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Abstract
We prove a new query-to-communication lifting for randomized protocols, with inner product as
gadget. This allows us to use a much smaller gadget, leading to a more efficient lifting. Prior to this
work, such a theorem was known only for deterministic protocols, due to Chattopadhyay et al. [4]
and Wu et al. [22]. The only query-to-communication lifting result for randomized protocols, due to
Göös, Pitassi and Watson [13], used the much larger indexing gadget.

Our proof also provides a unified treatment of randomized and deterministic lifting. Most
existing proofs of deterministic lifting theorems use a measure of information known as thickness. In
contrast, Göös, Pitassi and Watson [13] used blockwise min-entropy as a measure of information.
Our proof uses the blockwise min-entropy framework to prove lifting theorems in both settings in a
unified way.
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1 Introduction

In this work, we prove new lifting theorems that use the inner-product function as a gadget.
Let f : {0, 1}n → {0, 1}m and g : {0, 1}b × {0, 1}b → {0, 1} be functions (where g is referred
to as a gadget). The block-composed function f ◦ gn is the function that takes n instances
(x1, y1), . . . , (xn, yn) of inputs for g and computes f ◦ gn as,

f ◦ gn((x1, y1), . . . , (xn, yn)) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).

Lifting theorems are theorems that relate the communication complexity of f ◦ gn to the
query complexity of f and the communication complexity of g.

More specifically, consider the following communication problem: Alice gets x1, . . . , xn,
Bob gets y1, . . . , yn, and they wish to compute the output of f ◦ gn on their inputs. The
natural protocol for doing so is the following: Alice and Bob jointly simulate a decision tree
of optimal height for solving f . Any time the tree queries the i-th bit, they compute g on the
i-th instance by invoking the best possible communication protocol for g. A lifting theorem
is a theorem that says that this natural protocol is optimal.

Lifting theorems are interesting because they create a connection between query complexity
and communication complexity. This connection, besides being interesting in its own right,
allows us to transfer lower bounds and separations from the from query complexity (which is a
relatively simple model) to a communication complexity (which is a significantly richer model).

In particular, the first result of this form, due to Raz and McKenzie [19], proved a lifting
theorem from deterministic query complexity to deterministic communication complexity
when g is the index function. They then used it to prove new lower bounds on communication
complexity by lifting query-complexity lower-bounds. More recently, Göös, Pitassi and
Watson [12] applied that theorem to separate the logarithm of the partition number and
the deterministic communication complexity of a function, resolving a long-standing open
problem. This too was done by proving such a separation in the setting of query complexity
and lifting it to the setting of communication complexity. This result stimulated a flurry of
work on lifting theorems of various kinds, such as: round-preserving lifting theorems with
applications to time-space trade-offs for proof complexity [6], deterministic lifting theorems
with other gadgets [4, 22], lifting theorems from randomized query complexity to randomized
communication complexity [13], lifting theorems for DAG-like protocols [8] with applications
to monotone circuit lower bounds, lifting theorems for asymmetric communication problems
[5] with applications to data-structures, and a lifting theorem [18] for the EQUALITY gadget.
There are also lifting theorems which lifts more analytic properties of the function like
approximate degree due to Sherstov [20] and independently due to Shi and Zhu [21], that
enabled several important later developments. Although such lifting theorems lift analytical
properties of functions, several later works [11] showed how analytical arguments can be
made to work for lifting relations.

Viewed from another angle, lifting theorems are natural generalizations of classic theorems
such as direct-sum theorems and XOR lemmas [23, 15, 7, 16, 1, 2]: in particular, if we set f
to be the identity function or the parity function, we get a direct sum theorem or an XOR
lemma for g, respectively. This point of view motivates the work of Hatami et al. [14] that
made progress towards proving a lifting theorem with a constant-size gadget.

In almost all known lifting theorems, the function f can be arbitrary (and may also be a
general search problem) while g is usually a specific function (e.g., the index function). This
raises the following natural question: for which choices of g can we prove lifting theorems?
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This question is interesting both because many applications depend on the choice of g, and
because if we view lifting theorems as generalizations of direct-sum theorems, we would like
them to work for as many choices of g as possible.

In particular, applications of lifting theorems often depend on the size of the gadget,
which is the length of the input to g. Both the deterministic lifting theorem of Raz and
McKenzie [19] and the randomized lifting theorem of Göös et al. [13] use the indexing function
INDEX, which has very large size (polynomial in n). Reducing the gadget size to a constant
would have many interesting applications like reproducing tight randomized lower bounds
for important functions such as set-disjointness etc. We would like point out that, although
we reduce the gadget size to logarithmic in n in this work, it is not enough to obtain the
interesting applications a constant sized gadget would have yielded.

In the deterministic setting, the gadget size was recently improved to logarithmic by
the independent works of [4] and [22], who chose the gadget g to be the inner product
function. Moreover, [4, 17] showed the lifting to work for a large class of gadgets. However,
the randomized lifting theorem of Göös et al. [13], until our work, seemed to work only with
INDEX as gadget.

In this work, we prove a randomized lifting theorem using an inner product gadget of
logarithmic size. This has the immediate application that any lower bound on the outer
function f can now be lifted to a much stronger lower bound on the composed function f ◦gn,
since hardness is measured as a function of the input length. This allows us, for example, to
simplify the lower bounds of Göös, and Jayram [9] on AND-OR trees and MAJORITY trees,
since we can now obtain them directly from the randomized query complexity lower bounds
rather than going through conical juntas.

We now turn to state our main result more formally. Let n ∈ N be such that n ≥ 2 and
let b def= 40, 000 · logn. Let Λ def= {0, 1}b, and let g : Λ× Λ→ {0, 1} denote the inner product
(mod 2) gadget. We prove lifting theorems for various lifted versions of G def= gn. That is,
G : Λn × Λn → {0, 1}n is the function that takes n independent instances of g and computes
g on all of them. Here is our main result:

I Theorem 1 (Randomized lifting). Let S : {0, 1}n → Σ be any search problem and let Π be
a bounded-error randomized communication protocol that solves S ◦ G with complexity c
and error probability ε. Then, there exists a randomized decision tree T that solves S with
complexity O( cb ) and bounded error probability.

Using essentially the same proof method, we also prove a similar result in the determin-
istic setting:

I Theorem 2 (Deterministic lifting). Let S be any search problem that takes inputs from
{0, 1}n, and let Π be a deterministic communication protocol that solves S◦G with complexity c.
Then, there exists a deterministic decision tree T that solves S with complexity O( cb ).

Most existing proofs of deterministic lifting theorems employ an information measure
known as thickness, borrowed from earlier work on the KRW conjecture. The one deviation
from this is the recent beautiful work of Garg et al. [8] who prove a deterministic lifting
theorem in the dag-like setting. Curiously, their result does not use the thickness measure
of information, but rather uses the blockwise min-entropy measure of information that was
used by Göös, Pitassi and Watson [13] in order to prove a randomized lifting theorem. A
natural direction of further research is to investigate if these disparate techniques can be
unified. Indeed, a related question was asked in the first work to employ the measures of
min-entropy for lifting by Göös et al. [10]: they asked if min-entropy and density based
techniques could be used to prove (or simplify the existing proof of) Raz–McKenzie style
deterministic lifting theorems.

ICALP 2019
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Our unified proof answers this question by showing that the same information measure
(blockwise min entropy) can in fact be used in both the deterministic and randomized settings.
The main difference between the two proofs is the way in which we decide the next bit of the
communication protocol: in the deterministic setting, we make a greedy choice, and in the
randomized setting, we make a (non-uniform) random choice. Whereas in the randomized
setting, our information measure guarantees that we are able to estimate the distribution of
the next bit of the protocol, in the deterministic setting it guarantees richness, that is, when
the protocol ends, there is some input consistent with answers of all queries made by the
decision tree.

Organization of the paper. In Section 2 we set up the machinery that is used in both
the deterministic and the randomized lifting theorems. We prove the deterministic lifting
theorem in Section 3, and the randomized lifting theorem in Section 4. Both proofs use a
Fourier-theoretic lemma, proved in Section 5.

2 Common Machinery

In this paper we consider lifting theorems for the most general case of search problems. A
search problem S is defined by a relation I × O where I is a finite set of inputs and O is a
finite set of outputs. The goal of the search problem, given an input x ∈ I is to find at least
one output o ∈ O such that (x, o) ∈ S. Like in the statement of the main theorem, let S be
any search problem that takes inputs from {0, 1}n, and let Π be a bounded-error randomized
communication protocol that solves S ◦ G with complexity c and error probability ε. We
prove the randomized and deterministic lifting theorems, by building deterministic and
randomized decision trees of cost O(c/b) based on respective protocols of cost c. Intuitively,
in both theorems, on input z ∈ {0, 1}n, the tree T will simulate the action of the protocol Π
on inputs (x, y) ∈ G−1(z). More specifically, the tree will simulate the protocol bit by bit,
and maintain a rectangle X × Y that is consistent with the protocol so far such that all the
strings in G(X × Y) are consistent with the queries made so far. To this end, we consider
random variables X and Y that are distributed uniformly over X and Y respectively. We
now state a few useful definitions and results about such random variables

The first such definition ensures that the random variables we consider have enough
blockwise min-entropy.

I Definition 3. Let X be a random variable taking values in Λn. We say that X is δ-dense
if for every I ⊆ [n] it holds that H∞(XI) ≥ δ · b · |I|.

We would like these random variables to be consistent with the query answers obtained
by the decision tree thus far in the simulation. To this end, we also define the following
notion of restrictions.

I Definition 4. Given a restriction ρ ∈ {0, 1, ∗}n, we denote by fix(ρ) and free(ρ) the set of
fixed and free coordinates of ρ respectively.

Intuitively, fix(ρ) represents the query answers obtained thus far, and free(ρ) represents the
yet unqueried coordinates. With these definitions, we define the property that we would like
to maintain for X and Y during the simulation.

I Definition 5 (following [13]). Let X,Y be random variables taking values in Λn, and let
ρ ∈ {0, 1, ∗}n be a restriction. We say that X and Y are ρ-structured if Xfree(ρ) and Yfree(ρ)
are 0.9-dense, and gfix(ρ) (Xfix(ρ), Yfix(ρ)

)
= ρfix(ρ).
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In both lifting theorems, the decision tree T starts by setting X and Y to be uniform
over Λn, and maintains throughout the simulation the invariant that, if ρ is the restriction
that represents the current “state of knowledge” regarding the input z, then X and Y are
ρ-structured. In order to maintain this invariant, we use the following Fourier-analytic result,
which is proved in Section 5.

I Definition 6. Let α ∈ Λn and let Y be a random variable taking values in Λn. We say that
α is η-bad for Y if there exists a set I ⊂ [n] and a string σ ∈ {0, 1}I such that the random
variable

Y[n]−I
∣∣gI(αI , YI) = σI

is not η-dense or

Pr
[
gI(αI , YI) = σI

]
< 2−|I|−1.

I Theorem 7 (Main Technical Tool). Let n ∈ N and let b ∈ N such that b ≥ 40000 · log(n).
Let X and Y be random variables taking values in Λn that are δX-dense and δY -dense
respectively. Suppose that δX + δY ≥ 1.3 and δY ≥ 0.1. Then, the probability that X takes a
value that is δY

2.01 -bad for Y is at most 2−0.01·b.

We also use the following analogue of the “uniform marginals lemma” of [13] for the inner
product gadget.

I Lemma 8 (Uniform marginals lemma). Let X,Y be random variables uniformly distributed
over sets X ,Y ⊆ Λn, and suppose they are ρ-structured. Then, for any z ∈ {0, 1}n that is
consistent with ρ, the uniform distribution over G−1(z)∩(X×Y) has its marginal distributions
1
n3 -close to X and Y respectively.

In order to prove Lemma 8, we use the following definition and lemma from Göös et al. [10].

I Definition 9. Let ε > 0 and let V be a random variable taking values from a set V. We say
that V is ε-pointwise close to uniform if for every v ∈ V it holds that Pr [V = v] ∈ (1± ε) · 1

|V| .

I Lemma 10. Let A,B be 0.6-dense random variables taking values from Λm. Then gm(A,B)
is 2− b

20 -uniform.

The proof of this lemma, which is similar to the proof of the uniform marginals lemma in [13],
appears in the full version [3] of the paper.

We use the following simple folklore fact about density.

I Proposition 11. Let X be a random variable over ΛJ , and let I ⊆ J be maximal subset of
coordinates such that H∞(XI) < δ · b · |I|. Let α ∈ ΛI be a value such that

Pr [XI = α] > 2−δ·b·|I|.

Then, the random variable XJ−I |XI = α is δ-dense.

We also use the following decomposition result from Göös et al. [13], which extends the
last proposition.

I Lemma 12 (Density-restoring partition). Let X be a random variable over X ⊆ ΛJ . Then,
there exists a partition

X def= X 1 ∪ · · · ∪ X r

such that every X i is associated with a set Ii ⊆ J , a value αi ∈ ΛIi , and a probability
p≥i

def= Pr
[
X ∈ X i ∪ . . . ∪ X r

]
that satisfy the following properties: Denote by Xi the random

variable X conditioned on X ∈ X i.

ICALP 2019
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Xi
Ii

is fixed to αi.
Xi
J−Ii

is 0.9-dense.
H∞(Xi) ≥ H∞(X)− 0.9 · b · |Ii| − log 1

p≥i
.

3 The deterministic lifting theorem

In this section, we prove the deterministic lifting theorem, restated from the Introduction.

I Theorem 13 (Restatement of Theorem 2). Let S be any search problem that takes inputs
from {0, 1}n, and let Π be a deterministic communication protocol that solves S ◦ G with
complexity c. Then, there exists a decision tree T that solves S with complexity O( cb ).

As noted earlier, the decision tree T we construct would simulate the protocol Π. Throughout
the simulation, the tree keeps track of random variables X,Y , which represent the inputs to
the protocol, and maintains the invariant that they are ρ-structured. When the protocol Π
ends, the decision tree T ends as well and outputs the output of Π. In order to complete the
proof of Theorem 2, we need to show three things:

How to simulate a single bit of the protocol while maintaining the above invariant.
After the decision tree ends, its output is a correct output of S on z.
The total number of queries made by the decision tree T during the lifting is O( cb ).

Due to space constraints, we will only briefly describe the simulation, relegating its
analysis to the full version [3] of the paper.

Consider a given step in the simulation where the tree is at a particular node of the
protocol Π. Let X ,Y be the current set of inputs that are being maintained which are
consistent with this node, and let X,Y be random variables uniformly distributed over X ,Y .
Let ρ ∈ {0, 1, ∗}n denote the restriction that represents the queries that have been made so
far and their answers, i.e., coordinates that were queried are fixed to the answers that were
received, and coordinates that were not queried are free. By the invariant we maintain, the
variables X,Y are ρ-structured.

We would like to simulate the next bit of the protocol. Suppose without loss of generality
that it is Alice’s turn to speak. The tree T chooses the next bit to be the bit that has the
highest probability of being sent by Alice, if the inputs are chosen according to X. The tree
then updates the set X to be consistent with the new bit, and updates the random variable X
accordingly. Now, if the ρ-structure property of X,Y has been violated, then it must be
because Xfree(ρ) is no longer 0.9-dense, since the new bit did not affect Y . The tree now
modifies the sets X ,Y and the restriction ρ to restore the structuredness of X,Y . In order
to do so, the tree T repeats the following steps iteratively until X and Y are ρ-structured:

1. Condition Xfree(ρ) on not taking a value that is 0.4-bad for Yfree(ρ), and update X accord-
ingly.

2. If Xfree(ρ) is now 0.9-dense, then we are done – the structuredness has been restored.
Otherwise continue.

3. Let I ⊆ free(ρ) be a maximal set that violates the density of Xfree(ρ) (i.e., H∞(XI) <
0.9 · b · |I|), and let αI ∈ ΛI be a “heavy” value that satisfies Pr [XI = αI ] > 2−0.9·b·|I|.

4. Condition X on XI = αI , and update X accordingly. Proposition 11 implies that
Xfree(ρ)−I is now 0.9-dense.

5. Query the coordinates in I, and update ρ accordingly.
6. Condition Y on gI(αI , YI) = ρI , and update Y accordingly.
7. If Yfree(ρ) is now 0.9-dense then we are done – the structuredness has been restored.

Otherwise go back to Step 1 but replace the roles of X and Y .
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In order for the steps of the above process to always be well-defined, we need to show
that we never condition on events with probability 0. If this is always satisfied, it follows that
the algorithm terminates and at termination the random variables X,Y are ρ-structured.
To see this, note that the process only stops if Xfree(ρ) and Yfree(ρ) are 0.9-dense, and the
process clearly maintains the invariant that

gfix(ρ) (Xfix(ρ), Yfix(ρ)
)

= ρfix(ρ).

Moreover, the process always stops, since in every iteration the size of the set free(ρ) decreases,
and it cannot decrease below 0.

We turn to show that we never condition on a zero probability event. To this end, we will
show that the process preserves the following property: At the beginning of every iteration,
one of the variables Xfree(ρ) and Yfree(ρ) is 0.9-dense, and the other is at least 0.4-dense.
Observe that this property indeed holds at the beginning of the first iteration: at this point,
Y is 0.9-dense, and X must be at least 0.4-dense – since we chose the next bit of Alice to be
the one with the highest probability, and therefore the min-entropy of any set of coordinates
could have dropped by at most 1.

Suppose that the property holds at the beginning of a given iteration. The first condi-
tioning takes place at Step 1. When Step 1 is performed, we know by Theorem 7 that the
event that Xfree(ρ) does not take values that are 0.4-bad for Yfree(ρ) has non-zero probability:
to see it, note that by assumption δX ≥ 0.4 and δY ≥ 0.9, so it holds that δX + δY ≥ 1.3
and δY

2.01 ≥ 0.4, so the requirements of the theorem are satisfied.
The next conditioning takes place at Step 4, but here the event has non-zero probability

by definition. The last conditioning takes place at Step 6, and here the event has non-zero
probability due to the assumption that Xfree(ρ) does not take values that are bad for Yfree(ρ)
– and in particular

Pr
[
gI(αI , YI) = ρI

]
≥ 2−|I|−1.

Finally, we need to show that the above property is maintained for the next iteration. As
stated in Step 4, at this point X is 0.9-dense. Moreover, since we know that Xfree(ρ) does
not take values that are 0.4-bad for Yfree(ρ), it follows in particular that

Yfree(ρ)
∣∣gI(αI , YI) = ρI

is 0.4-dense. This concludes the proof. The rest of the analysis can be found in the full
version [3] of the paper.

3.1 Concluding the simulation
In this section, we prove that when the simulation ends, the protocol Π outputs an answer
in S(z). To this end, all we need to prove is that when the simulation ends, we can find
x ∈ X and y ∈ Y such that G(x, y) = z: To see why, observe that the output of the protocol
at this point must be its output on (x, y), since the rectangle X × Y is contained in the
rectangle of the leaf to which the protocol arrived. Now, since we assumed that Π computes
S ◦G, it follows that its output must be (S ◦G)(x, y) = S(z).

We thus turn to show that there exist x, y ∈ X × Y such that G(x, y) = z. Recall
that when the protocol ends, it holds that X,Y are ρ-structured (by the invariant that we
maintained). This means that gfix(ρ)(Xfix(ρ), Yfix(ρ)) = zfix(ρ), and that Xfree(ρ), Yfree(ρ) are
0.9-dense. By Theorem 7, it follows that Xfree(ρ) takes a value that is not 0.4-bad for Yfree(ρ)
with non-zero probability. This means that there exists some x ∈ X such that xfree(ρ) is not
0.4-bad for Yfree(ρ). By the definition of badness, it follows that

Pr
[
gfree(ρ)(xfree(ρ), Yfree(ρ)) = zfree(ρ)

]
≥ 2−|free(ρ)|−1 > 0

ICALP 2019
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and therefore there exists some y ∈ Y such that gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ). It follows
that x and y satisfy

gfix(ρ)(xfix(ρ), yfix(ρ)) = zfix(ρ)

gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ)

and therefore G(x, y) = z, as required.

3.2 The query complexity
We conclude by showing that the total number of queries the tree T makes is O( cb ). To this
end, we define the deficiency of X,Y to be

∆ def= 2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).

We prove that whenever the protocol Π transmits a bit in the simulation, the deficiency
increases by O(1), and that whenever the tree T makes a query, the deficiency is decreased
by Ω(b). Since the deficiency is always non-negative, and the protocol transmits at most
c bits, it follows that the tree must make at most O( cb ) bits.

We start by showing that when the protocol Π transmits a bit in the simulation, the
deficiency increases by O(1). When a bit is transmitted, either X or Y is conditioned on
an event of probability at least 1

2 , depending on which player spoke, and the other variable
remains unchanged. This means that the sum H∞(Xfree(ρ)) +H∞(Yfree(ρ)) decreases by at
most 1, and therefore the deficiency increases by at most 1. Next, the simulation might
perform Step 1 in the process above, i.e., condition X or Y on taking a value that is not bad.
This event has probability 1− 2−0.01·b ≥ 1

2 , so conditioning on it increases the deficiency by
at most 1. All in all, we increased the deficiency by at most 2. All the other steps that might
be taken are only taken if a query is being made, so we account their deficiency increases to
the following “query part” of the analysis.

We turn to show that when a query is being made, the deficiency decreases by Ω(b).
Suppose that the decision tree queried a set I ⊆ free(ρ). This applies the following changes
to the deficiency:

The variable X is conditioned on the event XI = αI , which has probability greater
than 2−0.9·b·|I| by the definition of αI . Hence, this conditioning increases the deficiency
by at most 0.9 · b · |I|.
The variable Y is conditioned on the event gI(αI , YI) = ρI , which has probability at least
2−|I|−1 by the assumption that X does not take bad values. This increases the deficiency
by at most |I|+ 1.
The set I is removed from the set free(ρ). Looking at the definition of deficiency, this
decreases the first term, 2 · b · |free(ρ)|, by at most 2 · b · |I|, decreases H∞(Yfree(ρ)) by at
most b · |I|, and does not change H∞(Xfree(ρ)) (since at this point XI is fixed to αI). All
in all, the deficiency is decreased by b · |I|.
Finally, the queries may make the process repeat for another iteration, so Step 1 may be
performed again, increasing the deficiency by another 2 bits.

Summing all those effects together, we get that the deficiency was decreased by at least

b · |I| − 0.9 · b · |I| − (|I|+ 1)− 2 ≥ 0.05 · b · |I|

in each iteration, as required. This concludes the proof.
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4 The randomized lifting theorem

In this section, we prove the randomized lifting theorem, restated next.

I Theorem 14 (Restatement of Theorem 1). Let S be any search problem that takes inputs
from {0, 1}n, and let Π be a randomized communication protocol that solves S ◦ G with
complexity c and error probability ε. Then, there exists a decision tree T that solves S with
complexity O( cb ) and error probability ε+ 1

10 .

As noted earlier, the decision tree T we construct simulates the protocol Π. The simulation
is similar to the deterministic one, with two main differences:

Instead of choosing the next bit of the protocol to be the most likely bit, we choose
it randomly according to the distribution of the next bit (except that we abort the
simulation on bits of very small probability).
Instead of choosing I and αI arbitrarily, we choose them from the density-restoring
partition of Lemma 12, according to the distribution induced by this partition (except
that we truncate parts of the partition that have very small probability).

In the following sections, we describe the simulation, analyze its error probability, and analyze
its query complexity, respectively. For simplicity, we describe a simulation that has a better
error probability of ε+ o(1) but query complexity that is efficient only in expectation. This
simulation can be transformed into one with error probability ε + 1

10 , and efficient query
complexity in the worst case, using standard arguments.

4.1 The simulation
As before, the decision tree T simulates the protocol Π while maintaining a rectangle X × Y
that is contained in the rectangle of the current node of Π. When the simulation ends,
T outputs the output of Π. Throughout the simulation, the decision tree T considers random
variables X,Y that are uniformly distributed over X × Y and maintains the invariant that
they are ρ-structured (for a restriction ρ that records the queries made so far). For the
purpose of the simulation, we may assume without loss of generality that Π is deterministic
(since T can use its randomness to choose the randomness of Π, and then pretend that Π is
deterministic for the rest of the simulation).

We turn to explain how to simulate a single bit of the protocol. Suppose that at a given
point it is Alice’s turn to speak. The protocol partitions X into X0 ∪ X1. The tree now
chooses the next bit to be 0 with probability |X0|

|X | and to be 1 otherwise. If the bit that
was chosen had probability less than 1

n2 , the tree halts and declares error. Otherwise, the
tree updates X to the corresponding set among X0,X1 and updates the random variable X
accordingly.

Now, if the ρ-structure property of X,Y has been violated, then it must be because
Xfree(ρ) is no longer 0.9-dense, since the new bit did not affect Y . The tree now modifies the
sets X ,Y and the restriction ρ to restore the structuredness of X,Y . In order to do so, the
tree T repeats the following steps iteratively until X,Y are ρ-structured:
1. Condition Xfree(ρ) on not taking a value that is 0.4-bad for Yfree(ρ), and update X accord-

ingly.
2. If X is now 0.9-dense, then we are done – the structuredness has been restored. Otherwise

continue.
3. Let Xfree(ρ) = X 1 ∪ . . . ∪ X r be the density-restoring partition of Lemma 12 with respect

to Xfree(ρ). Choose a random class in the partition, where the class X i is chosen with
probability Pr

[
Xfree(ρ) ∈ X i

]
.
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4. Recall that we defined the probability

p≥i
def= Pr

[
Xfree(ρ) ∈ X i ∪ . . . ∪ X r

]
.

If p≥i < 1
n3 , the tree T halts and declares error.

5. Let Ii and αi be the set and the value associated with the class X i. The tree conditions
X on the event Xfree(ρ) ∈ X i and updates X accordingly. The variable Xfree(ρ)−Ii

is now
0.9-dense by the properties of the density-restoring partition.

6. Query the coordinates in Ii, and update ρ based on the query answers.
7. Condition Y on gI(αi, YIi) = ρIi , and update Y accordingly.
8. If Yfree(ρ) is now 0.9-dense then we are done – the structuredness has been restored.

Otherwise go back to Step 1 but replace the roles of X and Y .
The proof that the process is well-defined and always halts, and that the ρ-structuredness
invariant is maintained, is the same as in the deterministic simulation. The only difference
here is that choosing the next bit of the protocol decreases the min-entropy of the blocks by
at most 2 logn bits rather than by at most 1 bit. Nevertheless, since the random variable X
started as 0.9-dense and b > 20 logn, the variable X is still 0.4-dense after choosing the
next bit.

4.2 Correctness
We prove that the decision tree errs with probability at most ε+ o(1) (recall that ε is the
error probability of the protocol Π). Fix an input z ∈ {0, 1}n. Let π be the (random)
transcript generated by the simulation of T on z (if we the simulation declares error, we
set π = ⊥). Let π′ denote the (random) transcript of Π on random inputs (X ′, Y ′) that are
distributed uniformly over G−1(z) (again, we assume that Π′ is deterministic and that the
only randomness comes from the choice of (X ′, Y ′)). We will prove that the distributions of π
and π′ are o(1)-close. Since π′ outputs the correct answer on z with probability at least 1− ε,
it will follow that π outputs the correct answer on z with probability at least 1− ε− o(1).

To prove that π and π′ are o(1)-close, we describe a coupling of π with π′ that satisfies that
π = π′ with probability at least 1− o(1). To this end, we show that there exists a coupling of
the random choices of the simulation with X ′, Y ′ such that, up to some bad event E of small
probability, it holds that the pair (X ′, Y ′) is uniformly distributed in G−1(z)∩ (X ×Y). Since
X × Y determines the transcript π of the simulation (as X × Y is contained the rectangle of
the current node in the protocol), whenever (X ′, Y ′) ∈ (X ,Y) it holds that π = π′.

More specifically, we prove that there exists a coupling and an event E with probability
at most 6·b

n = o(1) such that, when the simulation ends, conditioned on ¬E it holds that
the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). To this end, we define
a sequence of events E1, E2, . . . such that Pr [Et] ≤ 6

n2 · (t − 1) and at the begining of the
t-th iteration, conditioned on ¬Et it holds that the pair (X ′, Y ′) is uniformly distributed in
G−1(z) ∩ (X × Y). We then set E to be the event at the end of the last iteration. Since the
number of iterations is at most c ≤ n · b (as each iteration transmits 1-bit), it follows that
the probability of E is at most 6

n2 · c ≤ 6b
n . In order to construct the coupling and the events

E1, E2, . . ., we prove the following auxiliary result.

I Lemma 15. Suppose that we constructed the coupling until the beginning of the t-th
iteration, and there is an event Et such that conditioned on ¬Et it holds that the pair
(X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). Then, there exists a way to extend
the coupling until the end of the t-th iteration, and there exists an event Et+1, such that
Pr [Et+1] ≤ Pr [Et] + 6

n2 and at the end of the t-th iteration, conditioned on ¬Et+1 it holds
that the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).
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Given Lemma 15, we design the coupling and the events E1, E2, . . . by setting E1 to be the
empty event and then applying Lemma 15 repeatedly until we reach the last iteration.

Proof. Suppose that the simulation ran until the beginning of the t-th iteration according to
our coupling. If the event Et happened, then the coupling behaves arbitrarily until the end
of the simulation, and we assume that the simulation failed. Let us now condition on the
event Et not having happened, so we may assume that at the beginning of the t-th iteration,
the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). We start by setting Et+1 to
be the event Et, and we will add more events to it as the simulation progresses.

The simulation starts by choosing the next bit of the protocol, and suppose that it is
Alice’s turn to speak. The simulation has probability |X0|

|X | to choose 0, and by the uniform
marginals lemma (Lemma 8), the random variable X ′ has probability |X0|

|X | ±
1
n3 to be in X0. In

other words, the distribution of the class that the simulation chooses among X0,X1, and the
distribution of the class that X ′ chooses, are 1

n3 -close, and therefore there exists a coupling
of those choices such that the same class is chosen in both with probability at least 1− 1

n3 , so
we use it to extend our coupling. We add to Et+1 the event in which the simulation and X ′
choose a different class among X0,X1, and for the rest of the proof we assume that it did
not happen. We also add to Et+1 the event in which the simulation declared failure since it
chose a bit with probability less than 1

n2 (clearly, this event has probability less than 1
n2 ),

and for the rest of the proof we assume that it did not happen. We may thus assume that
after this step, the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).

Next, the simulation removes from X the values that are 0.4-bad for Y . The probability
that X takes such a value is at most 2−0.01·b ≤ 1

n3 , and therefore the probability that X ′
takes such a value is at most 2

n3 by the uniform marginals lemma. We add the event that
X ′ takes a bad value to Et+1 and assume for the rest of the proof that it did not happen.
Hence, we may again assume that after this step, X ′ belongs to X , and that the pair (X ′, Y ′)
is uniformly distributed in G−1(z) ∩ (X × Y).

In the following step, a class X i is chosen according to the distribution induced by Xfree(ρ).
Let us now choose the class X i′ to which X ′free(ρ) belongs. By the uniform marginals lemma,
the distributions of X i and X i′ are 1

n3 -close, and therefore there is a coupling of those classes
such that they are equal with probability at least 1− 1

n3 , so we use it to extend our coupling.
We add to Et+1 the event in X i 6= X i′ , and for the rest of the proof we assume that it did not
happen. We also add to Et+1 the event in which the simulation declared error since p≤i < 1

n3

(clearly, this event has probability less than 1
n3 ), and for the rest of the proof we assume that

it did not happen. We therefore assume again that after this step, X ′ belongs to X , and
that the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).

Finally, the simulation conditions Y on gI(αi, YIi
) = ρIi

. This conditioning trivially holds
for Y ′ (since by assumption (X ′, Y ′) ∈ G−1(z) and by this point we chose X ′Ii

= αIi), and
no further coupling needs to be done.

We conclude the proof by upper bounding the probability of the event Et+1. At the
beginning, we set Et+1 to be Et, and therefore at this point its probability is Pr [Et]. The step
of choosing the next bit of the protocol contribute to Et+1 events whose total probability
is at most 1

n3 + 1
n2 . Steps 1 to 7 above add to Et+1 events of total probability at most 4

n3 .
Those latter steps are now repeated until (X,Y ) are ρ-structured. However, they may be
repeated at most n times, since each time they are repeated, the tree makes at least one
query, and it cannot make more than n queries. Hence, in all of those repetitions together,
those steps in the simulation contribute to Et+1 events whose total probability is at most 4

n2 .
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It follows that

Pr [Et+1] ≤ Pr [Et] + 1
n3 + 1

n2 + 4
n2 ≤ Pr [Et] + 6

n2 ,

as required. J

4.3 The query complexity
We show that the expected query complexity of this simulation is O( cb ). Again, we define the
deficiency of X,Y to be

∆ def= 2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).

We will show that whenever the simulation sends one bit in the protocol, the deficiency is
increased by O(1) in expectation. On the other hand, we will show that whenever a query is
made, the deficiency is always decreased by at least Ω(b). Thus, the expected deficiency at
any point is at most

O(#bits communicated)− Ω(b ·#queries).

Since the deficiency is always at least 0 and the number of bits communicated is at most c,
it follows that the expected number of queries is upper bounded by O( cb ).

Whenever we choose the next bit for Alice, the deficiency increases by log |X ||X0| (if the
next bit is 0) or by log |X ||X1| (if the next bit is 1). Thus, the expected increase in deficiency is

|X0|
|X |
· log |X |

|X0|
+ |X1|
|X |
· log |X |

|X1|
.

This is the value of the binary entropy function on |X0|
|X | , and hence it is upper bounded by 1.

Conditioning on X not taking a value that is 0.4-bad for Y increases the deficiency by at
most 1 bit since its probability is at least 1

2 . All in all, the expected increase in the deficiency
is at most 2.

We turn to show that when a query is being made, the deficiency decreases by Ω(b).
Suppose that the decision tree queried a set Ii ⊆ free(ρ). This brings about the following
changes to the deficiency:

The variable X was conditioned on the event Xfree(ρ) ∈ X i. By Lemma 12, this decreases
the min-entropy of X by at most 0.9 · b · |Ii| + log 1

p≥i
. Now, Step 4 guarantees that

pi ≥ 1
n3 , and therefore log 1

pi
≤ 3 logn < 0.01 · b. All in all, this step increases the

deficiency by at most 0.91 · |Ii|
The variable Y is conditioned on the event gIi(αIi , YIi) = ρIi , which has probability at
least 2−|Ii|−1 by the assumption that X does not take bad values. This increases the
deficiency by at most |Ii|+ 1.
The set Ii is removed from the set free(ρ). By definition of deficiency, this dereases the
term of 2 · b · |free(ρ)| by 2 · b · |Ii|, decreases H∞(Yfree(ρ)) by at most b · |Ii|, and does not
change H∞(Xfree(ρ)) (since at this point XIi

is fixed to αIi
). All in all, the deficiency is

decreased by at least b · |Ii|.
Finally, the queries may make the process repeat for another iteration, so Step 1 may be
performed again, increasing the deficiency by another 2 bits.

Summing all those effects together, we get that the deficiency was decreased by at least

b · |Ii| − 0.91 · b · |Ii| − (|Ii|+ 1)− 2 ≥ 0.05 · b · |Ii| ,

as required. This concludes the proof.
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5 Fourier-theoretic result

We recall our notation, some definitions and the result. Let n ∈ N and let b ∈ N be such that
b ≥ 40, 000 · logn. We denote the domain of the inner product gadget by Λ = {0, 1}b (so the
inner product is over Λ× Λ), and denote q = |Λ| = 2b. Given a string γ ∈ Λ, we denote the
corresponding Fourier character by χγ(x) def= (−1)〈γ,x〉. When considering a set I ⊆ [n] and
the space of functions f : ΛI → R, we index the corresponding Fourier characters by tuples
from ΛI , such that for every γ ∈ ΛI it holds that χγ =

∏
i∈I χγi

.

I Definition 16. Let α ∈ Λn and let Y be a random variable taking values in Λn. We say
that α is η-bad for Y if there exists a set I ⊂ [n] and a string σ ∈ {0, 1}I such that the
random variable

Y[n]−I |∀i∈I 〈αi, Yi〉 = σi

is not η-dense or

Pr [∀i∈I 〈αi, Yi〉 = σi] < 2−|I|−1.

In this section we prove the following result.

I Theorem 17 (Restatement of Theorem 7). Let X and Y be random variables taking values
in Λn that are δX-dense and δY -dense respectively. Suppose that δX + δY ≥ 1.3 and δY ≥ 0.1.
Then, the probability that X takes a value that is δY

2.01 -bad for Y is at most q−0.01.

For the rest of this section, fix the random variables X and Y , and suppose that they are
δX -dense and δY -dense respectively where δX + δY ≥ 1.3 and δY ≥ 0.1. We use the following
definition, which essentially isolates “badness” to a particular set of coordinates.

I Definition 18. Let ε > 0. We say that α ∈ Λn is ε-bad for Y on J ⊆ [n] if there exist a
string βJ ∈ ΛJ , a non-empty set I ⊂ [n]− J and a string σ ∈ {0, 1}I such that

Pr [YJ = βJ and ∀i∈I 〈αi, Yi〉 = σi] /∈ 2−|I| · (Pr [YJ = βJ ]± ε) .

In particular, if J = ∅, we view YJ , βJ as the empty string and the event YJ = βJ as an
event that occurs with probability 1 vacuously.

Morally, a value is not bad if it is not bad on any J . Theorem 17 will follow as a corollary
from the following result (see that last part of the full version [3] of the paper).

I Lemma 19. For every J ⊆ [n], the probability that X takes a value that is ε-bad for Y on
J is at most q−δY ·|J|−0.05/ε2.

In order to analyze the probability of bad values, it is more convenient to consider “unbiased”
values, i.e., values α for which the event YJ = βJ is not correlated with inner products of the
form ∀i∈I 〈αi, Yi〉 = σi. This bias is naturally measured using Fourier coefficients. We denote
by D : Λn → [0, 1] the distribution of Y , i.e., the function that for every β ∈ Λn outputs
Pr [Y = β]. For a set of indices K ⊆ [n], we denote by DK the function corresponding to
the marginal distribution over K. Moreover, given disjoint sets J,K ⊆ [n] and a string
βJ ∈ ΛJ we denote by DK,βJ

: ΛK → [0, 1] the function that maps each βK ∈ ΛK to
Pr [YK = βK and YJ = βJ ] .

I Definition 20. We say that a value α ∈ Λn is ε-biased for Y with respect to J ⊆ [n] if for
every non-empty I ⊆ [n]− J and for every βJ ∈ ΛJ it holds that

∣∣∣D̂I,βJ
(αI)

∣∣∣ ≤ ε · q−1.1·|I|.
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Lemma 19 follows immediately from the next two propositions. The first proposition is
a “Vazirani lemma” type of result that shows that small bias implies small distortion of
probabilities.

I Proposition 21. If a value α ∈ Λn is ε-biased for Y with respect to J ⊆ [n], then it is not
ε-bad with respect to J .

The second proposition upper bounds the probability of X taking a value with large bias
using the fact that X and Y are δX -dense and δY -dense respectively.

I Proposition 22. For every J ⊆ [n], the probability that X takes a value that is not ε-biased
for Y with respect to J is at most q−δY ·|J|−0.05/ε2.

The rest of the proof can be found in the full version [3] of the paper.
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