648 research outputs found

    Multicore Performance Prediction with MPET : Using Scalability Characteristics for Statistical Cross-Architecture Prediction

    Get PDF
    Multicore processors serve as target platforms in a broad variety of applications ranging from high-performance computing to embedded mobile computing and automotive applications. But, the required parallel programming opens up a huge design space of parallelization strategies each with potential bottlenecks. Therefore, an early estimation of an application’s performance is a desirable development tool. However, out-of-order execution, superscalar instruction pipelines, as well as communication costs and (shared-) cache effects essentially influence the performance of parallel programs. While offering low modeling effort and good simulation speed, current approximate analytic models provide moderate prediction results so far. Virtual prototyping requires a time-consuming simulation, but produces better accuracy. Furthermore, even existing statistical methods often require detailed knowledge of the hardware for characterization. In this work, we present a concept called Multicore Performance Evaluation Tool (MPET) and its evaluation for a statistical approach for performance prediction based on abstract runtime parameters, which describe an application’s scalability behavior and can be extracted from profiles without user input. These scalability parameters not only include information on the interference of software demands and hardware capabilities, but indicate bottlenecks as well. Depending on the database setup, we achieve a competitive accuracy of 20% mean prediction error (11% median), which we also demonstrate in a case study

    Role of Computer Technology in Changing Smile

    Get PDF
    In the ever changing complex society, where success has become a mantra for both young and old, facial appearance that includes smile, plays a pivotal role. Among many attractive components in a person’s face, smile reflects the persona of an individual. In the present day next gen age, science in unison with technology and techniques which are rapidly getting ingrained into day to day dental practice, has changed the perception of healthy smile by more effective and less invasive approach. In this scenario, the onus lies on the dentist to give that perfectionist touch to a customised smile using computer aided software and hardware apparatus, and to avail the best state of the art material, equipment and techniques. Hence, it is imperative for us to understand and inculcate the role of modern cutting edge computer-aided technologies used in designing and changing the smile of an individual

    大規模システムLSI設計のための統一的ハードウェア・ソフトウェア協調検証手法

    Get PDF
    Currently, the complexity of embedded LSI system is growing faster than the productivity of system design. This trend results in a design productivity gap, particularly in tight development time. Since the verification task takes bigger part of development task, it becomes a major challenge in LSI system design. In order to guarantee system reliability and quality of results (QoR), verifying large coverage of system functionality requires huge amount of relevant test cases and various scenario of evaluations. To overcome these problems, verification methodology is evolving toward supporting higher level of design abstraction by employing HW-SW co-verification. In this study, we present a novel approach for verification LSI circuit which is called as unified HW/SW co-verification framework. The study aims to improve design efficiency while maintains implementation consistency in the point of view of system-level performance. The proposed data-driven simulation and flexible interface of HW and SW design become the backbone of verification framework. In order to avoid time consuming, prone error, and iterative design spin-off in a large team, the proposed framework has to support multiple design abstractions. Hence, it can close the loop of design, exploration, optimization, and testing. Furthermore, the proposed methodology is also able to co-operate with system-level simulation in high-level abstraction, which is easy to extend for various applications and enables fast-turn around design modification. These contributions are discussed in chapter 3. In order to show the effectiveness and the use-cases of the proposed verification framework, the evaluation and metrics assessments of Very High Throughput wireless LAN system design are carried out. Two application examples are provided. The first case in chapter 4 is intended for fast verification and design exploration of large circuit. The Maximum Likelihood Detection (MLD) MIMO decoder is considered as Design Under Test (DUT). The second case, as presented in chapter 5, is the evaluation for system-level simulation. The full transceiver system based on IEEE 802.11ac standard is employed as DUT. Experimental results show that the proposed verification approach gives significant improvements of verification time (e.g. up to 10,000 times) over the conventional scheme. The proposed framework is also able to support various schemes of system level evaluations and cross-layer evaluation of wireless system.九州工業大学博士学位論文 学位記番号:情工博甲第328号 学位授与年月日:平成29年6月30日1 Introduction|2 Design and Verification in LSI System Design|3 Unified HW/SW Co-verification Methodology|4 Fast Co-verification and Design Exploration in Complex Circuits|5 Unified System Level Simulator for Very High Throughput Wireless Systems|6 Conclusion and Future Work九州工業大学平成29年

    Living Labs and user engagement for innovation and sustainability

    Get PDF
    This exploratory study, investigating the role of Living Labs (LLs) in promoting innovation and sustainability, has two main goals. Firstly, it seeks to understand how stakeholders and users, in a Quadruple Helix Model, can participate in LL activities and support the process of achieving a more sustainable society. Secondly, it guides the setting up of LLs with the aim of directly contributing to the United Nations Sustainable Development Goals (UN SDGs). Research, based on a multiple case study, has shown that LLs are able to actively engage users, including firms and business systems, in promoting co-creation of value so as to benefit the economy, society and the environment. We have selected some good practices and derived some policy implications that could inspire LLs to promote innovation and encourage transition towards sustainable development at the local level, within the context of a QHM model

    Biomanufacturing Technologies for Tissue Engineering

    Get PDF
    Il seguente lavoro di tesi ha come obiettivo lo studio e la realizzazione di device biomedicali realizzati tramite la manifattura additiva. La manifattura additiva sta avendo una forte crescita negli ultimi anni grazie soprattutto alla possibilità di realizzare facilmente geometrie complesse. Questa caratteristica permette di personalizzare i prodotti ad un costo competitivo. Inoltre, lo spreco di materiale viene ridotto moltissimo dal principio di fabbricazione. Tutte queste proprietà hanno fatto in modo che negli ultimi anni la manifattura additiva prendesse sempre più piede in campi come l’automotive, l’aerospace e il biomedicale. Questo lavoro di tesi è focalizzato sull’utilizzo di alcune tra le più diffuse tecnologie additive per la produzione di device biomedicali. In particolare, il lavoro si è concentrato principalmente sulla realizzazione di due modelli, il primo per lo studio dello sviluppo dei black floaters all’interno del corpo vitreo dell’occhio, il secondo per l’emulazione del comportamento dell’osso mandibolare durante la foratura per l’installazione di impianti dentali. Il modello dell’occhio è composto da due elementi principali, un supporto e un hydrogel. Il supporto serve a contenere e supportare l’hydrogel. Deve essere trasparente, biocompatibile facilmente manovrabile in laboratorio. La sua realizzazione è avvenuta tramite stereolitografia. L’hydrogel, invece, ha lo scopo di fornire un’ambiente 3D per la crescita e sviluppo delle cellule. Deve perciò anche lui essere biocompatibile e con adeguate caratteristiche meccaniche e di stampabilità. La struttura 3D è stata realizzata tramite material extrusion. Il modello di osso mandibolare è stato realizzato tramite fused filament fabrication. Il modello si compone di due parti, una parte esterna piena per emulare l’osso corticale, e una parte interna porosa per emulare l’osso trabecolare. Le prove di foratura sono state realizzate con un trapano dentistico agganciato a robot collaborativi. La ricerca ha infine toccato ulteriori due ambiti, lo studio delle proprietà di strutture lattice realizzate tramite laser based- powder bed fusion e la valutazione di diversi trattamenti di finitura superficiale. La tesi, dunque, ha la seguente organizzazione. Il capitolo 1 presenta un’introduzione sull’additive manufacturing e il bioprinting. Le tecnologie ed i materiali utilizzati sono brevemente descritti e sono riportati alcuni esempi di applicazione della manifattura additiva nel campo biomedicale. I capitoli seguenti, invece, riportano gli articoli pubblicati o in corso di pubblicazione riguardo alle diverse tematiche affrontate. Nello specifico, il capitolo 2 riporta la ricerca sulle strutture lattice e la loro realizzazione. I capitoli 3 e 4 comprendono gli studi relativi al modello dell’occhio. Il capitolo 3 si concentra sulla realizzazione del supporto, il 4 sulla formulazione e la valutazione dell’hydrogel. Il capitolo 5 approfondisce lo studio del modello per l’emulazione del comportamento dell’osso mandibolare a foratura mentre il capitolo 6, l’ultimo di questo elaborato, si concentra sui processi di finitura superficiale. Per concludere, la manifattura additiva include processi molto diversi tra loro, ma che presentano molti punti in comune come la flessibilità, libertà di progettazione e personalizzazione. Sfruttando queste proprietà è possibile realizzare oggetti su misura, soprattutto in campi come quello biomedicale dove la personalizzazione e la specificità sono fondamentali.The following thesis aims to study and to develop biomedical devices made through additive manufacturing. Additive manufacturing has been experiencing a strong growth in recent years, mainly due to its ability to easily realize complex geometries. This feature allows customization of products at a competitive cost. In addition, material waste is greatly reduced by the manufacturing principle. All these properties helped the recent years diffusion of additive manufacturing in fields such as automotive, aerospace and biomedical. This thesis focuses on the use of some of the most popular additive technologies for the production of biomedical devices. In particular, the work focused mainly on the fabrication of two models, the first to study the development of black floaters within the vitreous body of the eye, and the second to emulate the mandibular bone behavior during drilling for the installation of dental implants. The eye model consists of two main elements, a scaffold and a hydrogel. The scaffold contains and provides support to the hydrogel. It must be transparent, biocompatible easily handled in the laboratory. It is printed by stereolithography. The hydrogel, on the other hand, is intended to provide a 3D environment for cell growth and development. Therefore, it must be biocompatible and have adequate mechanical properties together with good printability. The 3D scaffold structure was made by material extrusion. The mandibular bone model was made by fused filament fabrication. The model consists of two parts, a solid outer part to emulate cortical bone, and a porous inner part to emulate trabecular bone. Drilling tests were performed with a dental drill attached to collaborative robots. Finally, the research covered two additional areas, the study of the properties of lattice structures made by laser-based- powder bed fusion and the evaluation of different surface finish treatments. The following thesis, therefore, has the following organization. Chapter 1 presents an introduction on additive manufacturing and bioprinting. The technologies and materials used are briefly described, and examples of additive manufacturing applications in the biomedical field are given. The following chapters, on the other hand, report published or forthcoming articles regarding the various topics mentioned above. Specifically, Chapter 2 reports the research on lattice structures and their fabrication. Chapters 3 and 4 include studies related to the eye model. Chapter 3 focuses on the fabrication of the support, and Chapter 4 on the formulation and evaluation of the hydrogel. Chapter 5 presents the study of the model for emulating the behavior of mandibular bone upon drilling, while Chapter 6, the last of this work, focuses on surface finishing processes. In conclusion, additive manufacturing includes various processes that are very different from each other but have many common points such as flexibility, freedom of design, and customization. By exploiting these properties, it is possible to make tailored objects, especially important in fields such as the biomedical one, where customization and specificity are a great added value

    Open-Source TIG-Based Metal 3D-Printing

    Get PDF
    Metal 3-D printing has been relegated to high-cost proprietary high-resolution systems and low-resolution low-cost metal inert gas (MIG) systems. In order to provide a path to high-resolution, low-cost, metal 3-D printing, this manuscript proposes a new open source metal 3-D printer design based around a low-cost tungsten inert gas (TIG) welder coupled to a commercial open source self replicating rapid prototyper. Optimal printing parameters for the machine are acquired using a novel computational intelligence software. TIG has many advantages over MIG, such as having a low heat input, clean beads, and the potential for both high-resolution prints as well as insitu alloying of complex geometries. The design can be adapted to most RepRap-class systems and has a basic yet powerful free and open source software (FOSS) package for the characterization of the 3-D printer. This system can be used for fabricating custom metal scientific components and tools, near net-shape structural metal component rapid prototyping, adapting and depositing on existing metal structures, and is deployable for in-field prototyping for appropriate technology applications

    System-Level Power Estimation Methodology for MPSoC based Platforms

    Get PDF
    Avec l'essor des nouvelles technologies d'intégration sur silicium submicroniques, la consommation de puissance dans les systèmes sur puce multiprocesseur (MPSoC) est devenue un facteur primordial au niveau du flot de conception. La prise en considération de ce facteur clé dès les premières phases de conception, joue un rôle primordial puisqu'elle permet d'augmenter la fiabilité des composants et de réduire le temps d'arrivée sur le marché du produit final.Shifting the design entry point up to the system-level is the most important countermeasure adopted to manage the increasing complexity of Multiprocessor System on Chip (MPSoC). The reason is that decisions taken at this level, early in the design cycle, have the greatest impact on the final design in terms of power and energy efficiency. However, taking decisions at this level is very difficult, since the design space is extremely wide and it has so far been mostly a manual activity. Efficient system-level power estimation tools are therefore necessary to enable proper Design Space Exploration (DSE) based on power/energy and timing.VALENCIENNES-Bib. électronique (596069901) / SudocSudocFranceF

    Cell-Free Enabled Bioproduction and Biological Discovery

    Get PDF
    As our understanding of the microbial world has progressed, so too has the backlog of information and open questions generated from the thousands of uncharacterized proteins and metabolites with potential applications as biofuels, therapeutics, and biomaterials. To address this problem, new tools need to be developed in order to rapidly test and take advantage of uncharacterized proteins and metabolites. Cell-free systems have developed into a high-throughput and scalable tool for synthetic biology and metabolic engineering with applications across multiple disciplines. The work presented in this dissertation leverages cell-free systems as a conduit for the exploration of protein function and metabolite production using two complementary approaches. The first elucidates interaction networks associated with secondary metabolite production using a computationally assisted pathway description pipeline that employs bioinformatic searches of genome databases, structural modeling, and ligand-docking simulations to predict the gene products most likely to be involved in a metabolic pathway. In vitro reconstructions of the pathway are then modularly assembled and chemically verified in Escherichia coli lysates in order to differentiate between active and inactive pathways. The second takes a systems and synthetic biology approach to engineer Escherichia coli extracts capable of directing flux towards specific metabolites. Using growth and genome engineering-based methods, we produced cell-free proteomes capable of creating unconventional metabolic states with minimal impact on the cell in vivo. As a result of this work, we have significantly expanded our ability to use cell extracts outside of their native context to solve metabolic engineering problems and provide engineers new tools that can rapidly explore the functions of proteins and test novel metabolic pathways

    An Empirical Analysis of Internet Use on Smartphones: Characterizing Visit Patterns and User Differences

    Get PDF
    The original vision of ubiquitous computing was for computers to assist humans by providing subtle and fitting technologies in every environment. The iPhone and similar smartphones have provided continuous access to the internet to this end. In the current thesis, my goal was to characterize how the internet is used on smartphones to better understand what users do with technology away from the desktop. Naturalistic and longitudinal data were collected from iPhone users in the wild and analyzed to develop this understanding. Since there are two general ways to access the internet on smartphones—via native applications and a web browser—I describe usage patterns through each along with the influence of experience, the nature of the task and physical locations where smartphones were used on these patterns. The results reveal differences between technologies (the PC and the smartphone), platforms (native applications and the mobile browser), and users in how the internet was accessed. Findings indicate that longitudinal use of web browsers decreased sharply with time in favor of native application use, web page revisitation through browsers occurred very infrequently (approximately 25% of URLs are revisited by each user), bookmarks were used sparingly to access web content, physical location visitation followed patterns similar to virtual visitation on the internet, and Zipf distributions characterize mobile internet use. The web browser was not as central to smartphone use compared to the PC, but afforded certain types of activities such as searching and ad hoc browsing. In addition, users systematically differed from each other in how they accessed the internet suggesting different ways to support a wider spectrum of smartphone users

    Formally Verified Bundling and Appraisal of Evidence for Layered Attestations

    Get PDF
    Remote attestation is a technology for establishing trust in a remote computing system. Core to the integrity of the attestation mechanisms themselves are components that orchestrate, cryptographically bundle, and appraise measurements of the target system. Copland is a domain-specific language for specifying attestation protocols that operate in diverse, layered measurement topologies. In this work we formally define and verify the Copland Virtual Machine alongside a dual generalized appraisal procedure. Together these components provide a principled pipeline to execute and bundle arbitrary Copland-based attestations, then unbundle and evaluate the resulting evidence for measurement content and cryptographic integrity. All artifacts are implemented as monadic, functional programs in the Coq proof assistant and verified with respect to a Copland reference semantics that characterizes attestation-relevant event traces and cryptographic evidence structure. Appraisal soundness is positioned within a novel end-to-end workflow that leverages formal properties of the attestation components to discharge assumptions about honest Copland participants. These assumptions inform an existing model-finder tool that analyzes a Copland scenario in the context of an active adversary attempting to subvert attestation. An initial case study exercises this workflow through the iterative design and analysis of a Copland protocol and accompanying security architecture for an Unpiloted Air Vehicle demonstration platform. We conclude by instantiating a more diverse benchmark of attestation patterns called the "Flexible Mechanisms for Remote Attestation", leveraging Coq's built-in code synthesis to integrate the formal artifacts within an executable attestation environment
    corecore