26,591 research outputs found

    The 2+12+1 convex hull of a finite set

    Full text link
    We study R2R\mathbb{R}^2\oplus\mathbb{R}-separately convex hulls of finite sets of points in R3\mathbb{R}^3, as introduced in \cite{KirchheimMullerSverak2003}. When R3\mathbb{R}^3 is considered as a certain subset of 3×23\times 2 matrices, this notion of convexity corresponds to rank-one convex convexity KrcK^{rc}. If R3\mathbb{R}^3 is identified instead with a subset of 2×32\times 3 matrices, it actually agrees with the quasiconvex hull, due to a recent result \cite{HarrisKirchheimLin18}. We introduce "2+12+1 complexes", which generalize TnT_n constructions. For a finite set KK, a "2+12+1 KK-complex" is a 2+12+1 complex whose extremal points belong to KK. The "2+12+1-complex convex hull of KK", KccK^{cc}, is the union of all 2+12+1 KK-complexes. We prove that KccK^{cc} is contained in the 2+12+1 convex hull KrcK^{rc}. We also consider outer approximations to 2+12+1 convexity based in the locality theorem \cite[4.7]{Kirchheim2003}. Starting with a crude outer approximation we iteratively chop off "DD-prisms". For the examples in \cite{KirchheimMullerSverak2003}, and many others, this procedure reaches a "2+12+1 KK-complex" in a finite number of steps, and thus computes the 2+12+1 convex hull. We show examples of finite sets for which this procedure does not reach the 2+12+1 convex hull in finite time, but we show that a sequence of outer approximations built with DD-prisms converges to a 2+12+1 KK-complex. We conclude that KrcK^{rc} is always a "2+12+1 KK-complex", which has interesting consequences

    Deconstructing Approximate Offsets

    Full text link
    We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance \eps in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. A variant of the algorithm, which we have implemented using CGAL, is based on rational arithmetic and answers the same deconstruction problem up to an uncertainty parameter \delta; its running time additionally depends on \delta. If the input shape is found to be approximable, this algorithm also computes an approximate solution for the problem. It also allows us to solve parameter-optimization problems induced by the offset-deconstruction problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution P with at most one more vertex than a vertex-minimal one.Comment: 18 pages, 11 figures, previous version accepted at SoCG 2011, submitted to DC

    Inner and Outer Rounding of Boolean Operations on Lattice Polygonal Regions

    Get PDF
    Robustness problems due to the substitution of the exact computation on real numbers by the rounded floating point arithmetic are often an obstacle to obtain practical implementation of geometric algorithms. If the adoption of the --exact computation paradigm--[Yap et Dube] gives a satisfactory solution to this kind of problems for purely combinatorial algorithms, this solution does not allow to solve in practice the case of algorithms that cascade the construction of new geometric objects. In this report, we consider the problem of rounding the intersection of two polygonal regions onto the integer lattice with inclusion properties. Namely, given two polygonal regions A and B having their vertices on the integer lattice, the inner and outer rounding modes construct two polygonal regions with integer vertices which respectively is included and contains the true intersection. We also prove interesting results on the Hausdorff distance, the size and the convexity of these polygonal regions

    Flip Distance Between Triangulations of a Planar Point Set is APX-Hard

    Full text link
    In this work we consider triangulations of point sets in the Euclidean plane, i.e., maximal straight-line crossing-free graphs on a finite set of points. Given a triangulation of a point set, an edge flip is the operation of removing one edge and adding another one, such that the resulting graph is again a triangulation. Flips are a major way of locally transforming triangular meshes. We show that, given a point set SS in the Euclidean plane and two triangulations T1T_1 and T2T_2 of SS, it is an APX-hard problem to minimize the number of edge flips to transform T1T_1 to T2T_2.Comment: A previous version only showed NP-completeness of the corresponding decision problem. The current version is the one of the accepted manuscrip

    Residual generic ergodicity of periodic group extensions over translation surfaces

    Full text link
    Continuing the work in \cite{ergodic-infinite}, we show that within each stratum of translation surfaces, there is a residual set of surfaces for which the geodesic flow in almost every direction is ergodic for almost-every periodic group extension produced using a technique referred to as \emph{cuts}

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio
    corecore