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Summary

Currently, the complexity of embedded LSI system is growing faster than the productivity

of system design. This trend results in a design productivity gap, particularly in tight devel-

opment time. Since the verification task takes bigger part of development task, it becomes

a major challenge in LSI system design. In order to guarantee system reliability and quality

of results (QoR), verifying large coverage of system functionality requires huge amount of

relevant test cases and various scenario of evaluations. To overcome these problems, ver-

ification methodology is evolving toward supporting higher level of design abstraction by

employing HW-SW co-verification.

In this study, we present a novel approach for verification LSI circuit which is called as

unified HW/SW co-verification framework. The study aims to improve design efficiency

while maintains implementation consistency in the point of view of system-level perfor-

mance. The proposed data-driven simulation and flexible interface of HW and SW design

become the backbone of verification framework. In order to avoid time consuming, prone

error, and iterative design spin-off in a large team, the proposed framework has to support

multiple design abstractions. Hence, it can close the loop of design, exploration, optimiza-

tion, and testing. Furthermore, the proposed methodology is also able to co-operate with

system-level simulation in high-level abstraction, which is easy to extend for various appli-

cations and enables fast-turn around design modification. These contributions are discussed

in chapter 3.

In order to show the effectiveness and the use-cases of the proposed verification frame-

work, the evaluation and metrics assessments of Very High Throughput wireless LAN sys-

tem design are carried out. Two application examples are provided. The first case in chap-

ter 4 is intended for fast verification and design exploration of large circuit. The Maximum

Likelihood Detection (MLD) MIMO decoder is considered as Design Under Test (DUT).

The second case, as presented in chapter 5, is the evaluation for system-level simulation.

The full transceiver system based on IEEE 802.11ac standard is employed as DUT. Experi-

mental results show that the proposed verification approach gives significant improvements

of verification time (e.g. up to 10,000 times) over the conventional scheme. The proposed

4



framework is also able to support various schemes of system level evaluations and cross-

layer evaluation of wireless system.
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Chapter 1

Introduction

1.1 Background

Recently, with the tight demand of time-to-market for product deployment, fast verification

time has become a main hurdle to guarantee a reliable product. The fast verification time

is more demanding particularly in development of a large scale system. The conventional

simulation techniques, such as RTL simulation is unacceptable for complex SoC simula-

tion and early embedded software development[1]. In particular, such system also employs

various system parameters and supports multiple operational modes. As confirmed by a

study conducted by Wilson Research Group and Mentor Graphics, the verification process

takes significant amount of overall development time and become a bottleneck for design

completion[2]. Furthermore, the gap between design productivity and circuit complexity

will constantly happen in the future. It is occurred since the effort on design and verifica-

tion cannot catch up the increasing of system complexity[3]. Verification is also called as

evaluation when the context of assessments are more comprehensive. Some texts refer to

evaluation term when the tasks not only cover validation of the correctness, but also include

examination the feasibility and the interaction with other metrics or layers of information

processing. However, the terms of verification and evaluation will be used interchangeably

throughout the thesis.

A suitable example to represent this phenomena is system development in the field of
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wireless communication system. For the last two decades, wireless communication tech-

nology has evolved in fast and continuous progression. Wireless system standard always

changes to meet user experience demands, such as high-throughput, high-reliability, and

various uses-cases. Unfortunately, every introduction of new standard always adopts com-

plex and advanced signal processing, as well as has to support various system features.

Consequently, the system complexity will increase significantly. For example, in the latest

wireless LAN standard IEEE802.11ac[4], Downlink Multi User MIMO (DL MU-MIMO)

system and higher-order modulation scheme (up to 256-QAM) are adopted. This standard

is well known as very high throughput wireless communication system.

Figure 1.1 shows an illustration of design and verification productivity in wireless sys-

tem development. The design complexity follows the Moore’s Law; the circuit complexity

doubled in 2 years, while the design productivity approximately doubled every 39 months.

This chart confirms that the productivity gap tends to increase over the time.

Figure 1.1: Design and Verification Productivity in Wireless System development

Verifying the system functionality in all possible conditions need huge relevant test

cases in order to achieve a confidence level of acceptance test criteria. Furthermore, in

development process, we also must validate each design layer, as depicted in Fig. 1.2. The
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verification task in each layer involves :

1. Algorithm evaluation
This task evaluates the correctness of algorithms transformation (e.g. from floating

point to fixed-point)and also examines the impact of bit-width optimization in data-

path design. Therefore, the employed algorithms do not degrade the overall system

performance, exceeding the tolerable margin.

2. Register Transfer Level (RTL) simulation
This task verifies the correctness of functionality of the designed hardware architec-

ture according to the developed algorithm in system-level modeling.

3. Hardware verification
This task performs the evaluation of the final implementation, whether satisfy the

system requirements or not.

From those reasons, the verification task become a relevant issue in the development of a

complex circuits.

Figure 1.2: Design Verification Flow
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The verification task in conventional method is typically carried out in each layer inde-

pendently (as illustrated by dot line). The algorithm evaluation in system-level simulation

and RTL simulation are carried out in software-based platform, while the hardware verifica-

tion is performed later by using hardware-based platform, such as FPGA prototyping. For

large-scale circuits, these conventional verification approaches (full-software verification

and full-prototyping) have main drawbacks, which are : (1) excessive run-time verification

and (2) low flexibility for covering large numbers of test scenarios and various use-cases of

evaluations.

Furthermore, to be used as a comprehensive verification platform for wireless com-

munication system, the existing verification approaches do not quantify clearly all required

metrics, such as the efficiency of verification (verification time improvement), the flexibility

to be employed with various function blocks, and the integration with system level simu-

lation. As a result, those verification platforms cannot be used as integral part of system

development process, particularly in the early stage of development.

To address the limitations of the existing verification methods, this thesis proposes a

novel unified framework of HW/SW co-verification. This includes verification method-

ology, quantitative metrics of the effectiveness of evaluations, application examples, and

performance characterizations. For the sake of clarity, the term of HW verification refers to

set of system components that are executed in FPGA platform, while the SW verification

refers to the code program that runs in host PC. This SW code verifies the rest of system

components and maintains data flows with HW platform. Finally, it co-operates with HW

design target in HW platform to build unified HW/SW co-verification framework.

1.2 Research Objectives

The objectives of this thesis is to present new methodology of verification framework for

large scale circuits, specifically for wireless communication system. The study does not

intent to promote particular HLS tools or present the advancement of specific FPGA plat-

form. Instead, the study proposes a procedural and reproducible framework of verifica-

tion for large scale circuits. Hence, the proposed framework is platform-independent and

application-independent. Moreover, the framework should be easily employed for different

9



use cases in various FPGA platforms.

The proposed methodology includes :

1. Unified co-evaluation framework
This allows for evaluation of various design layers with flexible partition of hardware

design and software design. Therefore, the verification process can cover all verifica-

tion stages, from block component up to complete system-level simulation, includ-

ing algorithm verification, RTL verification, and real-time HW/SW co-verification.

Thus, the proposed methodology closes the loop of design, exploration, optimiza-

tion, and testing. This approach can avoid time consuming, prone error, and multiple

iterations of design spin-off in a big research and development team.

2. Data-driven simulation method
This method performs simulation based on the availability of data in HW/SW in-

terface and further eliminates intensive HW/SW interaction. Hence, the proposed

simulation method can improve the run-time

3. Generic, flexible and scalable architecture in both HW and SW
These enable design extension and could be applied to different systems with only

minor modifications.

4. Tight integration with system level simulation
This feature allows for unified system level evaluation within high-level language

(e.g. MATLAB, C/C++) and physical level verification.

In order to show the applicability of the proposed method, the unified HW/SW co-

verification methodology is applied to our hardware platform with the case study of IEEE

802.11ac system. The co-verification of MLD MIMO Decoder of high throughput system

is selected in order to evaluate the proposed method in verifying complex circuit, particu-

larly for reducing computation time. Moreover, the whole 802.11ac transceiver is employed

to show the capability of proposed method for system-level evaluation. Experimental eval-

uations of several performance metrics are carried out to confirm the effectiveness of our

proposed co-evaluation framework.

10



Figure 1.3: Thesis Organization

1.3 Thesis Organization

The structure of this thesis is shown by Fig. 1.3. The first chapter describes the motivations

and the objectives of research task. The remaining chapters are organized as follows.

Chapter 2. Design and Verification in LSI System Design
This chapter presents an overview of existing design and verification methodology in LSI

system design. In this chapter, we elaborate and investigate several important features of

the existing methods. These include abstraction of simulation, types of verification frame-

work and communication interface. Furthermore, we point out the necessity of research

and development task to improve the efficiency of verification methodology in large scale

circuits, particularly for Wireless Communication Communication Systems.

Chapter 3. Unified HW/SW Co-verification Framework
This chapter focuses on the description of the proposed co-verification methodology. This
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includes task partition methodology, general architecture of HW/SW framework, and the

development of hardware-in-the loop system. The first-two features, which are task parti-

tion methodology and the generic HW/SW architecture, are proposed in order to overcome

the flexibility issue of co-verification framework. The task partition methodology in section

3.3 is proposed in order to accommodate various levels of verification task. The task parti-

tion is carried out by allocating some blocks to be implemented in HW and the remaining

blocks are implemented in SW. Furthermore, all entire blocks could be verified concur-

rently in unified framework. Hence, we can select interested design more flexibly, while

at the same time maintain the verification in the point of view of system-level simulation.

The flexible and scalable architecture of HW/SW framework is explained in section 3.4.1.

This proposed framework is provided in order to facilitate the framework usage is appli-

cable and extensible for various designs and applications. Additionally, in order to speed-up

the simulation time as well as to cover various system parameters, the verification is carried

out using hardware-in-the loop scheme that employs data-driven simulation, as described

in section 3.4.3. This proposed scheme is expected to address the limitation of verification

speed and also the verification coverage.

Chapter 4. Fast co-evaluation and Design Exploration in Complex Circuits
In order to show the applicability of the proposed co-verification method for evaluat-

ing complex circuit, chapter 4 presents application example of MLD MIMO Decoder.

This block is selected as DUT since it is considered as the highest complexity circuit in

transceiver system. The detail implementation of hardware and software for unified co-

evaluation and the proposed data-driven co-simulation are described. In this chapter, the

performance metric is also introduced in order to quantify the effectiveness of proposed de-

sign methodology. Finally, several examples of experimental evaluations of MLD MIMO

decoder are presented, include the verification-time speed-up, the verification efficiency,

and the evaluation of multi-dimensional design exploration.

Chapter 5. Unified System Level Simulator for Very High Throughput MIMO
Wireless Communication System
This chapter shows the extension of the proposed co-evaluation framework for system-level
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evaluation of wireless system. These include evaluation of transceiver algorithms, provid-

ing reproducibility data, supplying reference data for benchmark, and assessing cross-layer

performance (PHY and MAC layer). The recent technology of wireless LAN system which

is IEEE 802.11ac standard is selected as a case study. In this chapter, we show that the pro-

posed methodology can perform flexible verification task within HW/SW platform and also

maintain the verification in the point of view of system-level simulation. The issues of the

flexibility such as design partition, tight-integrated with system-level simulation, and large-

coverage of test scenarios have been addressed. Latter, the evaluation results are provided

in order to show the capability of the proposed unified co-evaluation framework.

Chapter 6. Conclusion and Future Work
This chapter shows the summary of our whole works and the achievable results. We also

discuss about the directions and recommendations on possible research tasks, to further

improve the development of LSI system.
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Chapter 2

Design and Verification in LSI System
Design

This chapter aims to provide the reader a fundamental understanding on LSI design method-

ology and its verification system. Some concepts in HW/SW co-design and co-verification

are explained. Furthermore, the key features and the major drawbacks of each method are

evaluated to give insight and to provide a basis for conducting the research work.

2.1 HW/SW co-design Methodology

In recent years, we face the steady growth of advanced IC technology and complexity in

system integration. The increased number of components in a system will imply higher

degree of integration and result more complex designs. Traditionally, designers separate

the hardware (HW) and software (SW) of an embedded system in early stage. The two

groups of designers will develop their respective components independently. Moreover, the

design process is performed sequentially. For example, the software design will be carried

out after the hardware components are completely done and the verification task follows

the final design task. Figure 2.1 shows illustration of a classical LSI system, involving

hardware and software design[5].

From figure 2.1, the system specifications are first defined. Based on the initial spec-

ification, system level simulation and hardware design are performed. In many cases, the
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Figure 2.1: Conventional LSI design Flow

software team cannot start to develop and test their software until the hardware design is

available. This has great risk of delaying the final product delivery when some design er-

rors are detected very late. Additionally, we do not have any chance to explore potential

option with respect to several implementation objectives, such as cost, performance and

extensibility. Hence, the success of development is typically determined by the experience

of designer team.

In summary, there are several main drawbacks of the conventional design flow [?],

which are :

• long development path, resulting long and unpredictable time-to-market;

• risk of potential errors in each part design cannot be covered;

• risk of over-design (excessive design) or under-design (insufficient design) of system

due to lack of early evaluation of design options.

To address the conventional LSI design methodology, HW/SW co-design has been con-

sidered as an established method to design complex IC circuits[5]. As supplementary to this

design methodology, the verification methodology is also shifted into co-operative perspec-

tive. Co-design is a design methodology that allows the concurrent development of HW

and SW in order to achieve system specifications. This method able to improve the pre-

dictability of embedded system design, by providing methods that tell to designers whether

a system satisfies its requirements or not. Co-design methodology includes several tasks,
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such as definition of system specification, design partitioning, modeling, validation, and

implementation. An important note, co-simulation and co-verification have always been

considered as an important topic in the co-design area, which is the main discussion in this

thesis.

Figure 2.2: HW/SW Co-design Flow

The typical HW/SW co-design flow for LSI system could be figured out in Fig. 2.2. The

development starts with defining initial system specification. Some mandatory parameters

are selected in this stage, while other decisions such as architecture, algorithm, etc., could

be refined in later stage, according to performance-cost trade-off.

The HW/SW partition stage is carried out to allocate where the set of system processing

is executed. Several tasks are performed in hardware design, while the others functions are

realized as SW in host processor or emulated in host PC. In this stage, the interface of

HW and SW is also specified. The task mapping can be performed by considering cost

metrics on each module or function. For HW component, the typical cost metrics are

execution time, resource area, power consumption, and testability. On the other hand, SW

cost metrics may includes execution time and required memory size. In practical, functions
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with regular computation and parallel operation are realized in HW. Other functions that

have irregularity and perform complex calculation are mapped into SW.

After partitioning is done, a simulation environment is developed in certain abstraction

layer (design layer) to model its behavior, including computational process and data sig-

naling. Some iterations of simulation are performed to estimate system performance. In

typical DSP simulation, co-simulation is performed in high-level language. When system-

level model satisfy the requirements, the hardware component could be implemented into

hardware design in RTL level. At the same time the SW process is also implemented by

adopting the data flow as described in system-level. This SW implementation could be

re-used for final implementation.

In final stage, the RTL design is synthesized and verified on HW platform, which is

FPGA. Hardware verification can be also performed with co-operation with SW design. If

any error that affects system performance is found, the design has to move back to the pre-

vious stage. The designers need to modify the initial design or even to change specification.

This design turn-around results a high cost as well as long cycle development.

2.2 HW/SW Co-verification

Verification task has become more challenging due to rapid increasing of system complex-

ity and the requirement to maintain the gap between the productivity and circuit complexity.

In the following subsections, we elaborate and investigate several characteristics of veri-

fication approaches, for example: achievable simulation time, the cost for system setup,

simulation accuracy, debugging flexibility, and the coverage for large test scenarios.

2.2.1 Abstraction Level of Simulation

From the perspective of abstraction level, offered accuracy and degree of observability, as

shown in Fig. 2.3, simulations can be classified into the following categories:

• Data-flow simulation, This simulation represents functional behavior of signals or

data stream without notion of time. Each component/block is connected by signal

and is executed when the inputs are available. Simulation is performed in high-level
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Figure 2.3: Abstraction of Simulation

abstraction during early stage of development. The Main objective of this simulation

is to verify the correctness algorithm or data-flow of system. Since this simulation

is performed without taking into account the timing behavior, the simulation results

cannot predict timing accuracy performance of system.

• Transaction-level simulation. In this simulation. the details of communication (e.g.

HW/SW interface) among computation components are separated from the details

of the implementation of computation components. Communication is modeled as

channel (interconnection) and transaction request takes place by calling interface

functions of these channel models. Unnecessary details of communication and com-

putation are hidden. In this simulation, SW function calls are used to model the

communication between HW and SW components. For example, transaction level

model (TLM) performs burst transfer task by using only single function call, with

an object representing burst request and another object representing burst response.
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This simulation is consider as cycle approximate simulation.

• RTL simulation. This simulation only calculates the state of the signals at clock

edges and it is usually implemented for simulation of RTL hardware design. This

simulation can predict the actual processing in cycle-count. However, the simulation

does not reflect the design can work at actual speed. Furthermore, in this simula-

tion any signals can be captured and debugged. Hence, it can be used for complex

design and verification. However, this simulation suffers from excessive run-time

simulation.

• Gate-level simulation. This simulation is the most accurate simulation since every

active signals is evaluated during the clock cycle as it propagates. Each signal is

simulated for its values and its time occurrence. To perform gate-level simulation,

the synthesized version of hardware designs are used. Therefore, this simulation is

very useful for timing analysis of HW circuit. However, the achievable simulation

time is very slow, particularly when the circuit is quite complex. As a result, this

simulation is intended only for HW verification in component (unit) level, not for

system-level evaluation.

2.2.2 HW/SW Co-verification Requirements

In order to achieve efficient and effective simulation task, the following requirements need

to be considered as trade-off metrics by HW/SW co-verification framework:

1. speed is one of the most critical requirements to enable fast design exploration and

also cover large test scenarios. Main issues that affect maximum achievable sim-

ulation speed are the interaction between HW /SW component and and also data

synchronization of HW/SW. Hence the design of HW/SW interface will be critical.

2. simulation accuracy is an important metric to decide the best design alternative that

satisfies requirements. To avoid many iterations of feedback, particularly in very

late stage, accurate relevant results should be obtained to assess system performance

in early stage development. These include cycle timing processing, fixed-point error

rate, and others metrics. Cycle-accurate simulation or stand-alone hardware platform
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is typically used to evaluate final performance. However, this approach needs high

effort and practically will be available in later design stage. Hence, in order to allow

designers make modification in both the design and the specification in early stage,

the HW/SW co-verification should provide higher accuracy of simulation results

3. cover multiple abstraction levels. In designing complex embedded system, dif-

ferent team of designers often do not have enough expertise knowledge in other’s

domain. Moreover, the simulation and verification usually are carried out using dif-

ferent framework. To address this practical issue, it is desirable to provide HW/SW

co-verification platform that can be used many different group. Hence, the consis-

tency of results can be guaranteed until final implementation. Furthermore, HW/SW

co-verification platform can eliminate effort when any changes made in one domain.

2.3 Platforms for LSI verification

According to the implementation platform, co-verification methods can be categorized into

three main groups, which are the software-based approach (Full-software), the hardware-

based approach (FPGA prototyping), and the combination of hardware-software (HW-

assisted/HW-accelerated).

2.3.1 Software-based Design Verification

The co-verification approach in full-software platform is mainly characterized with the im-

plementation of testbench program and abstraction of circuit design in SW platform. Both

two designs are running within host PC, as depicted in Fig. 2.4. This method includes

the conventional one which is Register Transfer Level (RTL) simulation [7] or its extended

version with addition of Bus Functional Model (BFM) [8] or Transaction Level Modeling

(TLM) features. This approach is able to simulate hardware model at cycle-accurate and

also offers the designers to observe any signals in any levels of design hierarchy. Addi-

tionally, it is easy to build the verification environment in this platform since it only needs

the simulation models. However, the run-time verification is very slow where the simu-

lator can only be run at a speed of about 10 - 100 Hz. For verifying such complex SoC
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circuits, it could take several days to simulate within the RTL simulator. Therefore, the

RTL simulation can barely be used for complex hardware verification and embedded sys-

tem verification. This approach is suitable particularly for block-level simulations, instead

of whole system of complex-circuit simulations.

Figure 2.4: Full-software co-verification Architecture

In order to address the limitation of RTL-based simulation, the higher-abstraction model

such C/C++ or systemC are employed[6], [7]. These simulation frameworks run much

faster than RTL simulation. Additionally, in order to rapidly identify the errors in sys-

tem functionality, various verification techniques such as assertion-based or formal method

could be included in the software testbench. Moreover, these approaches also can be easily

integrated with system-level simulator. Thus, evaluation of overall system can be per-

formed more comprehensively. However, we cannot evaluate the timing processing perfor-

mance since the simulation is not cycle-accurate. As a result, the accuracy of system is far

from real-world condition.

2.3.2 FPGA Prototyping for Design Verification

Another approach is HW-based platform using a hardware emulator in re-configurable de-

vices, such as FPGAs and GPU. In this method, both the testbench and DUT are realized in
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hardware platform, as shown in 2.5. The testbench sequence could be implemented in ded-

icated circuit or implemented on executable code within on-circuit CPU, while the DUT

is fully implemented in hardware resource block. The connectivity of host PC is required

only for initial system configuration setup, such as writing bit configuration into hardware

target.

Figure 2.5: Co-verification Architecture in FPGA Prototyping-based

Recently, The FPGA prototyping has been intensively studied and applied in LSI sys-

tem development, particularly in wireless communication system. With the availability

of affordable FPGA platform, the FPGA prototyping has attracted as a tool for emulating

complex systems since it has main advantage on improving verification time dramatically.

The state-of the-art FPGA technology can be operated in several hundreds MHz of clock

frequency. This feature not only offers the possibility to perform fast verification, but also

realizes real-time circuit verification. Several considerable works have shown the capabil-

ity of wireless communication system, both in block component level or full-system level,

such as in [9]-[13]. Furthermore, FPGA-based verification is also able to perform simu-

lation in cycle accurate. However, the signal observability and debugging instrument are

very limited and not flexible. In order to provide high degree of observability, the designer

should develop and add a dedicated circuit to capture various signals with considerable
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efforts, such as Signal-Tracing Technique [].

From the observations of many cases, implementation of all component of a com-

plex circuits into full hardware can not be performed straight forward since frequently the

designers experience several problems, such as lack of resource block, timing constraint

problem, or other technical issues. Furthermore, implementation of full prototyping into

hardware platform limiting the intervention of user for assessing the system, unless the

dedicated software or firmware have been implemented inside hardware circuit within a

CPU module. To address this challenge, it needs experienced resource as well as extensive

labor time for system development until the employed system are ready to be used for sys-

tem verification. Hence, this verification platform is only suitable for final stage of system

development as an product outcome, rather than integral part of system development.

2.3.3 Hardware Assisted Design Verification

With the increasing complexity of modern embedded system design, pure-software and

full-hardware verification are limited used in system verification, particularly in system de-

sign with intensive HW/SW co-design process. As a consequence, the verification paradigm

has shifted into HW/SW co-verification framework since the task processing is not only

dominated by the hardware part, but also includes the software part. In order to lever-

age the capability of FPGA-platform, recently the combination of HW/SW framework is

considered as an alternative solution in circuit verification, instead of using full-hardware

platform, as illustrated in 2.6

Recently, HW/SW co-verifications become typical approach for system evaluation. The

scopes of HW/SW co-verification mainly focus on: 1) mixed-simulation of components in

the different abstraction level, 2) integration of various system-level simulator into unified

environment, 3) simulation speed up by reducing the overhead communication between

software platform and hardware platform.

Another relevant issue on HW/SW co-verification is related to HW/SW partition. The

partition is the task of allocating system functions into set HW or SW resources. Various

formulations for task partition can be carried out according to 1) architectural assump-
tion : degree parallelism, the type of communication flow between each function, etc. 2)
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Figure 2.6: HW/SW Co-verification System

partitioning objectives : maximizing the overall speed up or minimizing the overall cost.

The HW/SW co-verification approach complements the conventional FPGA prototyp-

ing by offering more flexibilities for verification task, although the achieved verification

time is not as fast as the performance of FPGA prototyping. These flexibilities include

the facility for modification test scenarios, tight integration with system-level simulation in

high-level abstraction, and ability to cover large coverage tests. Hence, the HW/SW co-

verification can perform comprehensive system evaluation, particularly for complex circuit

with various system parameters and many types of signaling between system layers.

The deployment of HW/SW framework recently is enabled by the availability of various

interface platforms for connecting host PC and HW platform. Commercial EDA tool such

as MATLAB provides Hardware-in-the loop option to perform co-simulation of HW design

within Simulink Environment, as presented in [15] or [16]. Other platform such as TCP/IP

based interface also one candidate for interfacing host PC and HW platform, as proposed

in [17]. A HW/SW co-design framework with operating system support is also considered

[18]
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By employing HW/SW co-verification, it allows a mixed hardware and software based

execution and offers several advantages:

• Avoid to develop different model (re-model) of the design which already available

in early system-level modeling or RTL. This may reduce the development cost and

enable hardware-assisted verification

• Hardware prototyping can be deployed in faster time because the system testbench

has been created earlier, already verified and mature as it applied in previous stages.

• The trade-off between accuracy, speed and run-time can be managed more flexibly.

2.4 HW/SW Communication Interface

HW/SW communication interface is one of important component in HW/SW co-verification

in order to allow concurrent design verification for both design domains, e.g HW and SW.

The communication interface also bridges the gap between different abstraction layers and

provide data adaption from one layer to other layers.

The abstraction of communication model should handle two different parts : one at

SW side and the other one in HW side. In SW side the communication interface can be

consisted two different layer. The upper layer is API model that serves as interface be-

tween user application and the lower layer is hardware-dependent software. The hardware-

dependent software model will be different, depending on timing characteristic of hardware

interconnection. In general, usually hardware vendor provide bus driver software for han-

dling data transfer from API software to hardware platform. On the other hand, in HW

side the communication interface hides the detail of bus protocol through adapter inter-

face which is called as bus interface. This include I/O modules such as memory, FIFO, or

registers.

In simple point of view, the communication interface between SW function and HW

component provide a channel for data from source node to destination node. The commu-

nication channel can be modeled with different abstraction layer, depending on implemen-

tation of HW/SW co-verification platform. In data-flow simulation, this communication
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interface could be directly mapped as argument for function call as an explicit connection.

This communication as a port wiring in hardware side. In more detail abstraction, this

HW/SW interface can be modeled as transaction based model in a dedicated function call.

The function call usually represents data transfer from one node in SW to other destination

node in HW or from one source node in HW to destination node in SW.

The generic architecture of HW/SW communication interface is shown in Fig. 2.7.

Figure 2.7: HW/SW Communication Interface

2.5 Summary

As can be observed in the previous description, the HW/SW co-verification method has

many promising advantages compared to the conventional ones, which are fully-software

simulation and FPGA prototyping. The properties of these methods are provided in Table

2.1.

The HW/SW co-verification methods is the optimal option for verification of com-

plex circuits, considering the trade-off between system flexibility, verification run-time,

26



Table 2.1: Comparison Co-verification Methods

Properties SW Simulation HW Prototyping
HW/SW

Co-verification
Model/Platform RTL C/C++,SystemC FPGA HIL

Run-time Slow Fast Real-time Fast
Accuracy Cycle accurate Cycle approximate Cycle accurate High
Flexibility Moderate High low High

Observability Full Full Limited High
Cost Development Low Low High Moderate

and the development effort. However, the existing HW/SW co-verification has limited the

integration with system level simulation and suffer to be implemented as integral part of

system development. Hence, the simulation cannot cover verification task in various de-

sign levels concurrently, which are: algorithm validation, RTL simulation, and physical

verification (in circuit verification). Finally, in order to address these requirements, the

unified HW/SW co-verification framework is proposed to leverage the existing HW/SW

co-verification methods.
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Chapter 3

Unified HW/SW Co-verification
Methodology

3.1 Scope of the framework

In order to realize an efficient co-verification platform, this thesis proposes an effective

approach to obtain reliable and efficient development of large scale systems. An efficient

HW/SW co-verification platform should not only be capable of performing a fast simula-

tion, but also at the same time it must have:

1. Flexibility : support quick turn-around design modification and design extension,

2. Large coverage of verification task : cover from algorithm development to hardware

implementation,

3. Tight-integration with system-level simulation : maintain reliable system-level per-

formance.

In general, VLSI design and verification flow consist of three design layers, as depicted

in left side of Fig. 3.1. In the first layer, a complete system modeling is developed in al-

gorithm/mathematical abstraction using system level language such as MATLAB, C/C++,

etc. For example, in wireless communication system, it includes model abstraction of

transmitter, channel model, and receiver. Since blocks in wireless communication system,
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Figure 3.1: VLSI Design and Verification Flow

especially in receiver, are very sensitive to the employed algorithm and hardware optimiza-

tion, before translating into hardware design, the designed algorithm should be verified in

order to get realistic computational complexity and predictable performance degradation.

After algorithms have been validated, RTL design for hardware implementation can

be created depending on hardware target. The process of algorithm transformation, re-

cently, not become a difficult task since the availability of advanced High Level Synthesis

CAD tools [19]. A study and evaluation of various HLS tools, including model based RTL

design, are thoroughly presented in [20]. In this HLS methodology, the hardware abstrac-

tion is created using graphical form that facilitate system development conveniently. This

method offers some features, including parameterized design, area and timing optimiza-

tion options. These features allow the designers to carry out fast design exploration and

lead to reduce development time significantly. In this RTL design stage, the verification

is also performed to verify that hardware design in generated HDL code is still have same

functionality as defined in system level simulation. However, verification time for bit true
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model in this CAD environment is very slow. Once the RTL is obtained, hardware imple-

mentation can be carried out and once again the verification is carried out in order to ensure

that final hardware implementation satisfy required performance.

In the conventional verification system, the verification process of each stage is carried

out independently and is also not integrated to system level simulation. Additionally, to

verify and to evaluate overall system performance, it needs to implement all blocks into

hardware emulation in order to obtain fast verification results. With this approach, all hard-

ware design of overall system should be completed before performing verification. More-

over, another potential problem will be faced when we directly implement a full system,

such as lack of FPGA resource or timing problem.

As summary, there are several problems from the conventional verification methodol-

ogy. The first one, conventional verification process may contain many iteration loops,

either within same design layer or different design layer. This process takes longer veri-

fication time and gives slow feedback for design modification. As a result, development

process requires longer time. The second one, because the verification process is inde-

pendent between design layer, the verification environment in each layer cannot guarantee

the consistency of performance in the point of view of system level simulation. Hence,

the expected performance cannot be maintained from system level design into final system

implementation.

In our proposed verification platform, the verification of complex system can be carried

out efficiently from block component up to system level by employing unified HW/SW co-

verification platform. In the proposed scheme, we can use multiple of abstraction levels of

design. In particular, one component of whole system can be simulated in physical level,

while the remain blocks are simulated in other levels, MATLAB or RTL level.

To realize such system, tight integration of hardware platform with system level sim-

ulation is a key element. The proposed verification platform can be used by hardware

designers to design, implement, and verify related block concurrently. Furthermore, the

verification of each block can be performed in the point of view of system level simu-

lation. Hence, the final performance requirements of full system can be maintained and

predictable. Moreover, the verification time can be reduced significantly.
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3.2 Data-driven Simulation

A key feature in proposed verification method is data-driven simulation. In this approach,

data processing could be performed in vector based (burst data). Vector based process-

ing is considered since the provided data from system level simulation (e.g MATLAB) is

matrix/array-based format. To realize this feature, we provide communication interface

that support block data transfer. It includes SW interface and HW interface that support

block data transfer. The SW interface can perform burst mode transaction, while HW inter-

face able to handle block data transfer by employing block RAMs or FIFOs. By utilizing

this approach, the interaction of hardware software only occur in the beginning and the end

of verification run-time. Therefore, the overhead of HW/SW interaction can be reduced

significantly, which results significant improvement of HW/SW co-verification run-time.

Furthermore, one of of significant benefit is we do not need intensive synchronization

for data transfer in the communication channel. Since the data transfer is performed based

on availability of data, it can be synchronized only by simple interrupt-based mechanism.

Therefore, the implementation complexity in both software and hardware can be main-

tained.

This approach is different with HIL verification methodology in [15]. This work employ

HIL within Simulink to verify a complex circuit (e.g FFT design). While the Simulink envi-

ronment can provide more convenience verification, however, the data processing is carried

out in cycle-based simulation and time-driven based. This means that the data processing is

performed one-by-one data involving intensive interaction HW/SW communication. Thus,

this method introduces significant overhead for HW/SW communication for each cycle and

affects overall verification speed-up, particularly in high complex circuits.

As illustrated in Fig. 3.2, we can characterize the performance of data-driven simula-

tion and time-driven simulation as follows. First, we assume that the data-driven simulation

involves the interaction between HW and SW in the beginning and the end of verification

run-time. On the other hand, the time-driven simulation involves the HW/SW interaction

in each cycle. HW/SW interaction task takes Tcomm. Therefore, the total HW/SW com-

munication overhead for data-driven and time-driven simulation are 2Tcom and 2NTcom, re-

spectively. The communication speed and penalty cycle of interrupt handling contribute to
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Figure 3.2: HW-SW interaction in verification process: Time-driven simulation (upper),
Data-driven simulation (lower)

this communication overhead. For simulating N data, the total hardware processing for the

both simulations are same, which is THW . Hence, the total of verification run-time for data-

driven simulation, TDD, and time-driven simulation, TT D, can be calculated as provided in

the following equations.

TDD = N(TS W + THW) + 2Tcom (3.1)

TT D = N(TS W + THW + 2Tcom) (3.2)

We can see that the HW/SW communication overhead in data-driven simulation does

not longer depend on the number of simulated data (e.g cycle). Therefore, for simulating

very large data, the data-driven simulation will offer significant advancement over time-

driven simulation. Moreover, by employing our interface, SW data transfer can be per-

formed in high speed transfer, achieving up-to 800 Mbps. Thus, the overhead for HW/SW

interaction in the proposed method will also be reduced significantly. As a results, the

verification time in the proposed method is much faster than the time-driven simulation.

The data-driven simulation might have a limitation of memory buffer size used for burst

data transfer. Principally, the buffer size depends on specification of test vector and the

number of I/O ports of DUT. In practical, the boundary limit of buffer size is the remaining
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available memory blocks in FPGA target after implementation of hardware core of DUT.

3.3 Task Partition Methodology

Figure 3.3: Example of verification framework

Typically, the design process of a complex signal processing system starts from system

level algorithm description, such as MATLAB or C/C++. There are many possible algo-

rithms for implementation, in order to fulfill system requirements, but they give different

trade-off between area complexity, efficiency, flexibility, and design effort. Hence, design

exploration is mandatory and should be performed quickly at the initial development. Once

the algorithm is selected, a submodule can be transferred to hardware development and fur-

ther verified in the point of view of system level simulation.

The first step to build an efficient HW/SW co-verification system is performing task

partitioning of all system process. The task partitioning can be carried out under consider-

ation of area complexity, timing processing, requirement of quick algorithm evaluation, or

any design metrics that are determined by system requirements with subject to maximize

the verification speed-up and to minimize design effort.

For example, as depicted in Fig. 3.3, signal processing blocks of wireless communi-

cation system consist of several consecutive processes: input data and parameter (referred
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as Test Vector), Transmitter, Channel Model, and Receiver. Assumed that we perform

task partitioning to the system by selecting a complex process (e.g Receiver process) to

be simulated in hardware platform, and the rest of processes are simulated in software

platform. Furthermore, the transmitter, channel model, and output results checking could

be implemented into different software abstraction language. The transmitter and channel

model process are implemented in MATLAB, while output checking is implemented using

C/C++. Both software platforms, which are MATLAB part and C/C++ part, communi-

cate each other through custom transparent layer communication (API). On the other hand,

receiver process, as considered the high complexity system, is implemented in hardware

emulated platform.

At the initial stage design, it is possible to implement receiver partially in hardware

and allocate other receiver processes in software. When the development stage is growing,

more tasks in software processing could be added up to the hardware target and also can

re-utilize the verified hardware blocks, achieving a complete full hardware emulation.

3.4 HW/SW Co-verification Platform

3.4.1 General Architecture HW/SW Co-verification

Figure 3.4: General HW/SW Architecture
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To implement a complete design of HW/SW co-verification, first we have to provide

a generic architecture for HW/SW implementation, as shown in Fig. 3.4. The HW/SW

design should accommodate flexibility and reconfigurability purpose. Hence, it could be

reused for other design targets or applications. This generic architecture also reflects typical

SoC point of view, that is constructed from master CPU (host PC), bus (communication

interface), and slave as the hardware design target. The hardware design mainly consist of

three building blocks, which are: (1) bus interface module for receiving data from end-point

physical connection link (e.g. PCIe cable), (2) memory banks for storing input and output

stream, and (3) hardware target that is being verified (Design Under Test). On the other

hand, the software design consist of 3 main blocks, which are: (1) system level design that

performs system level simulation, (2) communication API that handles data communication

between software layer, and (3) bus driver that connects data communication of software

part and hardware part.

The employed HW/SW platform uses HAPS board from Synopsys [21]. Basically, the

original Synopsys HAPS (UMR bus) [22] is aimed for prototyping platform and is not

intended for hardware-assisted simulation. Since it cannot be directly connected to higher

abstraction of simulation, we provide the API design to extend the UMR Bus function in

order to allow the data flow between MATLAB and bus driver software. The second one,

the nature of UMR bus is single data transfer. Therefore, we improve the interface, both in

hardware in software, to support burst transfer and also capable for parallel I/O connection.

On the other hand, the main objective of our proposed methodology is for unified veri-

fication, that covers all design abstraction layers. Our proposed methodology seems similar

with Synopsys Hybrid Prototyping Platform [23]. It can also perform system level simu-

lation by utilizing virtual prototyping. However, our hardware platform does not include

virtual prototyping packages. Therefore, system level simulation could not be carried out

in employed HAPS board. Furthermore, the TLM verification flow in virtual prototyping

is being a commercial package which is not an open access package. Additionally, the

TLM based verification concept primarily suitable for System on Chip (SoC) prototyping

case, where the data communication through on-chip bus among various modules are very

important.
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Figure 3.5: Unified HW/SW design layer

3.4.2 Flexible and Configurable HW/SW Architecture

In order to address the limitation of basic HAPS platform, we propose unified hardware and

software design approach to realize unified HW/SW co-verification, which layer structure

is depicted in Fig. 3.5. We also propose flexible and scalable interface, both in hardware

and software part.

In hardware side, the flexible interface is employed to handle various transfer modes,

for example stream-based mode or pass-through mode. Additionally, to support various in-

terface type in different applications, we use configurable architecture for I/O management.

The hardware interface, e.g CAPIM, receives the data from software driver through physi-

cal link and multiplexes this data based on specified address. If the address tag of received
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Figure 3.6: Hardware Interface Structure

data is identical with interface address identity (address ID), then the data will be written

to connected memory or register. Otherwise, the data will pass through connected interface

chain. Moreover, we also exploit bandwidth transfer by employing full-matrix cross bar

connection. This allows the implementation of hardware interface module in fully parallel

architecture. The generalized structure of hardware interface design is depicted in Fig. 3.6.

In software side, to adapt with high level system simulator, we employ customized

API software as communication interface. This interface manages the received data from

high level simulator or hardware circuit. Specifically, this API has to allocate the data that

will be transferred to hardware from host PC. The API also receives and collects the data

that are received from hardware for further processing in system level simulation. The

designed API considers the flexible length of data transfer in order to enable burst data

transfer. Furthermore, the designed API collaborates with software driver to perform data

transfer into specific memory (or vice versa) by pointing designated hardware interface

address of memory. API requires length of burst data as argument input, while SW driver

uses the interface address as additional input argument. Several API codes are constructed

into main program to perform whole co-simulation testbench program. Following listing

37



shows the pseudo-code of generic main testbench software.

// Pseudo code software Testbench

umrbus_init();

/* Write vector data to UMRBUS */

for idx=1:CAPIM_NUM

write_data = read_vec_data(data_length, vecin_filename);

umrbus_write (write_data, data_length, CAPIM_address);

end

/* Waiting for Interrupt */

if (interrupt_handler()==1)

// Read data from hardware and send to Simulator

read_data = umrbus_read(data_length, CAPIM_address);

write_vec_data(read_data,data_length, vecout_filename);

end

3.4.3 Hardware-In-The Loop Co-verification System

In this work, the hardware platform uses HAPS platform (High-performance ASIC Proto-

typing Systems) from Synopsys [21], as depicted in Fig. 3.7. The HAPS system consists

of 4 FPGA chips of Xilink Virtex6 family. It can occupy upto 7.5M gates for each FPGA

chip. The HAPS system is connected to a host computer (PC) through PCI-e cable link.

The complete HW and SW design finally build a closed form of co-verification system,

which is called as hardware-in-the loop (HIL) co-verification system. The generic structure

of HIL system is depicted in Fig. 3.8.

By utilizing this HIL scheme, a system-level verification can be carried out in the fol-

lowing steps:

1. First, the system-level simulation will perform complete system simulation, as spec-

ified by system parameters from user. In the same time, the simulation will provide

intended input data for DUT block.
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Figure 3.7: HAPS Hardware Platform

2. The input data for DUT is passed through vectors generator to create set of data

vectors as required by DUT.

3. When generated data vectors are available, API software passes the re-formatted data

to bus driver software and latter sends to the HW platform.

4. While the HW performs data processing, the testbench software waits for the inter-

rupt signal from intended test point. As the interrupt signal is available, the soft-

ware testbench reads out simulation data from the memory, as pointed by specified

address. This simulation results are then sent back to system-level simulation for

further system-level evaluation.

3.4.4 Methodology Comparison

In order to quantify the effectiveness of our proposed methodology, we summarize the com-

parison of several important features from different methodology/verification environment,

as shown in Table 3.1.

Although high level simulation can provide all abstraction of system functionality and

also requires low-effort for environment setup, however, the simulation results are too far
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Figure 3.8: General HW/SW Architecture

from real hardware performance. In order to address this limitation, RTL simulation is car-

ried out to obtain more accurate evaluation. However, performing verification of complex

circuit and extensive computation using RTL simulator is prohibited due to very long run-

time simulation, particularly for exhaustive verification involving various system parame-

ters and many different design versions. To accelerate design verification and to achieve

the optimum performance, the standalone FPGA prototyping is employed, such as in [9].

Unfortunately, the standalone FPGA implementation needs huge effort since it must imple-

ment all system into hardware part. Hence, the verification task could only be performed at

very late stage of design development. Furthermore, this simulation approach is also less

flexible for various test scenarios and difficult to maintain system level performance.

Recently, the hardware-in-the-loop is a promising solution for fast verification. It also

has flexibility to support various system parameters. However, there is significant dif-

ference between our proposed work and the previous work of HIL system [15]. The HIL

method in [15] employs Simulink environment that performs cycle-based simulation. Thus,

the simulation is carried out as a time-driven simulation. This methods will introduce large

overhead due to HW/SW interaction in each cycle simulation. On the other hand, our pro-

posed verification is performed in data-driven based simulation that requires small overhead
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Table 3.1: Comparison of Co-verification Methodology

Objectives/Metrics Synopsys Hybrid
Prototyping [23] HIL [15] Proposed

High Level Simulation
a) Time-driven (cycle-based) X X X
b) Data-driven (vector-based × × X
RTL Simulation × X X
FPGA simulation X X X
Unified HW/SW verification X X X
Verification speed moderate moderate fast

on the HW/SW interaction. Therefore, the proposed method can achieve fast verification

speed .

3.5 Summary

In this chapter, the co-verification methodology in unified framework is proposed. The

proposed co-verification methodology includes:

1. The generic structure of HW/SW co-verification : reflects the recent SoC architecture

and has flexible HW/SW interface.

2. Task partitioning methodology : allocates the task/function of overall system into

implementation platform, either HW platform or SW platform.

3. Data-driven simulation within Hardware-in-the Loop co-verification : improves ver-

ification time significantly over the HIL platform in [15].

The proposed unified methodology has several main features, which are: (1) high flexi-

bility to support fast turn-around on design modification and design extension; (2) ability to

cover various stages of verification task (from algorithm validation to hardware implemen-

tation); (3) tightly-integrated with system-level simulation to maintain reliability of system

performance.
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Chapter 4

Fast Co-verification and Design
Exploration in Complex Circuits

In this section, we describe one application example of the proposed unified framework dis-

cussed in Chapter 3, particularly for supporting fast co-evaluation and design exploration of

complex circuit. The description covers algorithm-architecture translation, efficient archi-

tecture design, and building efficient verification framework. The MIMO decoder circuit

of high throughput wireless system is selected to represents complex circuit. Furthermore,

the relevant performance metrics are also presented.

4.1 Overview of MIMO Decoder in High Throughput

Wireless Communication System

Multiple input multiple output (MIMO) wireless communication system is one of tech-

nology breakthrough in wireless communication system. Recently, this technology has

widely adopted for providing high-data transmission rate. In WLAN standard family, the

MIMO technology has been introduced since the deployment of 802.11n standard. Us-

ing MIMO transmission scheme the physical layer transmission rate can achieve upto 600

Mbps. MIMO transmission scheme utilizes multiple antennas both in transmitter and re-

ceiver to obtain the performance gain, which are spatial multiplexing gain and diversity
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gain.

In order to increase system reliability, the MIMO scheme employs spatial diversity. In

this scheme, the copy of data are transmitted through multiple antennas and will experience

different paths. In the receiver, these multiple independent signals are utilized in decoding

process in order to improve transmission reliability. On the other hand, in order to increase

transmission rate (e.g. throughput), MIMO scheme sends the different data into each trans-

mit antenna by using multiplexing scheme. Hence the obtained performance gain refers

to spatial multiplexing gain. For single link communication with the number of transmit

antennas NT and the number of receive antennas NR, the maximum diversity gain is NT NR,

while the maximum spatial multiplexing gain is min{NT , NR}. However, we cannot achieve

both the maximum diversity gain and maximum spatial multiplexing gain in the same time.

Hence, there is a trade-off between these two performance gains [24].

In this thesis, the main objective is to implement high throughput wireless system.

Hence, the MIMO system is realized through spatial multiplexing scheme. We consider

a MIMO wireless communication system with N transmit antenna and N receive antenna.

The transmit symbol is taken from a quadrature amplitude modulation(QAM) which has

2M constellation points. M denotes the modulation order. For simplification, the employed

MIMO system is shown in Fig. 4.1.

Figure 4.1: NxN MIMO Communication System Model

The transmission of each vector x over flat-fading MIMO channels can be written as

y = Hx + n (4.1)
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where x = [x1, x2, ..., xN]T is the transmitted signal vector, y = [y1, y2, ..., yN]T is the re-

ceived signal vector, H is the N x N channel matrix, and n = [n1, n2, ..., nN]T is independent

identically distributed Gaussian white noise vector.

The MIMO decoder block plays an important role in MIMO wireless communication

system because the BER performance is highly dependent on employed MIMO decoder al-

gorithm. Many researchers have investigated several techniques that are feasible for practi-

cal implementation, such as Zero Forcing (ZF) [25], maximum likelihood detection (MLD)

[26], linear minimum mean square error (LMMSE) [27], Bell Labs layered space-time

MMSE (BLAST MMSE) [28], and lattice-reduction aided MMSE (LRA MMSE) [29].

ZF algorithm and MMSE algorithm estimate the received signals based on the inverse

matrix, H−1. In the case of the inverse matrix can not be found, the MIMO detection could

employ the pseudo inverse matrix, H+
ZF and H+

MMSE. As ZF MIMO detection doest not

consider the contribution of noise, the MMSE MIMO detection includes the noise variance,

σ2
n, as the correcting factor for weight calculation in MIMO detection process. The ZF and

MMSE MIMO detection algorithms can be expressed as follow.

x̂ = H−1y (4.2)

H−1 ≈ H+
ZF = (HHH)−1HH (4.3)

H−1 ≈ H+
MMSE = (HHH + Iσ2

n)−1HH (4.4)

where, I is the identity matrix.

In order to improve the detection capability, BLAST-MMSE and LRA-MMSE have

been proposed. The BLAST-MMSE performs a first detection of the most powerful signal

using MMSE scheme, and then considers the estimated signal as an already-known noise

before detecting the next signal. Because the most powerful signal is selected to detect

first, the probability to detect received data correctly is high. Thus, the performance of this

scheme is better than ZF and MMSE.

On the other hand, LRA-MMSE MIMO detection attempts to find the orthogonal form

of the channel matrix H before applying MMSE for detection. By performing such cal-

culation, the input channel matrix of the MMSE detection is expected to be orthogo-

nal, thus the detection capability of the MMSE is improved as compared to case of non-

orthogonalization.
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4.2 MIMO MLD Algorithm

The MLD technique is considered as the optimal technique for MIMO Decoder. In this

algorithm, estimated transmitted signal is calculated among all the candidates, as denoted

in Eq. 4.5

x̂ = argmin
x∈Ω

||y −Hx||2 (4.5)

Hence, with the increasing of constellation point of the modulation scheme and the

number of spatial streams, the computation complexity in MLD MIMO decoder becomes

extremely high and increases the hardware complexity. Additionally, this requires huge

effort on the verification. To deal with this issue, some studies, including its verification,

have been proposed. In [9], the authors propose FPGA Implementation of real time MLD

MIMO decoder that support for QPSK modulation in 4x4 MIMO system. In higher mod-

ulation order, e.g. 64-QAM MIMO system, ref. [10] describe FPGA prototyping of quasi

MLD MIMO Decoder. Another implementation approaches of MIMO decoder, such as A

GPU-based implementation and Application Specific Instrument-set Processor (ASIP) are

also considered, as presented in [30] and [31], respectively.

In order to prove applicability of the proposed verification platform into complex cir-

cuits, we consider Full-MLD MIMO decoder for IEEE 802.11ac WLAN system, as a case

study. The main motivation relies on several aspects.

1. First, we need to verify the complex circuits where the simulation time in SW based

simulation takes excessive time (very long or impractical). This is to judge the effi-

ciency of the proposed methodology in terms of verification time speed-up. Hence,

the proposed methodology is eligible. The designed MLD MIMO decoder should

support up to 256-QAM modulation scheme. Because of its huge complexity, design

a real-time implementation and make efficient verification is still a big challenge.

For example, we have carried out the calculation of timing processing of highest

complexity MLD parameter in 4x4 MIMO carefully. It is found that the verification

of one packet data, consisting 2 OFDM symbols, verification using MATLAB tools

takes around 70 days. On the other hand, assisted hardware platform only takes 4
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minutes.

2. One of the most complex circuit in MIMO WLAN system is MIMO decoder, where

the most optimum algorithm is Full MLD algorithm. Since, we also need to know the

performance of such algorithm in a real hardware implementation for a benchmark

(reference), we have to implement this algorithm and have to evaluate its perfor-

mance. For higher order modulation and large antenna numbers, it is seem imprac-

tical to simulate this algorithm in full SW simulation. However, in the final product

deployment other algorithms such as K-best and Sphere decoding would be more

attractive, considering the trade-off between performance and cost.

To reduce computation complexity, we employ QR decomposition into channel matrix,

H, that are provided by Channel Estimator block. Firstly, we decompose the matrix H into

two matrices Q and R, where Q is the unitary matrix and R is the upper triangular matrix.

With H = QR, Eq. 4.5 can be written as

z = Rx + n′ (4.6)

where z = QHy and n′ = QHn

Then, the output MLD, x̂, can be calculated by searching among all candidates such

that resulting minimum magnitude of error signal, as provided by Eq. 4.7.

x̂E = arg min
Ω∑

i=1

||D||2= arg min
Ω∑

i=1

||z − Rx||2 (4.7)

where Ω is number of all candidate which is 22MN and xE referred as Euclidean distance

calculation. In this paper, we consider MIMO system with parameters as provided in Table

4.1.

46



Table 4.1: System Parameter
Parameter Value
Wireless System Standard IEEE 802.11ac
Number of Antenna (N) 4

Modulation Type (M)
QPSK (2), QAM16 (4),

QAM64 (6) and QAM256 (8)
System Bandwidth 80 MHz

4.3 Design Exploration in Wireless Communication Sys-

tem

When we consider employing multi metrics in system development, several design versions

or configurations should be evaluated in order to obtain optimum implementation [32], [33].

The evaluation are carried out by examining the trade-off among several design constraints.

This process is called as design space exploration. In the latter, we use design exploration

term instead.

The process of design exploration can be illustrated in Fig. 4.2. In developing LSI

circuits for wireless communication systems, design exploration is unavoidable task. Since

the hardware implementation of communication system is highly dependent to various con-

straints, design exploration is an enabler to obtain optimum design [34]. For example, sev-

eral performance indexes such as throughput, hardware complexity, and performance can

be considered as the inputs for assessing design exploration, with the limitation constraints

are resource area and acceptable development time (include verification time). Recently,

a hardware-assisted platform for design exploration has been considered to address these

issues [35]. [36]

Formally, for given k design metrics (parameters) Pk, the cost function of each design

configuration, C, can be formulated by

C =

K∑
k=1

αkPk (4.8)

where αk is weighting factor for kth metric (priority of design target). The lower αk represent
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Figure 4.2: Multi-metrics Design Exploration

the higher priority of design metric.

The objective of design exploration is to minimize the cost function, C, subject to the

available design constraint, Pk. The design metric is limited by the bound (capacity), de-

noted with bk. Hence, the design exploration problem can be written as follow.

minimize
P

C(P)

subject to Pk ≤ bi, k = 1, . . . ,K.

Additionally, to evaluate the design exploration the designer should perform verifica-

tion in different abstraction layers, which are: algorithm evaluation in system level, RTL

simulation and hardware verification. In conventional approach, verification of those layers

of abstraction are carried out independently. As a result, development process takes longer

time. Moreover, since the verification process is carried out independently among design

layers, the performance results from each layer cannot guarantee the consistency of perfor-

mance in the point of view of system level simulation. Hence, the efficient verification time
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is critical when involving design exploration.

To clarify the efficiency of design exploration task, we can evaluate the design and

verification cost. Let the total of design versions to be evaluated are D . The cost of devel-

opment, C is characterized by total design time Tdesign and verification time Tveri f .

Since we employ model-based design, it is not difficult task to generate different version

of design. Therefore, we can eliminate the variation of design times for several design

versions, particularly if no major differences. Later, for this work we may use development

cost as C = kTveri f , with k is constant factor. In the conventional way, for evaluating D

different designs, we have to perform D times verification, which results development cost

of design exploration as CDS E = kDTveri f .

With the proposed verification framework, we can deploy several design version into

hardware target and verify these designs concurrently. In the best case, D can be imple-

mented in hardware target. When the each design version has same I/O structure, we only

need to multiplex the I/O data for each design. This task can be addressed by the proposed

flexible interface. Hence, the cost of the verification task can be significantly reduced only

CDS Eprop = kTveri f . This results a gain of design productivity :

GDP =
1

CDS Eprop

CDS E

= D (4.9)

This assumption is valid only for complex circuit, when the computation time of hardware

processing is much longer than the software processing for data transfer.

In this thesis, we consider design exploration which the the objectives are : (1) finds

out the optimum hardware usage, (2) takes efficient verification time, and (3) satisfies the

system-level performance error rate. The design exploration task can be categorized into 2

main tasks.

1. Algorithm co-exploration : The typical design exploration in wireless communica-

tion system is algorithm co-exploration. Since the implementation of signal process-

ing task varies in different algorithms, many existing algorithms can be selected as an

optimum solution, regarding to design constraint. For example, in MLD MIMO De-

coder, to implement distance calculation, the Euclidean metric is the most optimum
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solution. However, in limited logic resource, the use of multiplier can significantly

takes hardware resource. As an alternative, the approximation approach of distance

calculation, such as Manhattan distance can be employed. In practical approach, we

may employ simplified distance calculation by using a Manhattan distance, as given

by:

x̂M = arg min
Ω∑

i=1

|Re[D]| + |Im[D]| (4.10)

Comparing Eq. 4.10 and Eq. 4.7, it is clearly shown that the Manhattan metric no

longer uses multiplier for calculating metric value. The distance metrics is calculated

as addition of real part and imaginary part of distance value, instead of using of

square-value of distance. Hence, when a number of distance calculation unit are

large (e.g in parallel processing MLD MIMO decoder) it can reduce significantly

area resource as well as reduce critical path delay as compared to Euclidean metric.

The evaluation of this exploration will be discussed in later section.

2. Bit Length Decision : As the data quantization on wireless signal processing will

significantly affect overall system performance, the decision of bit width should be

carried out carefully, in order to obtain acceptable performance loss. Hence, the

evaluation of selected bit width must be performed in each stage design to ensure

that performance of fixed point hardware design satisfy required performance. To

provide a fast exploration of bit width decision, our proposed HW/SW co-verification

can be utilized for faster bit-width decision by performing simulation various version

of design. Furthermore, the simulation results are analyzed to determine the most

optimum bit width regarding to system performance and hardware cost (logic area

usage).
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4.4 HW/SW Architecture for MIMO Decoder Implemen-

tation

In this section, we will describe HW/SW design for co-evaluation MLD-MIMO Decoder.

This includes description of HW architecture design, FPGA implementation, HW/SW

Hardware-in-the loop verification system.

Figure 4.3: MLD MIMO Decoder architecture

4.4.1 MIMO MLD Architecture

The architecture of designed MLD decoder is derived based on MLD signal processing in

Eq. 4.6. The overall block diagram of MIMO Decoder is shown in Fig. 4.3. While the

main objective of this work is to provide verification framework, however, we also consider

the low complexity design of Full MLD MIMO decoder. The low complexity design im-

plementation is important in order to obtain efficient design, for both area usage and timing

processing. The smaller area resource can give more opportunity to employed many design

core in hardware target, while the efficient timing processing (i.e. faster maximum clock

freq.) offers the faster run-time of simulation. Particularly, in an intensive DSP compu-

tation, such as Full MLD processing, the bottleneck of simulation processing is related to

hardware processing. Therefore, implementation of efficient architecture implementation

is critical, instead using direct implementation of calculation.

The MLD MIMO Decoder block mainly consists of:
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Figure 4.4: Conventional architecture of ROM candidate generator

1. Candidate Generator: This provides all possible transmitted signals. The number

of reference transmitted signals are determined by the employed modulation scheme

and the maximum number of transmit stream. Conventionally, the generation of can-

didate transmit signal is implemented by ROM. However, the direct implementation

of unoptimized ROM structure will have huge cost of area resource. The ROM size

will increase double exponentially as the number modulation scheme is higher. For

example, in implementation of 16-QAM needs ROM structure with total size of 24∗4,

while the 64-QAM requires 26∗4. The implementation of higher depth-ROM will re-

sults complex 24M-to-1 multiplexer and address decoding. Furthermore, this complex

structure limits maximum processing speed.

To reduce complexity of ROM structure, we can exploit the characteristic of value of

constellation points regardless in-phase (I) or quadrature (Q) axis. Since the constel-

lation points are constructed from unique values for each level point (L), we may only

use the unique value and modify the structure of address decoding to implement the
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ROM structure. The total number of L in each modulation scheme is L = sqrt(2M),

where M represent modulation order. Furthermore, since we employ upto 4 streams,

we also can separate the ROM upto 8 individual ROMs. Hence, the implementation

only requires 8 ROMs with the each ROM consists of L words. The address for each

ROM is selected from main address counter which the selector size for each counter

is only log2L.

To clarify this idea, we present the modified structure of ROM for 16-QAM case as

shown in Fig. 4.5.

Figure 4.5: architecture of 16-QAM ROM candidate generator

In summary, the modified architecture will reduce the ROM size from 24M into 2M/2

and multiplexer complexity from 24M-to-1 multiplexer into M/2-to-1 multiplexer

2. MATRIX MULT: performs matrix multiplication between received signals and can-

didate of transmitted signal. In order to reduce multiplication number, we use QR

decomposition pre-processing into channel matrix, H. With this pre-processing, the

channel matrix form is modified into unitary matrix and provides 10 non zeros value.
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Hence the total complex multiplications and additions are reduced from 16 to 10

units and from 12 to 6 units, respectively . The matrix multiplier block results 4 PED

values which later will be used for distance calculation. The final structure of matrix

multiplication is depicted in Fig. 4.6.

Figure 4.6: architecture of Matrix Multiplier Block

3. PED CALC: performs distance calculation, recursively along all possible number

of candidate. The distance calculation is calculated as total distance from all PED

value. The calculation of PED metric could be performed using Euclidean method or

Manhattan method, as provided in 4.7 and 4.10. In Euclidean method, to obtain one

PED value it is required 2 multipliers and one adder. On the other hand, Manhattan

method does not require multiplication blocks. It only employ one adder to obtain

PED value. The structure of distance calculation is shown in Fig. 4.7.
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Figure 4.7: architecture of Distance Calculator Block

4. SORTER: determines the minimum error distance and selects the estimated trans-

mitted signal. Since the calculation of distance is carried out sequentially, the sorter

is implemented with simple sorting method that only employs one comparator and

register for buffering the minimum value.

5. MLD control: provides control signal and parameter in appropriate timing. The

baseline design with non-pipeline control, the distance data will be provided in every

8 clock cycles. Since the calculation of distance and updating minimum value can

only provide one data in each cycle calculation, it introduces some idle clock cycles.

This results a low-throughput MLD processing. Therefore, the control block is em-

ployed in order to manages the process of MLD calculation can be performed with

zero-stall. Following are the timing chart of baseline MLD processing and non-stall

MLD processing.

It can be shown that the total processing timing can be reduced from 8K into K + Tlatency.

The K value represent the number of distances should be calculated for determining
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Figure 4.8: Timing Diagram MLD calculation

estimated transmit signal. For higher order modulation, which K is very high, the

reduction is very significant.

6. Some Pipeline registers. These pipeline registers is inserted to break up complex

processing within several stages. Hence, the critical path delay can be reduced and

the achievable maximum clock speed is increased. By operating the circuit in higher

speed, the verification task can be performed in faster time.

Furthermore, if the processing time are required to be improved the parallel processing

core could be employed. However, the verification efficiency trade-off should be consid-

ered. This performance metric will be discussed in later section of this chapter.

56



Figure 4.9: FPGA Architecture for MLD MIMO Decoder Implementation

4.4.2 Architecture for FPGA Implementation of MIMO MLD

When the DUT circuit is completely designed, the following task is FPGA implementa-

tion. The FPGA implementation we need to integrate the processing core (e.g DUT) and

the hardware interface. The hardware interface consist of several CAPIMs and memories

as well as the control circuit for address decoding within bus interface. The number of

required CAPIM unit depend on the structure of input/output deployed system.

In order to implement MLD MIMO Decoder into template FPGA architecture, first

we have to consider the structure of input-output of DUT. From 4.6, it is clear that MLD

design has 14 inputs, which are R data matrices and Z data matrices. Additionally, we also

will reserve one CAPIM to handle data input for system parameter and control, such as
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modulation type, number of stream and start/enable signal.

According to the requirements of MLD MIMO decoder timing, the input of MLD

MIMO decoder for each decoding process should be available at the same clock cycle.

For simplification, we store each element of matrices input into different memory. Hence,

we map each input data R and Z to one index CAPIM. In the same approach, we can assign

each data output to one CAPIM unit. In case of MLD MIMO decoder, we need 14 CAPIM

units for input buffer, 4 CAPIM units for output and 1 CAPIM unit for register control. In

this FPGA implementation, the buffer size is determined according to the following rea-

sons: (1) maximize parallel I/O and (2) support burst size for one packet frame data (e.g

Low order modulation require larger amount of data). The buffer size for each I/O is con-

sidered as 32x14 bits RAM. The overall FPGA architecture for MLD implementation is

shown in Fig. 4.9.

Moreover, the building of CAPIM structure is easily modified and configured for other

DUT. Hence, the effort of configuring the interface design between FPGA and host PC for

other applications is relative small.

4.4.3 Building Hardware-in-the Loop Co-verification System

After the hardware design of FPGA system has been implemented, we can employ this

DUT and also the SW design into template architecture, building a complete HIL co-

verification system. The DUT design is developed based on derived MIMO MLD decoder

algorithm, as presented in previous section. On the other hand, the SW design is developed

according to task partitioning process.

From the wireless block diagram, in Fig.4.1, we further could employ task partitioning

and also task mapping for MLD MIMO decoder co-evaluation, as depicted in Fig. 4.10.

The high-level simulation software (e.g MATLAB) implement the rest of wireless sig-

nal processing tasks, except for MIMO decoding processing. These include transmitter

process, channel model, receiver front-end, MIMO pre-processing (e.g. channel estimator

and QR decomposition), data demodulation dan FEC Decoding. Other software tasks, such

as performance evaluation and data transfer transfer, are natively performed by MATLAB

and API software, respectively. Furthermore, the whole software tasks are constructed into
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Figure 4.10: Task Partitioning and Mapping for Implementation of Co-evaluation MLD
MIMO Decoder

main testbench software and will be executed in host PC for performing HIL co-evaluation.

The complete structure of HIL system for MLD MIMO decoder co-verification is shown

in Fig. 4.11.

4.5 Evaluation of Performance Metrics

In this section, we elaborate several performance metrics in order to evaluate the effective-

ness of the proposed HW/SW co-verification, particularly in large scale circuits.

4.5.1 Estimation of Timing Processing

In order to obtain a valid verification time, estimation of processing time is the most im-

portant factor. Therefore, we make an accurate approach by abstracting each computation
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Figure 4.11: Hardware-in-the loop for MLD MIMO Decoder co-verification system

task, as shown in Fig. 4.12.

Note that, the verification time consists of two main parts, which are: software pro-

cessing and hardware processing. Furthermore, execution time of software processing has

several tasks: (1) initial setup, (2) data transfer from host PC to FPGA target in the be-

ginning of simulation time, (3) interrupt handling, (4) data transfer from FPGA target to

Host PC, and (5) post processing analysis for final performance evaluation after hardware

process. The software execution time depends on the number of input and the length of

burst data. In our case, software execution time only varies with the number of CAPIM

and the length of simulated data. Variation of modulation type parameter does not affect

software execution time.

On the other hand, the hardware processing mainly consists of several iterations of

processing element (PE) execution, in which the number of iterations depend on employed

modulation type. In our simulation case, to decode one subcarrier data, the PE will perform

its process iteratively, as many as the number of candidates. Moreover, each processing of

subcarrier also takes additional cycle for memory access.

The estimation of processing time for each modulation type is given in Table 4.5.1.

This result is obtained by performing software profiling, which the software takes around
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Figure 4.12: Illustration for Estimating Verification Run-time

0.02 second for every run time. For any target applications, we also can employ the same

approach of estimation time to obtain estimation of execution time accurately.

Table 4.2: Estimation of Verification Time
Mod Type SW proc (sec.) HW proc (sec.) Total proc(sec.)
1 (QPSK) 0.02 0.00261 0.02261

2 (QAM16) 0.02 0.65541 0.67541
3 (QAM64) 0.02 167.77221 167.79221

4 (QAM256) 0.02 42,949.67301 42,949.69

4.5.2 Verification Efficiency

To further speed up hardware processing, it is possible to change the design architecture.

For example, utilization of parallel architecture of MLD can speed up hardware processing

and finally results an improvement of system throughput. However, the cost of are resource

and the achievable speed-up gain should be evaluated. In order to quantify this problem, we

introduce verification efficiency metric. This metric assess the efficiency verification task

when we employ parallel processing element. The verification efficiency, η, is determined
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Figure 4.13: Verification time for various PE numbers

based on Eq. 4.11:

η = 1 −
TparaPE

TsinglePE
(4.11)

where, TsinglePE is verification time carried out in single processing element architecture,

and TparaPE is verification time carried out in parallel architecture.

From this equation we further can characterize the effect of number processing core

into simulation time. Let the simulation time for SW part takes TS and HW processing

time takes TH for single unit of processing element. In the case of employing M processing

element, the HW simulation time will be reduced into TH
M . The SW simulation in parallel

processing element takes the same time as in the single processing time. Hence, Eq. 4.11

can be rewritten in Eq. 4.12.

η = 1 −
TS + TH

M

TS + TH
(4.12)

Moreover, if we assume the processing time of HW task is k times of the processing

time of software, the verification efficiency, η, can be expressed as:
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η = 1 −
TS + k.TS

M

TS + k.TS
(4.13)

The latter, it can be derived into compact form as given by

η =

(
1 −

1
M

) (
k

1 + k

)
(4.14)

The latest equation reveals that the efficiency is affected by two factors:

1. Performance gain of parallel processing (M)

The efficiency gain of parallel processing is shown in the first term of equation. We

can see that the efficiency gain will increased as the number of employed processing

element is higher.

2. Hardware computation complexity (k)

The verification efficiency is also mutually dependent on the complexity of hardware

processing. It can be seen from the last term of equation 4.14, the verification will

be efficient only when the complexity hardware processing time is much larger than

software processing time (e.g k is larger).

In order to evaluate this metric, we calculate required verification time for different

number of parallel processing elements. Fig. 4.13 shows the verification time for several

number of PEs, from 4 PEs until 256 PEs. From evaluations, we found that increasing the

number processing element, up to 256 units, will give another increasing of verification

time about 100 times faster than using single PE. This result is obtained by employing the

same simulation parameters in Table 4.1.

Therefore, the total speed up of verification time can reach up to 105 time, compare

to pure software verification. However, increasing the number of processing element no

longer give high benefit for speed up verification time. As shown in Fig. 4.14, the verifi-

cation efficiency for the number of parallel PE area more than 64 units, the efficiency not

increased significantly regarding to hardware cost. It remains constant for around 95% in

16QAM and approximately 99% in 64QAM and 256QAM. However, for low order mod-

ulation scheme, such as QPSK, the parallel architecture does not give significant gain for
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verification efficiency. As shown in Fig. 4.14, the verification efficiency for QPSK mode,

verification efficiency relatively constant around 12%. Hence, the optimum parallel PE is

considered as 64 units and particularly effective in higher order modulation scheme.

Figure 4.14: Verification efficiency for various PE numbers

4.5.3 Verification Runtime Speed-up

The simulation speed of the different environment verification has been measured in order

to present benefit of proposed verification platform. The verification speed-up is defined

as a comparison of verification time between proposed verification framework, Tprop, and

other verification environments, which are MATLAB-Synphny HLS environment TS HLS

and Modelsim environment, TS W . The MATLAB-Synphny HLS environment is selected

to represent high-level abstraction framework, while the Modelsim represents full-Software

verification framework. The verification speed up for two reference benchmarks are pro-

vided in Eq. 4.15.
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Figure 4.15: Verification Time Comparison

α1 =
Tprop

TS HLS
α2 =

Tprop

TS W
(4.15)

where, α1 is verification speed-up against MATLAB-Synphny HLS, while α2 corresponds

to verification speed-up against full-Software simulation (Modelsim),

Figure 4.15 shows the results of verification time for different modulation scheme.

These results represent single processing element of MLD. It is also should be noted that

the results of MATLAB-Synphny HLS can not be obtained for higher order modulation

which are 16QAM and 64QAM. On the other hand, the modelsim simulation is not appli-

cable for 64QAM modulation.

As shown in Fig. 4.15, the speed up of verification time is more than 3 times magnitude

(1000 times) compare to software simulation, such as Modelsim and MATLAB. It also can

be seen that the simulation time is close as predicted by pre-calculation.
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Furthermore, from experimental simulation it is shown that the bottleneck of data trans-

fer is no longer occurred. For instance, when evaluate transmitting large data (1000 Byte)

using high order modulation, the software processing for data transfer between host PC

and HAPS system is negligible and the limitation lied in hardware processing. Because the

software processing part took a constant time, while the hardware processing part depend

on employed modulation type.

4.6 Experimental Evaluations

4.6.1 FPGA Implementation Results

FPGA implementation is carried out on hardware target HAPS system with FPGA device is

Xilinx-virtex6. Implementation results of MIMO MLD decoder for single PE and parallel

PE (64 cores) are summarized in Table 4.6.1.

Table 4.3: FPGA Implementation Results of MIMO MLD Decoder
Resource Usage 1 PE 64 PEs

LUTs 18,024 140,851
Registers 7,989 32,827

RAM Blocks 576 576
Gate Count 218,139 1,497,447

It is found that the designed MIMO MLD Decoder can achieve clock frequency upto

180 MHz. Furthermore, it is also possible to implement a number of parallel processing

elements or even several cores of different version of design in order to speed up hardware

processing time since our hardware platform have big capacity of logic resources.

From synthesis result, the MIMO Decoder design occupies 18,024 look-up tables (LUTs),

7,989 registers, 576 blocks of RAM. On the other hand, 64-PE units of MIMO MLD de-

coder requires 140,851 LUTs, which is almost 8 times compared to single PE. The parallel

design also requires 35,827 registers, which is equivalent to 4.5 times of single PE usage.

Additionally, the RAM design occupies the same blocks with single PE implementation,

which is 576 resource blocks. Since each block RAM is constructed from 36x1 Kbits

RAM, the total employed memory bits is equivalent to 30,736 Kbits.
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It is should be noticed that implementing parallel processing element does not change

the design of bus interface and memory structure. Hence, we can utilize the rest of the

LUT resource, as well as the DSP block for implementing the parallel processing element

or other cores. The

In order to provide a clear comparison corresponding to area complexity of LSI design,

we have converted the resource usage into gate count. Hence, we can use this value for

comparison between design target. Essentially, the task of gate translation between FPGA

and ASIC is difficult and cannot give exact gate count due to several reasons, such as:

coding style, synthesis optimization, Placement and routing algorithm, library quality, etc.

However, to give estimation of gate count, we use approximation value which each LUT is

constructed from 9 gates and one register employs 7 gates [37]. Additionally, this assump-

tion also considering the fact that the number of gate counts in one LUT vary depend on

the number of inputs used.

According to our estimation constraint, the total gate count of MLD design in single PE

and 64 PEs are around 218 K gates and 1.5 M gates, respectively. This result reflect that

the MLD MIMO decoder design has high complexity in term of gate count (e.g. more than

one million gate)

4.6.2 Example Evaluations

1. Bit Error Rate Performance
The performance of proposed MIMO Decoder design has been evaluated regarding

to various channel characteristics and modulation types, as shown in Fig. 4.16 and

Fig. 4.17 respectively.

Figure 4.16 shows BER performance for various modulation types, from QPSK until

64QAM. The results also include MATLAB simulation results that provides perfor-

mance benchmark. The MATLAB simulation is carried out in floating point simu-

lation. On the other hand, the HW/SW simulation employ MLD decoder as DUT.

In this simulation, the MLD MIMO Decoder applies Euclidean metric for distance

calculation and uses datapath length of 16 bits.

From simulation result, we can see that the performance of hardware implementation
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of MIMO decoder is close to MATLAB simulation for QPSK and 16 QAM schemes.

The very small performance lose is only affected by bit quantization. However, for

high order modulation such as 64QAM, it is impractical to obtain the result since its

excessive run-time. The simulation results reveal that the task of algorithm transfor-

mation, from floating-point format into hardware fixed-point format is sufficient.

Figure 4.16: BER performance on various modulation types

Furthermore, we also evaluate the performance of DUT for for various channel type,

as shown in Figure 4.17. In this simulation, the DUT employs QPSK modulation

scheme. The performance of MIMO decoder is evaluated under three types channel,

which are : Identity channel, TGac AWGN, and TGac Channel D.

From Fig. 4.16 and Fig. 4.17, we can prove the capability of our verification plat-

form for comprehensive evaluation of wireless communication system, that covers

various scenarios. This result also confirm that the verification platform can perform
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Figure 4.17: BER performance on various channel types (QPSK Mode)

evaluation in different abstraction layers, which are system level design (MATLAB)

and physical implementation (FPGA).

2. Algorithm Co-exploration

Fig. 4.18 shows comparison of performance of MIMO MLD Decoder for Euclidean

distance and Manhattan calculation method.

The performance results in low order modulation such as QPSK is almost same for

various SNR. On the other hand, in higher order modulation such as 16-QAM, the

performance of Manhattan distance calculation is slightly below from Euclidean dis-

tance calculation, particularly in higher SNR (above 20 dB). These results give in-

sight to the designer to evaluate if the selected algorithm is sufficient or not, accord-

ing to error rate performance requirement. However, selected algorithm should be

decided as early as possible during design development. Thus, the fast design explo-

ration as well as fast verification is a key element in order to validate that algorithm

approximation gives acceptable performance loss. By evaluating two design ver-

sions concurrently, the verification time ca be reduced become half of conventional

verification scheme. This result corresponds to design productivity gain of 2.

As summary, we can show these results into DSE chart, as shown in Fig. 4.19. The
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Figure 4.18: BER performance for different types of distance calculation

more optimum of design alternative is selected with the direction of navigation curve

(dash line).

3. Optimum Hardware Complexity

In Table 3, we provide logic resource utilization from the implementation of paral-

lel PE of MLD decoder. This table confirms that increasing the bit length results

exponential growth of logic resource usage in term of gate count. For example, by

increasing bit-length two times (e.g from 16-bit into 32 bits) results in almost 4 times

increasing of gate count, from 1.5 M gates to 5.2 M gates. Hence, we further can

make trade-off this area resource results with achievable error rate performance.

The evaluation results of BER performance for various bit lengths are shown in Fig.

4.20.

From the evaluation results, we can see that the error performance of MIMO MLD
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Figure 4.19: DSE chart for algorithm exploration

Table 4.4: Hardware resource usage for different bitwidth
Bit length LUTs usage (%) Register usage (%) Gate Count

8 26,140 ( 5.5%) 8,768 (0.9%) 296,636
11 54,760 (11.5%) 14,553 (1.5%) 594,711
16 143,753 (30.3%) 28,496 (3.0%) 1,493,249
24 277,321 (58.5%) 33,959 (3.6%) 2,733,602
32 535,798 (112%) 60,252 (6.0%) 5,243,946

Decoder will improve as the bit length is increased, as its nature. The 8-bit imple-

mentation gives the worst performance and it is not acceptable. On the other hand,

the 11-bit implementation is can enhance an error rate performance, particularly in

lower SNR. However, when the channel condition is better, error rate performance

is degraded and will not satisfy the error rate target. The implementation of 16-bit,

24-bit and 32-bit can approach the upper error rate bound, which is floating point

software simulation. However, the performance improvement when the bit length is

higher than 16 bits is relative small from floating point simulation of MATLAB and

no longer significant. Hence, trading-off the performance and hardware usage, the

efficient hardware for final implementation is considered as 16-bit.

To summarize the performance results and hardware implementation results, we can

represent these data into DSE chart, as hown in Fig. 4.21. From the DSE chart, we
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Figure 4.20: BER for various datapath bit length

have two design options that satisfy the allowed DSE space, which are 11-bits design

and 16-bits design. Since we consider the error performance is the higher priority,

the optimum of 16-bits design option is selected.

4.7 Summary

In this chapter, we have presented an application example of the proposed co-verification

methodology in order to prove its effectiveness on speed-up verification time. This eval-

uation also involves the evaluation of design exploration. The MLD MIMO Decoder for

high throughput tireless system is selected, as a representative of the complex circuits. The

implemented MLD MIMO decoder employs approximately 1.5 M gates count. The perfor-

mance metric in term of verification efficiency, achievable run-time verification, and design
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Figure 4.21: DSE chart for MLD MIMO decoder implementation

exploration evaluations are presented. The experimental evaluation using hardware-in-the

loop verification scheme is also presented. Experimental results with MLD-MIMO De-

coder case show that the verification speed up can achieve upto 1,000 times in single PE

and upto 100,000 times in 64-parallel PE, with the verification efficiency almost 99 %. By

using this scheme, the proposed frame work is able to perform comprehensive evaluation

for various test scenarios in the point of view of system-level simulation, as shown by BER

performance of whole wireless system.
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Chapter 5

Unified System Level Simulator for Very
High Throughput Wireless Systems

5.1 System Level Simulator in Wireless Communication

System

Over one decade, wireless technology has evolved rapidly with the adoption several im-

portant technologies by commercial standards (e.g. WLAN, WiMAX, LTE, DVB/DVB-T,

etc). Unfortunately, the introduction of new standard always results in a significant increas-

ing on system complexity and signaling. Therefore, it increases the difficulty for system

evaluation. To deal with this issue, the availability of a platform for system-level evaluation

in wireless systems development is very important. This tool can help to respond the fast

evolution of adopted technologies and allow to anticipate the up-coming standard, such as

5G networks. The main requirements for realizing such tool are: fast run-time evaluation,

high-flexibility platform (easy for modification or extension), large-coverage of use cases

of evaluations (functional, timing, multiple levels of design abstraction).

Several platforms for system-level evaluation have been presented, including software-

based simulation [42]-[41], FPGA-accelerated[43]-[44], and SDR-based platform[45]. In

[39], MATLAB-based system-level simulator for LTE system is proposed while ref. [42]
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presented a simulation and emulation for MIMO Wireless Baseband Transceiver. The full-

software system-level simulation framework such as ref. [39] has main advantage on its

flexibility of design modification and extension. However, the achievable run-time in this

framework is limited and timing-related evaluation could not be performed. On the other

hand, the simulation framework in ref. [42] offers real-time evaluation on full-hardware

platform. However, it requires huge cost and efforts for development and limited flexibility

for system modification. Considering the trade-off between run-time, flexibility, and test

coverage, we extend the proposed unified verification framework for application of system-

level simulation.

The proposed system-level simulation has to cover several tasks in the development and

verification process, particularly in early stage of system development, which are:

1. Evaluates algorithms
This task is carried out in order to investigate feasible algorithm for design target

such as a wireless transceiver implementation. Practically, each wireless communi-

cation standard only defines clearly the processing or computation of transmitter part.

Therefore, the hardware implementation of transmitter can be realized more rapidly.

However, in the receiver side, the implementation cannot be done straightforward

as in transmitter. The selected algorithms are left to the designers. When design-

ing components of receiver system, there are no trivial solutions, particularly when

the performance is highly depend on impairments or interferences. Many feasible

solutions can be selected among available candidates. Therefore, several trade-off

between error-performance and design cost should be investigated carefully.

2. Provides reproducibility and controllable data generation
Reproducibility becomes even more important when the system complexity is growth,

as in the case of evaluation of wireless system [39]. Although there are available

resources of database in some applications, however in the field of wireless signal

processing, it is not practical for providing such simulation resources. By provid-

ing reproducible data, we can perform thorough checking, particularly in large test

scenarios and corner-test evaluation.

3. Provides reference data
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Although there are many references and various literatures for wireless simulation

case, however, there are some ambiguities. It is not always clear which part of spec-

ifications were actually implemented and which part were omitted for the sake of

simplicity. Hence, it is difficult to confirm that the evaluated design satisfies the

standard-compliant or not.

4. Evaluates cross-layer system performance
When dealing a comprehensive evaluation of wireless system, it is mandatory to

consider the interactions data flow and signaling between layers (cross-layer). The

performance of one layer will directly affect the performance of its boundary layer.

Therefore, the development PHY layer (e.g transceiver system) has to consider the

system protocol that is defined in the upper layer (e.g MAC layer). In order to address

this issue, the proposed co-verification system should cover the evaluation for system

function for both MAC and PHY related functions.

In this work, the evaluation scope will cover two layers of 802.11 reference model,

which are PHY layer and MAC layer. The evaluations include link level error performance,

achievable timing processing, low-complexity and transceiver algorithm for PHY layer

evaluation. On the other hand, for MAC layer evaluation, it include evaluations of signaling

methods, packet data transfer, payload length allocation, and protocol timing requirements.

The simulation framework is shown in Fig. 5.1.

5.1.1 Cross-layer communication protocol

In order to realize efficient SoC implementation and to provide comprehensive system-level

simulation, it is important to understand deeply how the physical layer operates and how it

interfaces with the MAC layer.

Data Flow Operation : The MAC layer communicates with the upper half of PHY

layer, which is Physical Layer Convergence Protocol (PLCP) sublayer. It communicates

through a service access point (SAP) commands. When the MAC layer instructs the PHY

layer, the PLCP prepares MAC protocol data units (MPDUs) for transmission by taking

the frame from the MAC sublayer and creating PLCP Protocol Data Unit (PPDU). The

PPDU data is constructed from a preamble, PHY header, and PLCP Service Data Unit
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Figure 5.1: System Level Framework of Simulation for WLAN system

(PSDU) from MAC layer. Under the direction of the PLCP, the bottom half of PHY layer,

which is Physical Medium Dependent (PMD) sublayer provides transmission and reception

of PPDU data units via the wireless medium. The diagram in Fig. 5.2 shows the data

information moving between the MAC layer and PHY layer.

PHY Operation and Frame Structure : For transmission process, the PHY operation

is dictated by service parameter from MAC layer, which is called as TXVECTOR and

RXVECTOR. These parameters setting include several necessary configuration of PHY to

generate, transmit, and receive data frame. The TXVECTOR provides the PHY with the

transmission parameters, while the RXVECTOR assists the MAC with received parameters

of PHY. The TXVECTOR and RXVECTOR are constructed into compact form (word-size

boundary) to adapt with memory transfer size. In our simulation case, the TXVECTOR

and RXVECTOR consists of 5 data words.

Transmission and reception process of WLAN system are carried out in packet based

(frame). The 802.11ac standard which is referred as Very High Throughput (VHT) sys-

tem. The VHT PHY frame consists of a legacy preamble, a VHT preamble and the data

payload, as depicted in Fig. 5.3. The legacy preamble consists of a Legacy Short Training
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Figure 5.2: MAC-PHY data flow

Field (L-STF), a Legacy Long Training Field (L-LTF), and a Legacy Signal (L-SIG) field.

These fields are the same as the ones in 11a and 11n (legacy and mixed formats) preambles.

They allow all 802.11 devices to perform initial timing and frequency synchronization to

the received data frame, and to avoid interference of other stations. Then follows the VHT

Signal-A (VHT-SIG-A) field, VHT Short Training Field (VHT-STF), VHT Long Training

Field (VHT-LTF), VHT Signal-B (VHT-SIG-B) field and finally the DATA symbols. VHT-

SIG-A field carries MCS informations and VHT-specific parameters. VHT-STF and VHT-

LTF include the information for channel estimation and MIMO configurations. VHT-SIGB

field contains informations of length parameters and MU-MIMO support. These informa-

tions are utilized by PHY to determine how to decode and how much data to decode. The

detail explanation of frame structure and PHY operation can be found in [4].
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Figure 5.3: VHT Frame structure

5.2 PHY Transceiver of Very High Throughput Wireless

Communication System

5.2.1 Multi User Wireless System

One of technology advancement in the latest WLAN standard, IEEE802.11 ac is the adop-

tion of Multi User (MU) communication for downlink path. A complete review of MU

transmission scheme in 802.11ac WLAN system is presented in [47]. By adopting MU

scheme, one access point (AP) is able to use multiple streams simultaneously for trans-

mitting data to several users. This scheme is employed to further increase throughput

performance and to satisfy user’s experience demands. The MU MIMO wireless system

incorporates one AP terminal and several k users (STA), as depicted in Fig. 5.4.

Figure 5.4: Multi User MIMO Wireless System

The AP with pre-coding scheme transmits x signal through NT X transmit antenna over

wireless channel Hk to the users. The received signals yk in NRX antenna of k-th STA is
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represented by

yk = Hkxk + nk (5.1)

where nk is the noise vector of user k.

The received multi-stream data in each user, x̂k, is detected using linear minimum mean

square error (MMSE) MIMO detector, denoted by

x̂k = Hk
H[σ2I + HkHk

H]−1yk (5.2)

Here, σ2 is the noise power, (.)H stands for Hermitian transpose and I for the identity

matrix.

In this work, we employ 1 AP terminal and 2 STA users with channel link of each user

is represented by H1 and H2. The transceiver specification adopts IEEE802.11ac standard

[4], as summarized in Table 5.1.

Table 5.1: System Parameter
Parameters Value
Packet Mode VHT Mode
System Configuration 4x[2 2]
Number of Spatial streams 2
System bandwidth 80 MHz
FFT point 256
Guard Interval 800 ns
Modulation Coding Scheme 0-7 (BPSK - 64QAM)
FEC Convolutional Coding
MIMO Detection MMSE

5.2.2 Transceiver Structure

The transmitter follows the data flow as shown in Fig. 5.5. During data transmission, the

allocated payload data for each user is scrambled, encoded and punctured independently.

The scrambler avoids long sequences of bits with the same value, and adds desired prop-

erties to the transmitted data stream. The data field is scrambled using specified generator
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polynomial. The DATA field in the 11ac system should be encoded using one of two types

of FEC encoders: BCC and LDPC. However, in this thesis we employ only BCC encoder

in PHY transceiver. Puncturing is a process to remove redundant encoded bits with a spec-

ified pattern. This reduces the number of transmitted bit and increases the coding rate. In

the receiver side, the dummy zeros bits are inserted to replace the removed bits.

This punctured data, then is parsed into several streams in order to increase the trans-

mission rate. The stream parser divides the puncture data into small blocks of bits, and

then re-arranges into spatial streams, which represents the MIMO streams. The follow-

ing process are interleaving and constellation mapping according to employed modulation

scheme. Interleaver helps addressing the problem of burst error by shuffling the data bits

in different code words. This creates an improved uniform distribution of the errors. In

802.11ac system, the interleaving is performed independently in each OFDM symbols by

performing three steps of permutations. The equations for permutation are described in [4].

The interleaved serial data bits are arranged in groups of 1, 2, 4, 6, or 8 bits and mapped

into complex numbers representing a BPSK, QPSK, 16-QAM, 64-QAM, or 256-QAM

constellation points respectively. Each constellation point is mapped into one sub-carrier

data.

In order to leverage spatial and frequency diversity, the data is mapped onto spatial

transmit chain by spatial mapper block, and furthermore is interleaved across sub-carrier

index. The spatial mapper block also perform beamforming process, where the transmit

data is multiplied with weight matrix during pre-coding stage. Then, the pre-coded data,

in form of OFDM symbol, in each transmit chain is modulated by IFFT and applied with

guard interval insertion and windowing. Finally, the resulting signal is transmitted over

wireless channel.

The corresponding signal processing block of receiver is depicted in Fig. 5.6. Most

of signal processing block perform opposite process as in transmitter, except in receiver

front-end part such as synchronization, CFO correction, and AGC for adjusting power of

received signals. The first parts of receiver are mainly to detect the burst, synchronize,

estimate the channel, and equalize the symbols, while the remaining of blocks reverse the

processes of the transmitter.

In order to achieve the target data rate in Giga bit per second (Gbps) order, the transceiver
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Figure 5.5: Transmitter Block Diagram

design consider some strategies. These include: (1) parallel architecture oriented, (2) ex-

ploiting the pipeline depth, and (3) employing multi clock domain. These approaches are

applied to time-critical processing, for example spatial stream de-parser (SSDP) and viterbi

decoder. In the SSDP block, highly parallel architecture is employed in order to provide

high throughput data for viterbi (parallel-data). Since we keep the usage of radix-4 viterbi

decoder, the design of viterbi module exploits the pipeline level and thus can employ higher

clock frequency. Hence, we can decode received data with the improvement of 2 times of

throughput. In the same time, this design strategy also maintains the usage of hardware re-

source. As a result, the processing time requirement can be satisfied with efficient hardware

implementation when the primary implementation constraint is limited available resource

area.

5.2.3 System Level Issue

While, the final implementation of SoC has not carried out yet, however, in order to make

seamless integration and final verification, we should take into account SoC-like structure

for system-level evaluation.

As the transceiver was completely designed, it will be integrated with MAC layer block,

as well as the application processor within SoC Architecture. Basically, the WLAN design
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Figure 5.6: Receiver Block Diagram

(PHY and MAC) and application processor will be attached into specific bus (e.g AMBA

bus). These components with several I/O peripherals and memory systems construct a

complete SoC system. In the SoC point of view, the interactions between PHY, MAC,

and application software in processor are carried out through memory system and interrupt

service. Hence, we also need to provide an interface system that realizes data transfer and

handles the interrupt. By using the provided template generic architecture, we can easily

map the WLAN SoC structure into proposed HW/SW co-verification architecture. Figure

5.7 shows the minimal WLAN SoC design in the proposed unified system-level simulation.

In this work, we make task partitioning for the sake of simplicity and the limitation of

hardware platform. First, we omit the MAC protocol function and only consider the SAP

procedure of bottom layer of MAC. Hence, we only implement the MAC interface design.

Additionally, the RF block is also eliminated in hardware implementation. However, the

impact of RF processing could be model in MATLAB simulation. The task of processor in

SoC is mapped into host PC by employing MATLAB code and C program to provide data

from upper layer and to model cross-layer interaction (SAP procedure). The Host PC also

handles the interrupt function from interrupt control circuit in hardware design.
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Figure 5.7: Minimal WLAN SoC structure in Unified System Level Simulator

5.3 FPGA Architecture and Implementation Results

For the implementation of HW/SW co-evaluation, the fully-compliant 802.11ac standard

PHY transceiver is implemented in hardware platform. The design of MAC interface is

also implemented in order to make realistic interface with MAC HW layer. The MAC in-

terface process is directed by the control start from host procesor. This interface delivers

the TXVECTOR content in TX Header Memory. Additionall, the FPGA implementation

also includes the hardware interface that receives data from end-point bus system, I/O man-

agement block, as well as memory blocks. According to the verification requirements and

to specified interconnection, we employ 13 units of CAPIMs. Each CAPIM is connected

to every RAM of PHY transceiver. The address assignment of a pair CAPIM and RAM is

provided in Table 5.2 and its corresponding FPGA architecture is shown in Fig. 5.8.

The hardware design is implemented using device target Xilinx FPGA Virtex6 XCVLX760
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Table 5.2: CAPIM Address Assignment
CAPIM Address Usage

1 PHY Configuration Registers
2 Transmit Header Memory
3 TX MSDU Memory for user 1
4 TX MSDU Memory for user 2

5-8 TX ADC Memory
9 Receive Header Memory

10 RX MSDU Memory
11-12 RX DAC Memory

13 General Purpose Debugging Memory
14 TX Beamforming Memory

within HAPS hardware platform. In this implementation, the PHY system employs mul-

tiple clocks processing, in order to achieve high throughput while maintain efficient im-

plementation. In particular, the transceiver system is operated with the clock frequency

60 MHz, except for viterbi decoding and modules in front-end receiver, that use 120 MHz

and 20 MHz clock frequency, respectively. However, in the final target implementation

the designed PHY system will be operated with clock frequency of 240 MHz in order to

achieve real-time system. The implemented design is feasible to achieve the target clock

frequency of 240 MHz by considering the gap between FPGA and ASI implementation. As

confirmed by study in [38], the standard-cell ASIC implementation is approximately faster

between 3.4-4.6 times than FPGA design. Hence, the transceiver system could be directly

implemented into ASIC design without major modification for architecture optimization.

The implementation results are provided in Table 5.3. It should be noted, the result

in Table 5.3 is resource usage for each set of transceiver system. The transceiver system

occupies 274,324 LUTs and 62,161 Registers. This results corresponding to gate count

around 2.9 M approximately. Additionally, the total employed RAM block is equivalent to

19,656 Kbits RAM.
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Figure 5.8: FPGA Architecture Implementation

Table 5.3: FPGA Logic Resource
Resource Block Usage (%)

LUTs 274,324(57%)
Registers 62,161 (6%)

Block RAM 546 (Out of 720)
Gate Count 2,904,043

5.4 Unified HW/SW Simulator

The structure of HIL system for system-level simulator of MU-MIMO Wireless system is

depicted in Fig, 5.9. In the previous chapter, we only employ the most critical block in

receiver. On the other hand, in this chapter, we extend the hardware part into full system

of transceiver. Then, the software task performs the data processing for channel coefficient

generator, hardware impairment model, as well as performance evaluation. The MATLAB

function also performs weighting matrix calculation for beamforming process.

Co-evaluation process is carried out in the following step:

1. The Host PC perform system simulation by executing MATLAB simulation of the

transmission process according to given system parameter that selected by the user.
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Figure 5.9: MIMO Multi-User Co-verification System

2. The transmitted signal that also affected by hardware impairments send to channel

model to get the received signals for the receiver. In the same time, we also can

evaluate the correctness of transmitted signal compare the floating point simulation.

The evaluation of transmitter in term of MSE could be also performed.

3. This received data latter sent to the hardware platform through the API and software

driver that is executed within the simulation testbench program. The testbench pro-

gram will send the input vector for receiver block to the designed memory. The data

transfer will be performed for all receiver input including the register control that

provide configuration setting of receiver.

4. When the control start register of receiver is written the hardware will perform simu-

lation, while the software hold its task and waiting the interrupt signal from hardware

part.

5. As the interrupt signal is available and recognized by software, the software could ac-

cess the hardware to read intended results, whether intermediate results of receiver in

MIMO decoder output or final result of received data in form of MSDU packet. The
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read data then collected by the API function to further return to MATLAB program

for system evaluation. From the received simulation results, various performance

evaluation could be carried out in software function as well as the behavior of upper

layer.

5.5 System Level Performance Evaluation

In system-level evaluation, the performance evaluation is carried out according to the

standard-compliant test. It includes (1) link-level performance such as BER and PER and

(2) the achievable throughput performance of system-level. The system-level evaluation

also assess system latency to investigate achievable inter-frame duration since the packet

transmission in WLAN based network is strictly limited by defined SIFS duration.

The transmission scheme is carried out in packet transmission, where the data is sent in

frame based transmission. System-Level evaluation is carried out according to the system

parameters in Table 5.1. The simulation environments is designated by also taking care the

hardware impairments. The summary of simulation conditions are presented in Table 5.4.

Table 5.4: Simulation Condition
Parameters Value

Hardware Impairments
PA Nonlinearity, Phase Noise,
CFO, ADC/DAC quantization

Channel Model TGac D
Distance AP-STA 20 metes
Number of transmitted packet 1000 byte

5.5.1 Error Rate Performance

In this section, we provide simulation results in order to evaluate system-level performance

of the employed PHY transceiver. We conduct the evaluation of end-to-end error perfor-

mance of PHY transceiver system. The PER performance of VHT transmission scheme
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mode is provided. These results will be used as a basis for further evaluation of system-

level performance. Figure 5.10 shows PER performance for high order modulation, e.g 16-

QAM and 64-QAM. From this result, we can conclude that the transmission will achieve

Figure 5.10: Error Rate Performance of transceiver

error-free in SNR condition above 25 dB and 40 dB in 16-QAM and 64-QAM, respectively.

Furthermore, from the obtained PER results we may evaluate the throughput performance.

5.5.2 Latency Performance

The latency evaluation is also important in the development 802.11 based system, since

the most difficult problem in implementing the 802.11 system is strict requirements of the

Short Interframe Space (SIFS) which is defined as within 16 µs [46]. The SIFS perfor-

mance will directly affect the protocol timing in MAC layer. The SIFS is the time counted

from the reception of the last PPDU symbol to the transmission of the first symbol of the

response PPDU, as showin in 5.11. Within the SIFS duration the PHY should complete its

packet reception that also include the RF delay and PLCP delay (D), the time slot of data

preparation for transmitting response (M), and turn-around time of Rx/TX switching. Since

the response data (ACK frame) should be immediately performed after this SIFS duration,
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achieving this timing constraint is a mandatory in order to satisfy the requirements of the

upper layer protocol.

Figure 5.11: Transceiver processing latency illustration

From the observed simulation waveform, the introduced hardware latency take about

3,081 clock cycle, that corresponds to 12.84 µs. This amount reveals that the system has

available time-slot for other processing (MAC processing, CPU cycles, etc.) and feasi-

ble to catch up the requirements of SIFS duration. Hence, we can conclude the designed

transceiver satisfy the requirements of upper layer network (MAC layer).

5.5.3 Achievable Throughput Performance

The evaluation of throughput performance is carried out by also considering the interac-

tion with upper layer, which is MAC layer. Additionally, we also include several hardware

impairments as presented in Table 5.4. The throughput measurements is evaluated by trans-

mitting numerous of random data packet over emulated channel. In the simulation, we em-

ploy 1,000 packets with each packet contains 1,000 bytes of MAC payload data (MSDU).

The throughput, Γ, can be computed as follows.

Γ =
Lpayload

T f rame
(1 − PER) (5.3)

where Lpayload is length of MAC packet data payload in bytes, and the T f rame is the du-

ration of transmitted frame that is constructed from transmission time from PHY header

(TPHYheader), SIFS duration (TS IFS ), and whole packet (Tpacket) that follow Eq.
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T f rame = TPHYheader + TS IFS + Tpacket (5.4)

The packet duration is determined by the employed transmission parameters, such as

modulation scheme, transmission bandwidth, number of spatial stream, etc. The duration

of packet is determined by the number of the transmitted OFDM symbol, while the OFDM

symbol duration has been specified as 4 µs. Using the PHY header as 44 µs and SIFS du-

rations 16 µs as well as the obtained PER value, the achievable throughput can be obtained

as depicted in Fig. 5.12

Figure 5.12: Achievable Throughput for Different MCS

In order to obtain realistic performance results ,we also evaluate the throughput from

the real hardware design that includes timing processing of transceiver. Since the hardware

processing results some latencies (e.g latency for data-buffering and pre-processing task),

we add the correction factor, α, in calculating achievable throughput. The introduced hard-

ware latency is calculated from the end of transmitted frame to the end of packet reception
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process, as illustrated in Fig. 5.11. Hence, the corrected throughput performance could be

calculated by the following Eq.

ΓHW =
Lpayload

T f rame + α
(1 − PER) (5.5)

Moreover, in order to gain more higher throughput, close to the PHY data rate, we can

utilize a longer payload data, especially in error free channel condition. This scenario elim-

inates the overhead of PHY header and signaling field in transmitted packet frame. From

simulation, the throughput will be improved when the length of payload data increases, as

shown in Fig. 5.13. Thus, through this evaluation we can decide the optimum employed

length of packet data.

Figure 5.13: Achievable throughput for various payload lengths

5.6 Summary

In this chapter, we have shown that the proposed HW/SW co-verification framework can

be extended for system-level by employing more tasks into hardware platform. This can
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build a set of system-level simulator.

The full transceiver system based on 802.11ac standard that support multi-user trans-

mission scheme was implemented as hardware part. The evaluation of the PHY transceiver

is performed comprehensively: (1) by involving various system parameters, (2) by intro-

ducing the effect of hardware impairments, and (3) by considering the cross-layer interac-

tion.

System-level error performance of standard-compliant transceiver system is carried

out using the proposed HW/SW co-verification framework. Furthermore, the achievable

throughput with the actual latency of hardware processing is performed. This evaluation

is carried out in order to asses the total latency of system, that is critical to achieve the re-

quirement of SIFS duration. The designed transceiver has been evaluated and give the total

latency around 13 µs when operated in actual chip implementation. Clearly, for real-time

SoC implementation of WLAN system, the remaining latency budget for other processing

or tasks should be completed less than 3 µs. This result satisfies the upper layer protocol

with the assumption that the upper layer can meet the available timing budget.
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Chapter 6

Conclusion and Future Work

The main goal of this thesis is to provide a framework of co-verification methodology for

large-scale SoC design. The proposed unified HW/SW co-verification framework is aimed

to significantly improve the efficiency of development, design exploration, and evaluation

of large scale LSI system, particularly for high throughput wireless communication system.

Currently, the existing verification method is only suitable to be implemented in certain

stage of the development. Therefore, the verification task should be carried out indepen-

dently within each verification stage. It is also performed in different group of research

and development team. This typical approach requires intensive turn-around design and

verification process, and results longer cycle of design. Moreover, the comprehensive and

reliable evaluations are difficult to be obtained.

The HW/SW co-verification methods is the optimal option for verification of com-

plex circuits, considering the trade-off between system flexibility, verification run-time,

and the development effort. However, the existing HW/SW co-verification has limited the

integration with system level simulation and suffer to be implemented as integral part of

system development. Hence, the simulation cannot cover verification task in various de-

sign levels concurrently, which are: algorithm validation, RTL simulation, and physical

verification (in circuit verification). Finally, in order to address these requirements, the

unified HW/SW co-verification framework is proposed to leverage the existing HW/SW

co-verification methods.

The proposed methodology includes several contributions, which are:
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1. The verification framework has flexible and scalable interface for data transfer be-

tween SW part (host PC) and HW part (FPGA). This feature enables design extension

and could be applied to different system with only minor modifications.

2. The unified framework also allows verification for fast verification and design ex-

ploration by employing data-driven simulation method. This method can improves

the run-time of verification and reduces the complexity of communication interface

between SW and HW parts. This ability is particularly useful in verification of large

scale system.

3. Proposed verification methodology supports the high level of design abstractions,

such as MATLAB, C/C++, etc. This feature enables to perform system level sim-

ulation and allows for unified evaluation of various level of system design, from

algorithm evaluation upto and physical level verification.

In order to show the applicability of the proposed framework, MLD MIMO Decoder

and Full PHY transceiver for High Throughput Wireless Communication System are se-

lected as application example. The Comprehensive evaluation includes the error perfor-

mance and achievable throughput are carried out with hardware-in the loop fashion by

employing various system parameters, channel conditions, as well as the impact of hard-

ware impairments in the point of view system-level simulator. The performance metrics in

term of verification run-time and verification efficiency are evaluated in order to show the

effectiveness of proposed methodology where the speed of verification time achieve sev-

eral orders of magnitude compare than pure software-simulation achieving near real-time

simulation.

The MLD MIMO Decoder for high throughput wireless system is selected, as a repre-

sentative of complex circuits. The implemented MLD MIMO decoder employs approxi-

mately 1.5 M gates count. The performance metric in term of verification efficiency, achiev-

able run-time verification, and design exploration evaluations have been presented. The

experimental evaluation using hardware-in-the loop verification scheme is also provided.

Experimental results show that the verification speed up can achieve upto 1,000 times in

single PE and upto 100,000 times in 64-parallel PE, with the verification efficiency almost

99%. By using this scheme, the proposed frame work is able to perform comprehensive
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evaluation for various test scenarios in the point of view of system-level simulation, as

shown by BER performance of whole wireless system.

In the second example, The full transceiver system based on 802.11ac standard that

support multi-user transmission scheme was implemented as hardware part. The evaluation

of the PHY transceiver can be performed comprehensively: (1) by involving various system

parameters, (2) by introducing the effect of hardware impairments, and (3) by considering

the cross-layer interaction.

System-level error performance of standard-compliant transceiver system is carried

out using the proposed HW/SW co-verification framework. Furthermore, the achievable

throughput with the actual latency of hardware processing is performed. This evaluation

is carried out in order to asses the total latency of system, that is critical to achieve the re-

quirement of SIFS duration. The designed transceiver has been evaluated and give the total

latency around 13 µs when operated in actual chip implementation. Clearly, for real-time

SoC implementation of WLAN system, the remaining latency budget for other processing

or tasks should be completed less than 3 µs. This result will agree with the upper layer

protocol requirements when the upper layer is already meet the available timing budget.

Although the proposed HW/SW co-verification is promising solution, however to achieve

the user experience as offered by the latest commercial CAD tools, there are many open

tasks and technical challenges that are feasible for future work:

1. Supporting multi-thread software execution to improve run-time simulation

For verification various core processing with different software program, the multi-

thread execution can be employed to allow the verification process can be performed

concurrently. Hence, the simulation sequence can be done fully parallel both in the

hardware side and software side. This later improves execution time. The imple-

mentation of multi-thread will be managed by scheduler which is a part of operating

system. However, the synchronization issues in multi thread application will be more

complex and the implementation must be careful to avoid race condition.

2. Providing debugging facility to observe various signals more flexible

When the implemented hardware circuit is become more complex, the demand of

debugging facility is increased. Essentially, in FPGA verification we can use its
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inherit debugging facility, such as integrated logic analyzer (e.g. signal tap or chip

scope) via JTAG interface. However, these debugging facilities have limited visibility

and need to be defined before the implementation. Therefore, this approach is not

flexible, particularly in a complex circuit. To address this issue, a multiplex-based

test point can be included into design core in which it can tap-in various signals from

the circuit. The selection can be controlled through register from software. With this

implementation, we can choose any arbitrary signals during the runtime simulation

without need to re-implement the design.

3. Integrating with Graphical user Interface to allow the user conveniently use the veri-

fication framework

To more improve the benefit of framework, the availability of graphical user inter-

face is considered. This front-end interface will allow the user to explore the co-

verification framework and reduce a human-error in script-based simulation. This

feature offers various user experiences in performing verification task, in particularly

for user without comprehensive understanding on scripting language.
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