPass’.

Another modification is that the values of the variables ‘SPEED’ and ‘speedlim’ are checked

only on the output action ‘ACCed’. On the output action ‘Report’, the variables ‘SPEED’

and ‘speedlim’ are removed, and the variables ‘Distance’ and ‘BaID’ are checked by the test

tool. The main purpose for the modification is to control the computational load of the test

tool, TRON. The testing implementation can fail if the TA model is too complex for the test

tool to analyse. If all the four variables (‘SPEED’, ‘speedlim’, ‘Distance’ and ‘BaID’) are

checked with the same output action ‘Report’, the computational load caused by the

combination of the four variable values will be too heavy for TRON to finish the analysis

within the time constraints. Therefore, the computational task must be averagely assigned to

different I/O actions to avoid the testing implementation becoming unstable.

As presented by Fig 47, the SUT goes to the state ‘ACCed’ when ‘SPEED’ is lower than

‘speedlim’, and it goes to ‘QueryEB’ when ‘SPEED’ is higher than ‘speedlim’. In the state

‘Reporting’, the SUT decides which output action is available, by checking whether the

received ‘BaID’ matches the received ‘Distance’ according to the line map embedded in the

VOBC. The output ‘Report’ will be sent if no balise ID is received (which means ‘BaID’

equals 0). When the SUT receives a balise ID (which means ‘BaID’ is non-zero) and the

received ‘Distance’ is in the valid range (±5 m) of receiving the corresponding balise ID, the

output action ‘BaPass’ is activated, representing that the SUT is receiving and accepting a

142

balise. If ‘BaID’ is non-zero but the received ‘Distance’ is out of the valid range for the first

time, it will be ignored, and the output action ‘Report’ will be activated to represent that the

balise is not accepted. If two consecutive balises are rejected or the received ‘BaID’ is illegal,

the output action ‘PosLost’ will be activated to represent that the train position is lost by the

VOBC, and an EB should be triggered. The code below is embedded in the SUT model and

realises part of the VOBC train location logic which determines whether the received balise

ID is legal:

Another modification is that ‘speedlim’ becomes a variable by setting it to a range of

[0,22] m/s, which makes the SUT able to accept various speed limits generated by the

changing train MA. The variable ‘speedlim’ is another reason that the author reconfigured the

structure of the SUT model to reduce the possibility space in certain states. The final

modification of the SUT model is that the EB can be released if it is triggered by overspeed. If

the EB is triggered by a lost train location, the SUT will be reset and the testing

143

implementation will start from the initial state. The reason is that the VOBC needs the help of

the ZC to recover from the train location being lost, while the ZC function is not included in

the SUT model in this case. Since the train location function is realised by the abstract model

in the specification model, the simulation model remains the same as in the single train

scenario.

5.2.1.2 HIL Environment Model

To realise the multiple train scenario, the HIL needs to provide two more trains which can

operate in the network. Since only the middle train is controlled and monitored by the testing

platform, the other two trains should be controlled by the HIL environment and be able to

operate as normal trains; this is supported by the existing functions of the microscopic railway

simulator. The movements of the simulated trains are completely controlled by the simulator

based on a defined timetable.

As indicated by Table 8 which shows the timetables for the front train and behind train, the

timetables rule the train movements by specifying the time point at which the trains should

arrive at a certain position. The timetable also specifies the actions that the train should

perform at a certain position, including PASS, STOP and NONE. PASS means the train should

keep its operating condition and pass the certain point at the specified time point. STOP

signifies that the train plans to stop at a certain position at a specific time point, and NONE

means no plan is assigned to a certain position. The microscopic railway simulator guarantees

that the simulated train follows the timetable when the conditions are satisfied, which means

144

that no barrier stops the train or that the time slot is long enough for the train to arrive in time.

Except for the simulated trains being controlled by the simulator, the operation principles of

the simulated trains are the same as those of the SUT train, which means they share the same

kinetic equations and have the same influence on the other components in the network.

Service name Train
description Start date End date Drive type

T1 VOBC train 2016-01-01 2016-01-01 UPPAAL driver

S2 Simulation train 2016-01-01 2016-01-01 Simulation driver

Node Minimum stop time Required departure time Type Stop ID
N290 -- 09:00:00 NONE --
N82 -- -- NONE --
N76 -- -- NONE --
N288 30 09:02:20 STOP San Yi
N50 -- -- NONE --
N285 -- 09:03:20 PASS Chao Yang
N33 -- -- NONE --
N283 -- 09:05:40 STOP Wan Bao
N14 -- -- NONE --
N1 -- -- NONE --

S3 Simulation train 2016-01-01 2016-01-01 Simulation driver

Node Minimum stop time Required departure time Type Stop ID
N290 30 09:00:50 STOP --
N82 -- -- NONE --
N76 -- -- NONE --
N288 -- -- NONE --
N50 -- -- NONE --
N285 30 09:02:30 STOP Chao Yang
N33 -- -- NONE --
N283 -- -- NONE --
N14 -- -- NONE --
N1 -- -- NONE --

Table 8 Timetables for simulation trains built in the microscopic railway simulator

145

The reason that only three trains are included in the scenario is that three trains are enough to

form a moving-block scenario. In essence, the testing goal is to determine whether the SUT

VOBC can guarantee the train’s operational safety under the TCS of a moving block. With a

simulated train in front of the SUT train and one behind, the testing implementation can find

out whether the SUT train is at risk of crashing into the front train and whether the behind

train can crash into the SUT train in some extreme situation. With all the potential risk factors

considered by the testing environment, the testing results become more convincing than those

of the single-train scenario.

According to the modified specification model, the HIL environment is required to provide

two more variables for the specification model, which are the balise ID and the central

position of the balise (in the format of journey distance). The added variables are supported

by the existing functions of the microscopic railway simulator, which is shown by Fig 49:

Fig 49 Schematic of the testing environment for train location function

As illustrated by Fig 49, when the SUT train is passing a balise represented by a purple

triangle (which means the train head is running into the balise transmission range), the HIL

environment sends the corresponding balise ID with the central position of the balise to the

SUT train, as displayed by the green label. Based on the received balise ID and central

146

position, the specification model determines whether the combination is legal and makes the

next move. If the received balise ID matches its central position, the SUT VOBC should

accept that balise and reset the train uncertainty to zero. If the received balise ID is illegal, or

two balises have been missed, the VOBC should trigger the EB because the train position is

lost. Without a correct train position, the overspeed protection is meaningless, so that the train

location function is a precondition of the overspeed protection function. After modification of

the specification model and the HIL environment is finished, the testing platform is ready to

execute the testing implementation.

5.2.2 Testing Results

Because the test environment for the multi-train scenario is more complex than that of the

single train scenario, the author extended the testing time to 50000 seconds. No failure was

found during the testing procedure, and the testing conclusion is shown by the log file below:

147

Since multiple trains run in the network, the platform should inspect whether the SUT VOBC

can protect the train from overspeed and avoid the train going into a dangerous position where

collisions can happen. A crash detection function has been developed on the testing platform

to detect whether several train heads or tails appear at the same position on the track during

the whole testing process. Fig 50 shows an example of a crash situation happening in the

network:

Fig 50 Schematic of the crash detection function

As revealed by Fig 50, the front train crashes into the SUT train because its moving direction

is reversed, and its overspeed protection function is artificially removed. Without detecting

the SUT train is in front, the front train moves in a normal condition and finally crashes into

the SUT train. When the crash happens, the testing platform detects the situation and freezes

the two crashed trains to avoid further damage. The operation that causes the train crash is

illegal in a real metro system because driving a train in reverse on the track needs a series of

preconditions and permissions from other components in the CBTC system. The author uses

the assumed case to show the operation principle of the crash detection function. Fig 51

148

shows part of the testing results, the distance–time graph of the three trains in the network for

one run:

Fig 51 Distance–time graph of the three trains in the network

As can be seen from Fig 50, the distance–time graph clearly indicates that there is no collision

happening during the time elapsed. The minimum distance between each two trains can be

roughly obtained from the graph; it is about 100 metres, much more than the safety margin

which is 40 metres according to the specification. After 50000 seconds running of the testing

implementation, no crash was found, and the test was passed successfully.

Another purpose of testing is to find out whether the SUT VOBC can protect the train from

overspeed in the multiple-train operation scenario. The following group of graphs record the

trajectories of the three trains in one run of the testing implementation:

149

Fig 52 Trajectory graphs of the SUT train in one loop of testing

Fig 53 Trajectory graphs of the front train S2 in one loop of testing

Fig 54 Trajectory graphs of the behind train S3 in one loop of testing

In Fig 52, the SUT train speed tends to follow the various speed limits determined by the

150

train’s MA. The EB is triggered every time the train speed exceeds the speed limit. Since the

SUT is the middle train, the speed limits of the front and rear trains are ignored, and only the

line speed limit is recorded in their trajectories. When the SUT train arrives at the destination,

the testing platform resets the testing implementation by reinitialising the positions of the

three trains. Then the testing runs again until the testing time expires.

In the testing scenario, the other reason for triggering the EB is that the train location is lost

by the VOBC. Fig 55 shows an example of the EB being triggered by a lost train location:

Fig 55 Trajectory graphs of the SUT train for the example of EB due to lost train location

As recorded by Fig 55, the SUT train triggers a third EB after two EB caused by overspeed.

The third EB is obviously not triggered by overspeed because the current train speed is far

below the speed limit at which the EB is triggered, therefore the EB must have been triggered

as a result of losing the train’s location. There are various situations in which the SUT VOBC

can lose the train’s location. For example, if the VOBC has not lost balises before the EB is

triggered, the EB is triggered on receiving an illegal balise ID. If there has been an adjacent

balise (in front of the current one) lost by the VOBC, rejection of the current balise will

151

trigger the EB both for an incorrect balise ID, or an incorrect balise central position. In this

case, according to the specification model and the HIL environment, the train triggers the EB

because it receives an illegal balise ID. Since the HIL environment is not designed to send a

wrong balise ID or a wrong balise central position, the reason the EB is triggered is that the

second EB triggered by EB forces the VOBC to miss two balises. The following graph

describes in detail how the third EB is triggered:

Fig 56 Schematic of scenario in which a third EB is triggered

According to the speed–distance graph in Fig 55, the SUT train triggers the second EB at

around 3000 metres, which refers to a point marked in the red circle between the fixed balises

‘FB1226’ and ‘FB1224’. The train eventually stops at the point at around 3250 metres,

referring to the point marked with a green circle on the track. Since the VOBC cannot accept

balise messages when the EB is being implemented, the two balise messages between the red

circle and the green circle are missed. When the train departures again and passes the fixed

balise ‘FB1220’, the VOBC determines it has received an illegal balise and triggers the EB

for the third time. The deduction can be proven by the log file below and Fig 57:

152

Fig 57 Correspondence relations of balise ID between the abstract model and HIL environment

Based on the log file recorded by the testing platform, the last received balise ID is ‘BaID=14’

at ‘Distance=555’ (actual distance equals 555 × 5 = 2775 m). After receiving balise ‘14’,

the train triggers the EB because of overspeed and misses two continuous balises. When the

train departs and comes across balise ‘17’, the EB is triggered again because the train’s

location is lost. Fig 57 indicates the translation relations between the real balise IDs in the

HIL environment and the abstract balise IDs (in the ‘Desc.’ column of the Infrastructure table)

in the specification model.

153

5.2.3 Summary

In this case, the author has extended the prototype of the testing scenario used in the case

study in Chapter 0 into an advanced version which is closer to a real testing scenario

containing multiple trains travelling on the network. By adding the train location function into

the specification model, the prerequisites for overspeed protection are completed. Without a

correct train location, the VOBC cannot make a convincing decision on whether the train is

overspeeding. The multiple train case provides a relatively complicated environment for the

SUT, testing the SUT’s ability to protect the SUT train as well as the other trains running in

the same network. The testing results of the multiple train scenario are more convincing than

those of the single train scenario as the multiple train scenario takes more impact factors into

consideration, such as interactions between the three trains. With the help of simulation, more

elements can be included in the testing process without decreasing its efficiency due to

increased model complexity. By refining complex specifications into abstract format and

simulating the rest of the SUT behaviour, the testing platform takes advantage of both MBT

technologies and simulation. Although no failure was found during testing, the testing results

still indicate the feasibility of the testing platform.

5.3 Conclusion

Two cases were implemented to inspect the testing ability of the developed simulation

combined MBT platform. In the single train scenario, the implementation method in Chapter

4 was realised. The author installed the SUT VOBC on a simulated train which can travel on a

154

simulated network. The overspeed protection function of the VOBC was tested, and the test

results indicate that the SUT VOBC complies with the system specification. In the

multiple-train scenario, three trains are travelling on the network and only the middle train is

protected by the SUT VOBC. The overspeed protection function and the train location

function were tested. Since multiple trains travelling on the same line is a necessary

operational scenario in CBTC system operation, the author implemented the case to explore

whether the developed testing platform is capable of testing the VOBC in such a scenario. The

test results indicate that the SUT VOBC can still protect the train from the dangerous situation

caused by train overspeed or loss of train location. Since the test scenario was simulated

according to real data provided by the system developer, the two cases prove that the testing

platform can be applied to test SUTs in an HIL environment. The MBT combined with

simulation is proven to be a feasible solution to automate complex SUT testing without the

risk of state explosion. Furthermore, the proposed simulation combined MBT decreases

modelling difficulties by adopting the simulation model to describe complex system

behaviour.

6 Validation and Verification

For black-box testing, only one of three conclusions can be drawn, Pass, Fail or Inconclusive.

However, the three conclusions available cannot be quantised, which means the performance

of a test tool cannot be analysed based on the conclusions. The simulation combined MBT

platform is a comprehensive testing platform, integrating the formal model in UPPAAL, the

simulation model in the microscopic railway simulator, and the online test tool

155

UPPAAL-TRON. To verify the testing platform, proving the correctness of all the

components in the simulation combined MBT platform is necessary, which was done in

Chapter 3 and 4. Based on the methodology introduced, Chapter 5 has introduced the

simulation combined MBT performed and the testing results obtained. To further prove the

effectiveness of the proposed methodology, validation and verification should be

implemented.

In engineering field, validation is the process of determining whether the system specification

requirements are correctly built to satisfy customer’s demands. Verification is the process of

determining whether a system is correctly built according to its system specification

requirements [125]. Expanding the definition to the field of MBT, specification models should

be validated to prove that they have been correctly built to achieve testing purposes and test

results should be verified to prove that testing has been correctly implemented to draw valid

testing verdict. Therefore, specification models built in Chapter 5 are validated in this chapter.

The performance of the testing platform is then analysed in forms of quantised indices

according to the specification models validated and the testing results obtained, to verify the

effectiveness and performance of the simulation combined MBT platform. Two case studies

have been undertaken in Chapter 5 and the author uses the data obtained from the multiple

train case study to implement the validation and verification. The multiple train case is used

based on the comprehensively rich data when compared with the single train case.

156

6.1 Validation of the Specification Requirement

In MBT, the specification model represents the informal specification, and guides the

computer in the execution of testing implementation. Therefore, the correctness of the

specification model is one of the essential components in the MBT. An MBT can draw a

wrong conclusion if the original specification is incorrectly modelled. Proving strict

consistency between the specification model and the original specification is time-consuming;

instead, the solution is to prove consistency within given constraints. As a result, the problem

is transformed into the specification model having to comply with the original specification

solely within context of the multiple-train testing scenario. According to the discussion in

Chapter 5, the specification model consists of the abstract model and the simulation model.

Since the abstract model is written in the formal format, it is more likely to contain mistakes

made by human factors. The author focuses on validation of the abstract TA model in this

chapter. Validation of the simulation model is discussed only briefly because it has been

validated in the frame of microscopic railway simulator.

6.1.1 Abstract Model Validation

The abstract model is written in TA format on the modelling tool UPPAAL, which supports

model verification by model-checking, a verification technology to automatically and

exhaustively inspect whether the model satisfies given properties [93, 126]. To verify the TA

model in UPPAAL, the key properties need to be written in first-order logic using the

language format desired by UPPAAL. There are four main property formulae supported in

157

UPPAAL, used to check whether the property P is satisfied by the TA model, which are shown

below:

A[] PA[] P A<> PA<> P

E[] PE[] P E<> PE<> P

A[] P A<> P

E[] P E<> P

Fig 58 Schematic of the four formulae supported by UPPAAL

As presented in Fig 58, the four formulae of the property descriptions determine the checking

scale of the TA model. The formula ‘𝐴𝐴 [] 𝑷𝑷’ requires that the property P should be satisfied in

all states of all the traces contained in the TA model. The formula ‘𝐴𝐴 <> 𝑷𝑷’ requires that the

property P should be satisfied in some states of all the traces contained in the TA model. The

formula ‘𝐸𝐸 [] 𝑷𝑷’ requires that the property P should be satisfied in all the states of some traces

contained in the TA model. The formula ‘𝐸𝐸 <> 𝑷𝑷’ requires that the property P should be

satisfied in some states of some traces contained in the specification model. With the four

specific formulae, UPPAAL can automatically check the safety and liveness properties of the

158

built model, determining whether these properties comply with the system specification. The

safety property requires that unexpected events never happen during the system operation

process, which means the corresponding formulae are ‘𝐴𝐴 [] 𝑷𝑷’ and ‘𝐸𝐸 [] 𝑷𝑷’. A special formula

‘𝑷𝑷𝟏𝟏 → 𝑷𝑷𝟐𝟐’ for safety property verification is supported by UPPAAL, meaning that 𝑷𝑷𝟐𝟐 will

be eventually satisfied whenever 𝑷𝑷𝟏𝟏 is satisfied. The liveness property requires that expected

events can eventually happen during the system operation process, which means the

corresponding formulae are ‘𝐴𝐴 <> 𝑷𝑷’ and ‘𝐸𝐸 <> 𝑷𝑷’.

The purpose of validating the specification model is to confirm that it correctly describes the

system specification so that the testing results are always obtained from the correct test oracle.

The author validated the specification model by verifying whether it satisfies the safety and

liveness properties which are desired by the system specification. Although consistency

between the specification model and system specification cannot be completely proven in this

way, validation of the specification model can guarantee that no safety or liveness errors exist

in the specification model, which can adequately prove that the specification model is eligible

to be used in black-box testing. Fig 59 shows an overview of all the verified properties in the

specification model:

Fig 59 Summary of all verified safety and liveness properties

159

Based on Fig 59, all the safety and liveness properties pass the verification via the integrated

model-checking tool box in UPPAAL. The verification formulae are written in the format of

first-order logic with a special grammar required by UPPAAL. For example, the formula

‘SPEED > 0 → 𝑛𝑛𝑛𝑛𝑛𝑛 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 || 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)’ means that the states ‘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆’ and

‘𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸’ in the TA ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ can never be available when ‘SPEED > 0’ holds, which

requires that the SUT VOBC (train) can only be stopped and the EB released when the train

speed is zero. The safety property is derived from the test specification with a different angle

of description which can be intuitively comprehended by humans and read by computers.

With the help of model-checking, the liveness and safety properties were verified, and the

verification procedure is presented.

6.1.1.1 Deadlock

The first essential verification which should be implemented is to verify that the TA model

built has no deadlock. It is the most important verification because a deadlock in the TA

model may lead to inconclusive situations during the testing process, making all the covered

situations meaningless. To verify the TA model is deadlock-free, the formula

‘𝐴𝐴 []𝑛𝑛𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑’ is used in UPPAAL.

6.1.1.2 Safety Properties

In this section, the verified properties are explained in detail, in terms of the meaning of the

properties, the reasons for verifying them, and the verification results.

160

6.1.1.2.1 𝐴𝐴[] 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 > 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 && 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬

• Meaning: in all states in all the traces contained in the TA model, the condition ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 >

𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬’ being true implies that the TA models of ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ and ‘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑’ will eventually

turn into the EB mode, which is presented by the states ‘𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸’ and ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’.

• Reason: the key function of overspeed protection is to protect the train from overspeeding, by

decelerating the train when the train speed is too fast. This property aims to verify whether the

TA model goes into EB mode when the train is overspeeding because the EB function is only

available in EB mode.

6.1.1.2.2 𝐴𝐴[]𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 && 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 == 0

• Meaning: when the TA model ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ is in the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’, and the TA model ‘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑’ is

in the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’, the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is implied to be zero.

• Reason: as required by the specification, the SUT train should eventually be stopped once the

EB is triggered. The states ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ and ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ stand for the stopped states in the SUT

and the tester, where the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ should always be zero. This property verifies

that the SUT can achieve the stopped state only when the train speed is down to zero.

6.1.1.2.3 𝐴𝐴[] 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 > 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

• Meaning: when the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is greater than the speed limit ‘𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬’, the state

‘𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹’ which stands for the SUT being in the normal operation mode becomes

unavailable.

161

• Reason: this property aims to check that the SUT cannot stay in the normal operation mode

when the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ exceeds the speed limit ‘𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬’, which means that the

SUT should enter EB implementation mode when overspeed happens. Satisfaction of the

property guarantees that the SUT must go to EB mode when an overspeed situation is

detected.

6.1.1.2.4 𝐴𝐴[] 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 == 0

• Meaning: when the SUT is in the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’, the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is always

zero.

• Reason: another safety-critical function related to overspeed protection is that the

implemented EB can be released only when the train is completely stopped. State

‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ stands for the condition where the implemented EB has been released from

the SUT train, and the event can happen only when the train speed ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ is zero.

Satisfaction of the property guarantees that removal of the EB happens in safe conditions.

6.1.1.2.5 𝐸𝐸[] 𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 == 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝒔𝒔𝒔𝒔𝒔𝒔 == 1 && (𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 < 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] − 1 ∨

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 > 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] + 1))

• Meaning: the Boolean variable ‘𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥’ being false implies that the variable ‘𝐬𝐬𝐬𝐬𝐬𝐬’ equals 1, and

the variable ‘𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃’ is out of the valid receiving range of a certain balise.

• Reason: one reason that train location is missed happens because the VOBC receives a valid

balise ID without a valid balise central position. The Boolean variable ‘𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥’ being false

represents that the train position is lost, and the variable ‘𝐬𝐬𝐬𝐬𝐬𝐬’ means that the SUT is receiving

162

a valid balise ID. Satisfaction of the property guarantees that the SUT can reject a received

balise ID when its corresponding central position is wrong. The reason for using the formula

‘𝐸𝐸[]’ but not ‘𝐴𝐴[]’ is that loss of train location happens in several situations, and the one

presented by the property is only one of them.

6.1.1.2.6 𝐴𝐴[] 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 >= 2 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑩𝑩

• Meaning: when the variable ‘𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍’ is no less than 2, the SUT always goes to the state

‘𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑩𝑩’ eventually.

• Reason: when two continuous balises are found to be missed, the variable ‘𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍’

becomes 2, and the SUT should find that the train location is missed. In this situation, no

matter what current state the SUT is in, it should trigger the EB immediately and stop the train

eventually. Satisfaction of the property indicates that the SUT can detect that the train position

is lost and go to the EB mode to keep the train safe.

6.1.1.2.7 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 −> 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰

• Meaning: the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ in the TA model ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ always leads to the state ‘𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰’.

• Reason: when the EB is removed from the SUT train, the SUT should eventually be able to go

to the initial state. Satisfaction of the property guarantees that the SUT TA model does not

have deadlock in the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’.

6.1.1.2.8 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 −> 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

• Meaning: the state ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ in the TA model ‘𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇’ always leads to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’.

163

• Reason: the SUT will eventually go to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ if its current state is ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’, which

indicates that the train should eventually be stopped once the EB is triggered. Satisfaction of

the property guarantees that the EB is effective in stopping the train.

6.1.1.2.9 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 > 0 −> 𝑛𝑛𝑛𝑛𝑛𝑛 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑺𝑺𝒕𝒕𝒕𝒕𝒕𝒕 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬)

• Meaning: the variable ‘𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒’ being greater than zero leads to the SUT not being able to go

to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ or ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’.

• Reason: the SUT should never go to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ or ‘𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬’ before the train is

completely stopped. As a result, satisfaction of the property guarantees that the SUT stays in

the EB mode when the train speed is not zero.

6.1.1.3 Liveness Properties

6.1.1.3.1 𝐴𝐴 <> 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝒚𝒚𝑬𝑬𝑬𝑬 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝒐𝒐𝒑𝒑

• Meaning: when the SUT is in the state ‘𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝒚𝒚𝑬𝑬𝑬𝑬’, it will eventually go to the state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’.

• Reason: satisfaction of the property indicates that the SUT can be completely stopped by the

EB, which means that the expected state ‘𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺’ can be achieved eventually.

6.1.1.3.2 𝐴𝐴 <> 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫

• Meaning: when the SUT is in the state ‘𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰’, it will eventually go to the state ‘𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫’.

• Reason: the testing purpose requires that the train can departure eventually. Satisfaction of the

property guarantees that the train will not always be stuck in the initial state ‘𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰’ and will

eventually depart at some time.

164

6.1.1.3.3 𝐴𝐴 <> 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫

• Meaning: when the tester is in the state ‘𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 , it will eventually go to the state

‘𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫’.

• Reason: the testing purpose requires that the tester should send the departure command to the

SUT at some time. Satisfaction of the property indicates that the tester will try to send the

departure command to the SUT train and make the following testing steps available.

6.1.1.3.4 𝐴𝐴 <>

 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ∨

𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑪𝑪 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 ∨

𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 ∨ 𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∨

𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬

• Meaning: all the states contained in the SUT TA model should be reachable in some traces.

• Reason: satisfaction of the property indicates that there is no unreachable state in the SUT

model so that everything defined in the model can be covered in the testing process at some

time.

165

6.1.1.3.5 𝐴𝐴 <> 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑒𝑒.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 ∨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸𝑸 ∨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 ∨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 ∨ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑑𝑑𝑑𝑑.𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

• Meaning: all the states contained in the tester TA model should be reachable in some traces.

• Reason: satisfaction of the property indicates that there is no unreachable state in the tester

model so that everything defined in the model can be covered in the testing process at some

time.

6.1.1.3.6 𝐴𝐴 <> 𝒙𝒙 >

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑛𝑛𝑒𝑒𝑒𝑒.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨ 𝑅𝑅𝑅𝑅𝑅𝑅𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨

𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 ∨ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽

• Meaning: when the clock ‘𝒙𝒙’ is larger than the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’, one of the communication channels

must be in the state ‘𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽’.

• Reason: satisfaction of the property indicates that the clock can only be greater than the

latency when in the state ‘𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽’.

166

6.1.1.3.7 𝐴𝐴 <> 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝐸𝐸𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 ∨

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝒙𝒙 <= 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

• Meaning: when the communication channels are in the state ‘𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩’, the clock ‘𝒙𝒙’ must be no

greater than the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’.

• Reason: satisfaction of the property indicates that the state ‘𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩’ is only available when the

clock ‘𝒙𝒙’ is within the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’, which means that all the communication channels must go

from the state ‘𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩’ to the state ‘𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽’ once the clock exceeds the ‘𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’.

6.1.1.3.8 𝐴𝐴 <> 𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵 == 0 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝒔𝒔𝒔𝒔𝒔𝒔 == 1 && (𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 >= 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] −

1 && 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 <= 𝑀𝑀𝑀𝑀𝑀𝑀[𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵] + 1)) || (𝐼𝐼𝐼𝐼𝐼𝐼_𝑇𝑇. 𝒔𝒔𝒔𝒔𝒔𝒔 == 0)

• Meaning: the variable ‘𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍𝐍’ is equal to zero when the SUT receives a valid balise

number with a valid balise central position, or the SUT does not come across balises.

• Reason: when the SUT is running normally on the track without overspeed, it can receive a

valid balise ID with a correct balise central position, or it can run without receiving balises.

Satisfaction of the property indicates that the train location function of the SUT VOBC

performs correctly according to the specification.

6.1.2 Simulation Model Validation

Unlike verification of the abstract model which is in TA format, the simulation model of the

specification model cannot take advantage of the model-checking integrated into UPPAAL,

167

which makes its formal verification more expensive than that of the abstract model. The

simulation models developed in this thesis is assumed to be correct and comply with the

system specification to undertake the key testing tasks. In engineering practice, the simulation

models could be either developed according to the system specification or adopted directly

from the system software with addition of simulation control models.

6.2 Effectiveness Verification

To prove that the simulation combined MBT performs is better than existing testing

approaches, effectiveness verification and performance verification are undertaken to prove

that the developed testing platform can detect errors and achieve a better coverage. If the

developed testing platform is evaluated to detect every error covered and to cover more

possibilities, it is a better testing approach because it has a higher possibility to find error

hidden in the SUT than existing ones.

6.2.1 Mutation Testing

With the specification model verified, the effectiveness of simulation combined MBT can be

verified to determine whether the testing platform can find out errors in an SUT. Since the

testing results in Chapter 5 indicate that there are no errors in the SUT VOBC, the author

verified the testing platform further to see whether it can find existing errors in an SUT

mutation, which is obtained by injecting known errors into the SUT. The verification process

is called mutation testing in the computer science field and contains a set of different kinds of

mutation operators corresponding to different errors [127, 128]. The application domain for

168

this thesis is the rail industry and as a result, the author has simplified the mutation testing by

only selecting mutation operators which are meaningful in railway system testing. Table 9

shows the summary of a set of mutation testing results:

Mutation error Errors inserted into the SUT Test results

Wrong output action
e.g. make the SUT send out ‘ACCed’

when it receives ‘DCC’ from the testing
platform

Passed

Incorrect output value
e.g. make the train speed decelerate with

the output action ‘ACCed’ when the
SUT receives ‘ACC’

Passed

Delay e.g. insert a major delay of 200 ms in the
communication channel Passed

Missing state e.g. remove the state ‘Accelerating (see
Fig 47) in the SUT Passed

Transition to wrong state e.g. change the transition ‘Reporting’ to
“QueryEB” (see Fig 47) Passed

Incorrect initial condition e.g. give the SUT a wrong initial state Passed

Table 9 Summary of mutation testing results

As shown in Table 9, six mutation tests were implemented to verify whether the simulation

combined MBT platform can detect known errors. All the mutation testing presented typical

errors which can be found in black-box testing, and the verification results indicate that the

169

SUT VOBC can detect all the errors inserted. The details of the six mutation testing are

presented as follows:

6.2.1.1 Wrong Output Action

It is the most basic function that a testing platform should detect unexpected output actions.

The author inserted the error by modifying the SUT code, making the SUT send out ‘ACCed’

when it receives a ‘DCC’ command. Therefore, the mutated SUT accelerates a train when it

receives a decelerating command, which does not satisfy the specification. The verdict given

by the testing platform indicates that the error was detected.

As indicated by the verdict, the expected output action corresponding to the input command

‘DCC’ is ‘EB’ or ‘DCCed’ while the received output action is ‘ACCed’. Therefore, the testing

platform drew a failed conclusion and interrupted the testing process.

6.2.1.2 Incorrect Output Value

Another basic function for testing a platform in black-box testing is to check whether the

output variable value is correct according to the testing specification. A wrong variable value

along with a correct output action should be discovered. The author inserted the error by

making the SUT train brake when it receives the input command ‘ACC’ and feeds back the

output action ‘ACCed’. Although the input and output actions comply with the expected ones,

170

the testing platform should still find inconsistencies in train speed between the SUT and the

specification. The verdict given by the testing platform indicates that the error was detected.

As indicated by the verdict, the expected output value of the variable ‘SPEED’ should be no

more than 12 according to the previous value of ‘SPEED’ along with the previous output

action ‘ACCed’. The testing platform detected the error and drew a failed conclusion for the

testing.

6.2.1.3 Delay

For testing of the SUT containing time constraints, the testing platform is required to

determine whether delays between input and output actions comply with the specification

requirement. In black-box testing, an output should arrive in time after the input action, which

means a delayed output action should draw a failed conclusion. The author inserted the error

by adding a response delay of 1000 time-units between the input action ‘ACC’ and its

corresponding output action ‘ACCed’, which makes the ‘ACCed’ arrive later than the time

constraints in the specification. The verdict given by the testing platform indicates that the

error was detected.

171

As indicated by the verdict, the testing platform expects the output ‘ACCed’ to arrive with

1000 time-units after the input action ‘ACC’ happens. The time stamp of the ‘ACC’ is 3018,

and the testing platform did not receive the expected output action ‘ACCed’ until the time

stamp went to 4019. Since overtime happened between the input and output actions, the

testing platform detected the inconsistency and drew a failed conclusion.

6.2.1.4 Missing State

A missing state can happen when synchronisation of the SUT and testing platform is broken,

making the SUT transition miss a certain state and jump over to a further one. It is important

for a testing platform to detect this unusual situation in the implementation of black-box

testing. Broken synchronisation should terminate the testing process immediately because the

following testing results are all based on wrong synchronisation. The author inserted the error

by making the SUT skip the state ‘Accelerating’ to arrive at state ‘QueryACC’ directly. The

verdict given by the testing platform indicates that the error was detected.

As indicated by the verdict, the missing state was found by the testing platform because the

172

testing platform received an unacceptable output action ‘Report’, missing the correct one

which is ‘ACCed’. The reason this happens is that the output action ‘ACCed’ becomes invalid

in any other state except for ‘Accelerating’. Therefore, the testing platform detected the

inconsistency and drew a failed conclusion.

6.2.1.5 Transition to Wrong State

The error of the SUT transiting to a wrong state can happen when the internal logic of the

SUT is falsified. Transition to a wrong state makes the following input and output actions

conflict with the expected pattern. Therefore, the testing platform should detect this error in

black-box testing. The author inserted the error by falsifying the state transition logic of the

SUT, making it transit from the state ‘Reporting’ to ‘QueryEB’ no matter which output action

is available. The verdict given by the testing platform indicates that the error was detected.

As indicated by the verdict, the inserted error was found by the testing platform. Since the

transition logic was falsified, the SUT was forced to go to state ‘QueryEB’, and make a series

of wrong input and output actions. After the SUT went back to the correct state, the testing

173

platform detected the inconsistency in the variable ‘SPEED’ and drew a failed conclusion for

the testing.

6.2.1.6 Incorrect Initial state

The last error is caused by incorrect initialisation of the SUT, which makes all the following

testing results meaningless. Therefore, the testing platform should be able to find that the SUT

is incorrectly initialised at the beginning of the testing process. The author inserted the error

by giving the SUT a wrong initial state, ‘Reporting’. The verdict given by the testing platform

indicates that the error was detected.

As indicated by the verdict, the testing drew a failed conclusion at the beginning of testing

because the first output action ‘Departed’ could not be observed by the testing platform. The

wrong initial state blocked the SUT from sending out any valid output actions. Therefore, the

testing platform detected the inconsistency.

6.2.2 Reachset Conformance Relation

The presented testing results for the mutation testing prove that the system can detect most of

the known errors which may lead to dangerous situations of system operation such as

174

overspeed or lost train location. The soundness of the simulation combined MBT platform can

be proven under the assumption that all the errors which potentially exist in the SUT are

completely ascertained. However, even for an experienced tester, it is not possible to spot all

potential errors that could lead to dangerous situations in the operation of complex systems

such as TCSs. To verify that the testing platform can detect unknown errors, the testing results

should be analysed to find out whether there is any inconsistency issue between the results

obtained and the system specification. However, straightforward verification of the testing

result is expensive (time and resource usage). The purpose of testing verification is to prove

that the testing does not miss any errors which may become potential risks in the future. As a

result, the verification can be transformed to prove that no errors violating the safety

properties are missed in the testing process. To achieve that goal, the author applies a concept

of conformance relation in the verification, which is less expensive than verifying the trace

conformance relation adopted but strong enough to prove that the SUT satisfies the safety

properties in the specifications. This relation is called Reachset Conformance Relation and

has been defined by Roeahm et al. [129].

Different from the trace conformance relation, the reachset conformance relation determines

the conformance relationship between two systems (abstract system and real system) by

proving the inclusion relationship of their reachable input set and output space. To explain the

verification method using application of the reachset conformance relation, the author

compared the traditional trace conformance relation and the reachset conformance relation,

illustrated by Fig 64:

175

Reachset Conformance Trace Conformance

Fig 60 Comparison between reachset conformance and trace conformance

As revealed by Fig 60, different from the trace conformance relation which is applied to

construct the testing platform, the reachset conformance relation recombines the states into a

group of reachable sets by hiding the individual transitions from a certain state to another.

Based on the concept of reachset, the definition of the reachset conformance relation in the

field of black-box testing can be formally obtained:

Letting 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 be implementation of the specification and the SUT, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 is

reachset-conformant to 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 if the input set and output space of 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 are a subset of the

input set and output space of 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.

Based on Fig 60, the reachset conformance relation holds if the trace conformance relation is

satisfied between two implementations. Therefore, the reachset conformance relation is a

weaker relation than the trace conformance relation, which means that trace conformance

cannot be proven by verifying reachset conformance. However, the purpose of testing

platform verification is to prove that the SUT complies with the safety properties desired by

the specifications. Trace conformance is one way to achieve that goal. To verify the

176

conclusion drawn from the trace conformance relation, the reachset conformance relation can

be used to check the result from another point of view. For the application of reachset

conformance relation, the task is to check whether the safety properties are satisfied by the

SUT with the reachset conformance relation, which means the SUT never enters a dangerous

area. Since the input set of the SUT for black-box testing is derived from the specification, it

is unnecessary to prove that the input set of the SUT is a subset of the input set of the

specification, because any invalid input from the specification will be directly rejected by the

test tool TRON without sending it to the SUT. Therefore, two main safety properties of the

output space should be always satisfied during the system operation procedure:

a. The train speed should never exceed the speed limit by the overspeed tolerance of 5 km/h.

b. Two trains should never be at the same point along the track in the time region.

Since verification of the two safety properties can be solved within the two-dimensional

region (one variable versus testing time), the reachset of the system can be obtained directly

from the SUT, from the data recorded during testing. By comparing the output reachset

obtained from the SUT and the output reachset specified by the safety properties, the reachset

conformance relationship between the SUT and the safety properties can be determined, as

indicated by Fig 61 and Fig 62:

177

Fig 61 Example of differences between train speed and speed limit

Fig 62 Verification results for the reachset conformance relation

Based on the safety property ‘a’, the reachset of the specification can be obtained as follows:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝜖𝜖 [0, 85] �
𝑘𝑘𝑘𝑘
ℎ � ,∀ 𝑡𝑡 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

According to the right-hand graph in Fig 61, the maximum difference between the train speed

and speed limit during testing is obtained as 1.1 m/s , which is below the maximum

overspeed allowance of 5 km/h (1.38 m/s). In the left-hand graph in Fig 61, the maximum

178

train speed can be obtained as 23 m/s (82.8 km/h), which is below the theoretical

maximum speed which can be achieved by the train in the network, 23.6 m/s (80 + 5 =

85 km/h). Therefore, according to the testing results shown in Fig 61, the SUT is

reachset-conformant to the safety property ‘a’ in the recorded testing time, which means the

SUT behaviour complies with the specification in the testing time. In Fig 62, the same

verification method is applied to all the trajectories recorded in the testing. The straight red

line represents the threshold which should not be surpassed by any train trajectory. The

maximum train speed is obtained as shown in Fig 62, which indicates that the maximum

difference between the train trajectory and the speed limit is 1.376 m/s. Therefore, the

reachset conformance relation is satisfied between the SUT and the specification, since no

counterexample is found.

Similarly, the reachset of the specification for property ‘b’ can be obtained as below:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡), where ∀ 𝑡𝑡 ∈ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡)

≠ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑡𝑡) or 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑏𝑏𝑏𝑏ℎ𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)

Based on the reachset obtained from the SUT train location, the reachset conformance relation

of the safety property ‘b’ can be verified by the distance–time graphs, as shown by Fig 63:

179

Fig 63 Example of a distance–time graph for verification

As seen from Fig 63 and discussed in Chapter 6, no two trains appear at the same point along

the track during testing, which means no collisions happen in the testing procedure. With the

collision detection function applied, the safety property ‘b’ is automatically verified after the

testing is finished.

The verification results indicate that the SUT behaviour satisfies the specification

requirements during testing. With both the trace conformance relation and reachset

conformance relation satisfied, the conformance relationship between the SUT and the

specification is dually proven. The reachset conformance for verification is a simplified

application which only contains two-dimensional issues. As a result, the reachset of the SUT

and the specification can be easily obtained without any further process. When there are more

than two reachset dimensions, the reachset cannot be directly analysed before being

approximated into a two-dimension issue, which makes reachset verification a far more

complex verification method. As a result, a precondition of verification with reachset

conformance is that the object under verification can be transformed into a set of

180

two-dimensional sub-objects.

Compared with mutation testing which verifies whether the testing platform can detect errors

of known type, reachset conformance verification aims to verify that no errors exist in the

testing results so that no errors are missed by the testing platform, regardless of whether the

types of errors are known or unknown. Since a correct testing result should contain no

inconsistency with the specification, the testing platform can be proven to be effective if no

counterexamples can be found in its testing results. With verification of the testing platform in

the fields of known errors and unknown errors, the simulation combined MBT platform is

proven to be capable of finding most of the significant errors in the SUT. However, all the

verification is based on the recorded results, which means an error could still be missed if it is

not covered by the testing platform. Therefore, the performance of the testing platform should

be verified to find out its coverage ability.

6.3 Performance Verification

Coverage performance of the simulation combined MBT platform can directly influences its

ability to find errors. With a low degree of coverage, the testing platform can miss a lot of

errors which could be detected if the error situations are achieved. There are series of factors

causing poor coverage in MBT testing, including inappropriate modelling, too large a model

size, limited testing scenarios, inefficient test generation algorithm, etc. Compared with

traditional manual testing, MBT can achieve more extensive coverage since the test

generation process is automated with the help of a computer. However, existing offline test

181

case generation has limitations when coming across complex SUTs and testing scenarios, such

as CBTC system testing. In this section, the author analyses the coverage of the simulation

combined MBT platform by comparing it with the coverage of traditional offline testing.

Different types of coverage are introduced to prove that the testing platform can

comprehensively achieve better coverage than existing methods.

6.3.1 Trace Coverage and Variable Coverage

Coverage was originally a concept of offline MBT testing, measuring how many possibilities

out of all valid possibilities have been covered by the implemented test. For offline MBT,

coverage is obtained by generating test cases from the built specification model, without

considering implementation of the generated test cases, which leads to two main limitations.

Firstly, the SUT has to be deterministic without interacting with the testing environment,

which makes the specification model too complex to achieve good coverage. Secondly, since

the whole transition pattern needs to be recorded to calculate the coverage, coverage of offline

testing can be limited by the size of the computer memory. In this situation, the computer

memory can be exhaustively occupied when the model has a high degree of complexity.

Therefore, there are two main factors influencing the coverage of offline MBT, abstract model

complexity and search depth. Search depth indicates how far the test generation algorithm has

reached to cover the possibilities, where one step means one transition from one location to

another. Since a complex model contains a larger possibility space, it can take more steps to

achieve equivalent coverage than a simple model, which takes up more computer memory.

Even worse, to achieve better coverage, the computer memory cannot be adequate for offline

182

test generation.

To determine the performance of the developed simulation combined MBT platform, the

author compared the coverage measured from the testing results with the coverage derived

from offline test generation under the specification model and testing scenarios. Offline

testing coverage analysis was realised by a tool box integrated in UPPAAL, Yggdrasil, which

applies the test selection criterion of all-transition coverage to generate a set of test cases

within a desired search depth [130]. Given a TA model and a certain search depth, the tool

box can calculate the number of accessible transitions and available variable values contained

in the model and can record how many of them are covered by the generated test cases.

Online testing coverage is obtained by analysing the recorded log file during the testing. Since

all possible transitions and variable values have been obtained by offline test generation tool,

coverage can be calculated by counting how many of them have been covered by online

testing, which is realised by a MATLAB script searching for keywords which stand for

transitions and variable values.

To compare the coverage performances of online and offline testing, each coverage in the

same search depth are recorded. Based on the graphs of coverage against search depth, the

quantised performance comparison between the simulation combined MBT platform and the

offline test generation tool can be obtained, as shown in Fig 64 and Fig 65.

183

Fig 64 Trace of coverage tendency with search depth

Fig 65 Variable coverage tendency with search depth

As revealed by Fig 64 and Fig 65, the coverage achieved by the simulation combined

30%

40%

50%

60%

70%

80%

90%

100%

110%

co
ve

ra
ge

 (%
)

Search Depth (steps)

Trace Coverage vs Depth Online
Offline

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

C
ov

er
ag

e
(%

)

Search Depth (steps)

Variable Coverage vs Depth Online
Offline

184

platform for the two types of coverage is lower than that of the offline test generation tool

when the search depth is low. However, when the search depth increases to 1443 in trace

coverage and 211 steps in variable coverage, the coverage performance of the simulation

combined MBT platform eventually surpasses that of the offline test generation tool. The

reason is that the online test algorithm does not take up an increasing amount of computer

memory when the search depth increases, while the offline test algorithm occupies more and

more memory along with increasing search depth. Therefore, the offline test algorithm cannot

search as deeply as the online test algorithm, as the information it is necessary to record can

easily exceed the maximum computer memory with a complex model, which leads to

coverage limitations. In the simulation combined MBT platform, abstract model size is

extremely reduced by combining modelling with simulation. Furthermore, the online test

algorithm simultaneously generates and executes inputs and verdicts for the obtained outputs

without recording the information necessary for coverage. As a result, coverage of 100% can

eventually be achieved with adequate testing time on the simulation combined MBT platform.

However, since the online test generation algorithm randomly selects the valid input based on

the current conditions, it cannot positively guarantee or optimise the coverage of test

generation. As a result, the author included the simulation model to describe the SUT

behaviour more specifically without expanding the size of the TA model, which to some

extent strengthens the performance of the original online test generation algorithm, TRON.

6.3.2 Reachset Coverage in Key States

The trace and variable coverage presented is a standard coverage concept originating from

185

model-checking of the TA model, which can roughly describe the performance of online

testing. However, online testing can contain many more possibilities than offline testing due

to nondeterminism, which makes trace and variable coverage ineligible to evaluate its

performance. The original coverage measures the coverage of the trace and variable values

separately, which cannot prove that the whole possibility space is covered. For example, in the

overspeed protection function, the two key parameters are train speed and the speed limit. To

cover all possibilities, possible combinations of all values of train speed and speed limit

should be checked. However, the current variable coverage still individually checks the

coverage of the two variables, which misses a lot of potential possibilities contained in the TA

model. Therefore, the author introduces a new type of coverage which considers the

combination of two key parameters to evaluate variable coverage of the testing platform

performance, which is named the reachset coverage in key states.

186

Fig 66 TA model of the SUT in multiple-train scenario

As shown in Fig 66, in the circulation marked in the red dotted box, the values for train speed

and speed limit are checked at the same time once for every single loop. Since the kernel

function of the overspeed protection is to make different decisions based on the relationship

between train speed and speed limit, covering all possible combinations of train speed and

speed limit is an essential step to achieve the full coverage of test generation, which means the

next reachable set of states from the state ‘Waiting’ can be used to determine the variable

coverage performance of the overspeed protection. If the testing is passed and covers all

possible combinations, the SUT VOBC is proven to be able to always make the correct

decision for various speed limits against different train speeds, which means that the

187

overspeed protection of the SUT VOBC is completely error-free in the given testing

environment.

According to the TA model of the SUT VOBC which is presented in Fig 66, the valid value

ranges of the speed limit and train speed are both [0,22] m/s. It should be noted that once

variable ‘SPEED=23’ holds, the TA model breaks out of the circulation in the red box so that

‘SPEED=23’ is removed from the reachable set when calculating the coverage, although it is

reachable from the state ‘Waiting’ in reality. As a result, the coverage matrix can be obtained

as a 23 × 23 matrix which stands for all possible combinations of train speed and speed

limit. The reachset coverage calculation method is to search for all the combinations recorded

in the testing result and calculate the percentage of the whole coverage matrix covered. The

verification results are presented in Fig 67:

Fig 67 Coverage matrix of testing platform run for 5000 seconds

188

As shown in Fig 67, the reachset coverage calculated is presented in a 23 × 23 matrix,

where both axes go from 1 to 23, responding to [0,22] m/s, respectively (since the MATLAB

index always starts from 1 not 0). The X-axis stands for the speed limit, and the Y-axis stands

for the train speed. The yellow area indicates the combinations of the train speed and the

speed limit which are covered in the testing according to the log file. Based on the result

shown in Fig 67, the reachset coverage in the key states seems to perform poorly during

testing, covering less than 50% of possible combinations. The reason is that the actual valid

reachset in the key state ‘Waiting’ is not the whole 23 × 23 matrix, which is explained in the

following figure:

Fig 68 Maximum number of valid combinations of train speed and speed limit

189

According to the verification results with reachset conformance relation in Section 6.2.2, the

valid combinations of the train speed and speed limit should be recalculated, as illustrated by

Fig 68. Since the SUT VOBC triggers the EB when the train is overspeeding, the maximum

speed which can be achieved by the train is (𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 + 1) m/s (considering the communication

delays and overspeed allowance mentioned in the case study), where 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙 stands for the

current speed limit when the train goes to overspeed. As a result, the expected valid area of

the combination of train speed and speed limit should be marked as the red area in Fig 68,

which means that the train speed can be 1 m/s faster than the speed limit. Therefore, the

number of valid combinations can be calculated by using the equation:

𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑅𝑅2 −
(1 + 𝑅𝑅 − 2) × (𝑅𝑅 − 2)

2
=
𝑅𝑅2 + 3𝑅𝑅 − 2

2

where 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is the number of valid combinations of train speed and speed limit, and 𝑅𝑅

stands for the number of the matrix index and satisfies 𝑅𝑅 ∈ 𝑵𝑵 and 𝑅𝑅 ≥ 1. Letting 𝑅𝑅 equal

2𝑛𝑛 + 1 or 2𝑛𝑛 to represent the odd numbers and even numbers, then

𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =

⎩
⎨

⎧(2𝑛𝑛 + 1)2 + 3(2𝑛𝑛 + 1) − 2
2

= 2𝑛𝑛2 + 5𝑛𝑛 + 1, where 𝑛𝑛 ≥ 0

(2𝑛𝑛)2 + 3(2𝑛𝑛) − 2
2

= 2𝑛𝑛2 + 3𝑛𝑛 − 1, where 𝑛𝑛 ≥ 1

Therefore, when 𝑛𝑛 is a natural number, 𝑁𝑁𝑁𝑁𝑁𝑁𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 is always a natural number. In this case,

the number of the matrix index is 23, so the number of valid combinations can be obtained as

298, which means only 298 out of all the combinations are valid under the testing scenario. As

a result, the reachset coverage in key states should be calculated by comparing it with the 298

valid combinations. In Fig 67, the reachset coverage in key states is 55.7%, which is an

190

acceptable number for 5000 seconds of testing.

However, the purpose of testing is to cover as many possibilities as possible, to reduce the

chance of missing errors caused by uncovered possibilities. To achieve that goal, the author

implemented a series of experiments to improve the coverage and to find out the elements

which may influence it. Based on the given testing environment, two elements were

discovered to have an impact on the reachset coverage in key states, testing time and the

intensity of the train interaction. Since the testing platform is designed to cause diversity, to

cover as many possibilities as are contained in the specification model, it has more chance of

covering more possibilities when it is given more time. As a result, testing time becomes the

most influential factor of the reachset coverage in key states, which is shown by Fig 69 and

Fig 70:

Fig 69 Coverage matrices for different testing times (1000 seconds on the left and 50000 seconds on the

right)

191

As shown in Fig 69, the reachset coverage of 1000-second testing is 42.0%, and the reachset

coverage of 50000-second testing is 97.0%. The influence of testing time is obvious, and a

longer testing time tends to achieve higher reachset coverage in key states. The relation of

testing time and corresponding reachset coverage is shown by Fig 70:

Fig 70 Relation between reachset coverage and testing time

The graph in Fig 70 indicates the tendency of reachset coverage in key states to vary with

increasing testing time. Since randomness exists in every individual testing process, Fig 70

can simply prove that a longer testing time tends to obtain better reachset coverage. When the

testing time is longer than 25000 seconds, the reachset coverage tends to reach the limitation

which is approximately 97%. Furthermore, the growth rate of the reachset coverage slows

down significantly after the coverage is above 92% and the testing time is longer than 20000

seconds. Therefore, simply extending the testing time is not the most efficient way to reach

42

52

62

72

82

92

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

re
ac

hs
et

 c
ov

er
ag

e
on

 k
ey

 st
at

es

testing time: seconds

Testing time vs. Reachset coverage on key state

192

the maximum reachset overage in key states, and other influential factors should be

reconfigured to improve it.

Another factor influential in reachset coverage is the intensity of interaction of the two trains.

With relatively weak interaction between the front train and the SUT train, the SUT train’s

MA is less influenced by the front train, which makes it achieve fewer combinations of train

speed and speed limit, as shown by Fig 71:

Fig 71 Reachset coverage under different train interaction intensities (weak interaction on the left and

strong interaction on the right)

As indicated by Fig 71, weak interaction leads to a poor reachset coverage because the

marked area is missed. The reason is that when the front train is far away from the SUT train,

the SUT train has fewer opportunities to exceed the speed limit influenced by the front train

position, which means that most of the speed limit of the SUT train is determined by the line

speed limit which is a constant value. With the same testing time of 20000 seconds, the

193

left-hand graph has the low speed limit area missing which means the front train is relatively

further away from the SUT train than in the right-hand graph. Therefore, the tester should

configure a stronger interaction between the front train and the SUT in the testing

implementation to achieve a higher reachset coverage in key states. In this thesis, the author

strengthened the interactions by increasing the service delay of the front train, which means

that the SUT train has more opportunities to approach the front train and to be blocked by it.

In the right-hand graph of Fig 71, a service delay of 30 seconds is inserted for the front train,

which improves the reachset coverage significantly for the same testing time.

Fig 72 Reachset coverage matrix for the maximum percentage of 97%

From Fig 70, which describes the relationship between testing and reachset coverage in key

194

states, improvements in the reachset coverage are no longer obvious when the testing time is

longer than 25000 seconds. The maximum coverage of 97% tends to be achieved when the

testing time reaches 50000 seconds, which is a relatively long time. Spending more time on

testing to cover the missing 3% of combinations is not cost-effective. Therefore, the author

covered the missing combinations by reconfiguring the testing scenario.

From Fig 72, it is obvious that all the missing combinations are located on the boundary

between valid and invalid combinations, meaning that the train speed is 1 m/s faster than

the speed limit. The reason that these combinations are missed is that the SUT train does not

overspeed seriously under certain values of the speed limit. Therefore, to cover the missing

combinations, the author directly set the line speed limit to the certain values for which the

combinations were missed, using the constant line speed limit to present the dynamic speed

limit determined from the MA. With the purpose of verifying that all the possibilities

contained in the specification are covered, this straightforward method is acceptable to prove

that no corresponding errors of missed combinations are missed by the testing platform in the

testing process. As a result, the author manually set the line speed limit to the speed limit

values of the missed combinations and checked whether the SUT could make the correct

decision in the configured situations. Fig 73 and Fig 74 show the verification results for one

of the nine missed combinations, ‘SPEED=5, speedlim=4’:

195

Fig 73 Train trajectory for verifying the missed combination ‘SPEED=5, speedlim=4’

Fig 74 Verification result for the missed combination ‘SPEED=5, speedlim=4’

As shown by Fig 72 and Fig 73, the missed combination ‘SPEED=5, speedlim=4’ is covered

in the reconfigured testing scenario where the line speed limit is set to a constant 4 m/s. As

indicated by the left-hand graph of Fig 74, the originally missed combination ‘6,5’

(corresponding to ‘SPEED=5, speedlim=4’ in the real testing results) is covered in the

reconfigured testing scenario without detecting any inconsistencies between the SUT and the

196

specification, which can be proven by Fig 73. By applying the same verification method to

the other missed combinations, all the combinations originally missed are covered eventually,

as summarised in Table 10:

Missed combination Verification conclusion Verification time
SPEED=4, speedlim=3 Verified 2000 seconds
SPEED=5, speedlim=4 Verified 2000 seconds
SPEED=6, speedlim=5 Verified 2000 seconds
SPEED=7, speedlim=6 Verified 2000 seconds
SPEED=8, speedlim=7 Verified 2000 seconds
SPEED=9, speedlim=8 Verified 2000 seconds
SPEED=10, speedlim=9 Verified 2000 seconds
SPEED=12, speedlim=11 Verified 2000 seconds
SPEED=13, speedlim=12 Verified 2000 seconds

Table 10 Summary of the verification of missed combinations

The verification results indicate that the SUT complies with the specification for those missed

combinations. However, the limitation of the verification method is obvious in that it can only

verify a limited number of missed combinations, and it becomes time-consuming when too

many combinations are missed. Therefore, it is essential for the testing platform to cover as

high a percentage as possible in one testing process. In this case, the maximum reachset

coverage in key states is 97%, leaving nine combinations which need 18000 seconds to be

verified manually, which is efficient compared with extending the testing time.

However, simply counting the covered and missed combinations cannot fully illustrate the

coverage ability of the testing platform because covering a combination 1000 times is no

different to covering it only once. To indicate the covering tendency of the testing platform for

every individual combination, the author extended the reachset coverage in key states to not

197

only check if a combination is covered in the testing results but also count the number of

times that a combination is covered. Therefore, the covering tendency of the testing platform

in a certain testing scenario can be obtained, as shown by Fig 75:

Fig 75 Reachset coverage strength in key states for every combination

As shown by the two 3D bar graphs in Fig 75, the reachset coverage strength is obviously

high in two areas; one is on the line where the speed limit equals the line speed limit of

22 m/s, and the other is near the matrix diagonal where the train speed is 4 to 5 m/s below

the speed limit, which can be clearly illustrated by the yellow line in Fig 76:

198

Fig 76 Planar figure of the 3D bar graph of coverage strength

As indicated by Fig 75 and Fig 76, the maximum number of times the combination is covered

appears in the light green area in Fig 76. On the contrary, the minimum number of times a

combination is covered is in the red ellipse where most of the combinations are covered less

than 100 times in the whole testing process. As seen from Fig 76, the maximum number of

cover times can be achieved when the speed limit equals the line speed limit. The reason is

that the SUT train mostly overspeeds when it exceeds the line speed limit under the current

configuration of the testing scenario. This phenomenon is reasonable in the current testing

scenario where the interactions between the front train and the SUT train are not strong

enough to cover the area marked with the red ellipse. To cover the marked area, the SUT train

movements must be influenced more strongly by the front train, which can be achieved by

decreasing the top speed of the front train, because a slower front train makes the SUT train’s

199

speed limit lower than the line speed limit. Improved reachset coverage strength is shown in

Fig 77:

Fig 77 Improved coverage strength with a lower top speed of the front train

In the left-hand graph in Fig 77, the top speed of the front train is set to be 50 km/h which is

lower than that in the original configuration (80 km/h). As a result, the impact of the front

train on the MA of the SUT train becomes much stronger. Therefore, the reachset coverage

strength significantly improves when the speed limit is [10, 20] m/s. Furthermore, within

the same testing time of 20000 seconds, the left-hand graph achieves a reachset coverage of

95.6% while that in the right-hand one is 90.9%, which proves that the top speed of the front

train can influence performance of the reachset coverage in key states. A well-configured

testing scenario can make the testing process cover all the combinations more evenly under

the same testing time, which means that the testing efficiency is improved.

6.4 Summary

In this chapter, the effectiveness and performance of the simulation combined MBT platform

200

were verified by the author. According to the verification results, the testing platform is

superior to the traditional manual testing methods and the traditional offline testing introduced

in Chapter 2. Compared with traditional online MBT methods, the simulation combined MBT

platform can automatically test more complex SUTs in an HIL environment, which allows

off-site testing. With a verified specification model, the ability of the testing platform to detect

known errors was verified by implementing a series of mutation tests. The results of the

mutation testing indicate that the testing platform can find most of the common errors which

can be found in TCS system testing. For unknown errors, the reachset conformance relation

proves that the testing platform does not violate the safety properties required by the

specifications. The verification results indicate that the testing platform does not miss known

or unknown errors which can lead the system into dangerous situations, such as overspeed

and collision.

The effectiveness verification proves that the testing platform does not miss errors in the SUT,

and the performance verification proves that the testing platform can cover all the possibilities

contained in the specification model. The verification results show that the testing platform

could cover 100% of traces and variables in the abstract model with sufficient search depth,

performing better than traditional manual testing which covers a single trace, and offline

testing which covers part of the traces and variables because of the high degree of complexity

of the abstract model. Furthermore, to determine whether the SUT VOBC can make the

correct decision under any accessible circumstance in the specification, the author introduced

reachset coverage in key states to verify whether the testing platform can cover all possible

201

combinations of train speed and speed limit. The verification results show that the testing

platform can cover a maximum of 97% of the possible combinations, and only 3% is lost in

one-time testing. By reconfiguring the testing scenario, the missed combinations can be

covered in another period of testing, to reach 100% coverage. In summary, with the validated

specification model and verified effectiveness and performance, simulation combined MBT is

proven to be effective for detecting errors with better performance.

202

7 Conclusion

7.1 Conclusion

In this thesis, the author has proposed a simulation combined MBT methodology and the

implementation, which can perform automatic off-site testing of TCSs.

Firstly, MBT methods were introduced as the solution for automatic TCS testing where state

explosion and processing power limit the testing by conventional means. To address the

limitations of current MBT methods, the simulation combined MBT method was proposed to

overcome the difficulties of testing TCSs using existing MBT methods. The proposed

methodology has the potential to be applied to test different types of TCSs because of the

shared common functional features.

To achieve automatic functional testing of TCSs, the modelling theory of simulation

combined MBT, named SCTIOTS, was explained in detail. Through formula derivation,

SCTIOTS was theoretically proven to be capable of describing system behaviour in a

two-model-combined structure, which provides the possibility of realising simulation

combined MBT. Afterwards, implementation of simulation combined MBT was introduced by

developing a simulation combined MBT platform, which is an integrated testing platform for

automating TCS functional testing in an HIL environment. Essential components of the

testing platform were introduced, including the modelling tools, test tools, I/O sequence

manager, HIL environment and data interfaces.

203

To prove the feasibility of the developed simulation combined MBT platform, two case

studies were undertaken. A VOBC of the CBTC system was chosen to be the SUT, and its

overspeed protection and train location functions were tested in the two cases. The single train

scenario concentrated on explaining the built components of the simulation combined MBT

platform, including the internal function of each component. The multiple train scenario was

designed to reveal whether the VOBC can protect the train operating safety when travelling

on the same line as other vehicles. The testing results for both cases were recorded by the

testing platform through the whole testing procedure; they indicate that the proposed

simulation combined MBT methodology and the developed platform are effective to

undertake functional testing for TCSs.

Lastly, the developed testing platform was validated and verified to prove its effectiveness and

performance. Firstly, the TA model was verified by an integrated verification tool in UPPAAL.

The safety and liveness properties were validated to see whether there is any error which can

lead to wrong testing results. All the safety and liveness properties passed the validation.

Afterwards, the testing platform was verified to inspect whether it can find known errors via

six mutation tests. Furthermore, to inspect whether the testing platform can miss any

unknown errors which could lead the SUT into dangerous situations, the testing results were

verified to inspect whether the SUT complies with the reachset conformance relation. The

verification results indicate that the testing platform can detect known errors and does not

miss unknown errors. The last verification was to verify whether the testing platform achieves

better results than existing testing methods. The contrast object chosen was an offline test

204

generation tool integrated in UPPAAL, which is capable of generating test cases according to

test selection criteria. The comparison results indicate that the testing platform has better

coverage than the offline test generation tool, as the simulation combined MBT platform can

achieve 100% coverage on variables and traces within feasible search depth while the offline

test generation can only achieve 91% trace coverage and 61% variable coverage. Lastly, the

author explored whether the performance of the testing platform could potentially be

improved. The concept of reachset coverage in key states was introduced to express the ability

of the testing platform to cover all possibilities. The maximum reachset coverage in key states

which can be achieved is 97%; 3% is lost due to inappropriate configuration of the test

scenario. By adjusting the test scenario to strengthen the interaction between the three trains,

the full reachset could be covered, which indicates that the coverage performance can be

improved by well-configured test scenarios.

From the testing results derived from the cases in Chapter 5, and the validation and

verification results obtained in Chapter 6, the proposed simulation combined MBT method

and the developed simulation combined MBT platform are proven to be feasible and effective

for functional testing of TCSs. The testing platform can detect errors contained in the SUT

with a better coverage performance than existing methods.

7.2 Contribution

The contribution of the author’s research can be summarised as follows:

• The author has combined formal methods and simulation technologies in an HIL testing

205

framework and proposed a simulation combined MBT methodology to improve the

current functional testing methods for TCSs.

• Based on the existing MBT modelling theory, the author has developed a modelling

approach named SCTIOTS, which supports formal modelling combined with simulation.

• Based on the proposed modelling method, a simulation combined MBT platform has

been developed for methodology implementation. The testing and verification results

indicate that the testing platform is effective.

• The reachset conformance relation has been introduced to verify the coverage

performance of the testing platform. The reachset conformance relation in key states

quantifies the coverage of online testing results by discretising the valid variable

combinations in key states. Furthermore, it shows that the test scenario configurations

have impact on test efficiency performance and coverage performance.

7.3 Future Work

The testing results for the case studies, and verification results in Chapter 6 indicate the

benefits of applying simulation combined MBT to test TCSs. Likewise, it reveals the potential

to improve the proposed research by extending it in the following directions:

• Explore the possibilities of adopting a hierarchical structure in formal modelling to

improve the modelling efficiency for large complex systems without losing system

information.

• The operating principle of online testing leads to a fatal flaw in testing performance. In

206

online testing, inputs are randomly chosen without guidance from the test selection

criteria because the possibility space is too large to be restored in the computer memory.

Based on the introduced reachset conformance relation, the possibility space can be

reduced. The author aims to improve the online test algorithm by adding an input

selection function, to achieve optimised coverage performance within a shorter testing

time.

• Currently, MBT methods still rely on humans to build formal models according to

specification requirements in natural languages. The author aims to develop a modelling

tool which supports the building of formal models by analysing formatted specification

requirements in natural languages. As a result, the errors caused by human factors can be

isolated so that testing efficiency and accuracy can be further improved.

• The current online test generation algorithm adopted by the author in this thesis is a

32-bit program that utilises no more than 4 GB of memory, which limits the algorithm

capability of analysing large complex models. An improved online test algorithm capable

of handling large complex models could be further developed.

• The results in the thesis shows that test scenarios have an unneglectable influence on

coverage performance and test efficiency. Developing a testing scenario optimiser which

interacts with the HIL test environment and the SUT along with the online MBT

algorithm could be further studied to improve the efficiency of the proposal simulation

combined MBT methodology.

207

Appendix: Publications

The articles published during the author’s PhD study are presented below:

[1] W. Yuemiao, C. Lei, W. Jinwen, D. Kirkwood, X. Qian, J. Lv, et al., "On-line

conformance testing of the Communication-Based Train Control (CBTC) system," in

2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT).

Piscataway, NJ: IEEE, 2016, pp. 328–333.

[2] W. Jinwen, X. Qian, D. Kirkwood, W. Yuemiao, C. Lei, L. Jidong, et al., "Verification

of metro track signalling layout based on microscopic simulation," in 2016 IEEE

International Conference on Intelligent Rail Transportation (ICIRT). Piscataway, NJ:

IEEE, 2016, pp. 494–499.

[3] Yuemiao Wang, Lei Chen*, David Kirkwood, Jidong Lv, Clive Roberts, et al., "Hybrid

Online Model-Based Testing for Communication-Based Train Control Systems," in

IEEE Intelligent Transportation System Magazine. Minor Correction Decision

Received.

208

References

[1] N. Zhao, L. Chen, Z. Tian, C. Roberts, S. Hillmansen, and J. Lv, "Field test of train

trajectory optimisation on a metro line," IET Intelligent Transport Systems, vol. 11, pp.

273-281, 2017.

[2] J. Wang, J. Wang, C. Roberts, and L. Chen, "Parallel Monitoring for the Next

Generation of Train Control Systems," IEEE Transactions on Intelligent

Transportation Systems, vol. 16, pp. 330-338, 2015.

[3] H. Wang, F. Schmid, L. Chen, C. Roberts, and T. Xu, "A Topology-Based Model for

Railway Train Control Systems," IEEE Transactions on Intelligent Transportation

Systems, vol. 14, pp. 819-827, 2013.

[4] A. E. Haxthausen and J. Peleska, "Formal development and verification of a

distributed railway control system," IEEE Transactions on Software Engineering, vol.

26, pp. 687-701, 2000.

[5] J. Wang, "Chapter 3 - Theory System and Framework of High-Speed Railway Train

Operation Safety," in Safety Theory and Control Technology of High-Speed Train

Operation, London: Academic Press, 2018, pp. 79-123.

[6] UNISIG, System Requirements Specifcation (SUBSET-026). ERTMS, 2016.

[7] UNISIG, FFFIS STM test cases of Functional identity (SUBSET-074-2). ERTMS,

2015.

[8] L. Zhu, F. R. Yu, B. Ning, and T. Tang, "Design and Performance Enhancements in

209

Communication-Based Train Control Systems With Coordinated Multipoint

Transmission and Reception," IEEE Transactions on Intelligent Transportation

Systems, vol. 15, pp. 1258-1272, 2014.

[9] L. Zhu, F. R. Yu, B. Ning, and T. Tang, "Communication-Based Train Control (CBTC)

Systems With Cooperative Relaying: Design and Performance Analysis," IEEE

Transactions on Vehicular Technology, vol. 63, pp. 2162-2172, 2014.

[10] J. Młyńczak, A. Toruń, and L. Bester, "European Rail Traffic Management System

(ERTMS)," in Intelligent Transportation Systems – Problems and Perspectives, A.

Sładkowski and W. Pamuła, Eds. Cham: Springer International Publishing, 2016, pp.

217-242.

[11] M. Ghazel, "A Control Scheme for Automatic Level Crossings Under the

ERTMS/ETCS Level 2/3 Operation," IEEE Transactions on Intelligent Transportation

Systems, vol. 18, pp. 2667-2680, 2017.

[12] ETSI, "Railways Telecommunications (RT);Global System for Mobile

communications (GSM); Detailed requirements for GSM operation on Railways".

Sophia Antipolis: France, 2016.

[13] H. Dong, B. Ning, B. Cai, and Z. Hou, "Automatic Train Control System

Development and Simulation for High-Speed Railways," IEEE Circuits and Systems

Magazine, vol. 10, pp. 6-18, 2010.

[14] W. Yuemiao, C. Lei, W. Jinwen, D. Kirkwood, X. Qian, J. Lv, et al., "On-line

210

conformance testing of the Communication-Based Train Control (CBTC) system," in

2016 IEEE International Conference on Intelligent Rail Transportation (ICIRT).

Piscataway, NJ: IEEE, 2016, pp. 328-333.

[15] M. Idirin, X. Aizpurua, A. Villaro, J. Legarda, and J. Melendez, "Implementation

Details and Safety Analysis of a Microcontroller-based SIL-4 Software Voter," IEEE

Transactions on Industrial Electronics, vol. 58, pp. 822-829, 2011.

[16] J. Wang, "Chapter 4 - System-Level “Fail-Safe”," in Safety Theory and Control

Technology of High-Speed Train Operation. London: Academic Press, 2018, pp.

125-144.

[17] P. Bourque, R. E. Fairley, and IEEE Computer Society, Guide to the Software

Engineering Body of Knowledge (SWEBOK(R)): Version 3.0. Los Alamitos, CA:

IEEE Computer Society Press, 2014.

[18] P. Samuel, R. Mall, and A. K. Bothra, "Automatic test case generation using unified

modeling language (UML) state diagrams," IET Software, vol. 2, pp. 79-93, 2008.

[19] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M. Memon,

"MobiGUITAR: Automated Model-Based Testing of Mobile Apps," IEEE Software,

vol. 32, pp. 53-59, 2015.

[20] A. Belinfante, J. Feenstra, R. G. de Vries, J. Tretmans, N. Goga, L. Feijs, et al.,

"Formal Test Automation: A Simple Experiment," in Testing of Communicating

Systems: Methods and Applications, G. Csopaki, S. Dibuz, and K. Tarnay, Eds. Boston,

211

MA: Springer US, 1999, pp. 179-196.

[21] E. Dincel, O. Eris, and S. Kurtulan, "Automata-Based Railway Signaling and

Interlocking System Design," IEEE Antennas and Propagation Magazine. 308 - 319.

[22] T. P. Parker and G. L. Harrison, "Quality improvement using environmental stress

testing," AT&T Technical Journal, vol. 71, pp. 10-23, 1992.

[23] C. Zoeller, M. A. Vogelsberger, R. Fasching, W. Grubelnik, and T. M. Wolbank,

"Evaluation and Current-Response-Based Identification of Insulation Degradation for

High Utilized Electrical Machines in Railway Application," IEEE Transactions on

Industry Applications, vol. 53, pp. 2679-2689, 2017.

[24] D. Chisnell, "Usability testing: Taking the experience into account," IEEE

Instrumentation & Measurement Magazine, vol. 13, pp. 13-15, 2010.

[25] I. Molyneaux, The Art of Application Performance Testing: Help for Programmers and

Quality Assurance. Sebastopol: O'Reilly Media, Inc., 2009.

[26] I. Schieferdecker, "Model-Based Testing," IEEE Software, vol. 29, pp. 14-18, 2012.

[27] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-based testing for embedded

systems. Boca Raton, FL: CRC press, 2011.

[28] A. Ferrari, A. Fantechi, S. Gnesi, and G. Magnani, "Model-Based Development and

Formal Methods in the Railway Industry," IEEE Software, vol. 30, pp. 28-34, 2013.

[29] L. Padgham, Z. Zhang, J. Thangarajah, and T. Miller, "Model-Based Test Oracle

Generation for Automated Unit Testing of Agent Systems," IEEE Transactions on

212

Software Engineering, vol. 39, pp. 1230-1244, 2013.

[30] M. Utting and B. Legeard, Practical model-based testing: a tools approach. San

Francisco: Morgan Kaufmann, 2007.

[31] S. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, "Carving and Replaying

Differential Unit Test Cases from System Test Cases," IEEE Transactions on Software

Engineering, vol. 35, pp. 29-45, 2009.

[32] N. Nisan and S. Schocken, "Test Scripting Language," in The Elements of Computing

Systems:Building a Modern Computer from First Principles. Cambridge, MA, London:

MIT Press, 2008, pp. 297-313.

[33] V. Garousi and M. Felderer, "Developing, Verifying, and Maintaining High-Quality

Automated Test Scripts," IEEE Software, vol. 33, pp. 68-75, 2016.

[34] ISO/IEC/IEEE, ISO/IEC/IEEE 29119-5 First Edition 2016-11-15: ISO/IEC/IEEE

International Standard - Software and Systems Engineering -- Software testing -- Part

5: Keyword-Driven Testing. IEEE, 2016, pp. 1–69.

[35] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, "The Oracle Problem in

Software Testing: A Survey," IEEE Transactions on Software Engineering, vol. 41, pp.

507-525, 2015.

[36] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, "Bounded Model Checking Using

Satisfiability Solving," Formal Methods in System Design, vol. 19, pp. 7-34, 2001.

[37] M. A. Noureddine and F. A. Zaraket, "Model Checking Software with First Order

213

Logic Specifications Using AIG Solvers," IEEE Transactions on Software Engineering,

vol. 42, pp. 741-763, 2016.

[38] J. Z. Gao, J. Tsao, Y. Wu, Testing and Quality Assurance for Component-Based

Software. Boston, MA: Artech House, Inc., 2003.

[39] IEEE, IEEE Standard for Software Unit Testing: ANSI/IEEE Std 1008-1987. New

York: IEEE, 1987, pp. 1-28.

[40] Z. J. Li, H. F. Tan, H. H. Liu, J. Zhu, and N. M. Mitsumori, "Business-process-driven

gray-box SOA testing," IBM Systems Journal, vol. 47, pp. 457-472, 2008.

[41] K. Li, X. Yao, and D. Chen, "HAZOP Study on the CTCS-3 Onboard System," IEEE

Transactions on Intelligent Transportation Systems, vol. 16, pp. 162-171, 2015.

[42] A. En-Nouaary, R. Dssouli, and F. Khendek, "Timed Wp-method: testing real-time

systems," IEEE Transactions on Software Engineering, vol. 28, pp. 1023-1038, 2002.

[43] S. C. Paiva and A. Simao, "Generation of complete test suites from mealy input/output

transition systems," Formal Aspects of Computing, vol. 28, pp. 65-78, March 01 2016.

[44] S. Schneider, The B-Method: An Introduction. Basingstoke: Palgrave, 2001.

[45] D. Cansell and D. Mery, "Tutorial on the event-based B method: Concepts and Case

Studies," presented at the 26th IFIP WG 6.1 International Conference on Formal

Methods for Network and Distributed Systems, Paris, France, 2006.

[46] N. A. Zafar, "Formal specification and validation of railway network components

using Z notation," IET Software, vol. 3, pp. 312-320, 2009.

214

[47] A. Giorgetti, J. Groslambert, J. Julliand, and O. Kouchnarenko, "Verification of class

liveness properties with java modelling language," IET Software, vol. 2, pp. 500-514,

2008.

[48] M. Barnett, K. R. M. Lenio, and W. Schulte, "The Spec# Programming System: an

overview," in Construction and Analysis of Safe, Secure, and Interoperable Smart

Devices. CASSIS 2004, G. Barthe, L. Burdy, M. Huisman, J. L. Lanet, and T.

Muntean, Eds. (Lecture Notes in Computer Science, vol. 3362). Berlin, Heidelberg:

Springer, 2004.

[49] G. Babin, Y. Aït-Ameur, and M. Pantel, "Web Service Compensation at Runtime:

Formal Modeling and Verification Using the Event-B Refinement and Proof Based

Formal Method," IEEE Transactions on Services Computing, vol. 10, pp. 107-120,

2017.

[50] R. M. Hierons, "Testing from Partial Finite State Machines without Harmonised

Traces," IEEE Transactions on Software Engineering, vol. 43, pp. 1033-1043, 2017.

[51] R. Alur and D. L. Dill, "A theory of timed automata," Theor. Comput. Sci., vol. 126,

pp. 183-235, 1994.

[52] H. B. Mokadem, B. Berard, V. Gourcuff, O. D. Smet, and J. M. Roussel, "Verification

of a Timed Multitask System With Uppaal," IEEE Transactions on Automation

Science and Engineering, vol. 7, pp. 921-932, 2010.

[53] L. Yang, J. Daming, D. Shenghua, and L. Zhengjiao, "Hierarchical modeling and

215

analysis of TCC subsystem in CTCS level 3 using UPPAAL," in 2016 IEEE 19th

International Conference on Intelligent Transportation Systems (ITSC), 2016, pp.

713-718.

[54] M. Li and R. Kumar, "Automated test generation and error localisation for

Simulink/Stateflow modelled systems using extended automata," IET Cyber-Physical

Systems: Theory & Applications, vol. 1, pp. 95-107, 2016.

[55] M. R. Blackburn and R. D. Busser, "T-VEC: a tool for developing critical systems," in

Proceedings of the Eleventh Annual Conference on Computer Assurance, 1996.

COMPASS '96, Systems Integrity. Software Safety. Process Security. New York: IEEE,

1996, pp. 237–249.

[56] M. Blackburn, R. Busser, A. Nauman, R. Knickerbocker, and R. Kasuda, "Mars Polar

Lander fault identification using model-based testing," in Proceedings of the Eighth

IEEE International Conference on Engineering of Complex Computer Systems, 2002.

Los Alamitos, CA: IEEE Computer Society, 2002, pp. 163–169.

[57] M. R. Blackburn, "Using models for test generation and analysis," in Proceedings of

the 17th DASC/AIAA/IEEE/SAE Digital Avionics Systems Conference, vol. 1.

Piscataway, NJ: IEEE, 1998, pp. C45/1–C45/8.

[58] M. Blackburn, R. D. Busser, and J. S. Fontaine, "Automatic generation of test vectors

for SCR-style specifications," in Proceedings of the 12th Annual Conference on

Computer Assurance, 1997. COMPASS '97. Are We Making Progress Towards

216

Computer Assurance? New York: IEEE, 1997, pp. 54–67.

[59] E. Rudolph, P. Graubmann, and J. Grabowski, "Tutorial on message sequence charts,"

Computer Networks and ISDN Systems, vol. 28, pp. 1629–1641, 1996.

[60] C. A. R. Hoare, Communicating Sequential Processes. New York: Prentice Hall

International 2015.

[61] Z. Ding, M. Jiang, and M. Zhou, "Generating Petri Net-Based Behavioral Models

From Textual Use Cases and Application in Railway Networks," IEEE Transactions on

Intelligent Transportation Systems, vol. 17, pp. 3330-3343, 2016.

[62] L. Jidong, W. Haifeng, L. Hongjie, Z. Lu, and T. Tao, "A model-based test case

generation method for function testing of train control systems," in 2016 IEEE 19th

International Conference on Intelligent Rail Transportation (ICIRT). Piscataway, NJ:

IEEE, 2016, pp. 334–346.

[63] J. Magott, "Performance evaluation of communicating sequential processes (CSP)

using Petri nets," IEE Proceedings E - Computers and Digital Techniques, vol. 139, pp.

237-241, 1992.

[64] B. Nevio and M. Zorzi, "Markov chains theory," in Principles of Communications

Networks and Systems. Chichester, West Sussex: Wiley Telecom, 2011, p. 816.

[65] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nachmanson,

"Model-based testing of object-oriented reactive systems with Spec Explorer," Formal

Methods and Testing: An Outcome of the FORTEST Network, Revised Selected

217

Papers, R. M. Hierons, J. P. Bowen, and M. Harman, Eds. Berlin, Heidelberg: Springer

Verlag, 2008.

[66] I. B. Bourdonov, A. S. Kossatchev, V. V. Kuliamin, and A. K. Petrenko, "UniTesK test

suite architecture," in Proceedings of FME 2002: Formal Methods—Getting IT Right:

International Symposium of Formal Methods Europe Copenhagen, Denmark, July 22–

24, 2002, L.-H. Eriksson and P. A. Lindsay, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2002, pp. 77–88.

[67] V. V. Kuliamin, A. K. Petrenko, A. S. Kossatchev, and I. B. Burdonov, "The UniTesK

Approach to Designing Test Suites," Programming and Computer Software, vol. 29,

pp. 310-322, 2003.

[68] J. Warmer and A. Kleppe, The Object Constraint Language: Getting Your Models

Ready for MDA. Boston, MA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[69] H. M. Tahir, M. Nadeem, and N. A. Zafar, "Specifying electronic health system with

Vienna development method specification language," in 2015 National Software

Engineering Conference (NSEC). Piscataway, NJ: IEEE, 2015, pp. 61–66.

[70] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef, Validated Designs

For Object-oriented Systems. London: Springer-Verlag TELOS, 2005.

[71] J. s. Lee and P. l. Hsu, "Statechart-based representation of hybrid controllers for

vehicle automation," IEE Proceedings - Intelligent Transport Systems, vol. 153, pp.

253-258, 2006.

218

[72] S. Arifiani and S. Rochimah, "Generating test data using ant Colony Optimization

(ACO) algorithm and UML state machine diagram in gray box testing approach," in

2016 International Seminar on Application for Technology of Information and

Communication (ISemantic). Piscatawy, NJ: IEEE, 2016, pp. 217-222.

[73] Y. Moffett, J. Dingel, and A. Beaulieu, "Verifying Protocol Conformance Using

Software Model Checking for the Model-Driven Development of Embedded

Systems," IEEE Transactions on Software Engineering, vol. 39, pp. 1307-13256,

2013.

[74] Mathworks. (2017). Chart Programming. Available:

https://cn.mathworks.com/help/stateflow/programming-in-stateflow.html

[75] P. Muntean, A. Rabbi, A. Ibing, and C. Eckert, "Automated Detection of Information

Flow Vulnerabilities in UML State Charts and C Code," in 2015 IEEE International

Conference on Software Quality, Reliability and Security - Companion. Piscataway,

NJ: IEEE, 2015, pp. 128-137.

[76] C. Wang, J. Wu, and H. Tan, "Revised Singleton Failures Equivalence for Labelled

Transition Systems," Chinese Journal of Electronics, vol. 24, pp. 498-501, 2015.

[77] J. Tretmans, "Model Based Testing with Labelled Transition Systems," in Formal

Methods and Testing: An Outcome of the FORTEST Network, Revised Selected

Papers, R. M. Hierons, J. P. Bowen, and M. Harman, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2008, pp. 1-38.

https://cn.mathworks.com/help/stateflow/programming-in-stateflow.html

219

[78] V. Valero, G. Díaz, and M. E. Cambronero, "Timed Automata Modeling and

Verification for Publish-Subscribe Structures Using Distributed Resources," IEEE

Transactions on Software Engineering, vol. 43, pp. 76-99, 2017.

[79] B. Marre, "LOFT: a tool for assisting selection of test data sets from algebraic

specifications," presented at the 6th International Joint Conference CAAP/FASE on

Theory and Practice of Software Development, Aarhus, Denmark, 1995.

[80] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, "LUSTRE: a declarative language

for real-time programming," presented at the 14th ACM SIGACT-SIGPLAN

symposium on Principles of programming languages, Munich, West Germany, 1987.

[81] G. Shi, Y. Gan, S. Shang, S. Wang, Y. Dong, and P. C. Yew, "A Formally Verified

Sequentializer for Lustre-Like Concurrent Synchronous Data-Flow Programs," in

2017 IEEE/ACM 39th International Conference on Software Engineering Companion

(ICSE-C). Piscataway, NJ: IEEE, 2017, pp. 109-111.

[82] W. Zheng, C. Liang, R. Wang, and W. Kong, "Automated Test Approach Based on All

Paths Covered Optimal Algorithm and Sequence Priority Selected Algorithm," IEEE

Transactions on Intelligent Transportation Systems, vol. 15, pp. 2551-2560, 2014.

[83] D. Angeletti, E. Giunchiglia, M. Narizzano, A. Puddu, and S. Sabina, "Using Bounded

Model Checking for Coverage Analysis of Safety-Critical Software in an Industrial

Setting," Journal of Automated Reasoning, vol. 45, pp. 397-414, 2010.

[84] N. Li and J. Offutt, "Test oracle strategies for model-based testing," IEEE Transactions

220

on Software Engineering, vol. 43, pp. 372–395, 2016.

[85] A. Hartman and K. Nagin, "The AGEDIS Tools for Model Based Testing," in UML

Modeling Languages and Applications: < <UML> > 2004 Satellite Activities, Lisbon,

Portugal, October 11-15, 2004, Revised Selected Papers, N. Jardim Nunes, B. Selic, A.

Rodrigues da Silva, and A. Toval Alvarez, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2005, pp. 277-280.

[86] C. Rutz and J. Schmaltz, "An Experience Report on an Industrial Case-Study about

Timed Model-Based Testing with UPPAAL-TRON," presented at the Fourth

International Conference on Software Testing, Verification and Validation Workshops,

Berlin, Germany, 2011.

[87] IEEE, IEEE Std 1474.4-2011: IEEE Recommended Practice for Functional Testing of

a Communications-Based Train Control (CBTC) System. New York: IEEE, 2011.

[88] IEEE, IEEE Standard for Communications-Based Train Control (CBTC) Performance

and Functional Requirements. New York: IEEE, 2004.

[89] M. Aguado, C. Pinedo, I. Lopez, I. Ugalde, C. D. L. Muñecas, L. Rodriguez, et al.,

"Towards zero on-site testing: Advanced traffic management & control systems

simulation framework including communication KPIs and response to failure events,"

presented at the 2014 IEEE 6th International Symposium on Wireless Vehicular

Communications (WiVeC 2014), Vancouver, BC, Canada, 2014.

[90] UNISIG, Functional Requirements for an on board Reference Test Facility

221

(Subset-094-0). ERTMS, 2009.

[91] J. Cullyer and W. Wai, "Application of formal methods to railway signalling-a case

study," Computing & Control Engineering Journal, vol. 4, pp. 15-22, 1993.

[92] A. Piccolo, V. Galdi, F. Senesi, and R. Malangone, "Use of formal languages to

represent the ERTMS/ETCS system requirements specifications," in 2015

International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion

and Road Vehicles (ESARS), Piscataway, NJ: IEEE, 2015, pp. 1-5.

[93] S. Ghosh, A. Das, N. Basak, P. Dasgupta, and A. Katiyar, "Formal Methods for

Validation and Test Point Prioritization in Railway Signaling Logic," IEEE

Transactions on Intelligent Transportation Systems, vol. 18, pp. 678-689, 2017.

[94] M. Chai, L. Jidong, L. Hongjie, and Z. Lu, "Towards safety monitoring of ETCS level

2 with parametrized extended live sequence charts," in 2016 IEEE International

Conference on Intelligent Rail Transportation (ICIRT), 2016, pp. 440-446.

[95] S. Li, X. Chen, Y. Wang, and M. Sun, "A Framework for Off-Line Conformance

Testing of Timed Connectors," presented at the International Symposium on

Theoretical Aspects of Software Engineering, Nanjing, China, 2015.

[96] J. Lv, K. Li, G. Wei, T. Tang, C. Li, and W. Zhao, "Model-based test cases generation

for onboard system," 2013 IEEE Eleventh International Symposium on Autonomous

Decentralized Systems (ISADS), Mexico City, Mexico, March 6–8 2013. Los

Alamitos, CA: IEEE Chemical Society, 2013, pp. 1–6.

222

[97] M. Mikucionis, K. G. Larsen, and B. Nielsen, BRICS Report Series. RS-03-49: Online

on-the-fly testing of real-time systems. Aarhus, Denmark: BRICS, 2003, p. 14.

[98] Z. Xiaolin, L. Teng, L. Kaicheng, and L. Jidong, "Online Testing of Real-time

Performance in High-speed Train Control System," presented at the IEEE 17th

International Conference on Intelligent Transportation Systems (ITSC), Qingdao,

China, 2014.

[99] M. Broy, B. Jonsson, J.-P. Katoen, and M. Leucker, Model-Based Testing of Reactive

Systems. Berlin: Springer, 1973.

[100] J. S. Keranen and T. D. Raty, "Model-based testing of embedded systems in hardware

in the loop environment," IET Software, vol. 6, pp. 364 - 376, 2012.

[101] G. Gay, S. Rayadurgam, and M. Heimdahl, "Automated steering of model-based test

oracles to admit real program behaviors," IEEE Transactions on Software Engineering,

vol. 43, pp. 531–555, 2017.

[102] S. Hellebrand, H. J. Wunderlich, A. A. Ivaniuk, Y. V. Klimets, and V. N. Yarmolik,

"Efficient online and offline testing of embedded DRAMs," IEEE Transactions on

Computers, vol. 51, pp. 801-809, 2002.

[103] A. C. Dias-Neto and G. H. Travassos, "Supporting the combined selection of

model-based testing techniques," IEEE Transactions on Software Engineering, vol. 40,

pp. 1025–1041, 2014.

[104] A. David, K. G. Larsen, S. Li, M. Mikucionis, and B. Nielsen, "Testing Real-Time

223

Systems under Uncertainty," in Formal Methods for Components and Objects: 9th

International Symposium, FMCO 2010, Graz, Austria, November 29 - December 1,

2010. Revised Papers, B. K. Aichernig, F. S. de Boer, and M. M. Bonsangue, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 352-371.

[105] J. Tretmans, "Model based testing with labelled transition systems," in Formal

Methods and Testing, R. M. Hierons, J. P. Bowen, and M. Harman, Eds. Berlin:

Springer-Verlag, 2008, pp. 1–38.

[106] A. Guignard, J. M. Faure, and G. Faraut, "Model-based testing of PLC programs with

appropriate conformance relations," IEEE Transactions on Industrial Informatics, vol.

14, pp. 350–359, 2018.

[107] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou, "Testing Real-Time Embedded

Software using UPPAAL-TRON: An Industrial Case Study," presented at the ACM

International Conference On Embedded Software, Jersey City, NJ, USA, 2005.

[108] D. K. Kaynar, N. Lynch, R. Segala, and F. Vaandrager, "Timed I/O automata: a

mathematical framework for modeling and analyzing real-time systems," in 24th IEEE

Real-Time Systems Symposium (RTSS 2003). Los Alamitos, CA: IEEE Chemical

Society, 2003, pp. 166–177.

[109] R. M. Keller, "Formal verification of parallel programs," Commun. ACM, vol. 19, pp.

371-384, 1976.

[110] M. Mikucionis and E. Sasnauskaite, On-the-Fly Testing Using UPPAAL. Master's

224

thesis, Department of Computer Science, Aalborg University, Denmark, 2003.

[111] N. A. Lynch and M. R. Tuttle, "Hierarchical correctness proofs for distributed

algorithms," presented at the Proceedings of the sixth annual ACM Symposium on

Principles of distributed computing, Vancouver, British Columbia, Canada, 1987.

[112] D. Xu, M. Kent, L. Thomas, T. Mouelhi, and Y. L. Traon, "Automated Model-Based

Testing of Role-Based Access Control Using Predicate/Transition Nets," IEEE

Transactions on Computers, vol. 64, pp. 2490-2505, 2015.

[113] J. Tretmans, "Test Generation with Inputs, Outputs and Repetitive Quiescence,"

Software - Concepts and Tools, vol. 17, pp. 103-120, 1996.

[114] M. R. T. N.A. Lynch, "An introduction to input/output automata," CWI Quarterly, vol.

2, pp. 219–246, 1989.

[115] S. von Styp, H. Bohnenkamp, and J. Schmaltz, "A Conformance Testing Relation for

Symbolic Timed Automata," in Formal Modeling and Analysis of Timed Systems: 8th

International Conference, FORMATS 2010, Klosterneuburg, Austria, September 8-10,

2010. Proceedings, K. Chatterjee and T. A. Henzinger, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 243-255.

[116] R. Cardell-Oliver, "Conformance Tests for Real-Time Systems with Timed Automata

Specifications," Formal Aspects of Computing, pp. 350-371, 2000.

[117] H. Ponce de León, S. Haar, and D. Longuet, "Conformance Relations for Labeled

Event Structures," in Tests and Proofs: 6th International Conference, TAP 2012,

225

Prague, Czech Republic, May 31 – June 1, 2012. Proceedings, A. D. Brucker and J.

Julliand, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 83-98.

[118] B. K. Aichernig and M. Tappler, "Symbolic Input-Output Conformance Checking for

Model-Based Mutation Testing," Electronic Notes in Theoretical Computer Science,

vol. 320, pp. 3-19, 2016.

[119] B. Beizer and J.Wiley, "Black box testing: Techniques for functional testing of

software and systems," IEEE Software, vol. 13, p. 98, 1996.

[120] D. Giannakopoulou, C. S. Pasareanu, and C. Blundell, "Assume-guarantee testing for

software components," IET Software, vol. 2, pp. 547-562, 2008.

[121] G. Behrmann, A. David, and K. G. Larsen, "A Tutorial on Uppaal," in Formal

Methods for the Design of Real-Time Systems: International School on Formal

Methods for the Design of Computer, Communication, and Software Systems,

Bertinora, Italy, September 13-18, 2004, Revised Lectures, M. Bernardo and F.

Corradini, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 200-236.

[122] L. Dai, "Data for constructing experimental scenarios on testing the performance of

rescheduling approaches," Data in brief, 2016.

[123] Taku Fujiyama, A. Chow, and B. Heydecker. (2017). DEDOTS: Developing and

Evaluating Dynamic Optimisation for Train Control Systems. Available:

http://www.ucl.ac.uk/railway-research/ongoing-projects/dedots

[124] F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime, "Efficient On-the-Fly

http://www.ucl.ac.uk/railway-research/ongoing-projects/dedots

226

Algorithms for the Analysis of Timed Games," in CONCUR 2005 – Concurrency

Theory: 16th International Conference, CONCUR 2005, San Francisco, CA, USA,

August 23-26, 2005. Proceedings, M. Abadi and L. de Alfaro, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2005, pp. 66-80.

[125] "IEEE Draft Guide: Adoption of the Project Management Institute (PMI) Standard: A

Guide to the Project Management Body of Knowledge (PMBOK Guide)-2008 (4th

edition).IEEE P1490/D1, pp. 1-505, 2011.

[126] O. Tkachuk and M. B. Dwyer, "Environment generation for validating event-driven

software using model checking," IET Software, vol. 4, pp. 194-209, 2010.

[127] P. Reales, M. Polo, J. L. Fernández-Alemán, A. Toval, and M. Piattini, "Mutation

Testing," IEEE Software, vol. 31, pp. 30-35, 2014.

[128] R. Baker and I. Habli, "An Empirical Evaluation of Mutation Testing for Improving

the Test Quality of Safety-Critical Software," IEEE Transactions on Software

Engineering, vol. 39, pp. 787-805, 11 September 2012 2013.

[129] H. Roeahm, J. Oehlerking, M. Woehrle, and M. Althoff, "Reachset Conformance

Testing of Hybrid Automata," presented at the HSCC'16 Proceedings of the 19th

International Conference on Hybrid Systems: Computation and Control, Vienna,

Austria, 2016.

[130] J. H. Kim, K. G. Larsen, B. Nielsen, M. Mikučionis, and P. Olsen, "Formal Analysis

and Testing of Real-Time Automotive Systems Using UPPAAL Tools," in Formal

227

Methods for Industrial Critical Systems: 20th International Workshop, FMICS 2015

Oslo, Norway, June 22-23, 2015 Proceedings, M. Núñez and M. Güdemann, Eds., ed

Cham: Springer International Publishing, pp. 47-61, 2015.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.2 Motivation and Objectives
	1.3 Thesis Structure

	2 Literature Review of Functional Testing in Train Control Systems and Model-Based Testing Methods
	2.1 Introduction to Train Control Systems
	2.2 Traditional MBT Methods
	2.2.1 Introduction of Modelling Methods for MBT
	2.2.1.1 State-Based Modelling Methods
	2.2.1.2 Transition-Based Modelling Methods
	2.2.1.3 Other Modelling Methods
	2.2.1.4 Summary

	2.2.2 Introduction of Test Selection Criteria
	2.2.2.1 All-State Coverage
	2.2.2.2 All-Transition Coverage
	2.2.2.3 All-Path Coverage
	2.2.2.4 All Definition-Use Coverage
	2.2.2.5 Summary

	2.2.3 Introduction of Test Tools

	2.3 Functional Testing for Train Control Systems
	2.3.1 Hardware-in-the-Loop testing for TCSs
	2.3.2 Model-Based Testing for TCSs
	2.3.3 Summary

	2.4 Research Problem Description

	3 Modelling for Simulation Combined MBT
	3.1 Comparison of Online MBT and Offline MBT
	3.1.1 Overview of Online MBT and Offline MBT
	3.1.2 Online MBT for TCS
	3.1.3 Introduction of Simulation Combined MBT

	3.2 Simulation Combined MBT
	3.2.1 Modelling for Online MBT
	3.2.2 Conformance relation in MBT [107]
	3.2.3 Modelling method for Simulation Combined MBT

	3.3 Summary

	4 Implementation of Simulation Combined MBT
	4.1 Overview of the Simulation Combined MBT Platform
	4.2 Modelling implementation of SUT
	4.2.1 Modelling implementation of the Abstract Model
	4.2.2 Modelling implementation of the Simulation Model

	4.3 Test Tool
	4.4 I/O Sequence Manager
	4.5 HIL Environment
	4.6 Data flow in the Simulation Combined MBT Platform

	5 Functional Testing Case Study on a CBTC System
	5.1 Case 1: Single Train Scenario
	5.1.1 Abstract Model
	5.1.1.1 Specification of the SUT
	5.1.1.2 Abstract Model of the SUT
	5.1.1.3 Abstract Model of the Tester
	5.1.1.4 Abstract Model of the Communication Channels

	5.1.2 Simulation Model
	5.1.3 HIL Environment
	5.1.3.1 Vehicle Model
	5.1.3.2 Infrastructure Model
	5.1.3.3 Timetable Model

	5.1.4 I/O Sequence Manager
	5.1.5 Testing Results

	5.2 Case 2: Multiple Train Scenario
	5.2.1 SUT Models and the HIL Environment
	5.2.1.1 Abstract Model
	5.2.1.2 HIL Environment Model

	5.2.2 Testing Results
	5.2.3 Summary

	5.3 Conclusion

	6 Validation and Verification
	6.1 Validation of the Specification Requirement
	6.1.1 Abstract Model Validation
	6.1.1.1 Deadlock
	6.1.1.2 Safety Properties
	6.1.1.2.1 𝐴[] 𝑺𝑷𝑬𝑬𝑫>𝒔𝒑𝒆𝒆𝒅𝒍𝒊𝒎 𝑖𝑚𝑝𝑙𝑦 𝐼𝑈𝑇_𝑇.𝑸𝒖𝒆𝒓𝒚𝑬𝑩 && 𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑬𝑩𝑰𝑵𝑮
	6.1.1.2.2 𝐴[]𝐼𝑈𝑇_𝑇.𝑺𝒕𝒐𝒑 && 𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑺𝑻𝑶𝑷𝑷𝑬𝑫 𝑖𝑚𝑝𝑙𝑦 𝑺𝑷𝑬𝑬𝑫==0
	6.1.1.2.3 𝐴[] 𝑺𝑷𝑬𝑬𝑫>𝒔𝒑𝒆𝒆𝒅𝒍𝒊𝒎 𝑖𝑚𝑝𝑙𝑦 𝑛𝑜𝑡 𝐼𝑈𝑇_𝑇.𝑹𝒆𝒑𝒐𝒓𝒕𝒊𝒏𝒈
	6.1.1.2.4 𝐴[] 𝐼𝑈𝑇_𝑇.𝑬𝑩𝒓𝒆𝒎𝒐𝒗𝒆𝒅 𝑖𝑚𝑝𝑙𝑦 𝑺𝑷𝑬𝑬𝑫==0
	6.1.1.2.5 𝐸[] 𝒍𝒐𝒄𝒂==𝑓𝑎𝑙𝑠𝑒 𝑖𝑚𝑝𝑙𝑦 (𝐼𝑈𝑇_𝑇.𝒔𝒕𝒂==1 && (𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆<𝑀𝑎𝑝[𝐵𝑎𝐼𝐷]−1 ∨𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆>𝑀𝑎𝑝[𝐵𝑎𝐼𝐷]+1))
	6.1.1.2.6 𝐴[] 𝑵𝒖𝒎𝑳𝒐𝒔𝒕>=2 𝑖𝑚𝑝𝑙𝑦 𝐼𝑈𝑇_𝑇.𝑸𝒖𝒆𝒓𝒚𝑬𝑩
	6.1.1.2.7 𝐼𝑈𝑇_𝑇.𝑬𝑩𝒓𝒆𝒎𝒐𝒗𝒆𝒅 −> 𝐼𝑈𝑇_𝑇.𝑰𝒅𝒍𝒆
	6.1.1.2.8 𝐼𝑈𝑇_𝑇.𝑬𝑩𝒊𝒏𝒈 −> 𝐼𝑈𝑇_𝑇.𝑺𝒕𝒐𝒑
	6.1.1.2.9 𝑺𝑷𝑬𝑬𝑫>0 −>𝑛𝑜𝑡 (𝐼𝑈𝑇_𝑇.𝑺𝒕𝒐𝒑 ∨𝐼𝑈𝑇_𝑇.𝑬𝑩𝒓𝒆𝒎𝒐𝒗𝒆𝒅)

	6.1.1.3 Liveness Properties
	6.1.1.3.1 𝐴<>𝐼𝑈𝑇_𝑇.𝑸𝒖𝒆𝒓𝒚𝑬𝑩 𝑖𝑚𝑝𝑙𝑦 𝐼𝑈𝑇_𝑇.𝑺𝒕𝒐𝒑
	6.1.1.3.2 𝐴<> 𝐼𝑈𝑇_𝑇.𝑰𝒅𝒍𝒆 𝑖𝑚𝑝𝑙𝑦 𝐼𝑈𝑇_𝑇.𝑫𝒆𝒑𝒂𝒓𝒕𝒊𝒏𝒈
	6.1.1.3.3 𝐴<>𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑹𝒐𝒖𝒕𝒆𝒅 𝑖𝑚𝑝𝑙𝑦 𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑫𝒆𝒑𝒂𝒓𝒕𝒊𝒏𝒈
	6.1.1.3.4 𝐴<> 𝐼𝑈𝑇_𝑇.𝑰𝒅𝒍𝒆 ∨𝐼𝑈𝑇_𝑇.𝑫𝒆𝒑𝒂𝒓𝒕𝒊𝒏𝒈 ∨𝐼𝑈𝑇_𝑇.𝑾𝒂𝒊𝒕𝒊𝒏𝒈 ∨𝐼𝑈𝑇_𝑇.𝑨𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒏𝒈 ∨𝐼𝑈𝑇_𝑇.𝑫𝒆𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒏𝒈 ∨𝐼𝑈𝑇_𝑇.𝑸𝒖𝒆𝒓𝒚𝑨𝑪𝑪 ∨𝐼𝑈𝑇_𝑇.𝑸𝒖𝒆𝒓𝒚𝑫𝑪𝑪 ∨𝐼𝑈𝑇_𝑇.𝑹𝒆𝒑𝒐𝒓𝒕𝒊𝒏𝒈 ∨...
	6.1.1.3.5 𝐴<> 𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑹𝒐𝒖𝒕𝒆𝒅 ∨𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑫𝒆𝒑𝒂𝒓𝒕𝒊𝒏𝒈 ∨𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑹𝒖𝒏𝒏𝒊𝒏𝒈 ∨𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑨𝑪𝑪𝑰𝑵𝑮 ∨𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑫𝑪𝑪𝑰𝑵𝑮 ∨𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑸𝑼𝑬𝑹𝒀𝑰𝑵𝑮 ∨𝑇𝑒𝑠𝑡𝑒𝑟_𝑑𝑒.𝑨𝑪𝑪𝑬𝑫 ∨...
	6.1.1.3.6 𝐴<> 𝒙>𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑖𝑚𝑝𝑙𝑦 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑽𝒂𝒄𝒂𝒏𝒕 ∨𝐴𝐶𝐶𝑒𝑑𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑽𝒂𝒄𝒂𝒏𝒕 𝐷𝐶𝐶𝑒𝑑𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑽𝒂𝒄𝒂𝒏𝒕 ∨𝑅𝑒𝑝𝑜𝑟𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑽𝒂𝒄𝒂𝒏𝒕 ∨𝐸𝐵𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑽𝒂𝒄𝒂𝒏𝒕 ∨𝑆𝑡𝑜𝑝𝑒𝑑𝐶...
	6.1.1.3.7 𝐴<> 𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑩𝒖𝒔𝒚∨𝐴𝐶𝐶𝑒𝑑𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑩𝒖𝒔𝒚 ∨𝐷𝐶𝐶𝑒𝑑𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑩𝒖𝒔𝒚∨𝑅𝑒𝑝𝑜𝑟𝑡𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑩𝒖𝒔𝒚∨𝐸𝐵𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑩𝒖𝒔𝒚∨𝑆𝑡𝑜𝑝𝑒𝑑𝐶ℎ𝑎𝑛𝑛𝑒𝑙.𝑩𝒖𝒔𝒚∨𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑𝑒𝑑𝐶ℎ𝑎𝑛𝑛𝑒...
	6.1.1.3.8 𝐴<> 𝑵𝒖𝒎𝑳𝒐𝒔𝒕==0 𝑖𝑚𝑝𝑙𝑦 (𝐼𝑈𝑇_𝑇.𝒔𝒕𝒂==1 && (𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆>=𝑀𝑎𝑝[𝐵𝑎𝐼𝐷]−1 && 𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆<=𝑀𝑎𝑝[𝐵𝑎𝐼𝐷]+1)) || (𝐼𝑈𝑇_𝑇.𝒔𝒕𝒂==0)

	6.1.2 Simulation Model Validation

	6.2 Effectiveness Verification
	6.2.1 Mutation Testing
	6.2.1.1 Wrong Output Action
	6.2.1.2 Incorrect Output Value
	6.2.1.3 Delay
	6.2.1.4 Missing State
	6.2.1.5 Transition to Wrong State
	6.2.1.6 Incorrect Initial state

	6.2.2 Reachset Conformance Relation

	6.3 Performance Verification
	6.3.1 Trace Coverage and Variable Coverage
	6.3.2 Reachset Coverage in Key States

	6.4 Summary

	7 Conclusion
	7.1 Conclusion
	7.2 Contribution
	7.3 Future Work

	Appendix: Publications
	References

