621 research outputs found

    Low-complexity high prediction accuracy visual quality metrics and their applications in H.264/AVC encoding mode decision process

    Get PDF
    In this thesis, we develop a new general framework for computing full reference image quality scores in the discrete wavelet domain using the Haar wavelet. The proposed framework presents an excellent tradeoff between accuracy and complexity. In our framework, quality metrics are categorized as either map-based, which generate a quality (distortion) map to be pooled for the final score, e.g., structural similarity (SSIM), or non map-based, which only give a final score, e.g., Peak signal-to-noise ratio (PSNR). For mapbased metrics, the proposed framework defines a contrast map in the wavelet domain for pooling the quality maps. We also derive a formula to enable the framework to automatically calculate the appropriate level of wavelet decomposition for error-based metrics at a desired viewing distance. To consider the effect of very fine image details in quality assessment, the proposed method defines a multi-level edge map for each image, which comprises only the most informative image subbands. To clarify the application of the framework in computing quality scores, we give some examples showing how the framework can be applied to improve well-known metrics such as SSIM, visual information fidelity (VIF), PSNR, and absolute difference. We compare the complexity of various algorithms obtained by the framework to the Intel IPP-based H.264 baseline profile encoding using C/C++ implementations. We evaluate the overall performance of the proposed metrics, including their prediction accuracy, on two well-known image quality databases and one video quality database. All the simulation results confirm the efficiency of the proposed framework and quality assessment metrics in improving the prediction accuracy and also reduction of the computational complexity. For example, by using the framework, we can compute the VIF at about 5% of the complexity of its original version, but with higher accuracy. In the next step, we study how H.264 coding mode decision can benefit from our developed metrics. We integrate the proposed SSEA metric as the distortion measure inside the H.264 mode decision process. The H.264/AVC JM reference software is used as the implementation and verification platform. We propose a search algorithm to determine the Lagrange multiplier value for each quantization parameter (QP). The search is applied on three different types of video sequences having various motion activity features, and the resulting Lagrange multiplier values are tabulated for each of them. Based on our proposed Framework we propose a new quality metric PSNRA, and use it in this part (mode decision). The simulated rate-distortion (RD) curves show that at the same PSNRA, with the SSEA-based mode decision, the bitrate is reduced about 5% on average compared to the conventional SSE-based approach for the sequences with low and medium motion activities. It is notable that the computational complexity is not increased at all by using the proposed SSEA-based approach instead of the conventional SSE-based method. Therefore, the proposed mode decision algorithm can be used in real-time video coding

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems

    Motion compensation and very low bit rate video coding

    Get PDF
    Recently, many activities of the International Telecommunication Union (ITU) and the International Standard Organization (ISO) are leading to define new standards for very low bit-rate video coding, such as H.263 and MPEG-4 after successful applications of the international standards H.261 and MPEG-1/2 for video coding above 64kbps. However, at very low bit-rate the classic block matching based DCT video coding scheme suffers seriously from blocking artifacts which degrade the quality of reconstructed video frames considerably. To solve this problem, a new technique in which motion compensation is based on dense motion field is presented in this dissertation. Four efficient new video coding algorithms based on this new technique for very low bit-rate are proposed. (1) After studying model-based video coding algorithms, we propose an optical flow based video coding algorithm with thresh-olding techniques. A statistic model is established for distribution of intensity difference between two successive frames, and four thresholds are used to control the bit-rate and the quality of reconstructed frames. It outperforms the typical model-based techniques in terms of complexity and quality of reconstructed frames. (2) An efficient algorithm using DCT coded optical flow. It is found that dense motion fields can be modeled as the first order auto-regressive model, and efficiently compressed with DCT technique, hence achieving very low bit-rate and higher visual quality than the H.263/TMN5. (3) A region-based discrete wavelet transform video coding algorithm. This algorithm implements dense motion field and regions are segmented according to their content significance. The DWT is applied to residual images region by region, and bits are adaptively allocated to regions. It improves the visual quality and PSNR of significant regions while maintaining low bit-rate. (4) A segmentation-based video coding algorithm for stereo sequence. A correlation-feedback algorithm with Kalman filter is utilized to improve the accuracy of optical flow fields. Three criteria, which are associated with 3-D information, 2-D connectivity and motion vector fields, respectively, are defined for object segmentation. A chain code is utilized to code the shapes of the segmented objects. it can achieve very high compression ratio up to several thousands

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs in space communications, radio navigation, radio science, and ground-based radio and radar astronomy. It reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standardization activities at the Jet Propulsion Laboratory for space data and information systems

    Encoding of Complexity, Shape, and Curvature by Macaque Infero-Temporal Neurons

    Get PDF
    We recorded responses of macaque infero-temporal (IT) neurons to a stimulus set of Fourier boundary descriptor shapes wherein complexity, general shape, and curvature were systematically varied. We analyzed the response patterns of the neurons to the different stimuli using multidimensional scaling. The resulting neural shape space differed in important ways from the physical, image-based shape space. We found a particular sensitivity for the presence of curved versus straight contours that existed only for the simple but not for the medium and highly complex shapes. Also, IT neurons could linearly separate the simple and the complex shapes within a low-dimensional neural shape space, but no distinction was found between the medium and high levels of complexity. None of these effects could be derived from physical image metrics, either directly or by comparing the neural data with similarities yielded by two models of low-level visual processing (one using wavelet-based filters and one that models position and size invariant object selectivity through four hierarchically organized neural layers). This study highlights the relevance of complexity to IT neural encoding, both as a neurally independently represented shape property and through its influence on curvature detection

    Proceedings of the 2018 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The Proceeding of the annual joint workshop of the Fraunhofer IOSB and the Vision and Fusion Laboratory (IES) 2018 of the KIT contain technical reports of the PhD-stundents on the status of their research. The discussed topics ranging from computer vision and optical metrology to network security and machine learning. This volume provides a comprehensive and up-to-date overview of the research program of the IES Laboratory and the Fraunhofer IOSB

    The Telecommunications and Data Acquisition Report

    Get PDF
    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC)

    Rotate and Hold and Scan (RAHAS): Structured Light Illumination for Use in Remote Areas

    Get PDF
    As a critical step after the discovery of material culture in the field, archaeologists have a need to document these findings with a slew of different physical measurements and photographs from varying perspectives. 3-D imaging is becoming increasingly popular as the primary documenting method to replace the plethora of tests and measurements, but for remote areas 3-D becomes more cumbersome due to physical and environmental constraints. The difficulty of using a 3-D imaging system in such environments is drastically lessened while using the RAHAS technique, since it acquires scans untethered to a computer. The goal of this thesis is to present the RAHAS Structured Light Illumination technique for 3-D image acquisition, and the performance of the RAHAS technique as a measurement tool for documentation of material culture on a field trip to the Rio Platano Biosphere in Honduras

    Coding of Focused Plenoptic Contents by Displacement Intra Prediction

    Full text link
    corecore