7 research outputs found

    Une borne effective sur l'écart entre les points de contrôle et le graphe d'un polynôme réel sur un simplexe.

    Get PDF
    On donne dans cette note un résultat quantitatif concernant les coefficients d'un polynôme réel exprimé dans la base de Bernstein associée à un simplexe. Il s'agit d'établir une borne explicite sur l'écart entre ces coefficients et le graphe du polynôme. Cette borne généralise les résultats connus en dimensions 1 et 2

    q-Bernstein polynomials and Bézier curves

    Get PDF
    AbstractWe define q-Bernstein polynomials, which generalize the classical Bernstein polynomials, and show that the difference of two consecutive q-Bernstein polynomials of a function f can be expressed in terms of second-order divided differences of f. It is also shown that the approximation to a convex function by its q-Bernstein polynomials is one sided.A parametric curve is represented using a generalized Bernstein basis and the concept of total positivity is applied to investigate the shape properties of the curve. We study the nature of degree elevation and degree reduction for this basis and show that degree elevation is variation diminishing, as for the classical Bernstein basis

    Automatic Curvilinear Quality Mesh Generation Driven by Smooth Boundary and Guaranteed Fidelity

    Get PDF
    The development of robust high-order finite element methods requires the construction of valid high-order meshes for complex geometries without user intervention. This paper presents a novel approach for automatically generating a high-order mesh with two main features: first, the boundary of the mesh is globally smooth; second, the mesh boundary satisfies a required fidelity tolerance. Invalid elements are eliminated. Example meshes demonstrate the features of the algorithm

    Approximation of sweep surfaces by tensor product B-splines

    Get PDF
    Journal ArticleTensor product B-spline approximations to surfaces generated by sweeping a (possibly deforming) B-spline cross-section curve along a Bspline axis curve are discussed. A general form for the tensor product B-spline approximation for sweeps is derived and expressed in terms of the approximation of a set of offset curves of the axis curve. The actual algorithm used to generate the approximation depends on the nature of the desired deformation and change in orientation that the crosssection undergoes as it is swept along the axis. Several algorithms for generating tensor product B-spline approximations to sweep surfaces are presented

    Recursive subdivision algorithms for curve and surface design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis, the author studies recursIve subdivision algorithms for curves and surfaces. Several subdivision algorithms are constructed and investigated. Some graphic examples are also presented. Inspired by the Chaikin's algorithm and the Catmull-Clark's algorithm, some non-uniform schemes, the non-uniform corner cutting scheme and the recursive subdivision algorithm for non-uniform B-spline curves, are constructed and analysed. The adapted parametrization is introduced to analyse these non-uniform algorithms. In order to solve the surface interpolation problem, the Dyn-Gregory-Levin's 4-point interpolatory scheme is generalized to surfaces and the 10-point interpolatory subdivision scheme for surfaces is formulated. The so-called Butterfly Scheme, which was firstly introduced by Dyn, Gregory Levin in 1988, is just a special case of the scheme. By studying the Cross-Differences of Directional Divided Differences, a matrix approach for analysing uniform subdivision algorithms for surfaces is established and the convergence of the 10-point scheme over both uniform and non-uniform triangular networks is studied. Another algorithm, the subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary topology is introduced and investigated. This algorithm is a generalization of Doo-Sabin's and Catmull-Clark's algorithms. It produces uniform Bi-quartic B-spline patches over uniform data. By studying the local subdivision matrix, which is a circulant, the tangent plane and curvature properties of the limit surfaces at the so-called Extraordinary Points are studied in detail.The Chinese Educational Commission and The British Council (SBFSS/1987

    Doctor of Philosophy

    Get PDF
    dissertationWhile boundary representations, such as nonuniform rational B-spline (NURBS) surfaces, have traditionally well served the needs of the modeling community, they have not seen widespread adoption among the wider engineering discipline. There is a common perception that NURBS are slow to evaluate and complex to implement. Whereas computer-aided design commonly deals with surfaces, the engineering community must deal with materials that have thickness. Traditional visualization techniques have avoided NURBS, and there has been little cross-talk between the rich spline approximation community and the larger engineering field. Recently there has been a strong desire to marry the modeling and analysis phases of the iterative design cycle, be it in car design, turbulent flow simulation around an airfoil, or lighting design. Research has demonstrated that employing a single representation throughout the cycle has key advantages. Furthermore, novel manufacturing techniques employing heterogeneous materials require the introduction of volumetric modeling representations. There is little question that fields such as scientific visualization and mechanical engineering could benefit from the powerful approximation properties of splines. In this dissertation, we remove several hurdles to the application of NURBS to problems in engineering and demonstrate how their unique properties can be leveraged to solve problems of interest
    corecore