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Abstract
We show that a wide class of dictionary compression methods (including LZ77, LZ78, grammar
compressors as well as parsing-based structures) require |S|Hk(S) + Ω (|S|k log σ/ logσ |S|) bits to
encode their output. This matches known upper bounds and improves the information-theoretic
lower bound of |S|Hk(S). To this end, we abstract the crucial properties of parsings created by those
methods, construct a certain family of strings and analyze the parsings of those strings. We also
show that for k = α logσ |S|, where 0 < α < 1 is a constant, the aforementioned methods produce
an output of size at least 1

1−α |S|Hk(S) bits. Thus our results separate dictionary compressors from
context-based one (such as PPM) and BWT-based ones, as the those include methods achieving
|S|Hk(S) + O(σk log σ) bits, i.e. the redundancy depends on k and σ but not on |S|.
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1 Introduction

Dictionary compression. Dictionary compression is one of the most known and intensively
studied area in data compression. As a result, there are many both simple and efficient
methods that are commonly used in practice, those include algorithms from Lempel-Ziv family:
LZ77 [34] and LZ78 [35], grammar compressors: Re-Pair [23], Greedy [4, 5], Sequitur [28],
Sequential [33] as well as others [20, 32]. On top of that, there are also compressed data
structures based on dictionary compression [16, 13, 8, 3, 22, 25, 7, 8, 19, 26].

Many methods mentioned above share a common feature – they induce a parsing of the in-
put string. This is explicit for LZ77 and LZ78, as they both output a series of phrases,
for grammar compressors the parsing is not always explicit, but it can be done fairly easy.
For the mentioned data structures this is also either explicit [16, 13, 3, 22, 25] or easily
done [7, 8]. The actual encodings of the phrases differ between the methods, but often we
can lower bound their size by (zeroth order) entropy of the induced parsing. For example,
in LZ78, for parsing with c phrases each phrase is assigned different (prefix-free) bit code,
thus (by the properties of the prefix-free codes) this claim trivially holds (note also that
all phrases in parsing induced by LZ78 are different). Another good example is grammar
compressors: Re-Pair explicitly encodes the starting string of the grammar using entropy
coder [23], Sequential uses its own encoding [33], which can be lower bounded by zeroth order
entropy, etc.

Higher order empirical entropy. The k-th order empirical entropy, denoted Hk(S) for a
string S, is one of the most widely used measure of compressibility of texts, as on one
hand in practice it is a good estimation of the “compressibility” of the text and on the
other hand there are compressors that roughly achieve it. Surprisingly, for many dictionary
compression methods it was shown that on a text S over an alphabet of size σ their output
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11:2 Entropy Lower Bounds for Dictionary Compression

is of size at most

β|S|Hk(S) +O(k|S| log σ/ logσ |S|) +O(|S| log logσ |S|/ logσ |S|) (1)

bits, for some constant β (ideally β = 1) [16, 13, 21, 27, 15, 30]. When β = 1 then the terms
other than |S|Hk(S) are often called the redundancy of the encoding. The summands under
O notation are in o(|S| log σ) for k = o(logσ |S|), such term is often treated as “lower order
term”. To capture this phenomenon, Kosaraju and Manzini introduced the notion of coarse
optimality [21]: an algorithm is (β) coarse optimal if it achieves β|S|Hk(S) + o(|S| log σ) bits
(our definition is slightly different than the original one, in which it was assumed that k and
σ are constant). However, for larger k the additional term in (1) is in Ω(|S| log σ), which is
not satisfactory, as |S|Hk(S) ≤ |S| log σ and so the additional term dominates the main one.

The bound in (1) for particular methods is in fact connected to a recently proved general
upper bound on (zeroth-order) entropy of arbitrary parsing:

I Theorem 1 ([15, Theorem 7]). For any parsing YS = y1y2 · · · yc of S:

cH0(YS) ≤ |S|Hk(S) + ck log σ + |L|H0(L) , (2)

where L is string whose letters are lengths of consecutive phrases in YS, i.e. L = |y1| |y2| · · · |yc|.

To see the connection, observe that parsings produced by considered methods are usually of
size at most O(|S|/ logσ |S|), thus ck log σ turns to O(k|S| log σ/ logσ |S|), and for such sizes
the |L|H0(L) can be estimated by O(|S| log logσ |S|/ logσ |S|). Of course, the considered
methods encode also other information, which increases the constants in O notation or
increases the constant in front of |S|Hk(S).

Our results. The main result of this paper is a proof that the estimation (1) is tight for
k < logσ |S|, at least for “natural” algorithms. Since estimating the size of the produced
output is hard due to different encodings, we prove that the estimation on parsing entropy
given by Theorem 1 is tight for such “natural” algorithms; note that this means that we
disregard the size of other parts of the output. This is the reason, why we have to restrict the
considered parsings, and so also the algorithms producing them, as it is impossible to, say,
show any lower bound for a trivial parsing which consists of one phrase. To this end we define
the class of natural parsers; this definition covers most of the dictionary based compressors,
in particular it contains LZ77, LZ78, Re-Pair and grammar compressors producing irreducible
grammars (such as Greedy or Sequitur). It also covers succinct data structures which parse
the string into short phrases. We require that each phrase y = wa in a parsing of the input
string S induced by an algorithm is short (i.e. |y| < logσ |S|) or w occurs in S more than
once. Note that the seemingly artificial condition on w and not on y = wa is used in order to
capture LZ77 and LZ78; the condition on short phrases ensures that some structures based
on parsing into equal-length blocks [16, 13] are also covered.

Theorem 1 holds for any parsing, and it is known that the bound can be made more subtle
when we can choose a specific parsing: at least one of l trivial parsings into equal-length
phrases of length l achieves the mean of the first l entropies (plus smaller order term).

I Theorem 2 ([15, Theorem 2]). Let S be a string over an alphabet of size σ. Then for any
integer l we can construct a parsing YS of size |YS | ≤

⌈
|S|
l

⌉
+ 1 satisfying:

|YS |H0(YS) ≤ |S|
∑l−1
i=0 Hi(S)

l
+O(log |S|) .

All phrases except the first and last one have length l.
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It is easy to give examples, for which Theorem 2 is tight, for instance de Bruijn sequence
for l ≤ logσ |S| are examples of Theorem 2 tightness. On the other hand, natural parsers
can perform better on de Bruijn strings than the bound in (1): we can show that they
achieve |S|Hk(S) + O(|S| log logσ |S|/ logσ |S|) = |S| log σ + O(|S| log logσ |S|/ logσ |S|) for
k < logσ |S|. This is because we can assign to each factor of length l a prefix-free code of
length log logσ |S|+ l log σ bits.

We construct nontrivial examples on which bound from Theorem 2 is tight for any parsing
produced by natural parsers for l ∈ Θ(logσ |S|). Moreover, each constructed string S satisfies

log σ = H0(S) ≈ H1(S) . . . ≈ Hk−1(S) ≈ c ·Hk(S) ≈ . . . ≈ c ·Hl−1(S) , (3)

where k can be any number such that k ≤ logσ |S|, c is some constant greater than 1, and
≈ means that any two values from the sequence differ by at most O(polylog|S|/|S|) = o(1).
In particular, in the limit for |S| → ∞ they all tend to the same value. Those strings
demonstrate that the first O(·) summand in (1) is asymptotically optimal:

I Corollary 3 (short version of Corollary 12). Let A be a natural parser. Then for large
enough σ there exists an infinite family of strings {Sn}∞n=1 over σ-size alphabet such that the
size of the output generated by A on S ∈ {Sn}∞n=1 is at least |S|Hk(S) + Ω

(
|S|k logσ
logσ |S|

)
, for

k ≤ logσ |S| − 1
2

We can generalize the construction so that c in (3) is arbitrarily large (it depends on l,
though), as a result we are able to prove that for k = α logσ |S|, where 0 < α < 1, natural
parsers output cannot be bounded with respect to Hk(S).

I Corollary 4 (short version of Corollary 14). Let 0 < α < 1 be a rational constant and
A be a natural parser. Then for large enough σ there exists an infinite family of strings
{Sn}n∈N over σ-size alphabet such that if A achieves β|S|Hk(S) + o(|S| log σ) bits on each
S ∈ {Sn}n∈N for k = α logσ |S|, then β ≥ 1

1−α .

The bounds provided in Corollary 3 and Corollary 4 give higher lower bounds than information-
theoretic ones, i.e. those based on counting the number of strings satisfying certain conditions.
In fact, our proofs do not use information-theoretic arguments, instead, we give explicit
construction of a string and analyze how natural parsers can parse it.

Consequences. It was asked [27], whether one can bound the size of Re-Pair’s output by
c|S|Hk(S) + o(|S| log σ), for some constant c, when k = α logσ |S|. Corollary 4 settles this
question in the negative.

The provided bounds can be used to compare the parsing-based methods with context-
based ones (like PPM [9]) or ones based on BWT [11, 24]. It is known that their output
is of size at most |S|Hk(S) + O(σk · log σ), even for k = α logσ |S|, i.e. their redundancy
is o(|S|) [11, 24, 10]. Thus our theoretical bound backs a practically observed phenomenon
of superiority of those methods over dictionary-based ones, at least for non-repetitive
texts [9, 2, 1].

Lastly, we believe that the strings constructed in this paper are interesting on their own
and can become “benchmark strings” for data compression algorithms.

Value of k. In the paper we consider k = o(logσ |S|) and k = α logσ |S| for a constant
0 < α < 1. Let us comment, why those are the reasonable values of k (as a function of |S|
and σ). The value of k cannot be too large: for k ≥ logσ |S| the Hk can be smaller than
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11:4 Entropy Lower Bounds for Dictionary Compression

information-theoretic bound [14]. The case of “small” k is clearly k = o(logσ |S|): on one
side it is traditionally thought to be small, on the other Corollary 3 shows that it is the
necessary assumption to obtain reasonable bounds for a wide range of compression algorithms.
Lastly, the intermediate case of k = α logσ k for some constant 0 < α < 1 considered in
Corollary 4 is also well-motivated: the already mention context or BWT-based methods have
good theoretical bounds for such k.

Related results. Kosaraju and Manzini considered also stronger notions than mentioned
above: an algorithm is λ-optimal if it gives output of size at most λ|S|Hk(S)+o(|S|Hk(S)) [21].
They showed many negative results for λ-optimality of LZ77 and LZ78: the LZ78 is not
λ-optimal for any k, and that LZ77 is not λ-optimal for k = 1 (but is 8-optimal for k = 0).
Still, we know very little about λ-optimality of compression algorithms and our results seem
to only give partial negative answer for large enough k.

2 Strings and their parsings

A string is a sequence of elements, called letters, from a finite set, called alphabet, and it is
denoted as w = w1w2 · · ·wk, where each wi is a letter, its length |w| is k; alphabet’s size is
denoted by σ, the alphabet is usually not named explicitly as it is clear from the context or
not needed, Γ is used when some name is needed. For any two strings w,w′ the ww′ denotes
their concatenation. By w[i . . j] we denote wiwi+1 · · ·wj , this is a substring of w; ε denotes
the empty string. For a pair of strings v, w the |w|v denotes the number of different (possibly
overlapping) substrings of w equal to v; if v = ε then we set |w|ε = |w|.

A parsing of a string S is any representation S = y1y2 · · · yc, where each yi is nonempty
and is called a phrase. We denote a parsing as YS = y1, . . . , yc and treat it as a string of
length c over the alphabet {y1, . . . , yc}; in particular |YS | = c is its size.

Given a string w its k-order empirical entropy is

Hk(w) = − 1
|w|

∑
v: |v|=k
a: letter

|w|va log
(
|w|va
|w|v

)
,

with the convention that the summand is 0 whenever |w|va = 0. We are mostly interested in
the Hk entropy of the input string S and in the H0(YS) for parsing YS of S. The former is
a natural measure of the input, to which we shall compare the size of considered algorithms,
and the latter is a space lower bound for those algorithms, see Definition 5.

3 Natural parsers

We define the class of natural parsers. The general idea is that phrases generated by natural
parsers are either short or occur at least twice in the string. Those are natural heuristics
and so natural parsers include many practically used algorithms.

I Definition 5. An algorithm is a natural-parser if given a string S over an alphabet of size
σ it produces its parsing YS such that for each phrase y = wa, |a| = 1 of YS either |S|w > 1,
or y ≤ logσ |S|; moreover, it encodes YS using at least |YS |H0(YS) bits.

The condition that for a phrase y = wa we require |S|w > 1 instead of |S|y > 1 was
added so that natural parsers include also LZ78 and non self-referencing LZ77. Note that
phrases of length 1 occurring once are allowed, as for them w = ε and |S|ε = |S| > 1.
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Natural parsers include: Re-Pair, algorithms producing irreducible grammars, LZ78, LZ77
(for some natural encodings) and compressed text representations that partition the text
into short (i.e. Θ(logσ |S|)) blocks and encode the blocks using zeroth-order entropy [16, 13].
We now argue that all of the above algorithms are natural parsers.

LZ77 and LZ78. The LZ77 [34] and LZ78 [35] are probably the most known dictionary
compressors. Each of them processes the input from left to right and builds a parsing in the
process. In the LZ77 if, at some point, we processed some prefix P (of length j) of S the
next phrase will be the longest possible substring starting at S[j + 1] which occurs in S at
position at most j, plus one letter. We distinguish between self-referencing LZ77, where the
previous occurrence of string of a factor may overlap the factor, and non-self-referencing,
where it cannot (in other words, it occurs in P ). Observe that both definition satisfy the first
condition of natural parsers. When it comes to the entropy condition, the original encoding of
LZ77 stored for each phrase its starting position in P using fixed length code, so it consumed
at least log |S| bits per phrase, in total this is at least the entropy of the parsing (recall that
we have H0(S) ≤ log |S| for every S). Other encodings are also possible, they are more of a
practical than theoretical improvement: for example Kosaraju and Manzini [21] stored the
position using log |P | bits, which can be shown to be equivalent to the original one minus
lower order term of o(|S| log σ). Sometimes we store the offset, i.e. the difference between
the starting position of phrase in P and j, though on average none of this encodings give
better bound than log |YS | bits per phrase. On top of that there are also some LZ77-based
data structures, like LZ-indices [26, 19, 22], they also use at least log |YS | bits per phrase.

In the case of LZ78, we build a dictionary (at the beginning it is empty), when we
processed some prefix of length j the next phrase is wa where w is the longest string which
starts in S[j] and is in the dictionary. After each step we update our dictionary and add
newly created phrase to it. Thus the description of phrase consists of index of string in a
dictionary and a letter. Even though this descriptions can be encoded differently, usually the
encodings (including the original one [35]) assign different (prefix-free) bit-codes to different
phrases, thus by optimality of Huffman coding |YS |H0(YS) is the lower bound on output size.
Note also that no two phrases have the same description, so it is sufficient (and necessary)
to assign each phrase a fixed code of log |YS | bits, in fact some LZ78-based methods work
this way [31]. Note though, that in some variants with limited dictionary size this may
not be true.

Re-Pair. Re-Pair [23] is a grammar compressor, which builds a grammar generating the
input string in the following way: we start with input string S and iteratively replace
occurrences of the most frequent digram AB in S with a new symbol X, adding a rule
X → AB to grammar. We iterate this procedure as long as there is a digram occurring at
least twice. At the end we are left with a string which naturally induces a parsing of S, the
original encoding of Re-Pair uses zeroth-order entropy to encode the parsing. Note that due
to the fact that we only replace digrams which occur twice, each phrase in the parsing has at
least two occurrences in S.

Irreducible Grammars. There is a large family of grammar compressors generating irredu-
cible grammars. For example this family includes Greedy [4, 5], Sequential [33], Sequitur [29]
and LongestMatch [20]. The conditions for a grammar to be irreducible are that:

each nonterminal that occurs on right-hand side of grammars productions must occur at
least twice
no pair of nonterminals occurs twice on the right-hand side of the grammars productions
no two nonterminals expands to the same string.
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11:6 Entropy Lower Bounds for Dictionary Compression

As an example {S → AABB;A → ab;B → cd} is an irreducible grammar, but neither
{S → AAB;A→ ab;B → cd} nor {S → AAAA;A→ ab} are.

The parsing induced by the right-hand side of starting symbol already satisfies the
condition of a natural parser. There are many methods of encoding such grammars. The
simplest involves entropy-coding of grammars right-hand sides, other assignes prefix-free
codes to nonterminals [33, 4, 29]. A more sophisticated method was proposed by Kieffer
and Yang [20], they showed that we can obtain the parsing from irreducible grammars by
subsequently substituting one occurrence of each nonterminal till there are none left (at the
end we are left with one string consisting of nonterminals) and then apply entropy coder.
Such methods still are natural parsers, as each nonterminal of an original grammar still
occurs in the obtained string (by the property that each nonterminal occurs twice) and thus
each phrase of a parsing has at least two occurrences in the input string.

Other examples. There are compressed text representations which partition the string into
short (i.e. of length at most logσ |S|) blocks and encode the blocks using zeroth-order entropy
coder [16, 13, 12]; clearly they are also natural parsers.

4 Lower bound on parsing-based methods

In this section we construct a family of strings for which the bounds from Theorem 2 and
Theorem 1 are tight for natural parsers. Furthermore, for those strings the H0, . . . ,Hk−1
are by a constant factor c larger than Hk, . . . ,Hl, for adequate l ∈ Θ(logσ |S|). For ease of
presentation we first show the construction for c = 2 and next we generalize to arbitrarily
large c. Note that H0 = cHk means that the mean of entropies cannot be contained in lower
order term such as o(|S| log σ).

Our construction extends the one of de Bruijn strings, which, for a given alphabet Γ and
order k, contain exactly once each string w ∈ Γk as a substring; de Bruijn strings were used
for proving lower bounds on compressibility before [14]; yet, contrary to previous results, our
lower bounds are not information-theoretic.

I Theorem 6. For every k > 0, l ≥ 0, p ≥ 1 there exists a string S over alphabet of size
σ = 4p of length σk+ l+1

2 such that:
1. log σ −O

(
i log |S|
|S|

)
≤ Hi(S) ≤ log σ for i < k;

2. logσ
2 −O

(
i log |S|
|S|

)
≤ Hi(S) ≤ logσ

2 for k ≤ i ≤ k + l;
3. no string of length k + l + 1 occurs more than once in S.

For l = 0 the promised family are constructed from de Bruijn strings by appropriate
letter merges. For de Bruijn strings the frequency of each substring depends (almost) only
on its length, thus the bounds for the entropy of strings constructed in this way are easy to
show. For larger l we make an inductive (on l) construction, similar in spirit to construction
of de Bruijn strings: we construct a graph with edges labelled with letters and the desired
string corresponds to an Eulerian cycle in this graph; to be more precise, the (l + 1)st graph
is exactly the line graph of the lth one. We guarantee that the frequency of strings depends
only on their lengths, the exact condition is more involved than in case of de Bruijn strings.

The promised family of strings is much easier to define if we think of them as cyclic
strings, meaning that after reading the last letter we can continue to read from the beginning.
To distinguish strings from cyclic strings we denote by S	 the cyclic variant of S. Note that
for a cyclic string S	 we are interested only in the occurrences of substrings in it (as defined
below) thus the technical details of how many times we read S cyclically or when do we stop,
are unimportant.
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A string w occurs in S	 if w occurs in S, or w = w1w2 and w1 is a suffix of S and w2 a
prefix; we still require that |w| ≤ |S|. The starting positions of an occurrence of w in S	 is
defined naturally, two occurrences are different if they start at different positions. Denote by
|S|	w the number of different occurrences of w in S	. Using this notation we define cyclic
k-order entropy as:

H	
k (w) = − 1

|w|
∑

v: |v|=k
a: letter

|w|	va log
(
|w|	va
|w|	v

)
.

The difference between cyclic and standard k-th order entropy is that it takes into the account
also the first k letters of w. It is easy to show that it differs from |w|Hk(w) in a small amount.

I Lemma 7. For any string S and for any k we have:

|S|Hk(S) + k log |S|+O(k) ≥ |S|H	
k (S) ≥ |S|Hk(S) .

We now give the main construction, using the cyclic occurrences the estimation of
Theorem 6 simplify as follows:

I Lemma 8. For every k > 0, l ≥ 0, p ≥ 1 there exists a string S of length σk+ l+1
2 over

an alphabet Γ′ of size σ = 4p such that:
(dB1) For every w ∈ (Γ′)i, i < k we have |S|	w = σk−i+(l+1)/2,
(dB2) For every w ∈ (Γ′)i, k ≤ i ≤ k+ l+ 1 we have either |S|	w = σ(k+l+1−i)/2 or |S|	w = 0,
(dB3) No string of length k + l + 1 occurs cyclically more than once in S.

Proof. Fix k, by Sl we will denote the string that satisfies the conditions (dB1–dB3) for l.
Let us first construct S0. Consider cyclic de Bruijn sequence B	 = a1a2 · · · an of

order 2k + 1 over an alphabet Γ of size
√
σ (this is well defined, as σ = 4p). Then

|B| = (
√
σ)2k+1 = σk+ 1

2 . Consider two parsings of B	 into pairs of letters:

Y 1
B = |a1a2|a3a4| · · · |an−3an−2|an−1an| Y 2

B = |a2a3|a4a5| · · · |an−2an−1|ana1|

Now replace each pair ai, aj with a new symbol bi,j , such that bi,j 6= bi′,j′ if and only if
(ai, aj) 6= (ai′ , aj′). The size of the new alphabet Γ′ is σ = 4p. Consider the corresponding
strings B′1 and B′2, treated in the following as cyclic strings:

B′1 = b1,2b3,4 · · · bn−3,n−2bn−1,n B′2 = b2,3b4,5 · · · bn−2,n−1bn,1

We can choose B such that it begins with a2k+1
i , for some ai. Then both strings B′1 and B′2

begin with bki,i. Take S0 = B′1B
′
2. Then, as the starting k-letters of both of them are the

same, for each v of length at most k + 1 it holds that

|B′1|	v + |B′2|	v = |S0|	v .

We now calculate |S0|	w for each possible w. For each k-letter string w′ over Γ′ the
|B′1|	w + |B′2|	w is

√
σ: w′ is obtained from a fixed 2k-letter string w ∈ (Γ)2k and such a string

occurs cyclically
√
σ-times in B	, as there are

√
σ ways to extend w to a (2k + 1)-letter

string and each such a string occurs cyclically exactly once in B	 and each cyclic occurrence
of w in B	 yields one cyclic occurrence of w′ in exactly one of B′	1 and B′	2 . Moreover, as
each string v of length 2k + 1 has exactly one occurrence in B, the letters after different
cyclic occurrence of w′ ∈ (Γ′)k in B′	1 or B′	2 are pairwise different. Hence, each string of
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11:8 Entropy Lower Bounds for Dictionary Compression

length at least k + 1 over Γ′ has at most one occurrence in S0. For a string w of length
i < k observe that each of its σk−i extensions to a k-letter string occurs cyclically exactly√
σ times in S	

0 , thus w occurs exactly σk−i+1/2. Thus S0 satisfies conditions (dB1–dB3).
We now move to the general case of l > 0. We cannot simply define Sl as a power of S0,

as then (dB3) is violated. Instead, we proceed similarly to the standard construction of de
Bruijn strings: we will build a graph with vertices labelled with different strings of length
k + l + 1, define edges between strings that can be obtained by shifting by one letter to the
right and show that this graph has a Hamiltonian cycle.

Define a family of directed graphs G0, G1, . . ., where Gi = (Vi, Ei). The nodes in
Vi are labelled with (some) strings of length k + 1 + i over Γ′ (which is of size σ) and
Ei = {(u, u′) : u[2 . . . |u|] = u′[1 . . . |u′| − 1]}. We label the edge from av to vb with avb. In
case of G0 its vertices V0 are all cyclic substrings of S�

0 of length k + 1. Recall that given
a directed graph G its line graph L(G) has edges of G as nodes and there is an edge (e, f) in
L(G) if and only if the end of e is the beginning of f . Define Gi+1 = L(Gi), observe that
edges of Gi have labels that are strings of length k + i+ 2, those labels are reused as labels
of nodes in Gi+1.

Let us state some basic properties of the defined graph: firstly, G0 has in-degree and
out-degree equal to

√
σ (so it is

√
σ-regular): Given a node with a k + 1-letter label w all its

outgoing labels correspond to occurrences of the k letter suffix of w. And by (dB1) each k
letter string has

√
σ cyclic occurrences in |S0|� and each k + 1 letter string has at most 1.

So there are
√
σ outgoing edges, each leading to a different node. Similar argument applies

to the incoming edges. It is a folklore knowledge (and easy to show) that if G is d-regular
then so is L(G), moreover, if G is connected then so is L(G); clearly G0 is connected, as S0
corresponds to a Hamiltonian path in it. Thus, all Gi’s are Eulerian. It is well-known and
easy to see that an Eulerian cycle in G corresponds to a Hamiltonian cycle in L(G), thus
each Gi has a Hamiltonian cycle.

We define the string S�
i as the string read when traversing a Hamiltonian path in Gi

(note that there may be many such paths: choose one arbitrarily): we begin with an arbitrary
vertex u0 in Gi, write its label and when we traverse the edge avb (so from av to vb) then we
append b to the string. By easy induction we can show that when we are at a node labelled
with u then the current string has u as a suffix. In particular, after traversing the whole
path begins and ends with u0. By identifying those two copies of u0 we obtain a cyclic string.
Note that a string w of length k + i+ 1 occurs at position p if and only if p-th vertex on the
path is labelled with w. Concerning the length |Si|, this is exactly |Vi| = |Ei−1| =

√
σ|Vi−1|,

as each Gi is
√
σ regular. Since |V0| = σk+ 1

2 , we conclude that |Vi| = σk+ i+1
2 . We also show

that each occurrence of a string w of length k + i in Si is followed by a different letter, in
particular this implies that a string w′ of length k + i+ 1 has at most one occurrence in Si,
i.e. (dB3). We know that this is true for G0, we proceed by induction. Consider all nodes
labelled with wa for some letter a in Gi+1, where |w| = k + i+ 1. They all correspond to
edges in Gi labelled with the same strings. Those edges originate from nodes labelled with
w and as |w| = k + i+ 1, by induction assumption there is exactly one such node. Now, if
there were two edges outgoing edge from w labelled with wa then they would lead to two
vertices labelled with the same label w′ (where w′ = w[2 . . |w|]a), which is not the case by
the induction assumption. Hence, wa has at most one occurrence.

It is left to show that Sl satisfies (dB1)–(dB2). We proceed by induction on l: first we
show that for any string w of length at most k + l + 1 it holds that |Sl+1|	w = |Sl|	w ·

√
σ:

observe that |Sl+1|	w is the number of nodes in Gl+1 that have w as their prefix. This is
exactly the number of edge-labels in Gl that have w as their prefix. But those labels are of
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length k + l + 2 > |w|, thus edge e = (u, u′) has w as the prefix of its label if and only if this
labels is also a prefix of label of u. As Gl is

√
σ-regular, each u is counted

√
σ times (once

for each of the
√
σ outgoing edges) and so we obtain the claim.

It is left to consider the case when |w| = k+ l+ 2, but strings of this lengths are labels of
vertices of Gl+1 and if w is label of some vertex of Gl+1 then clearly |Sl+1|w = 1. J

It is worth noting that the construction suggests that for a fixed k (and de Bruijn string)
there are exponentially many (in l) strings satisfying conditions (dB1–dB3). Moreover the
construction suggests that there are exponentially many (in k) such strings: it seems that for
each de Bruijn string the constructed strings is different, and there are exponentially many
de Bruijn strings of order k. Proving this does not seem easy and we leave it for future work.

I Example 9. For σ = 4, k = 2, l = 0: S = aababcbbadccdbddaacadaccbdbbcddc .

Observe that each k-letter substring occurs cyclically
√
σ times, the letters after those

occurrences are pairwise different. H	
0 (S) = H	

1 (S) = log σ and H	
2 (S) = logσ

2 .
For σ = 4, k = 1, l = 1 the string is S = abbbdacdcacabdcd and H	

0 (S) = log σ, H	
1 (S) =

H	
2 (S) = logσ

2 .

Proof of Theorem 6. Take the string S from Lemma 8 for a given k, l, p. By definition of
cyclic entropy H	

i (S) = log σ for i < k and H	
i (S) = logσ

2 for k ≤ i ≤ k + l, moreover
no string of length k + l + 1 occurs cyclically more than once in S. By Lemma 7, string
S satisfies the conditions stated in the Theorem. J

In the following we estimate, how bad a natural parser performs on a string from
Theorem 6. It is easy to see that for such a string for parameters k, l it cannot make a phrase
longer than k + l+ 1, as by (dB3) they have at most one occurrence, so we first lower-bound
the entropy of such parses.

I Lemma 10. Let S be a string from Theorem 6 for parameters k and l, and let z = k+ l+1.
Then for every parsing YS = y1y2 . . . y|YS | of S such that |yi| ≤ z we have:

|YS |H0(YS) ≥ |S|(z + k)
2z log σ − |YS | log |S|

|YS |
.

Proof. Let m = |YS | and n = |S|. For a string w let lw be the number of occurrences of w
in YS . Clearly lw ≤ |S|	w and by construction for any w such that |S|	w > 0:

|S|	w =
{

n
σ|w|

for |w| ≤ k
n

σ(|w|+k)/2 for k < |w| ≤ z
. (4)

thus
lw ≤ n

σ|w|
, for |w| ≤ k;

lw ≤ n
σ(|w|+k)/2 , for k < |w| ≤ z.

Define:

m1 =
∑

w∈YS ,|w|≤k

lw m2 =
∑

w∈YS ,|w|>k

lw

n1 =
∑

w∈YS ,|w|≤k

|w|lw n2 =
∑

w∈YS ,|w|>k

|w|lw

Note that as each phrase in Ys has length at most z, we have that

m2z ≥ n2 (5)
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Then

|YS |H0(YS) =
∑
w∈YS

lw log m
lw

=
∑
|w|≤k

lw log m
lw

+
∑
|w|>k

lw log m
lw

≥
∑
|w|≤k

lw log mσ
|w|

n
+
∑
|w|>k

lw log mσ
(|w|+k)/2

n

=
∑
w

lw log m
n

+
∑
|w|≤k

lw log σ|w| +
∑
|w|>k

lw log σ(|w|+k)/2 from (4)

= m log m
n

+
∑
|w|≤k

lw|w| log σ +
∑
|w|>k

lw|w|
2 log σ +

∑
|w|>k

lwk

2 log σ

= m log m
n

+ n1 log σ + n2

2 log σ + m2k

2 log σ

≥ m log m
n

+ n1 log σ + n2

2 log σ + n2k

2z log σ from (5)

≥ n

2 log σ + nk

2z log σ +m log m
n

= n(z + k)
2z log σ −m log n

m
. J

Natural parsers on strings defined in Theorem 6 cannot do much better than the mean of
entropies, which gives general bounds on algorithms inducing natural parsers.

I Theorem 11. Let A be a natural parser. Let k ≥ 0 be an integer function of |S| and σ
such that for every σ for infinitely many |S| it holds that k|S|,σ ≤ logσ |S| − 1

2 , where k|S|,σ
denotes the value of k for |S| and σ. Then for any natural p > 0 there exists an infinite
family of strings {Sn}∞n=1 ⊆ Γ∗, where |Γ| = 4p, such that the bit-size of output A(S) of A
on S ∈ {Sn}∞n=1 is at least:

A(S) ≥ |S|Hk(S) + ρ|S| log σ
2 − λ|S| ≥ (1 + ρ) |S|Hk(S)− λ|S| ,

where ρ = k
2 logσ |S|−k

and λ < 0.54. If the size of parsing induced by A is o(|S|) then:

A(S) ≥ |S|Hk(S) + ρ|S| log σ
2 − o(|S|) ≥ (1 + ρ) |S|Hk(S)− o(|S|) .

Proof. Denote n = |S| and m = |YS |. The proof is a simple application of Lemma 10. Fix
alphabet Γ of size σ = 4p. Take k such that k|S|,σ ≤ logσ |S|− 1

2 , then l = 2 logσ |S|−2k|S|,σ−1
is non-negative; note that due to assumptions we can take arbitrarily large |S|. Then
k|S|,σ + l+1

2 = logσ |S|. So it is possible to construct a string S (of length n = |S|) from
Theorem 6, for parameters k|S|,σ, l, p.

Let YS = y1y2 · · · y|YS | be a parsing of S induced by A. As A is a natural parser, we have
that |yi| ≤ k + l+1

2 . We use Lemma 10 to lower bound the output of the algorithm:
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A(S) ≥ |YS |H0(YS)

≥ |S|(2k + l + 1)
2(k + l + 1) log σ −m log n

m

≥ |S|Hk(S) + |S|k
2(k + l + 1) log σ −m log n

m
, as log σ

2 ≥ Hk(S)

≥ |S|Hk(S) + ρ|S| log σ
2 −m log n

m

≥ (1 + ρ)|S|Hk(S)−m log n

m
.

The expression m log n
m is minimized when m = n/e, so we can bound it by n log e

e < 0.54n,
and by o(n) if m = o(n). Plugging those values to the above equation yields the claim. J

There are several consequences of Theorem 11 for natural parsers (the proofs of the
Corollaries are in the Appendix). First, for k ≤ logσ |S| − 1

2 they cannot achieve better
redundancy than O(|S|k log σ/ logσ |S|) bits. If o(logσ |S|) is the best bound on k, then the
redundancy of o(|S| log σ) is necessary.

I Corollary 12. Let A be a natural parser. Then for large enough σ there exists an infinite
family of strings {Sn}n∈N over a σ-size alphabet such that for each S ∈ {Sn}n∈N, the size of
the output generated by A on S is at least

A(S) ≥ |S|Hk(S) + Ω
(
|S|k log σ
logσ |S|

)
,

where k ≤ logσ |S| − 1
2 can be any function of (|S|, σ).

Theorem 2 is tight in the sense that we cannot make the constant at the mean of entropies
smaller than 1, even if we allow phrases of different lengths (not too large, though).

I Corollary 13. Let k be an integer function of (|S|, σ) such that k ≤ logσ |S| − 1
2 . Then for

large enough σ there exists an infinite family of strings {Sn}n∈N over a σ-size alphabet such
that for each S ∈ {Sn}∞n=1

2Hk(S) +O
(

log |S|
|S|

)
≥ H0(S) ≥ 2Hk(S)

and no parsing YS with phrases of length at most j = 2 logσ |S| − k achieves

|YS |H0(YS) ≤ (1− ε) |S|
j

j−1∑
i=0

Hi(S) + o(|S| log σ) ,

for ε > 0.

Finally, we show that extending the bounds to k = α logσ n for a constant 0 < α < 1
implies that |S|Hk(S) (without a constant coefficient) is not achievable. This gives partial
(negative) answer to the question, whether we can prove optimality results for Re-Pair for
k = α logσ |S| [27]. For a statement in full generality, we need to extend the construction
from Theorem 6. For the constructed strings the ratio of H0(S) and Hk(S) can be arbitrary
large (at the cost of increasing l).
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I Corollary 14. Let 0 < α < 1 be a rational constant and A a natural parser. For large
enough σ there exists an infinite family of strings {Sn}∞n=1 over σ-size alphabet such that if A
achieves β|S|Hk(S) + o(|S| log σ) bits on each S ∈ {Sn}∞n=1 for k = α logσ |S|, then β ≥ 1

1−α .

Substituting k = α logσ n to Corollary 12 already shows that an output of a natural
parser is at least 2

2−α |S|Hk(S) (see (7) in the Appendix for calculations). To show a bound
with coefficient 1

1−α we generalize the construction from Lemma 8.
Lemma 8 shows that there exist strings for which Hl(S) = Hk(S) = 1

2Hk−1(S) = 1
2H0(S),

for every k, l, such that k < logσ |S| ≤ l. When k = α logσ |S| (for a constant 0 < α < 1)
this guarantees that the mean of l first entropies is larger by a constant factor than Hk(S).
The intuition is that if we could construct the strings such that |S|Hk(S) = 1

r |S|H0(S), for
arbitrarily large r, we would get that the mean of entropies can be arbitrarily large with
respect to Hk(S). This can be done, we show corresponding properties.

I Lemma 15 (cf. Lemma 8). For every k > 0, l ≥ 0, p ≥ 1, r ≥ 2 there exists a string S
over alphabet Γ′ of size σ = (2r)p of length σk+ l+1

r such that:
(dB1’) For any w ∈ (Γ′)i, i < k we have |S|	w = σk−i+(l+1)/r,
(dB2’) For any w ∈ (Γ′)i, k ≤ i ≤ k + l + 1 we have either |S|	w = σ(k+l+1−i)/r or |S|	w = 0,
(dB3’) No string of length k + l + 1 occurs cyclically more than once in S.

For the construction from Lemma 15, an appropriate variant of Lemma 10 holds.

I Lemma 16 (cf. Lemma 10). Let S be a string from Lemma 15 for parameters k, l, p and r,
let z = k + l + 1. Then for every parsing YS = y1y2 · · · y|YS | of S such that |yi| ≤ z we have:

|YS |H0(YS) ≥ |S|(z + (r − 1)k)
r · z

log σ − |YS | log |S|
|YS |

.

Now we can state the generalized version of Theorem 6:

I Theorem 17 (cf. Theorem 6). For every k > 0, l ≥ 0, p ≥ 1, r ≥ 2 there exists a string S
over alphabet of size σ = (2r)p of length σk+ l+1

r such that:
1. log σ −O

(
i log |S|
|S|

)
≤ Hi(S) ≤ log σ for i < k;

2. logσ
r −O

(
i log |S|
|S|

)
≤ Hi(S) ≤ logσ

r for k ≤ i ≤ k + l;
3. no string of length k + l + 1 occurs more than once in S.

5 Conclusions and open problems

Conclusions. We have shown space lower bounds for a large class of parsing-based compres-
sion and parsing methods: they yield output greater than |S|Hk(S) by at least Ω(|S|k log σ/
logσ n) additional bits, thus even for fixed k and σ this value grows with |S|. Moreover we
have shown that if k = α logσ |S| then parsing-based methods produce output of size at
least 1/(1 − α)|S|Hk(S). These bounds hold assuming that we encode the parsing using
zeroth-order entropy or similar method. Those bounds are strictly higher than upper bounds
for methods based on BWT or PPM.

Open problems. There are parsing based compressed text representations [17, 12], which al-
low for fast random access to letters and substring retrieval, achieving |S|Hk(S)+O(σk log |S|)
= |S|Hk(S) + o(|S|) for k = α logσ |S|, where α < 1

8 ; the difference is that they encode the
parsing using first order entropy coder. Still, they do not allow random access in constant
time nor short (i.e. Θ(logσ |S|)) substring retrieval in constant time; both operations are
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facilitated when zeroth-entropy coder is used [16, 13, 12]. More precisely, structures based
on first-order entropy coders achieve O(log |S|/ log log |S|) time for such operations. Can we
estimate time-space tradeoffs?

Kosaraju and Manzini [21] considered the notion of λ-optimality: an algorithm is λ
optimal if it achieves λ|S|Hk(S) + o(|S|Hk(S)) bits for some constant λ. They showed [21]
that LZ77 and the slight modification of LZ78 are λ optimal for k = 0, and that neither
LZ77 nor LZ78 are for k > 0. They left an open question, whether there is an parsing-based
algorithm which is λ-optimal for k > 0. Corollary 14 implies that no natural parser is λ-
optimal for k = α logσ n for any constant α, which partially answers this question. Still, other
cases, for instance: of constant k, remain open. This is interesting because our constructed
strings have high-entropy, and previously low entropy strings where used in the context of
λ-optimality [21]. A natural question is, whether the dichotomy between natural parsers and
PPM methods holds also for low entropy strings?

Is any grammar compressor λ-optimal, even for k = 0? On one hand, there are examples
of small entropy strings on which most grammar compressors perform badly [6, 18], still this
does not apply to all of them, e.g. Greedy is an exception.
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A Additional material for Section 4

Construction of Generalized de Bruijn strings

Proof of Lemma 7. Fix some string v, |v| = k. Consider the difference

∑
a: letter

|w|	va log
(
|w|	va
|w|	v

)
−

∑
a: letter

|w|va log
(
|w|va
|w|v

)
, (6)

our goal is to estimate it when summed over all v of length k.
Define S1, S2 as the strings of letters that follow cyclic occurrences (standard occurrences)

of v in w, formally for each letter a they should satisfy

|S1|a = |w|	va |S2|a = |w|va ,

note that this implies that

|S1| = |w|	v |S2| = |w|v .

Then left and right summands from (6) are equal to, respectively:

|S1|H0(S1) =
∑

a: letter
|w|	va log

(
|w|	va
|w|	v

)
|S2|H0(S2) =

∑
a: letter

|w|va log
(
|w|va
|w|v

)
We first show that (6) is positive, which yields the second inequality of the Lemma.

Clearly |w|	va ≥ |w|va, and so we can obtain S2 from S1 by removing and permuting
letters, which cannot increase the entropy. Hence |S1|H0(S1) ≥ |S2|H0(S2), which yields
that (6) is positive and so the second inequality of the lemma follows.

To upper bound the difference in (6) observe that S1 is obtained by adding symbols to
S2 and the addition of one letter to a string of length at most |S| − 1 increases the entropy
by at most log |S|+ β, for some constant β. Moreover, there are at most k such additions,
when summing over all possible k-length contexts v. Thus the first inequality holds. J

Proof of Corollary 12. For any function k and any σ = 4p, p > 0 by Theorem 11 we can
build an infinite family of strings {Sn}∞n=1 such that output generated by any natural parsing
method on S ∈ {Sn}∞n=1 is lower bounded by:

A(S) ≥ |S|Hk(S) + |S|k(log σ −O(1))
2(2 logσ |S| − k) . (7)

As k ≤ logσ |S| − 1
2 and the inequality holds for any σ = 4p, we can choose big enough σ so

that the second summand is Ω( |S|k logσ
logσ |S|

). J
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Proof of Corollary 13. We use the same construction as in the case of Corollary 12, i.e. we
build the string for parameter k. By Lemma 7, the mean of the first j entropies is at least:

1
j

(
k logσ |S|+ (j − k) logσ |S|

2 −O
(
j log |S|
|S|

))
≥ Hk(S)+ k log σ

2j −O
(
j log |S|
|S|

)
. (8)

On the other hand, by (7) we get that the output is lower bounded by (as 2 logσ |S| − k = j):

A(S) ≥ |S|Hk(S) + |S|k(log σ −O(1))
2j . (9)

As we can choose σ = 4p arbitrarily we have that for each ε there exists such σ and s0 so that
for all constructed strings with |S| ≥ s0 the difference (8) will be larger than (9) multiplied
by (1− ε). J

Generalization of strings from Lemma 8, Proof of Corollary 14

Sketch of the Proof of Lemma 15. We comment on how to modify the construction and
proof of Lemma 8; observe that, in essence we replace a constant 2 in Lemma 8 with r ≥ 2.
As a first step, Lemma 8 takes de Bruijn string B of order 2k + 1 over binary alphabet and
parse it into phrases of length two in two ways and combine those two strings together. We
proceed similarly, but we take de Bruijn string B of order rk + 1 and instead of parsing B
into phrases of length two, we parse it into phrases of length r in r ways and combine all of
the r strings. For example for r = 3 we have:

Y 1
B = |a1a2a3|a4a5a6| · · · |an−5an−4an−3|an−2an−1an|
Y 2
B = |a2a3a4|a5a6a7| · · · |an−4an−3an−2|an−1ana1|
Y 3
B = |a3a4a5|a6a7a8| · · · |an−3an−2an−1|ana1a2|

As in proof of Lemma 8, we can choose a shift of B such that a1 = a2 = · · · = a5, so that
all those strings begin with the same triple, so after the merging of letters: with the same
letter. In this way, the (short enough) cyclic occurrences in the concatenation are the same
as cyclic occurrences in the separate strings. Moreover we can use the same argument with
constructing the graph so we get the Lemma for arbitrary l.

Concerning the degree of the graph, recall that in the the proof of Lemma 8 each k-letter
string over the alphabet (4p) = σ had (2p) =

√
σ occurrences, all followed by different letters,

thus the degree of the graph G0 (and so each Gi) was
√
σ. Now, since we merge r letters

into one and the B was a rk + 1 de Bruijn string, each k-letter string over the alphabet
(2rp) = σ has (2p) = r

√
σ occurrences, thus the degree of the graph is r

√
σ. In essence this

justifies the replacement of 1/2 by 1/r in all the exponents of σ. Thus we get that that
|S|H	

k (S) = 1
r |S|H

	
0 (S), and from the Lemma 7 the same (roughly) holds between |S|Hk(S)

and |S|H0(S). Thus we get the generalized version of Theorem 6, which, intuitively, says
that we can construct strings whose mean of entropies can be arbitrarily large with respect
to Hk(S). J

Sketch of the Proof of Lemma 16. We skip the calculations, as they are almost the same
as in the proof of Lemma 10, the only difference is that we use different bounds for |S|	w
(and so for lw), i.e. for w such that |S|	w > 0 we have (by Lemma 15):

|S|	w =
{

n
σ|w|

for |w| ≤ k
n

σ|w|/r+(r−1)k/r for k < |w| ≤ z
. J
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Proof of Theorem 17. The proof is similar to the one of Theorem 6: we take the string
from Lemma 16 and apply Lemma 7 to change from cyclic entropy to entropy. J

Proof of Corollary 14. We show that Lemma 16 implies Corollary 14. We construct the
family of strings as following: fix p and r and let σ = (2r)p, as in Lemma 15. Take l such that
k = α

(1−α)r (l + 1) is a natural number. Construct the string S from Lemma 15, its length is
σk+ l+1

r . As r and α are fixed and k is an increasing function of l, for sufficiently large l we
have α logσ |S| ≤ logσ |S| − 1

r , as this is equivalent to
1
r ≤ (1− α)(k + l+1

r ). This means we
can construct the family of strings from Lemma 15 for parameter k. By easy calculation

α logσ |S| = α

(
k + l + 1

r

)
= α

(
α

1− α ·
l + 1
r

+ l + 1
r

)
= α · α+ (1− α)

1− α · l + 1
r

= α

1− α ·
l + 1
r

= k ,

as desired. Thus k
α = logσ |S| = k+ (l+ 1)/r. Define z = k+ l+ 1 as in Lemma 16; again by

easy calculations z = k + kr/α− kr = kr/α− k(r − 1).
To prove that A cannot perform better than 1

1−α |S|Hk(S) + o(|S| log σ) we lower bound
the ratio of A’s output, i.e. |YS |H0(YS), and |S|Hk(S) by 1

1−α . We estimate the former
by Lemma 16 and use the same estimation on |YS | log |S||YS | as in the proof of Theorem 11,
i.e. |YS | log |S||YS | ≤ λ|S|, λ = 0.54:

|YS |H0(YS) ≥ |S|(z + (r − 1)k)
r · z

log σ − |YS | log |S|
|YS |

≥ |S|(z + (r − 1)k)
r · z

log σ − λ|S| . (10)

On the other hand, by Theorem 17 we have that:

|S|Hk(S) ≤ logσ |S|
r

. (11)

Combining these two we obtain:

|YS |H0(YS)
|S|Hk(S) ≥

|YS |H0(YS)
(|S| log σ)/r by (11)

≥ z + (r − 1)k
z

− λ|S|r
|S| log σ by (10)

≥ kr/α

kr/α− k(r − 1) −
λ|S|r
|S|rp

as z = kr/α− k(r − 1), log σ = rp

= r/α

r/α− (r − 1) − λ/p

= 1
1− α · (r−1)

r

− λ/p . (12)
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Now, if A achieves β|S|Hk(S)+f(|S| log σ) bits, for some f(m) ∈ o(m), and as |YS |H0(YS)
lower bounds the output size for natural parsers, we have:

|YS |H0(YS)
|S|Hk(S) ≤ β + f(|S| log σ)

|S|Hk(S)

≤ β + f(|S| log σ)
|S| logσ

r −O(k log |S|)
by Theorem 17

= β + rf(|S| log σ)
|S| log σ −O(rk log |S|) (13)

Combining (12) and (13) yields a lower bound on β:

β ≥ 1
1− α · (r−1)

r

− λ/p− rf(|S| log σ)
|S| log σ −O(rk log |S|) (14)

Now, fix r and set p = r in (14), this in particular makes σ fixed as well. Consider the last
term in (14), i.e. rf(|S| logσ)

|S| logσ−O(rk log |S|) . When |S| → ∞, we have rk log |S| = o(|S| log σ) and
so f(|S| log σ)/|S| log σ is arbitrarily small. Thus this term vanishes when |S| → ∞ and so β
has to be at least

β ≥ 1
1− α · (r−1)

r

− λ/r .

This holds for any r, so also for the limit with r →∞, and so

β ≥ 1
1− α ,

as claimed. J
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