164 research outputs found

    Entropy Lower Bounds for Dictionary Compression

    Get PDF
    We show that a wide class of dictionary compression methods (including LZ77, LZ78, grammar compressors as well as parsing-based structures) require |S|H_k(S) + Omega (|S|k log sigma/log_sigma |S|) bits to encode their output. This matches known upper bounds and improves the information-theoretic lower bound of |S|H_k(S). To this end, we abstract the crucial properties of parsings created by those methods, construct a certain family of strings and analyze the parsings of those strings. We also show that for k = alpha log_sigma |S|, where 0 < alpha < 1 is a constant, the aforementioned methods produce an output of size at least 1/(1-alpha)|S|H_k(S) bits. Thus our results separate dictionary compressors from context-based one (such as PPM) and BWT-based ones, as the those include methods achieving |S|H_k(S) + O(sigma^k log sigma) bits, i.e. the redundancy depends on k and sigma but not on |S|

    Indexing Highly Repetitive String Collections

    Full text link
    Two decades ago, a breakthrough in indexing string collections made it possible to represent them within their compressed space while at the same time offering indexed search functionalities. As this new technology permeated through applications like bioinformatics, the string collections experienced a growth that outperforms Moore's Law and challenges our ability of handling them even in compressed form. It turns out, fortunately, that many of these rapidly growing string collections are highly repetitive, so that their information content is orders of magnitude lower than their plain size. The statistical compression methods used for classical collections, however, are blind to this repetitiveness, and therefore a new set of techniques has been developed in order to properly exploit it. The resulting indexes form a new generation of data structures able to handle the huge repetitive string collections that we are facing. In this survey we cover the algorithmic developments that have led to these data structures. We describe the distinct compression paradigms that have been used to exploit repetitiveness, the fundamental algorithmic ideas that form the base of all the existing indexes, and the various structures that have been proposed, comparing them both in theoretical and practical aspects. We conclude with the current challenges in this fascinating field

    Lempel-Ziv-like Parsing in Small Space

    Full text link
    Lempel-Ziv (LZ77 or, briefly, LZ) is one of the most effective and widely-used compressors for repetitive texts. However, the existing efficient methods computing the exact LZ parsing have to use linear or close to linear space to index the input text during the construction of the parsing, which is prohibitive for long inputs. An alternative is Relative Lempel-Ziv (RLZ), which indexes only a fixed reference sequence, whose size can be controlled. Deriving the reference sequence by sampling the text yields reasonable compression ratios for RLZ, but performance is not always competitive with that of LZ and depends heavily on the similarity of the reference to the text. In this paper we introduce ReLZ, a technique that uses RLZ as a preprocessor to approximate the LZ parsing using little memory. RLZ is first used to produce a sequence of phrases, and these are regarded as metasymbols that are input to LZ for a second-level parsing on a (most often) drastically shorter sequence. This parsing is finally translated into one on the original sequence. We analyze the new scheme and prove that, like LZ, it achieves the kkth order empirical entropy compression nHk+o(nlogσ)n H_k + o(n\log\sigma) with k=o(logσn)k = o(\log_\sigma n), where nn is the input length and σ\sigma is the alphabet size. In fact, we prove this entropy bound not only for ReLZ but for a wide class of LZ-like encodings. Then, we establish a lower bound on ReLZ approximation ratio showing that the number of phrases in it can be Ω(logn)\Omega(\log n) times larger than the number of phrases in LZ. Our experiments show that ReLZ is faster than existing alternatives to compute the (exact or approximate) LZ parsing, at the reasonable price of an approximation factor below 2.02.0 in all tested scenarios, and sometimes below 1.051.05, to the size of LZ.Comment: 21 pages, 6 figures, 2 table
    corecore