46 research outputs found

    Simulation Theorems via Pseudorandom Properties

    Full text link
    We generalize the deterministic simulation theorem of Raz and McKenzie [RM99], to any gadget which satisfies certain hitting property. We prove that inner-product and gap-Hamming satisfy this property, and as a corollary we obtain deterministic simulation theorem for these gadgets, where the gadget's input-size is logarithmic in the input-size of the outer function. This answers an open question posed by G\"{o}\"{o}s, Pitassi and Watson [GPW15]. Our result also implies the previous results for the Indexing gadget, with better parameters than was previously known. A preliminary version of the results obtained in this work appeared in [CKL+17]

    Query-to-Communication Lifting for BPP

    Full text link
    For any nn-bit boolean function ff, we show that the randomized communication complexity of the composed function f∘gnf\circ g^n, where gg is an index gadget, is characterized by the randomized decision tree complexity of ff. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous separations in communication complexity.Comment: 21 page

    Query-To-Communication Lifting for BPP Using Inner Product

    Get PDF

    From Expanders to Hitting Distributions and Simulation Theorems

    Get PDF
    In this paper we explore hitting distributions, a notion that arose recently in the context of deterministic "query-to-communication" simulation theorems. We show that any expander in which any two distinct vertices have at most one common neighbor can be transformed into a gadget possessing good hitting distributions. We demonstrate that this result is applicable to affine plane expanders and to Lubotzky-Phillips-Sarnak construction of Ramanujan graphs . In particular, from affine plane expanders we extract a gadget achieving the best known trade-off between the arity of outer function and the size of gadget. More specifically, when this gadget has k bits on input, it admits a simulation theorem for all outer function of arity roughly 2^(k/2) or less (the same was also known for k-bit Inner Product). In addition we show that, unlike Inner Product, underlying hitting distributions in our new gadget are "polynomial-time listable" in the sense that their supports can be written down in time 2^O(k), i.e. in time polynomial in size of gadget\u27s matrix. We also obtain two results showing that with current technique no better trade-off between the arity of outer function and the size of gadget can be achieved. Namely, we observe that no gadget can have hitting distributions with significantly better parameters than Inner Product or our new affine plane gadget. We also show that Thickness Lemma, a place which causes restrictions on the arity of outer functions in proofs of simulation theorems, is unimprovable

    On Disperser/Lifting Properties of the Index and Inner-Product Functions

    Get PDF
    Query-to-communication lifting theorems, which connect the query complexity of a Boolean function to the communication complexity of an associated "lifted" function obtained by composing the function with many copies of another function known as a gadget, have been instrumental in resolving many open questions in computational complexity. A number of important complexity questions could be resolved if we could make substantial improvements in the input size required for lifting with the Index function, which is a universal gadget for lifting, from its current near-linear size down to polylogarithmic in the number of inputs N of the original function or, ideally, constant. The near-linear size bound was recently shown by Lovett, Meka, Mertz, Pitassi and Zhang [Shachar Lovett et al., 2022] using a recent breakthrough improvement on the Sunflower Lemma to show that a certain graph associated with an Index function of that size is a disperser. They also stated a conjecture about the Index function that is essential for further improvements in the size required for lifting with Index using current techniques. In this paper we prove the following; - The conjecture of Lovett et al. is false when the size of the Index gadget is less than logarithmic in N. - The same limitation applies to the Inner-Product function. More precisely, the Inner-Product function, which is known to satisfy the disperser property at size O(log N), also does not have this property when its size is less than log N. - Notwithstanding the above, we prove a lifting theorem that applies to Index gadgets of any size at least 4 and yields lower bounds for a restricted class of communication protocols in which one of the players is limited to sending parities of its inputs. - Using a modification of the same idea with improved lifting parameters we derive a strong lifting theorem from decision tree size to parity decision tree size. We use this, in turn, to derive a general lifting theorem in proof complexity from tree-resolution size to tree-like Res(?) refutation size, which yields many new exponential lower bounds on such proofs

    KRW Composition Theorems via Lifting

    Full text link
    One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., P⊈NC1\mathbf{P}\not\subseteq\mathbf{NC}^1). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves "as expected" with respect to the composition of functions f⋄gf\diamond g. They showed that the validity of this conjecture would imply that P⊈NC1\mathbf{P}\not\subseteq\mathbf{NC}^1. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function ff, but only for few inner functions gg. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the monotone\textit{monotone} version of the KRW conjecture. We prove it for every monotone inner function gg whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the s-ts\textbf{-}t-connectivity, clique, and generation functions. In order to carry this progress back to the non-monotone\textit{non-monotone} setting, we introduce a new notion of semi-monotone\textit{semi-monotone} composition, which combines the non-monotone complexity of the outer function ff with the monotone complexity of the inner function gg. In this setting, we prove the KRW conjecture for a similar selection of inner functions gg, but only for a specific choice of the outer function ff

    Hardness of Approximation in PSPACE and Separation Results for Pebble Games

    Full text link
    We consider the pebble game on DAGs with bounded fan-in introduced in [Paterson and Hewitt '70] and the reversible version of this game in [Bennett '89], and study the question of how hard it is to decide exactly or approximately the number of pebbles needed for a given DAG in these games. We prove that the problem of eciding whether ss~pebbles suffice to reversibly pebble a DAG GG is PSPACE-complete, as was previously shown for the standard pebble game in [Gilbert, Lengauer and Tarjan '80]. Via two different graph product constructions we then strengthen these results to establish that both standard and reversible pebbling space are PSPACE-hard to approximate to within any additive constant. To the best of our knowledge, these are the first hardness of approximation results for pebble games in an unrestricted setting (even for polynomial time). Also, since [Chan '13] proved that reversible pebbling is equivalent to the games in [Dymond and Tompa '85] and [Raz and McKenzie '99], our results apply to the Dymond--Tompa and Raz--McKenzie games as well, and from the same paper it follows that resolution depth is PSPACE-hard to determine up to any additive constant. We also obtain a multiplicative logarithmic separation between reversible and standard pebbling space. This improves on the additive logarithmic separation previously known and could plausibly be tight, although we are not able to prove this. We leave as an interesting open problem whether our additive hardness of approximation result could be strengthened to a multiplicative bound if the computational resources are decreased from polynomial space to the more common setting of polynomial time

    Lifting to Parity Decision Trees via Stifling

    Get PDF
    We show that the deterministic decision tree complexity of a (partial) function or relation f lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation f ◦ g as long as the gadget g satisfies a property that we call stifling. We observe that several simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits, Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing randomized communication lifting theorems ([Göös, Pitassi, Watson. SICOMP'20], [Chattopadhyay et al. SICOMP'21]) imply PDT-size lifting. However there are two shortcomings of this approach: first they lift randomized decision tree complexity of f, which could be exponentially smaller than its deterministic counterpart when either f is a partial function or even a total search problem. Second, the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to f. Reducing the gadget size to a constant is an important open problem at the frontier of current research. Our result shows that even a random constant-size gadget does enable lifting to PDT size. Further, it also yields the first systematic way of turning lower bounds on the width of tree-like resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size of tree-like proofs in the resolution with parity system, i.e., Res(☉), of the unsatisfiability of closely related constant-width CNF formulas
    corecore