
Thèse de doctorat

Pour obtenir le grade de Docteur de l’Université de

VALENCIENNES ET DU HAINAUT-CAMBRESIS

Discipline, spécialité selon la liste des spécialités pour lesquelles l’Ecole Doctorale est accréditée :
 Informatique

Présentée et soutenue par Santhosh Kumar, RETHINAGIRI.

Le 14/03/2013, à Valenciennes

Ecole doctorale :
Sciences Pour l’Ingénieur (SPI)

Equipe de recherche, Laboratoire :
Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et Humaines (LAMIH)

Une approche système pour l’estimation de la consommation

de puissance des plateformes MPSoC

JURY
Président du jury
Valderrama, Carlos. Professeur. Université de Mons.

Rapporteurs
Bourennane, El-Bay. Professeur. Université de Bourgogne.

Belleudy, Cécile. Maître de conférences, HDR. Université de Nice-Sophia Antipolis.

Examinateurs
Senn, Eric. Maître de conférences, HDR- IRISA. Rennes.

Directeur de thèse

Dekeyser, Jean-Luc. Professeur. Université de Lille1.

Co-directeur de thèse

-Niar, Smail. Professeur. Université de Valenciennes.

Co-encadrant

Ben Atitallah, Rabie. Maître de conférences. Université de Valenciennes.

L’université de Valenciennes et du Hainaut-Cambrésis
 Le Mont Houy – LAMIH – 59313 VALENCIENNES Cedex 9

Téléphone (+33) 3 27 51 12 34 – Télécopie (+33) 3 27 51 11 00

System-Level Power Estimation Methodology for MPSoC
based Platforms

By

Santhosh Kumar Rethinagiri

A thesis submitted for the degree of

Doctor of Computer Science

At the Université de Valenciennes et du Hainaut-Cambrésis

Ecole Doctorale Sciences Pour l’Ingénieur Université Lille Nord-de-France-072

Laboratoire d’Automatique, de Mécanique et d’Informatique Industrielles et
Humaines (LAMIH)

Speciality: Low Power Electronics and Design

Domain : Design Tools, System and Software Design for Embedded Systems

Dissertation

Presented and defended on: March 2013

JURY

Reporter Prof. El-Bay Bourennane, Université de Bourgogne, Dijon

Reporter MCF HDR Cécile Belleudy, Université de Nice-Sophia Antipolis
Examiner Prof. Carlos Valderrama, Université de Mons, Mons
Examiner MCF HDR Eric Senn, Université de Bretagne Sud, Lorient
Superviser Prof. Jean-Luc Dekeyser, Université de Lille 1, Villeneuve d'Ascq
Superviser Prof. Smail Niar, Université de Valenciennes, Valenciennes
Co-Superviser Assoc. Prof. Rabie Ben Atitallah, Université de Valenciennes

Acknowledgements

One of the joys of completion is to look over the journey past and

remember all the friends and family who have helped and supported

me along this long but fulfilling road. It is a pleasure to thank the

many people who have made this thesis possible.

It is difficult to overstate my gratitude to my Ph.D. co-supervisor,

Dr. Rabie BEN ATITALLAH. With his enthusiasm, inspiration, and

great efforts to explain things clearly and simply, he made working on

this thesis fun for me. Throughout my thesis-writing period, he pro-

vided encouragement, sound advice, good teaching, good company,

and lots of good ideas. I would have been lost without him.

I feel enormously indebt to my directors at INRIA-Lille Nord Eu-

rope and at University of Valenciennes, Jean-Luc DEKEYSER and

Smail NIAR, for giving me this opportunity. Furthermore, I want

to thank all my colleagues of the LAMIH laboratory and the INRIA

DaRT team for creating a perfect environment to work and to spend

a pleasant time.

I would also like to thank my examiners, who provided encouraging

and constructive feedback. It is no easy task, reviewing a thesis, and I

am grateful for their thoughtful and detailed comments. To the many

anonymous reviewers at the various conferences, thank you for helping

to shape and guide the direction of the work with your informative

and instructive comments.

March 7, 2013 Santhosh Kumar Rethinagiri Page ii

This thesis was funded by National Research Agency (ANR) of France

in the frame of the OPEN-PEOPLE project. As a member of OPEN-

PEOPLE, I have been surrounded by wonderful colleagues who have

provided me a rich and fertile environment to study and explore new

ideas. At OPEN-PEOPLE, I would like to thank the project leader,

Dr. Eric SENN, who has been extremely supportive in allowing me

to participate in LAB-STICC laboratory activities while pursuing my

PhD studies.

A special thanks to all my friends, who have accompanied me in this

wonderful journey of professional and personal growth that started in

Chennai and ended in Valenciennes. Thanks for putting up with me,

being a support and sharing some unforgettable moments.

Lastly, I would like to thank my family for all their love and en-

couragement. I wish to thank my parents, Budha Purnima and Late

Rethinagiri. They bore me, raised me, supported me, taught me and

loved me. And most of all for my loving, supportive, encouraging and

patient wife Sushma Rajaram whose faithful support during the final

stages of this Ph.D. is so appreciated. I love you all dearly. Thank you.

March 7, 2013 Santhosh Kumar Rethinagiri Page iii

Finally, I want to dedicate this thesis to my family,
specifically to my mother and my wife. Thank you for

supporting all my decisions and for your love. I hope you
are proud of me and my work.

Santhosh Kumar
Valenciennes

March 7, 2013 Santhosh Kumar Rethinagiri Page iv

Abstract

Due to the ever increasing constraints on power consumption in em-

bedded systems, this thesis addresses the need for an efficient power

modeling and estimation methodology based tool at system-level. On

the one hand, todays embedded industries focus more on manufactur-

ing multiprocessor based platforms as they are cost and power effective.

On the other hand, modern embedded applications are becoming more

and more sophisticated and resource demanding: multimedia (H.264

encoder and decoder), software defined radio, GPS, mobile applica-

tions, etc. The most vital corrective measure adopted to tackle the

increasing complexity of Multiprocessor System-on-Chip (MPSoC) is

to commence designing at the system-level. Decisions taken at the

system-level have a greater impact on the tape out of the chip in terms

of power and energy but it poses a bigger challenge due to the large ar-

chitectural solution space. For this reason, efficient system-level power

estimation tools are therefore necessary to enable proper Design Space

Exploration (DSE) based on power/energy and timing.

In this thesis, we propose a tool based on efficient hybrid system-level

power estimation methodology for MPSoC. In this methodology, a com-

bination of Functional Level Power Analysis (FLPA) and system-level

simulation technique are used to compute the power of the whole sys-

tem. Basically, the FLPA concept is proposed for processor architecture

in order to obtain parameterized arithmetic power models depending

on the consumption of the main functional blocks. In this work, FLPA

is extended to set up generic power models for the different parts of

the platform. In addition, a simulation framework is developed at the

transactional level to evaluate accurately the activities used in the re-

March 7, 2013 Santhosh Kumar Rethinagiri Page vi

lated power models. The combination of the above two parts leads to a

hybrid power estimation that gives a better trade-off between accuracy

and speed. The proposed methodology has several benefits: it con-

siders the power consumption of the embedded system in its entirety

and leads to accurate estimates without a costly and complex material.

The proposed methodology is also scalable for exploring complex em-

bedded architectures. Based on the proposed methodology, our Power

Estimation Tool at System-Level (PETS) is developed.

The effectiveness of our PETS tool is validated in terms of accuracy and

speed through a typical mono-processor and multiprocessor embedded

system designed around the TI OMAP (3530 and 5912) and the Xilinx

Virtex II Pro FPGA boards. This methodology is demonstrated and

evaluated by using a variety of basic programs to a complete media

benchmarks. In order to ensure accuracy and speed, first we compared

the estimated power value with the real board measurements for both

mono-processor and multiprocessor architectures. Our obtained power

estimation results provide less than 3% of error for mono-processor,

3.8% for homogeneous multiprocessor system and 4.3% for heteroge-

neous multiprocessor system. Second, we compared the estimation

speed of our tool with the state-of-the-art power estimation tools and

it resulted up to 70x faster.

March 7, 2013 Santhosh Kumar Rethinagiri Page vii

Résumé

Avec l’essor des nouvelles technologies d’intégration sur silicium sub-

microniques, la consommation de puissance dans les systèmes sur puce

multiprocesseur (MPSoC) est devenue un facteur primordial au niveau

du flot de conception. La prise en considération de ce facteur clé dés

les premières phases de conception, joue un rôle primordial puisqu’elle

permet d’augmenter la fiabilité des composants et de réduire le temps

d’arrivée sur le marché du produit final.

Dans cette thèse, nous proposons une méthodologie efficace pour

l’estimation de la consommation de puissance des plateformes MP-

SoC. Cette méthodologie repose sur une combinaison d’une analyse

fonctionnelle de la puissance (FLPA) pour l’obtention des modèles de

consommation et d’une technique de simulation au niveau transac-

tionnel (TLM) pour calculer la puissance de l’ensemble du système.

Fondamentalement, FLPA est proposée pour modéliser le comportement

des processeurs en terme de consommation afin d’obtenir des modèles

paramétrés de haut niveau. Dans ce travail, FLPA est étendue pour

mettre en place des modèles de puissance génériques pour les différentes

parties du système (mémoire, logique reconfigurable, etc.). En outre, un

environnement de simulation a été développé au niveau transactionnel

afin d’évaluer avec précision les activités utilisées dans les modéles

de consommation. La combinaison de ces deux parties conduit à une

estimation de la puissance hybride qui donne un meilleur compromis

entre la précision et la vitesse. La méthodologie proposée a plusieurs

avantages: elle estime la consommation du système embarqué dans tous

ses éléments et conduit à des estimations précises sans matériel coûteux

et complexe. La méthodologie proposée est évolutive pour explorer des

March 7, 2013 Santhosh Kumar Rethinagiri Page viii

architectures complexes embarquées. Notre outil d’estimation de puis-

sance au niveau système PETS (Power Estimation Tool at System-level)

est développé sur la base de la méthodologie proposée. L’efficacité de

notre outil PETS en termes de précision et rapidité est validée par des

architectures embarquées monoprocesseur et multiprocesseur conçues

autour des plateformes OMAP (3530 et 5912) et FPGA Pro Xilinx

Virtex II.

March 7, 2013 Santhosh Kumar Rethinagiri Page ix

CONTENTS

Contents x

List of Figures xiv

List of Tables xviii

1 Introduction 1

1.1 Context . 2

1.2 Problem statement . 5

1.3 Contributions . 7

1.4 Plan of the thesis . 9

2 Literature review 11

2.1 Introduction . 11

2.2 Motivations for system-level design 12

2.3 System-level modeling languages 17

2.3.1 SystemC and Transaction Level Modeling 2.0 kit (TLM) . 18

2.3.2 Advantages to use TLM 19

2.4 Power modeling approaches and tools 21

2.4.1 Low-level estimation techniques 23

2.4.1.1 Circuit-level . 23

March 7, 2013 Santhosh Kumar Rethinagiri Page x

CONTENTS

2.4.1.2 Gate-level . 23

2.4.1.3 RTL . 24

2.4.1.4 Architectural-level estimations 26

2.4.2 High-level estimation techniques 28

2.4.2.1 Instruction Level Power Analysis (ILPA) 28

2.4.2.2 Functional Level Power Analysis (FLPA) 30

2.5 Simulation based estimation tools 32

2.5.1 SPADE . 33

2.5.2 Metropolis . 34

2.5.3 MILAN . 35

2.5.4 MESH . 37

2.5.5 StateC . 38

2.5.6 CAFD . 39

2.6 Analytical power estimation tools 40

2.7 Referenced tools . 41

2.8 Overview of the industrial virtual platform tools available 42

2.9 Positioning of methodologies . 44

2.10 Conclusion . 46

3 Power modeling methodology 49

3.1 Introduction . 49

3.2 Modeled platforms . 50

3.2.1 OMAP platforms . 51

3.2.1.1 ARM Cortex-A8 51

3.2.1.2 ARM9 . 52

3.2.2 Xilinx Virtex-II Pro platform 54

3.2.2.1 PowerPC 405 . 54

3.3 FLPA methodology . 55

3.4 Power measurement environment 57

3.4.1 Measurement environment for OMAP boards 58

3.4.2 Measurement environment for Virtex-II Pro FPGA 60

3.5 Power models for uniprocessor based embedded platforms 61

3.5.1 ARM Cortex-A8 . 62

March 7, 2013 Santhosh Kumar Rethinagiri Page xi

CONTENTS

3.5.2 ARM9 . 65

3.5.3 PowerPC . 67

3.6 Power models for multiprocessor platforms 67

3.6.1 Power model for homogeneous MPSoC 68

3.6.2 Power model heterogeneous MPSoC 71

3.7 Validation of the power models 74

3.7.1 Evaluation of ARM Cortex-A8 power model 75

3.7.2 Evaluation of ARM9 power model 75

3.7.3 Evaluation of PowerPC power model 76

3.8 Conclusion . 76

4 Co-simulation environment at system-level for power estimation 79

4.1 Introduction . 79

4.2 Virtual prototyping with the help of SoCLib environment 81

4.2.1 Available models at TLM-DT level for MPSoC design . . . 81

4.2.2 Estimating performance with Soclib environment 84

4.3 Virtual prototyping with the help of OVP platform 87

4.3.1 OVP platform models for MPSoC design 87

4.3.2 OVPsim . 88

4.3.3 Interfaces of OVPsim . 90

4.3.4 VMI Memory Model . 93

4.3.5 Memory models . 97

4.4 OVP in SystemC/TLM environment 99

4.4.1 OVP inside TLM2.0 . 100

4.5 The simulation environment . 105

4.6 Experimental results . 107

4.6.1 JPEG algorithm . 107

4.6.2 Application task graph mapping for dual processor platform 110

4.6.3 Performance estimation and simulation results of our pro-

posed virtual platform . 113

4.6.4 Modeling efforts . 116

4.7 Conclusion . 117

March 7, 2013 Santhosh Kumar Rethinagiri Page xii

CONTENTS

5 Power Estimation Tool at System-level (PETS) and experimental

results 119

5.1 Introduction . 119

5.2 Hybrid power estimation methodology 120

5.2.1 Part 1: Power model generation 121

5.2.2 Part 2: System-level environment development 122

5.2.3 Engineering efforts . 123

5.3 PETS tool design flow . 124

5.4 Experimental results . 126

5.4.1 Power estimation accuracy of monoprocessor based platform 126

5.4.1.1 ARM Cortex-A8 based platform (OMAP3530) . 126

5.4.1.2 ARM9 based platform (OMAP5912) 128

5.4.1.3 PowerPC based platform (Virtex II Pro) 131

5.4.2 Homogeneous multiprocessor based platform 133

5.4.3 Heterogeneous multiprocessor based platform 140

5.4.4 Estimation speed comparison 140

5.4.4.1 Estimation speed comparison of different approaches140

5.4.4.2 Estimation speed comparison of different tools . . 141

5.5 Conclusion . 143

6 Conclusions and future works 145

6.1 Summary . 145

6.2 Future works . 147

References 151

March 7, 2013 Santhosh Kumar Rethinagiri Page xiii

LIST OF FIGURES

1.1 Context of the thesis in the OPEN-PEOPLE project 4

2.1 Gajski and Kuhn Y chart: source [44] 12

2.2 Broadness of architectural solutions according to the abstraction

level . 15

2.3 TLM speed-up in terms of modeling efforts and simulation speed

: source [46] . 20

2.4 TLM design flow : source [46] . 21

2.5 Power modeling methodologies and tools according the abstraction

levels . 22

2.6 Complier of SimplePower tool . 27

2.7 SimplePower simulator . 27

2.8 FLPA general methodology . 30

2.9 SoftExplorer power estimation flow : source [59] 31

2.10 SPADE design flow : source [93] 34

2.11 Mapping network : source [22] . 36

2.12 Milan framework : source [82] . 37

3.1 Block diagram of ARM Cortex-A8 processor : source [16] 52

3.2 Block diagram of ARM9TDMI processor : source [17] 53

3.3 Block diagram of PowerPC processor : source [55] 54

March 7, 2013 Santhosh Kumar Rethinagiri Page xiv

LIST OF FIGURES

3.4 Functional Level Power Analysis (FLPA) general methodology :

source [69] . 55

3.5 Power characterization and modeling methodology framework: source

[41] . 56

3.6 Fully automated test bench for current/voltage measurement . . . 58

3.7 Measurement environment for OMAP3530 and OMAP5912 59

3.8 Jumpers for OMAP3530 . 59

3.9 Power measurement probes across the jumpers for OMAP3530 . . 59

3.10 Power measurement jumpers for the OMAP3530 platform 61

3.11 Measurement environment for Virtex-II Pro FPGA 62

3.12 Main functional blocks of ARM Cortex-A8 processor 63

3.13 Power consumption cost according to the Instruction Per Cycle

(IPC) . 64

3.14 Power consumption cost according to the change in frequency . . 65

3.15 Main functional blocks of ARM9 processor 66

3.16 Xilinx EDK 10.1 design for two PowerPC processors with shared

memory . 69

3.17 JPEG mutex implementation between the two PowerPC processors 70

3.18 Power/time/energy consumption and measurement 71

3.19 FPGA power consumption with 100MHz frequency for different

surfaces occupied . 72

3.20 FPGA power consumption with 100MHz frequency for different

toggle rates . 72

3.21 Mutex power consumption . 73

3.22 Validation of the power model for ARM Cortex-A8 74

3.23 Validation of the power model for ARM9 75

3.24 Validation of the power model for PowerPC 76

4.1 Simulation Environment with SoCLib 85

4.2 Communication of OVP interfaces 92

4.3 Cortex-A8 interface implementation 99

4.4 Wrapper configuration . 101

4.5 Wrapper implementation . 102

March 7, 2013 Santhosh Kumar Rethinagiri Page xv

LIST OF FIGURES

4.6 Full system implementation: Source [89] 103

4.7 Proposed virtual platform prototype 105

4.8 Preferences for processor and application setting 106

4.9 Hardware/Software co-simulation 107

4.10 L1 cache result after the simulation 108

4.11 L2 cache result after the simulation 108

4.12 IPC simulation results . 109

4.13 Simulation results for multiprocessor architecture 110

4.14 JPEG decoder flow . 111

4.15 JPEG decoding process with 2 processors 112

4.16 JPEG decoding process with 2 processors and hardware accelerator 112

4.17 Power estimation error and speedup according to the data pattern

granularity . 115

4.18 Power estimation error and speedup according to the number of

phases . 115

5.1 Power estimation flow . 120

5.2 PETS tool . 125

5.3 Mono-processor platform of ARM Cortex-A8 126

5.4 Power estimation accuracy vs real board measurement using ARM

Cortex-A8 at 500 MHz . 127

5.5 Mono-processor platform (ARM9) 128

5.6 Cache miss rate for the H.264 application (ARM9 at 120 MHz) . . 129

5.7 Power estimation accuracy for the H.264 application using ARM9

at 120 MHz . 130

5.8 Power estimation accuracy vs real board measurement using ARM9

at 120 MHz . 131

5.9 JPEG application cache miss rates 133

5.10 Power estimation accuracy . 134

5.11 Comparison of power estimation accuracy for PowerPC based ar-

chitecture) . 135

5.12 Dual core PowerPC platform . 136

March 7, 2013 Santhosh Kumar Rethinagiri Page xvi

LIST OF FIGURES

5.13 Execution time and energy variation according to the number of

processors . 137

5.14 Power estimation of homogeneous two PowerPC multiprocessor ar-

chitecture . 138

5.15 Energy estimation according to the number of processors using

PowerPC . 139

5.16 Comparison of estimation time for the different tools 142

March 7, 2013 Santhosh Kumar Rethinagiri Page xvii

LIST OF TABLES

2.1 Tools used as references in this thesis 41

3.1 Consumption law for the ARM Cortex-A8 platform 65

3.2 Consumption laws for the ARM9 platform 66

3.3 Consumption laws for the PowerPC 405 platform 67

3.4 Generic power model parameters 68

4.1 Application miss rates for PowerPC based ISS/TLM 86

4.2 JPEG workload on 2 processors 113

4.3 JPEG workload on 2 processors and hardware accelerator 113

4.4 Application miss rates for PowerPC based virtual platform 114

4.5 Timing comparison between proposed single processor environ-

ment and SoCLib environment . 114

4.6 Timing comparison between proposed two processors environment

and SoCLib simulation environment 115

4.7 Modeling efforts . 117

5.1 JPEG application power estimation speed 141

March 7, 2013 Santhosh Kumar Rethinagiri Page xviii

LISTINGS

3.1 Benchmark featuring two parallel ADD instructions 64

4.1 Instantiation of the processor . 92

4.2 Instantiation of the full cache model 93

4.3 Cache model settings . 95

4.4 Cache Ratio Monitor (CRM) . 95

4.5 Implementation of the memory models 97

4.6 Instantiation of the memory models 103

March 7, 2013 Santhosh Kumar Rethinagiri Page xx

CHAPTER 1

INTRODUCTION

This chapter describes the context, the problem statement, the contribution, and

the plan of thesis. The main objective of this thesis work reclines in the scarcity of

a fast and accurate power estimation tool at the system-level for complex embedded

systems such as: homogeneous and heterogeneous Multi-Processor System-on-

Chip (MPSoC). Without such a tool, a reliable Design Space Exploration(DSE)

based on power and timing at system-level becomes impossible to achieve in a

reasonable time, due to the broadness of the architectural solution space. As

a consequence, taking the best architectural decisions becomes very challenging

for system designers. However, since decisions taken at the system-level are the

most relevant in affecting the quality of the final design, it is very important to

take them right from the beginning, in order to avoid costly and time-consuming

reiterations. The contribution of this work is therefore the implementation of a

fast and accurate system-level power estimation methodology in a tool, which can

really help system designers to take the best architectural decisions early in the

design cycle.

March 7, 2013 Santhosh Kumar Rethinagiri Page 1

1.1. CONTEXT

1.1 Context

Due to the ongoing nano-miniaturisation in chip production, estimation of power

consumption is becoming a critical pre-design metric in complex embedded sys-

tems such as homogeneous and heterogeneous Multi-Processor System-on-Chip

(MPSoC). On the one hand, today’s embedded industries focus more on manu-

facturing RISC processor-based platforms as they are cost and power effective.

On the other hand, modern embedded applications are becoming more and more

sophisticated and resource demanding. Examples of the concerned applications

are numerous such as multimedia (H.264 encoder and decoder), software defined

radio, GPS, mobile applications, etc. The computation requirements of such sys-

tems are very important in order to meet real-time constraints and high quality

of services.

Recently, the ITRS [56] and HiPEAC 1 roadmaps promote power defines per-

formance and power is the wall. An efficient and fast Design Space Exploration

(DSE) of such systems needs a set of tools capable of estimating performance and

power at higher abstraction level in the design flow. In current industrial and

academic practices, power estimation using low level CAD tools is still widely

adopted, which is clearly not suited to manage the complexity of modern embed-

ded systems. Facing this issue, designers should calculate the power consumption

as early as possible in the design flow to reduce the time-to-market and the devel-

opment cost. Today, system-level power estimation is considered a vital premise

to cope with the critical design constraints. However, the development of tools

for power estimation at the system-level is in the face of extremely challenging

requirements such as the efficient power modeling methodology, the rapid system

prototyping and the accurate power estimates.

Hence, high-level power estimation and optimization in embedded system is

the key issue in the early determination of the power budget, being infeasible to

synthesize every design solution down to the gate and layout levels in a reasonable

time. The goal is to shorten the design turn-around time, by widely exploring the

architectural design space and to early re-target the architectural design choices.

Accuracy and efficiency of a high-level power analysis should contribute to meet

1http://www.hipeac.net/system/files/hipeacvision.pdf

March 7, 2013 Santhosh Kumar Rethinagiri Page 2

1.1. CONTEXT

the power requirements and thus avoid costly re-design processes.

To address these design requirements, several industrial and academic insti-

tutes are devoting their efforts to facilitate the development of tools for MPSoC

design taking into consideration the power metric as an essential parameter. The

ANR-08-SEGI-013 OPEN-PEOPLE1 project was defined in order to answer these

requirements, it is funded by the National Research Agency (ANR) of France.

OPEN-PEOPLE stands for Open Power and Energy Optimization PLatform and

Estimator. Among the target systems, we mention heterogeneous MPSoC such

as the TI OMAP 3530 and reconfigurable circuits like the Xilinx Virtex5 FPGA.

Our platform allows power estimation using:

• direct access to the hardware execution boards and the measurement equip-

ments. This first alternative enables designers to measure the real power

dissipation of the target system. To do so, the low level description of the

system (C, VHDL, etc.) is carried out natively on the target board. Fur-

thermore, this alternative is used to build new power models for hardware or

software components.

• a set of Electronic System Level (ESL) tools coupled with accurate power

models elaborated within the first alternative. Mainly, we offer tools at the

functional and transactional levels in the context of multilevel exploration of

new complex architectures.

The Fig.1.1 presents a global view of the platform which is based on two

main parts; the software part and the hardware part. The software user inter-

face ensures the access to the power measurements and helps the designer to

define energy models for the hardware and software system components. From

the measurements, the designer can build models and compute an estimation of

the energy and/or power consumption of the system. In addition, from this soft-

ware user interface, the hardware platform can be controlled. The hardware part

consists of the embedded system boards, the measurement equipments and the

computer that controls these different elements and schedules the list of measure-

ments required by different users. Various research and development works are

currently done in the OPEN-PEOPLE project. These works include the definition

1www.open-people.fr/

March 7, 2013 Santhosh Kumar Rethinagiri Page 3

1.1. CONTEXT

of new methods and tools to model the different components of a heterogeneous

system architecture: processors, hardware accelerators, memories, reconfigurable

circuits, operating system services, IP blocks, etc. For reconfigurable system, the

dynamic reconfiguration paradigm will be modeled to estimate how this feature

can be used by Operating System (OS) to reduce the energy consumption. Fur-

thermore, this project studies how the complete estimation and validation can be

performed for very complex systems with a small simulation time.

!"

#"

!"

Figure 1.1: Context of the thesis in the OPEN-PEOPLE project

This PhD thesis research is a part of the OPEN-PEOPLE project. The main

objectives of this work are encircled in red in the Fig.1.1. The first challenge con-

cerns the development of power models for the selected platforms in the frame of

the OPEN-PEOPLE project. The second challenge concerns the Software/Hard-

ware co-simulation of MPSoC at the system-level where we focus on the transac-

tional level (or TLM: Transaction Level Modeling) and virtual platform modeling

in order to extract the relevant data for power estimation. The third challenge

March 7, 2013 Santhosh Kumar Rethinagiri Page 4

1.2. PROBLEM STATEMENT

concerns the development of a tool based on an efficient power estimation method-

ology offering a better trade-off between speed and accuracy, hence a reliable and

a fast DSE.

1.2 Problem statement

In order to achieve the objective of designing efficient system-level power estima-

tion tools for MPSoC, we started with extracting the main challenges related to

the context of this thesis. We have identified three essential factors that define

the problem statement and they are mentioned as follows:

• Power modeling methodology: The power modeling process is centred

around two correlated aspects: the power model granularity and the main

activity characterization. The first aspect concerns the granularity of the

relevant activities on which the power model relies. It covers a large spectrum

that starts from the fine-grain level such as the logic gate switching and

stretches out to the coarse-grain level like the hardware component events. In

general, fine-grain power estimation results in a more correlated model with

data and to handle technological parameters, which is tedious for system-level

designers. On the other hand, coarse-grain power models depend on micro-

architectural activities that cannot be determined easily depending on the

complexity of the system. The second aspect involves the characterization of

the activities, which requires a huge number of experimental measurements

and thus a significant time to extract the power model. The above described

aspects yield to the definition of the power model that can be represented by

a set of analytical functions or a table of consumption values. The selected

power model granularity depends on the target abstraction level and the

user requirements in terms of estimation accuracy and speed. For this first

challenge, the main question that we have to answer is: what is the power

modeling methodology suitable for MPSoC system-level design that can offer

a better trade-off between the time needed to generate the power model and

its corresponding accuracy?

• Software/Hardware co-simulation of MPSoC: The second challenge in-

March 7, 2013 Santhosh Kumar Rethinagiri Page 5

1.2. PROBLEM STATEMENT

volves the abstraction level on which the system is described. It starts from

the usual Register Transfer Level (RTL) and extends upto the algorithmic

level. This challenge is tackled by several frameworks by means of the de-

velopment of Electronic System Level (ESL) tools. The objective is to unify

the hardware and software design and to offer a rapid system-level prototyp-

ing. In the last years, significant academic and industrial efforts have been

deployed to deal with the software/hardware co-simulation issue as the con-

ventional RTL and Cycle-Accurate (CA) tools cannot adequately support

the complexity of future MPSoC since they are too slow for a meaningful

execution of the software. These efforts led to a taxonomy of tools based on

different simulation techniques, description languages, abstraction levels, etc.

However, most of these tools don’t address the issue of power estimation. In

general, going from low to high design level corresponds to more abstract de-

scription and then coarser activity granularity. For this second challenge, the

main question that we have to answer is: what are the appropriate simulation

technique and the abstraction level suitable for rapid MPSoC prototyping and

for extracting accurately the activities for the defined power model (the first

challenge)?

• Power based design methodology: Shifting towards higher levels of ab-

straction has proved to be a winning strategy for dealing with increasing

complexity. Indeed, by abstracting away the lower-level details, implementa-

tion is faster, which means lower engineering effort, lower cost and lower time

to market, as well as higher productivity. Decisions made at the system-level

have a very strong impact on the quality of the final product, since the degree

of achievable optimization is normally proportional to the abstraction level

and, indirectly, to the point in the design flow where decisions are taken: the

earlier the better. However, although very important, power based decisions

at system-level are very hard to take and this is for two main reasons: the first

is that, at the system-level, the design space to consider is extremely broad

as a consequence of the limited amount of implementation details available.

The second reason is that the impact of the decisions taken at system-level

is not known until a very late stage of the design process, which can take

months of work. From the second reason mentioned above, it can be con-

March 7, 2013 Santhosh Kumar Rethinagiri Page 6

1.3. CONTRIBUTIONS

cluded that the lack of a quick and accurate System-Level Power Estimation

(SLPE) approach is one of the main obstacles to successful system-level de-

sign today. In fact, if an efficient system-level methodology for energy and

performance estimation was available, it would be possible to carry out a rea-

sonably reliable DSE and thus judge from the beginning of the design flow

which architecture is the most suitable for a certain applications domain, in

terms of performance and power consumption. For this third challenge, the

main question that we have to answer is: How to provide a tool at system-

level in order to guide the designer during the different design choices based

on power estimation?

1.3 Contributions

Our contributions through this thesis in the field of system-level power estima-

tion for MPSoC design is to propose solutions to remove technological barriers

presented in the previous section. In summary, our contributions are:

• Power modeling methodology: For modeling the power consumption of

a MPSoC, we propose the application of the Functional-Level Power Analysis

(FLPA), which basically allows to extract the processor power consumption

model with a set of high level parameters (i.e., frequency, cache miss rate,

etc.). The aim of this first step is to identify the sources of power consumption

in the embedded system in its entirety (software tasks, hardware accelerators

and the memory system). We have defined a power modeling methodology

that concerns the software and hardware layers to cover the overall embed-

ded system consumption. Our methodology defines the relevant activities

on which the power model relies. These activities are characterized using

measurements on real boards in order to guarantee the maximum level of

accuracy. Afterwards, power models are elaborated by regression functions

or simply recorded as multi-entries look up tables. It is important to have

a scalable approach to address the complex system power/energy estimation

issue. For these reasons, the developed power models are used in the frame of

system-level estimation of homogeneous and heterogeneous MPSoC that may

contain several processors and hardware accelerators. By extending FLPA

March 7, 2013 Santhosh Kumar Rethinagiri Page 7

1.3. CONTRIBUTIONS

methodology for the overall system, the development of power models are

rapid and accurate which answers our first challenge.

• Co-simulation of MPSoC for power estimation: To answer the second

challenge, we propose an framework for hardware/software co-simulation at

system-level for power estimation. A virtual platform based simulation tech-

nique is presented. It speeds up the time of the system with a good perfor-

mance estimation accuracy. Virtual platform technique is implemented at

a high abstraction level by using the SystemC/Transaction Level Modeling

(TLM) 2.0 kit. It leverages the high-level system specification to provide a

hardware/software co-simulation by using a Just In Time (JIT) simulator.

The advent of design flows based on SystemC makes it possible that the

modeling of a system is done by a tight and efficient coupling relationship

between the hardware model and the virtual platform. A co-simulation so-

lution proposed here is based on an architectural template consisting of a

common bus and several processors SystemC with wrapper interacting with

hardware IP’s through the bus. There is a generic wrapper that is put around

all CPU models. The wrapper can be seen as an extension of SystemC that

makes hardware/software co-simulation more efficient. The SystemC simu-

lation serves as a master that drives the overall simulation. The proposed

SystemC simulation environment targets homogeneous and heterogeneous

MPSoC with an ability to provide the relevant activities on which the power

model relies as stated in the first contribution.

• Design methodology based on power estimation: The co-simulation

environment for MPSoC has been enriched by models for estimation of pow-

er/energy in order to make possible the evaluation of the application. This

parameter is the first selection criterion between different architectural solu-

tions possible in order to have a design space exploration. The co-simulation

environment also includes flexible tools for assessing the execution time. This

metric is a second criterion for the selection of the most appropriate archi-

tectural solutions. This proposal was embodied in our work by developing

models of performance estimation at system-level. In a detailed view, our

work mainly contributes to the area of system-level estimation by propos-

ing a system-level framework for power estimation, energy and performance,

March 7, 2013 Santhosh Kumar Rethinagiri Page 8

1.4. PLAN OF THE THESIS

which can indeed help system designers to take the best architectural deci-

sions early in the design flow. The framework presented in this thesis comes

as a proof of concept. Further extensions are required to make this frame-

work more general and complete, as it will be discussed in the future works

section, at the end of the thesis.

The contributions above were implemented in the environment of OPEN-

PEOPLE developed by the team, especially to complement its design flow.

We can also classify the contribution of this thesis work into three sections :

• Concept related: It denotes the definition of the hybrid power estimation

methodology. We start with the initial abstract idea of developing power

models at the functional level and then integrating it into an independent

simulation based framework for power estimation of different platforms.

• Tool related: The stated work in the thesis requires scripting, aimed at

different processors and automating the operation that could not have been

carried out manually. For instance, scripts have been written to automate

the processor characterization, power model and also SystemC IP selection

for a particular platform. At the software level, scripts have been written to

set the application which has to be simulated on the SystemC environment.

• Experiment related: Experiments have been conducted throughout the

entire development of hybrid power estimation methodology to validate the

corresponding estimation accuracy and speed. Power estimation accuracy

has been validated against real board measurements for a set of benchmarks.

The target platforms used as reference for the experiments are Virtex II Pro,

OMAP3530 and OMAP5912.

1.4 Plan of the thesis

This thesis report is organized as follows:

Chapter 2 presents an overview of the most common approaches of system-

level design/ power estimation in use today and compares them to the proposed

approach in this thesis. Large space is given to the description of simulation-based

approaches with particular focus on the Transaction Level Modeling (TLM).

March 7, 2013 Santhosh Kumar Rethinagiri Page 9

1.4. PLAN OF THE THESIS

Chapter 3 describes the proposed power modeling methodology and focuses on

developing power models for processors (PowerPC, ARM9 and ARM CortexA8),

homogeneous and heterogeneous MPSoC based platforms.

Chapter 4 gives the details of the development of the proposed system-level

environment which is required for rapid prototyping and fast simulation for power

estimation. The simulation support to integrate power models into System-

C/TLM environment is also presented.

Chapter 5 shows the proposed hybrid power estimation methodology and

explains the integration of power models into SystemC/TLM environment. It

presents the Power Estimation Tool at System-level (PETS) which is based on

hybrid power estimation methodology with the help of case-studies and the vali-

dation through the experimental results.

Chapter 6 draws the conclusions on the entire work and leaves space for some

future works.

March 7, 2013 Santhosh Kumar Rethinagiri Page 10

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, we present power estimation methodologies available in the litera-

ture and we compare them to the proposed methodology in this thesis. There are

two types of approaches available: Simulation-based and analytical-based. More

insight will be given on power modeling methodologies and simulation-based tools

and in particular to the SystemC/TLM.

The conclusion drawn from the previous chapter is that being able to effi-

ciently carry out system-level power estimation is a necessary condition to make

design-space exploration (DSE) at system-level possible. Due to their importance

and also lack of a defined model, power estimation at system-level in general is

a hot research topic today. In this chapter, we will present a survey of the most

significant tools for System-Level Design (SLD) with the capability of power esti-

mation and different types of power modeling approaches. Finally, a comparison

of our approach to the methodologies available in the literature is presented.

This chapter is organized as follows: Section 2.2, gives a brief description

about basics, definition and motivations for system-level design. Section 2.4

presents the available power modeling methodologies in the literature. Sec-

tions 2.5 and 2.6 present the power estimation tools available respectively with

March 7, 2013 Santhosh Kumar Rethinagiri Page 11

2.2. MOTIVATIONS FOR SYSTEM-LEVEL DESIGN

simulation-based and analytical-based approaches. Section 2.8 gives more details

about the virtual platform tools available in the industries.

2.2 Motivations for system-level design

In 1983, Gajski and Kuhn derived what is today known as a Y-chart [44], which

is a representation of the different abstraction levels at which a system can be

modeled and estimated. This is shown in Fig. 2.1. Gajski and Kuhn distinguish

five different abstraction levels, represented by concentric circles, each of which is

classified according to three different domains: behavioral, structural and phys-

ical. The innermost circle corresponds to the lowest abstraction level, while the

outermost one to the highest.

Figure 2.1: Gajski and Kuhn Y chart: source [44]

Until a few decades ago, it was still possible to manually describe a system

directly at the physical level, since the amount of complexity was very limited.

March 7, 2013 Santhosh Kumar Rethinagiri Page 12

2.2. MOTIVATIONS FOR SYSTEM-LEVEL DESIGN

When complexity grew, manual description at physical level became impossible

and the starting point of the design flow was thus raised to a higher abstraction

level, translate (synthesize) a gate-level description into a layout design. Similarly,

as complexity kept growing, the starting point of the design flow was further raised

up to the Register Transfer Level (RTL) was introduced. Two very well-known

examples of languages used for RTL description are VHDL and Verilog. Along

with the increase of complexity, todays trend is to further shift the entry level for

automatic synthesis up to the system-level.

Thus, shifting towards higher levels of abstraction has proved to be a winning

strategy for dealing with the increasing complexity. Indeed, by abstracting away

the lower-level details, implementation is faster, which means lower engineering

effort, lower cost and lower time to market, as well as higher productivity. Deci-

sions made at the system-level have a very strong impact on the quality of the final

product, since the degree of achievable optimization is normally proportional to

the abstraction level and indirectly, to the point in the design flow where decisions

are taken: the earlier the better. At the system-level, the question that system

architects have to answer are the following: given a set of applications and a set

of possible architectures, what is the best architecture on which to map this set of

applications. The expression best architecture refers to the properties of an archi-

tecture in terms of metrics such as performance, power consumption and silicon

area, for a given set of applications. For example, what is the power and perfor-

mance impact of varying the number of levels in the memory hierarchy? What

is the best interconnect to use: a bus or a NoC? What is the advantage/disad-

vantage of implementing part or the whole set of applications in hardware rather

than software? These are just examples of the hard choices a designer has to

make. Since they are so important, taking the right system-level decisions from

the beginning is crucial, especially when complexity grows. Any error at this

early stage would lead to annoying design reiterations with a consequent high

loss of time, money and probably, a sub-optimal final implementation.

However, although very important, decisions at system-level are very hard

to take and this is for two main reasons: the first is that, at the system-level,

the design space to consider is extremely broad as a consequence of the limited

amount of implementation details available. Fig. 2.2 shows the relation between

March 7, 2013 Santhosh Kumar Rethinagiri Page 13

2.2. MOTIVATIONS FOR SYSTEM-LEVEL DESIGN

the design space width and the abstraction level. The second reason is that the

impact of the decisions taken at system-level is not known until a very late stage

of the design process, which can take months of work.

From the second reason mentioned above, it can be concluded that the lack

of a quick and accurate system-level power estimation approach is one of the

main obstacles to a successful system-level design today. In fact, if an efficient

system-level methodology for energy and performance estimation was available,

it would be possible to carry out a reasonably comprehensive DSE and thus judge

from the beginning of the design flow which architecture is the most suitable for

a certain application domains, in terms of performance and power consumption.

In addition, estimation at any abstraction level is a requirement for the imple-

mentation of automatic synthesis tools, since it is only after estimation that the

tool can judge what the best solution is.

Efficient estimation at lower abstraction levels has allowed us to have quite

mature automatic tools today. Estimation at the physical level requires account-

ing for the individual capacitance and resistance contributions coming from each

transistor and interconnecting wire. Estimation at this level is extremely accu-

rate, but also very slow. Simulation at physical level is also very slow and is thus

feasible for only very small designs and for a very short design execution time.

At the gate level, estimation is simplified by the fact that standard cells are

used whose physical properties are pre-characterized. Only the impact of cell-to-

cell connecting wires has to be estimated separately, which is done using so called

wire load models. Estimation at this level is less accurate, although faster, and

bigger design sizes can be simulated. At the RTL level, Hardware Descriptive

Languages (HDL) are used to describe in words what RTL synthesis translates

into logic gates. Simulation is very common at RTL and reasonably fast for

medium size designs running very short chunks of application. However, estima-

tion made at this level loses accuracy due to the lack of enough physical details.

In general, the increase of the abstraction level is directly proportional to the

estimation speed and inversely proportional to the estimation accuracy. When it

comes to system-level, the lack of an efficient estimation methodology has been

an obstacle to have mature automatic system-level tools available today. In fact,

the operation of mapping the system-level functional description to the actual

March 7, 2013 Santhosh Kumar Rethinagiri Page 14

2.2. MOTIVATIONS FOR SYSTEM-LEVEL DESIGN

!"#$%&'#()*"'"+(,-.)/-&''

01#2.)*/-&'3"4",''

Figure 2.2: Broadness of architectural solutions according to the abstraction level

architecture is still largely done manually. The decision making approach used

by system designers has been mostly relying on their acquired experience, on

comparison with previous designs and on rules of thumb. However, while this

approach can still work with small/medium-size systems, its application to nowa-

days more and more complex systems has become unrealistic and the need for a

more systematic and accurate approach has become a necessity. Cycle-Accurate

(CA) and Transaction Level Modeling (TLM) have appeared at the beginning

of the last decade as a descriptive based approach raising the abstraction level

above RTL in order to reduce simulation time and development effort.

In late 1990s, many large companies started to develop their own models

while research institutes and EDA start-ups were proposing a variety of modeling

languages. The initial requests were to have cycle-accurate C or C++ models

from certain who believed that it was the right way to get simulations running

at least one order of magnitude faster than RTL models in VHDL or Verilog. It

March 7, 2013 Santhosh Kumar Rethinagiri Page 15

2.2. MOTIVATIONS FOR SYSTEM-LEVEL DESIGN

soon became obvious that cycle-accurate modeling had several drawbacks [46].

First, the modeling effort was close to the one of creating synthesizable RTL

models. It was due to fact that the model complexity was too close to RTL.

The only gain was that such models had no synthesis-related constraints [46].

In addition, the RTL was still the reference due to immature synthesis tools. It

led to iterations of the C++ model trying to keep in line with the RTL model

of the IP under design. Introducing any specification change in the C++ model

during the design was almost as long as doing so in the RTL model. The cycle-

accurate modeling was actually leading to high costs. These models were not

available to architects and were ready for software developers a little too late.

Second, the simulation speed for a SoC model was ten times below the original

objective. It was simulating at a few kHz compared to the several hundreds of Hz

for RTL. Third, using specific languages or modeling optimizations to gain speed

was actually locking the modeling team into a specific simulator supplier [46].

Fourth, during final RTL updates before tape-out, it was usually not possible to

keep updating the cycle-accurate C++ model due to tight schedule. Thus, the

cycle-accurate model was not fully consistent with the reference RTL at tape-out

[46]. Normally, modeling engineers would be allocated to another project once

the SoC was taped-out. The model would not be usable as a starting point for

its next generation design because it was not consistent with the existing RTL

and original modeling engineers were unavailable. For all these reasons, we were

looking for an higher level of abstraction that would allow much quicker modeling

than cycle-accuracy, yet be precise and fast enough for software developers to test

the real embedded software using a standard language enabling reuse of models

with a variety of simulator suppliers. Ideally, such models should also be usable

for performance estimations with enough precision for SoC architects to make

decisions.

In essence, TLM abstracts away the RTL details and models functionality

and communication among the system modules. Communication is seen as an

exchange of transactions between architectural resources. As a result, TLM has

proved to be much faster than CA and RTL. The natural question that comes as a

conclusion of the above discussion and also the motivation behind this thesis work

is as follows: As it has been discussed that system-level estimation is essential

March 7, 2013 Santhosh Kumar Rethinagiri Page 16

2.3. SYSTEM-LEVEL MODELING LANGUAGES

for a successful system-level design, how is it possible to implement a fast and

accurate methodology for efficient system-level estimation.

2.3 System-level modeling languages

The terms of TLM defined in the last section can be attained through an appro-

priate electronic system level (ESL) modeling approach. The right candidate to

do this job is a high-level programming language that is capable of developing

not only a plain software program, but also of modeling electronic hardware at

the conceptual level without describing the real implementation. The potential

candidates include SystemC [91], SpecC [65], Hpascal [42], System verilog [121]

and Hardware-C [49]. Specification at higher levels of abstraction is possible in

environments such as SpecC. A unified and integrated approach to hardware-

software co-design is possible if the hardware modeling description is based on

the C/C++ languages that are popular in the software community. Hardware-C

[49] is an example of such a proposal. SystemC is an emerging standard modeling

platform based on C++ that addresses the issues discussed above, and supports

design abstraction at the RTL, behavioral and system levels. Consisting of a

class library and a simulation kernel, the language is an attempt at standardiza-

tion of a C/C++ design methodology, and is supported by the Open SystemC

Initiative (OSCI), a consortium of a wide range of system houses, semiconductor

companies, IP providers, embedded software developers, and design automation

tool vendors. Apart from the modeling benefits available in C++ such as data

abstraction, modularity, and object orientation, the advantages of SystemC in-

clude the establishment of a common design environment consisting of C++ li-

braries, models and tools, thereby setting up a foundation for hardware-software

co-design; the ability to exchange IP easily and efficiently; and the ability to reuse

test benches across different levels of modeling abstraction.

In the upcoming sections, we will go through SystemC/TLM used for design-

ing tools at system-level and also advantages of using SystemC/TLM.

March 7, 2013 Santhosh Kumar Rethinagiri Page 17

2.3. SYSTEM-LEVEL MODELING LANGUAGES

2.3.1 SystemC and Transaction Level Modeling 2.0 kit

(TLM)

In the recent years, SystemC/TLM [91] has become widely popular among the

simulation based approaches in academics and also in industries. This huge pop-

ularity is also due to support of the main actors in the domain such as Synopys[9]

and Cadence[13].

SystemC is based on a set of C++ classes and provides an event-driven sim-

ulation kernel [48]. These facilities enable a designer to simulate concurrent pro-

cesses, each described using plain C++ syntax. SystemC processes can commu-

nicate in a simulated real-time environment, using signals of all the datatypes

offered by C++, some additional ones offered by the SystemC library, as well

as user defined. In certain respects, SystemC deliberately mimics the hardware

description languages VHDL and Verilog, but is more aptly described as a system-

level modeling language. In fact, it models hardware at a higher abstraction level

than RTL and, in order to do this, it uses C++ as a programming language.

Higher abstraction level means higher simulation speed but also less accuracy.

The way SystemC trades-off these two important metrics has been characterized

in [117]. SystemC is applied to system-level modeling, architectural exploration,

performance modeling, software development, functional verification and high-

level synthesis. SystemC is often associated with ESL design and with TLM.

Using SystemC as a vehicle to provide the Transaction Level Modeling (TLM)

abstraction proved to be the key to the fairly fast deployment of this methodol-

ogy. There was no issue of proprietary language support by only one CAD vendor

or university. There was also no issue of making a purchase decision by the design

manager for yet another costly design tool. Eventually, with the collaboration of

ARM and Cadence Design Systems, a full-blown proposal was made to the Open

SystemC Initiative (OSCI), under the name PV (Programmer View) and PVT

(Programmer View Timed). Indeed Programmer View clearly reflects the intent

of this new abstraction level, which is to bridge the gap between the embedded

software developer and the hardware architect. In 1999, companies like CoWare

and Synopsys started to encouraged the Open SystemC Initiative (OSCI) in or-

der to develop an HDL which could model hardware at a higher abstraction level

March 7, 2013 Santhosh Kumar Rethinagiri Page 18

2.3. SYSTEM-LEVEL MODELING LANGUAGES

rather than widely used VHDL and Verilog. The main stimulus was to provide

an improvement in the implementation and the simulation efficiency when com-

pared to RTL, which has proved to be a bottle neck in modeling a system-level

architecture. TLM tool kit was first introduced in 2000 [76]. TLM tool kit is a

set of library function built on the top of an high level language, which is very

often SystemC. In TLM, a transaction represents the data exchanged between

the different system modules. As we said before similar to SpecC even in Sys-

temC/TLM the computational component is separated from the communication

component. For this purpose, TLM provide constructs to efficiently model the

inter-module communication component, while the intra-module computational

component is generally modeled at the functional/behavioral level. Standard

routines have been implemented in TLM which model unidirectional versus bidi-

rectional and blocking versus non-blocking communication. Communication is

modeled using channels, interfaces and ports, which are objects provided by the

underlying HLL. In the context of this thesis, TLM tool kit version 2.0 is used as

a reference.

2.3.2 Advantages to use TLM

Based on what has been said so far, using TLM has some clear benefits:

• First, there is a speed-up in the implementation when compared to the tra-

ditional RTL and Cycle-Accurate (CA) approach. This speed-up comes from

the fact that most of the RTL and CA details are abstracted away. In use,

only the behavioral description is used instead of the computational block

details. In [46], the author reports a speed-up of up to 10x and 7x when

modeling in TLM compared to RTL and CA as shown in the Fig. 2.3.

• Second, regarding synchronization issues, SystemC and TLM have helped

major designers. According to Yi et al. in [131], This issue is due to mul-

tiple simulation models may have to run together and synchronize to each

other. By using SystemC , there is a homogenous environment for hard-

ware/software co-simulation, thus replacing the considerable Inter-Process

Communication (IPC) overhead with a light-weighted thread switch over-

head.

March 7, 2013 Santhosh Kumar Rethinagiri Page 19

2.3. SYSTEM-LEVEL MODELING LANGUAGES

Figure 2.3: TLM speed-up in terms of modeling efforts and simulation speed :
source [46]

• Third, compared to the traditional RTL and CA approach, TLM has higher

simulation speed of 1000x and 900x respectively [46] as shown in the Fig.

2.3.

• Fourth, F. Ghenassia in [46] states that using the TLM design flow can allow

a more efficient HW/SW co-design. This is shown in Fig. 2.4. In essence, the

TLM flow would allow a concurrent development of hardware and software:

the architectural TLM of the hardware infrastructure enables early software

development and verification of hardware software interfaces. This is also a

consequence of the fact that, in the classic design flow, software is usually

implemented in C/C++, while hardware in VHDL/Verilog. In the TLM flow

instead, both the software and hardware models are implemented in C/C++;

thus concurrent testing becomes more feasible and the overall design time

shorter.

March 7, 2013 Santhosh Kumar Rethinagiri Page 20

2.4. POWER MODELING APPROACHES AND TOOLS

Figure 2.4: TLM design flow : source [46]

• Finally, SystemC/TLM is considered the right modeling language from where

High-Level Synthesis (HLS) should start. An example to substantiate this

claim is the CtoS [12] tool sold by Cadence. Starting from a SystemC de-

scription, this tool outputs RTL code. Inspite of this, HLS is far from being

as mature as logic synthesis and therefore requires more research.

2.4 Power modeling approaches and tools

In this section, we give a detail view about the most recent different approaches

for power modeling at different abstraction level. The power consumption models

can be distinguished into two main categories:

• Low-Level or hardware level models.

• High-Level models.

March 7, 2013 Santhosh Kumar Rethinagiri Page 21

2.4. POWER MODELING APPROACHES AND TOOLS

Low-level or hardware models calculate the power from detailed electrical

descriptions: circuit level, gate level and RTL. Among the existing tools for low-

levels we can mention, SPICE [88] at the transistor level, Diesel [96] at the gate

level and Petrol [95] at the RTL level, which deal with fine-grained activities.

The low-level tools require a very long simulation time for large circuits and this

makes them inapplicable for complex MPSoC. However, these tools provide a

good accuracy, but impractical to implement in the early design flow as they

require the knowledge of the circuit details. High-level models deal with instruc-

tions and functional units of the programs and without any electrical knowledge

of the underlying architecture [35] as shown in Fig. 2.5.

Figure 2.5: Power modeling methodologies and tools according the abstraction
levels

March 7, 2013 Santhosh Kumar Rethinagiri Page 22

2.4. POWER MODELING APPROACHES AND TOOLS

2.4.1 Low-level estimation techniques

The efficiency of the power simulator is influenced by both accuracy of the es-

timation and speed of the simulator. In this section, we will go through few

frequently used power modeling techniques at lower levels. The low-level power

consumption estimation techniques cover a wide range of abstractions level such

as the:

• Circuit/Transistor level

• Logic gate level.

• RTL.

• Architectural level.

2.4.1.1 Circuit-level

Here the microprocessor is represented in terms of transistors and nets which are

extremely complex. It also requires to undergo all the steps in the design flow and

the layout, routing and parameter extraction. This is not feasible due to the non

availability of the technologies and tools. Moreover, the circuit-level of the system

uses component models which are based on linear differential equations and works

in continuous time domain. This suggest that a simple simulation for a small set

of transistors requires a large amount of time which is not always available in

this fast moving industry and not practical [31]. In an early attempt to build a

low-level power consumption simulator, PowerMil [54] was introduced. This tool

is used for simulating current and the power characteristic in VLSI circuits. It is

also capable of simulating detailed current behavior in modern deep sub-micron

CMOS circuits, including sophisticated circuitries such as sense-amplifiers, with

speed and capacity approaching conventional gate level simulators [85], [50].

2.4.1.2 Gate-level

In this subsection, the description about the method to estimate the power con-

sumption based on gate-level description have been given. The main advantage of

this methodology compared to the previous methodology is: here the simulation

is event-driven and takes place in a discrete time domain which considerably re-

March 7, 2013 Santhosh Kumar Rethinagiri Page 23

2.4. POWER MODELING APPROACHES AND TOOLS

duces the computational complexity, without any significant loss of accuracy [31].

Chou et al. [39] present an accurate estimation of signal activity at the internal

nodes of sequential logic circuits. The power consumption estimation in [39]. is a

Monte Carlo based approach that take spatial and temporal correlations of logic

signals into consideration. These tools [51] generally consist of n-dimensional

table to estimate the power consumed in a circuit for a given statistics, where

n represents different variables/components capturing the relationship of power

and dependent variables such as input probability, transition density etc. In pa-

per [51], authors present an automation methodology, in which, such a tables are

automatically generated. Three variants in their model are average input signal

probability, average input transition density, and average output zero-delay tran-

sition density. For characterization purposes they assume that input nodes are

output of latches or flip-flops and make at most one transition per clock cycle.

Also, sequential design is single clock system and clock skew is ignored in their

analysis hence all the inputs switch simultaneously.

2.4.1.3 RTL

Most of the RTL designs are described as a collection of blocks and intercon-

nections. The blocks, sometimes referred to as macros, are adders, registers,

multiplexers and so on, while the interconnections are simply nets or group of

nets. Most of the tools presented in the literature follow similar pattern like the

power properties of the block can be derived from an analysis of the block isolated

from a design, under defined conditions. This gives to the main factor influencing

the power consumption model of a macro is the input statistics [31].

Currently, almost all the research in RTL power estimation is based on empir-

ical methods that measure the power consumption of existing implementations

and produce models from those measurements. Thus this approach is totally in

contrast to the information-theoretic measures of activity to estimate power [77],

[104]. There is another approach which is widely used by RTL designers is based

on measurement for estimating the power consumption of data-path functional

units. Chau et al. [100] introduced a fixed-activity micro-modeling strategy called

Power Factor Approximation (PFA) method. The power models are character-

March 7, 2013 Santhosh Kumar Rethinagiri Page 24

2.4. POWER MODELING APPROACHES AND TOOLS

ized in terms of complexity parameters and a PFA proportional constant. Similar

works were also done by Kumar et al. [84] and Liu et al. [72]. Above listed ap-

proach has a clear problem that the inputs do not affect the switching activity of

a hardware block. In order to overcome this problem, activity-sensitive empirical

power models were developed. These schemes are based on predictable input

signal statistics; an example is the method proposed by Landman and Rabaey

[67]. However the separate models built via this technique are quite accurate

(10% to 15% error rate), but due to incorrect input statistics or the inability to

correctly model the interaction this method is not feasible. The second technique,

transition-sensitive power models, is based on input transitions rather than input

statistics. This technique was proposed by Mehta et al. [78], assumes a power

model is provided for each functional unit a table containing the power consumed

for each input transition. Closely related input transitions and power patterns

can be concentrated into clusters, thereby reducing the size of the table. Other

researchers have also proposed similar macro-model based power estimation ap-

proaches [101], [64].

Bogliolo et al. [28] have proposed a methodology for creating power macro-

models based on linear regressions but their flow is specific to the structural RTL

macros and power estimation is done at the gate-level. Their analysis is restricted

to structural RTL representation whose leaf components are combinational logic

blocks. This approach is based on: first, off-line characterization in which they

compute the power of the RTL macro based on certain tests and second, on-line

characterization, in which they do it adaptively for error minimization. Their ap-

proach utilizes all the inputs, outputs, transition functions of inputs and outputs

on the successive cycles, and then they interpolate the relationship with energy

consumption.

Potlapally et al. [99] present a technique in which they do cycle-accurate

power macro modeling of the RTL component. This technique is based on the

fact that RTL components exhibit different power behavior for different input

scenarios. They create power macro model for each of these behaviors also known

as power modes. Their framework chooses the appropriate power mode from

the input trace in each cycle and then apply power macro-modeling technique

discussed by Bogliolo et al. to get an estimate on power numbers. The technique

March 7, 2013 Santhosh Kumar Rethinagiri Page 25

2.4. POWER MODELING APPROACHES AND TOOLS

discussed in [99] is limited to the typical average power estimation scenarios and

covers non-trivial scenarios as well but the estimation speed is very slow.

2.4.1.4 Architectural-level estimations

There are many architectural power simulator available in the industry and also

in the research faculties. Architectural power simulator employ a combination of

lower abstraction power consumption models. These simulators derive power esti-

mates from the analysis of circuit activity induced by the application programmes

during each cycle and from detailed capacitive models for the components ac-

tivated. One of major difference between these simulators are the estimation

accuracy and speed. SimplePower tool [127], works with a transition-sensitive

power model for the data-path functional unit. The SimplePower core accesses

a table containing the switch capacitance for each input transition of the func-

tional unit exercised. Fig. 2.6 and Fig. 2.7 show SimplePower’s compilation and

simulation framework. The use of a transition-sensitive approach has both design

challenges as well as performance concerns during simulation. The first concern

is that the construction of these tables is time consuming. Unfortunately, the

size of this table grows exponentially with the size of the inputs. The table con-

struction problem can be addressed by partitioning and clustering mechanisms.

Further, not all tables grow exponentially with the number of inputs. For exam-

ple, consider a bit-independent functional unit such as a pipeline register where

the operation of each bit slice does not depend on the values of other bit slices. In

this case, the only switch capacitance table needed is a small table for a one-bit

slice. The total power consumed by the module can be calculated by summing

the power consumed by each bit transition. Another concern about this technique

is its performance cost of the lookup table for each component access in a cycle.

In order to overcome this concern, simulators like SoftWatt [53] and Skyeye

[38] are proposed. These simulators use a simple fixed-activity model for the

functional units and only track the number of accesses to a specific component

and utilize an average capacity value to estimate the power consumed. In contrast

to the datapath components that utilize a transition-sensitive approach, these

models estimate the power consumed per access and do not accommodate the

March 7, 2013 Santhosh Kumar Rethinagiri Page 26

2.4. POWER MODELING APPROACHES AND TOOLS

SimpleScalar
GCC

SimpleScalar
GAS

SimpleScalar
GLD

High Level
Complier

Optimizations

Low Level
Complier

Optimizations

RT Level
Optimizations

SimplePower

Output Module

Energy Statistics

C Source
Code

Assembly Object file

Core energy

Memory energy

Bus energy

I/O Pads energy

Executables

Figure 2.6: Complier of SimplePower
tool

Figure 2.7: SimplePower simulator

power differences found in sequences of accesses.

One of the most widely used another tool in architectural domain is Wattch

[32]. Wattch tool is used for superscalar and out-of-order processor. The base

infrastructure is offered by SimpleScaler [34] for this tool. SimpleScaler carries

out fast, fexible and accurate simulation of modern processors that implement

a derivative of MIPS architecture. In addition, it also supports detailed cycle-

accurate information for all models, including datapath elements, memory and

Content Addressable Memory(CAM) arrays, control logic, and clock distribution

network. Wattch uses activity-driven, parametrisable power models, and it dis-

played an accuracy better than 10% when tested on three different architectures.

There are other approaches to evaluate energy estimates at the architectural

-level which exploits the correlation between the performance and energy met-

rics. These methods [103], [60] uses the performance counters present in many

processor architectures to provide runtime energy estimation [94]. While provid-

ing excellent accuracy; low-level power estimation methodologies are slow and

impractical for analyzing the power consumption at an early design stage. More-

over, these methodologies require the availability of lower level circuit details or

March 7, 2013 Santhosh Kumar Rethinagiri Page 27

2.4. POWER MODELING APPROACHES AND TOOLS

a complete HDL design of the targeted processor, which is not available for most

of commercial off-the-shelf processors.

SEAS [24] presents a system and framework for analysing SoCs in early design

stage. Power analysis in this system works at a granularity of a processor cores,

where pre-characterized data for power is utilized based on the power state of

the design. Power states of the cores are high level states based on the workload

such as active, idle, sleep states in today’s processors. By utilizing these high

level states of the SoC an early power estimation can be performed which is more

efficient and accurate than the traditional spread sheet based approach.

Shin et al. have proposed a methodology [120] for power estimation of opera-

tion modes but their analysis is done at logic-level and proposes a way to create

power models based on the switching frequencies. [27], [29], [52], [79], [86] utilize

the similar approach for power estimation purposes and provide various accu-

racy and efficiency trade-offs based on the quality of inputs and power modeling.

Power estimation accuracy can be significantly increased but generally it impacts

the efficiency of power estimation procedure.

2.4.2 High-level estimation techniques

In the recent past, the need for high-level power estimation simulators has been

increased which allows an early DSE from the power consumption perspective.

The widely used high-level power estimation methodologies are classified into two

main categories, Instruction Level Power Analysis (ILPA) and Functional Level

Power Analysis (FLPA).

2.4.2.1 Instruction Level Power Analysis (ILPA)

ILPA power modeling methodology for individual processors was proposed by

V.Tiwari et al [126]. In this methodology, they propose that by measuring the

current drawn by the processor as it repeatedly executes distinct instructions

or distinct instruction sequences, it is possible to obtain most of the information

that is required to evaluate the power consumption of a program for the processor

under test. The processor under test here is Intel DX486. Power model is modeled

as base cost of each instruction and its inter-instruction overheads that depend

March 7, 2013 Santhosh Kumar Rethinagiri Page 28

2.4. POWER MODELING APPROACHES AND TOOLS

on next instruction. The base cost of an instruction can be considered as the cost

associated with the basic processing needed to execute the instruction. There are

some inter-instruction effects which comes into play and are not reflected in the

total cost computed solely from base cost. The different effects are:

• Circuit state: switching activity of the system relies on the current inputs

and previous state. In other words the difference between the bit pattern of

two successive instructions.

• Resource constraints: limitations lead to CPU stalls e.g. pipeline and write

buffer stalls.

• Cache misses: This is another inter-instruction effect. The instruction tim-

ings listed in manuals give the cycle count assuming a cache hit. For a cache

miss, a certain cycle penalty has to be added to the instruction execution

time.

By using the similar mechanism power profiler was introduced by Nikoladies

et al [114]. The input for this profiler is the trace file of the executed assem-

bly instruction, which is generated by an appropriate processor simulator. In

this profiler, they also take into account the base estimates, inter-instruction en-

ergy cost of the executed program and also the energy sensitive factors as well

as the effect of pipeline stalls and flushes. The complexity in the measurement

of the current is one of the biggest drawback in this methodology [115]. There

was another approach to reduce the spatial complexity of instruction-level power

models presented in [19]. In this approach, the inter-instruction effect has been

measured by considering only the additional energy consumption observed when

a generic instruction is executed after No-Operation (NOP) instruction. In or-

der to improve ILPA, the instruction level power model was combined with gate

level simulator by Sama et al [116]. In this approach, the power cost values

were obtained through a power simulator rather than actual measurement; thus

modeling is possible at design time and can be part of micro-architecture and/or

instruction set architecture exploration. More researchers attempted to enhance

the original Tiwari ILPA power consumption modeling technique as in [111], [78].

Eventhough there are plenty research with this ILPA available, there are some

drawbacks which were never overcomed by them. One of these drawbacks is that

March 7, 2013 Santhosh Kumar Rethinagiri Page 29

2.4. POWER MODELING APPROACHES AND TOOLS

the number of current measurements is directly related to the number of instruc-

tions in the Instruction Set Architecture (ISA), and also the number of parallel

instructions composing the very long instruction in the VLIW processor. The

problem of instruction level power characterization of K-issue VLIW processor

is O(N2K) where N is the number of instructions in the ISA and K is number

of parallel instructions composing the VLIW [73]. Also they do not provide any

insight on the instantaneous causes of power consumption within the processor

core, which is seen as a black-box model. Moreover, the effect of varying data

(as well as address) is ignored in the ILPA models, though this effect can be

accounted by an additive factor [20].

2.4.2.2 Functional Level Power Analysis (FLPA)

Figure 2.8: FLPA general methodology

To overcome the drawbacks of ILPA, Functional Level Power Analysis (FLPA)

was introduced by J.Laurent et al in [57]. Fig. 2.8 gives the working table of power

March 7, 2013 Santhosh Kumar Rethinagiri Page 30

2.4. POWER MODELING APPROACHES AND TOOLS

estimation with the help of FLPA technique. The basic idea of this methodology

relies on the identification of a set of functional blocks that influence the power

consumption of the target component: like Processing Unit (PU), Instruction

Management Unit (IMU), internal memory and others [118]. In addition to these

parameters, there are some parameters that affect the power consumption of

all functional blocks in the same manner such as operating frequency and word

length of input data [68]. The model is represented by a set of analytical functions

or a table of consumption values which depend on functional and architectural

parameters. Once the model is build, the estimation process consists of extracting

the appropriate parameter values from the design, which will be injected into the

model to compute the power consumption. Based on this methodology, the tool

SoftExplorer[40] has been developed and included in the recent toolbox CAT[112].

C code

Algorithmic
parameter values

ASM

Power model

Parser

Pseudo code

Parser

Compilation

Configuration
parameter

values

Prediction
models

Mapping file

Power/energy
Estimation

SoftExplorer

Architecture
independent

Figure 2.9: SoftExplorer power estimation flow : source [59]

Estimation flow of SoftExplorer is shown in the Fig. 2.9. The entry point of

this tool can be both the assembly code generated by the compiler (or directly

the ASM code written by the programmer) or directly the C code. This tool

gives the global and local (for each loop) consumption and also the consumption

repartition. It can also give the energy consumption of the external memory and

March 7, 2013 Santhosh Kumar Rethinagiri Page 31

2.5. SIMULATION BASED ESTIMATION TOOLS

the energy consumption repartition between the processor and the external mem-

ory (only for the C6x model with the ASM estimation). SoftExplorer analyses

the ASM code or the C code and computes the algorithmic parameters of the

power model. Then, it uses these parameters to determine the power and energy

consumption of the algorithm. The maximum error between the estimation and

the physical measures is less than 4% for the ASM estimation (for both the power

and energy) and less than 8% for the power about 20% for the energy at the C

level. The estimation time is about few seconds (for example, the estimation time

for a MPEG-2 encoder is 2 seconds). It also includes a library of power models

for simple to complex processors. Only a static analysis of the code, or a rapid

profiling is necessary to determine the input parameters for the power models.

The functional level power modeling approach is applicable to all types of pro-

cessor architectures. Furthermore, FLPA modeling can be applied to a processor

with moderate effort and no detailed knowledge of the processors architecture

is necessary [74]. However, when complex hardware or software components are

involved, some parameters may be difficult to determine with precision. This lack

of precision may have a non-negligible impact on the final estimation accuracy.

In the context of this work, we have used this methodology to generate power

models which later fed into the system-level environment and we will compare our

tool with the SoftExplorer. Indeed, the FLPA methodology was applied to the

building of power-models for different components in an embedded system : the

approach have been recently extended by considering, in heterogeneous architec-

tures, the overhead due to operating system services and the use of peripherals,

in addition to the intrinsic consumption of applications [112] [90].

2.5 Simulation based estimation tools

From the name, we are able to conclude that these tools rely on simulation

for the results. By using simulation, we are able to trace the behaviour of the

system and for the given set of input stimuli. Simulation-based approaches are

therefore suitable for non-deterministic system behavior and their results are

generally representative of the average-case scenario. Significant research efforts

have been devoted to develop tools for evaluating power consumption, energy

March 7, 2013 Santhosh Kumar Rethinagiri Page 32

2.5. SIMULATION BASED ESTIMATION TOOLS

consumption and DSE at system-level in embedded system design. As a result

these research efforts, several enviroments were proposed like SPADE [71], MESH

[92], MILAN [81], GRACE++ [61] and Metropolis [21]. The work presented here

could be considered as reciprocal to these environments. As discussed in the 2.3.1,

SystemC offers a hardware/software co-modeling and co-simulation environment.

When compared to traditional co-simulation tools, SystemC/TLM offers faster

simulation, as the abstraction level has been elevated from RTL to transaction

level. Another benefit of TLM is overheads associated with synchronization and

communications between the simulation models can be significantly reduced [30].

There are few simulation approaches which will form a good literature review are

presented below.

2.5.1 SPADE

SPADE [71] abbreviation for System-level Performance Analysis and Design-

space Exploration and presents an methodology at system-level to explore signal

processing processors. Even here the communication happens through channels

which are connected to ports. Applications are modeled as a network of con-

current communicating processes, based on the model of computation provided

by Kahn Process Networks. The work phenomenon of the spade is as follows,

while carrying out the application, each process produces a trace of events which

indirectly represents its workload. Then, the traces are transformed into an in-

put for the corresponding architecture power model. Here the accuracy of the

estimation is around 20 % when compared to RTL level modeling. Mapping and

functional and architecture models are shown in Fig. 2.10. Artemis [98], [97]

abbreviation for Architectures and Methods for Embedded Media Systems. The

Artemis development environment for power and performance is heavily based

on the SPADE framework. Artemis focuses on two challenges: first, developing

a modeling and simulation environment for efficient design-space exploration of

heterogeneous embedded systems; second, investigating the possibility of using

reconfigurable embedded architectures such as FPGAs to give high performance

for specific applications and limiting power consumption. Here it is stated that

power estimation error are high.

March 7, 2013 Santhosh Kumar Rethinagiri Page 33

2.5. SIMULATION BASED ESTIMATION TOOLS

Figure 2.10: SPADE design flow : source [93]

2.5.2 Metropolis

Metropolis [22] gives an unified tool-set with an objective for embedded system

development, which supports simulation, formal analysis and synthesis. As its

said to be unified tool set, the authors promises that there is an considerable

speed up and making it more efficient and also less error prone. Metropolis is de-

signed to provide an infrastructure based on a model with precise semantics that

remain general enough to support existing computation models and accommo-

date new ones. This metamodel can support not only functionality capture and

analysis, but also architecture description and the mapping of functionality to

architectural elements. Metropolis includes a standard API, which allows feeding

the tool with inputs coming from any external tool. The Metropolis metamodel

is a language, similar to SystemC, that specifies networks of concurrent objects.

This metamodel can be used to represent function, architecture, mapping of the

function on the architecture, and platforms.

March 7, 2013 Santhosh Kumar Rethinagiri Page 34

2.5. SIMULATION BASED ESTIMATION TOOLS

Set of objects forms a function which is called as processes that concurrently

carry out some actions while communicating with each other through ports. The

interface methods are actually implemented in other objects called media, which

are used to connect ports to each other. Channels are the SystemC equivalent

of Metropolis media. The behavior of this network of processes is modeled as a

set of executions, where each execution consists of a sequence of events. Events

represent a program’s entries or exits to some piece of code. Note that Metropolis

is in many respects similar to SpecC and SystemC, in that they all rely on the

concept of concurrent processes that communicate via channels.

Two aspects distinguish are identified in architectures modeing: the func-

tionality that it has to implement and that implementation’s efficiency. In the

metamodel, we model functionality as a set of services that an architecture offers

to the functional model. Services are just methods, bundled into interfaces. To

represent an implementation’s efficiency, we must model the cost of each service.

We do so by first decomposing each service into a sequence of events, then an-

notating each event with a value representing the event’s cost. This is done by

annotating the cost of each atomic event executed within a process. So called

quantity managers are used for this purpose. The decomposition of services into

event sequences is done by using networks of media and processes, as is also done

for the functional model (power). Here the power estimation accuracy varies be-

tween 10 to 25 % when compared to RTL models. Architecture networks often

match the actual physical structure of the architecture.

There is a network called mapping network which takes care of mapping the

functional model to the architectural model. Fig. 2.11 shows the mapping net-

work, on the left side is the functional model and its corresponding architectural

model on the right.

2.5.3 MILAN

MILAN [113], [83] stands for Model-based Integrated simuLAtioN. Its an frame-

work to facilitate embedded system design and optimization. It’s main focus

is to provide a tool for energy-efficient design of signal-processing applications.

The following steps will provide the working flow of the framework: application

March 7, 2013 Santhosh Kumar Rethinagiri Page 35

2.5. SIMULATION BASED ESTIMATION TOOLS

Figure 2.11: Mapping network : source [22]

models are first created using synchronous data flow (SDF) graphs. By using

the functional simulator, functional simulation is enabled Functional simulation

is enabled. Second, a model for the architectural resources is created, on which

the user defines a set of performance constraints, in terms of latency and energy.

Once these steps are completed, the user invokes the DSE tools. The predefined

DSE tool in MILAN is called DESERT. This tool relies on Ordered Binary Deci-

sion Diagrams for constraint satisfaction. The output of DESERT is then passed

to and evaluated by the High-level Performance Estimator (HiPerE) tool. This

tool estimates system-level energy dissipation and latency and has an average

error of 10%. Estimation is carried out at the task level abstraction, which con-

fers the tool high speed. Both this tool and the actual architectural model are

based on a so called General Model (GenM) [82]. The designs selected by HiPerE

are then passed to lower-level simulator/estimator for the final design selection.

Fig. 2.12 shows the complete MILAN flow. From left to right, it is possible to

March 7, 2013 Santhosh Kumar Rethinagiri Page 36

2.5. SIMULATION BASED ESTIMATION TOOLS

identify the user’s application and architectural resources model, together with

the constraints definition; the usage of DESERT and of HiPerE is also shown.

Figure 2.12: Milan framework : source [82]

2.5.4 MESH

MESH [92], [80] stands for Modeling Environment for Software and Hardware.

It is defined by the authors as a thread-level simulator, as opposed to traditional

instruction-set simulators. In this way, the authors want to emphasize that MESH

increases the granularity for which estimation is carried out and thus the simula-

tion speed can be much higher. MESH is a three-layer approach, which considers

resources (hardware blocks), software and schedulers. Such layers are modeled

by software threads on the evaluation host. Software threads are annotated with

time budgets for the corresponding hardware elements. Such time budgets are ex-

tracted beforehand by estimation or profiling. Scheduler threads work as arbiters

for the software threads. Power estimation capabilities are also implemented in

March 7, 2013 Santhosh Kumar Rethinagiri Page 37

2.5. SIMULATION BASED ESTIMATION TOOLS

MESH. As far as microprocessors are concerned, the authors rely on the fact

that compilers tend to produce quite regular instructions patterns, from which a

power estimate can be extracted, that is representative of the average case.

As part of the ASSET project, Joshi et al. [58] propose a performance evalu-

ation methodology for system-level design exploration. The application behavior

is modeled as a set of statistical parameters, which are generated either by static

analysis and profiling of the application, or by using some simulation framework

like SimpleScalar [18]. Application parameters are independent of the architecture

and their extraction is a one-time activity. The target architecture components

are instead modeled using SystemC. A set of components on which to map the

application models is taken from a library. Building these components also relies

on probabilistic models, which are extracted by making a compromise between

analytical and cycle-accurate simulation, and which only account for the inter-

action the component has with the outside, while the internal functionality is

modeled as a delay. Note that, during the mapping phase, application param-

eters must also match with the parameters of the component the application is

mapped to. For example, an application parameter could be the distribution of

load instructions, whereas the corresponding architectural parameter could be

the number of words to be loaded.

J. Kreku et al. in [62] also present a methodology for system-level design and

performance evaluation. Their work relies on describing application workloads

in UML and platform services in SystemC. The methodology is meant to enable

early system-level performance modeling and evaluation through transaction-level

simulation, which also allows timing information to be collected. Simulators

have also been developed to investigate the properties of some processor micro-

architectures. Such simulators are often cycle-accurate. Some examples are Sim-

pleScalar [18] or SimOS [109]. Simics [75] is instead a virtualisation framework

that allows entire platforms to be emulated.

2.5.5 StateC

Negri et al. [87] have proposed a power simulation framework of communication

protocols (Bluetooth and 802.11) using StateC. StateC is used to model the hi-

March 7, 2013 Santhosh Kumar Rethinagiri Page 38

2.5. SIMULATION BASED ESTIMATION TOOLS

erarchical state machines. Their flow is mainly targeted for simulator generation

in SystemC. This flow is good for power exploration of protocol modeling but not

presented on ASIC/FPGA design flow such as ours. They have mainly targeted

wireless protocols in which relevant contribution to the power consumption of a

node is due to the communication and not due to the datapath (computation) ac-

tivity. Their learning phase requires execution of the real chip and can not easily

be integrated to any ASIC/FPGA design flow. Also for practical purposes, it is

difficult to create power model of the partial design or smaller part of the whole

chip because current measured includes a lot of contribution from the other parts

of the chip and isolation of the desired unit for power model purposes requires

quite a lot of effort.

2.5.6 CAFD

In [132], authors attempt to lift power estimation to higher levels than the RTL,

and their choice for high-level modeling was Cycle-Accurate Functional Descrip-

tion (CAFD) of the design. They create virtual components for each design

block and attach them to the CAFD model of the design block, and compute the

power consumption dynamically as the CAFD is simulated. Since this additional

overhead to the CAFD simulation causes inefficiency, they also allow periodic

turning off of some of the virtual components during some cycles of the simula-

tion. During those cycles, they estimate power based on the history of the power

consumption for the turned off components. So even though, the abstraction at

which they estimate power is cycle accurate modeling level as ours, their power es-

timation is not based on regression based technique, and the simulation of CAFD

is slower due to the overhead of virtual components. Caldari et al. presented a

relative-power analysis methodology [36] for system-level models of the Advanced

Micro-controller Bus Architecture (AMBA) and Advanced High-performance Bus

(AHB) from ARM. It relies on creating macro-models from the knowledge of the

possible implementations. Similarly, Bansal et al. presented a framework in [23],

which uses the power-models of the components available at the system-level

simulation stage by observing them at run time. It selects the most suitable

power-model for each component by making efficiency and accuracy trade-offs.

March 7, 2013 Santhosh Kumar Rethinagiri Page 39

2.6. ANALYTICAL POWER ESTIMATION TOOLS

In [66], the presented framework employs co-simulation techniques for power esti-

mation with the capability of performing accuracy and efficiency trade-offs. They

utilize multiple power estimation engines concurrently and have proposed several

speed-up techniques to eliminate the overhead of co-simulation.

2.6 Analytical power estimation tools

The advantage of analytical methods over simulation-based methods is that they

do not rely on an executable system model and, in general, their power estima-

tion speed is much higher than the speed of their simulation-based counterpart.

Nonetheless, analytical approaches often take into account the worst-case sce-

nario and therefore they may be too pessimistic in certain circumstances. For

this reason, analytical models are well suited to systems for which it makes sense

to assume a deterministic or worst-case behavior, regardless of the input stimuli.

Event stream-based models are an example of an analytical approach. In this

case, estimation relies on evaluating the task execution on shared resources for

event streams, like periodic events. Network calculus [11] and queuing theory are

examples of how to use event-stream models for making estimation. The former

has been applied to network processor design [122], [123], [47] and embedded

real-time systems in general [37]. The latter has been used, among other things,

for doing performance and power estimation and modeling contention in MPSoCs

[15].

Another analytical method is to use spreadsheet way of prediction. Spread-

sheets are very useful in the early stage of design process, when initial planning

is going on and a lot of important decisions are being taken [128]. One of the

biggest advantages of spreadsheet based analysis is that the user does not really

need to learn any complex/sophisticated tool for taking design decisions. One of

the basic application of spreadsheet is area estimation. Designers generally have a

fair idea of the building blocks for a big design. He/She can easily get an estimate

on area by using data sheets from intellectual property (IP) provider, library cell

estimates, etc. Spreadsheet provides a capability to capture such information,

which can be utilized for quick area estimation. Similarly, some decisions to con-

trol power can also be taken using spreadsheet based approach. Power budgeting

March 7, 2013 Santhosh Kumar Rethinagiri Page 40

2.7. REFERENCED TOOLS

approaches using spreadsheets are very helpful for printed circuit board (PCB),

power supplies, voltage regulators, heat sink, and cooling systems. Spreadsheet

tools vary from utilizing excel sheets, word processors to Unified Modeling Lan-

guage (UML) [110] etc. In industry, spreadsheet is being advocated by Field

Programmable Gate Array (FPGA) vendors such as Xilinx [125], Altera [63].

Power analysis needs to be done very efficiently

2.7 Referenced tools

In this section, we will go through the different tools that have been used in this

thesis as a reference with the proposed work.

Table 2.1: Tools used as references in this thesis
References Name of the tools Abstraction levels Power model Simulation Speed

Laurent et al. [70] SoftExplorer Functional FLPA Code profiling +++

Santhosh et al.
[105]

Proposed PETS Instruction accurate FLPA Full simulation ++

Santhosh et al.
[108], [107], [106]

HSL TLM FLPA Full simulation +

Ye. et al. [130] SimplePower Cycle-accurate RTL Full simulation -

Table 2.1 shows the different tools referenced in this thesis. SimplePower [129]

tool relies on CA simulation technique. The power consumption of the main in-

ternal units is estimated using power macro-models, produced from lower-level

characterizations in this case at RTL level. The contributions of the unit activi-

ties are calculated and added together during the execution of the program on the

CA microarchitectural simulator. Though using CA simulators has allowed accu-

rate power estimation, evaluation and simulation time are very significant for the

off-the-shelf processor. To overcome this drawback the FLPA was proposed [68],

which relies on the identification of a set of functional blocks that influence the

power consumption of the target component. The model is represented by a set of

analytical functions or a table of consumption values which depend on functional

and architectural parameters. Once the model is build, the estimation process

consists of extracting the appropriate parameter values from the design, which

will be injected into the model to compute the power consumption. Based on

March 7, 2013 Santhosh Kumar Rethinagiri Page 41

2.8. OVERVIEW OF THE INDUSTRIAL VIRTUAL PLATFORM TOOLS
AVAILABLE

this methodology, the tool SoftExplorer [112] has been developed and included in

the recent toolbox CAT [112]. It includes a library of power models for simple to

complex processors. Only a static analysis of the code, or a rapid profiling is nec-

essary to determine the input parameters for the power models. However, when

complex hardware or software components are involved, some parameters may

be difficult to determine with precision. This lack of precision may have a non-

negligible impact on the final estimation accuracy. To overcome this drawback,

we proposed a hybrid power estimation methodology (HSL) [108] by combining

interpreted ISS with functional level power model but this methodology suffer in

terms of speed as it uses the interpreted ISS for the simulation. In order to refine

the value of sensible parameters with a reasonable delay, we propose to couple

the OVPSim simulator with the functional level power models which offers us the

reasonable trade-off between estimation speed and accuracy in [105].

2.8 Overview of the industrial virtual platform

tools available

Today, there is a healthy growth in the market for virtual platform. A number

of EDA vendors, such as Synopsys [10] and Carbon Design Systems [1], have

gone to market with tools that create such virtual platforms, which comprise

transaction-level models of the hardware.

With the recent acquisitions of CoWare and VaST, Synopsys has become an

important provider of diverse tools for virtual platforms and software develop-

ment, consistent with its advocacy role with respect to TLM 2.0. Innovator [6] is

an integrated virtual platform development environment provided by Synopsys.

It supports virtual platform assembly from SystemC/TLM 2.0 hardware models

and software development on top of it. The environment includes the DesignWare

System-Level Library, a huge library of transaction-level models for a rich set of

components such as processors, memories, and peripherals, that can be extended

by user-defined modules.

Platform Architect [14] is another tool used for virtual platform development,

initially developed by CoWare and recently acquired by Synopsys. The tool

March 7, 2013 Santhosh Kumar Rethinagiri Page 42

2.8. OVERVIEW OF THE INDUSTRIAL VIRTUAL PLATFORM TOOLS
AVAILABLE

has some similarities with Synopsys Innovator, in the sense that it represents

a graphical environment for platform development from existing TLM hardware

components provided in a library. But, compared with Innovator, the components

are at a low level of abstraction, and thus are more suitable for performance

estimation and architecture exploration.

VaST, another recent acquisition of Synopsys, developed the tools CoMET

and METeor [3]. CoMET is a system engineering environment which enables

system architects to create and analyze platforms. With cycle-accurate model-

ing, CoMET produces meaningful quantitative results for both timing and power

dissipation. Architects can address the optimum balance of speed, power and

cost (size). CoMET is used during chip hardware development for co-verification

of RTL along with software and other components modeled at the system-level.

METeor is a software development environment which allows embedded software

developers to create code using a virtual system prototype that runs at near real-

time speeds on an off-the-shelf PC (personal computer). METeor thus forms a

pure software implementation of a development board and its in-circuit emulator.

OVP (Open Virtual Platform) developed by Imperas, provides ultra-fast,

instruction-accurate virtual platform models [5]. OVP is made up of three main

components: APIs that enable modeling in C of a hardware component, a col-

lection of free open-source processor and peripheral models, and the OVPsim

simulator which executes these models.

Mentor already has a solid market position with Catapult C; this position has

been enhanced with SystemC support [8].

Carbon Design Systems provides solutions to build cycle-accurate IP models

for virtual platforms [1]. The generation of the IP models consists of compiling

the IPs RTL implementation into a high-speed software model. This illustrates

a bottom-up approach, which starts from RTL and goes to a higher level of

abstraction as employed by virtual platforms.

The other approach for IP generation is top-down, as proposed by The Math-

Works [7]. The EDA Simulator Link tool from The MathWorks provides glue

to link the design of high-level algorithms with existing virtual platforms. It au-

tomatically generates SystemC components from high-level applications modeled

in Simulink. The generated SystemC module has a TLM 2.0 standard interface,

March 7, 2013 Santhosh Kumar Rethinagiri Page 43

2.9. POSITIONING OF METHODOLOGIES

so that it can be incorporated into a virtual platform which supports such an

import. The SystemC generation also includes testbenches, so that the IP de-

signer can verify the behavior of the generated TLM component with respect to

the modeled functionality in Simulink.

CoFluent Studio is another tool which allows generation of SystemC transac-

tional models from high-level UML (Unified Modeling Language) descriptions or

DSL (Domain-Specific Language) descriptions [2]. Platforms are built by assem-

bling generic models of universal components, like processors, integrated circuits,

memories, buses, and interfaces. Each generic model provides variable parame-

ters to easily adjust its behavior and performance characteristics. No instruction

set simulators are used.

2.9 Positioning of methodologies

As we have seen in the previous section, there is significant research efforts have

been devoted to develop power models for evaluating power and energy con-

sumption at different abstraction levels in embedded system design. One of the

straight forward power model development approach on processors is the physical-

level power analysis methodology [43]. This approach is based on evaluating the

switching activity of all circuit nodes of the processor architecture. The basic re-

quirement for this methodology is the availability of the detailed description of the

processor architecture on transistor-level, which is rarely available for the state-of-

the-art processors. Architecture-level approach was introduced by [33] to reduce

the computational effort by abstracted modeling of typical architecture elements

such as registers, functional units or load/store queues. This methodology comes

very handy in the development of high volume products such as microprocessors.

In practical use there is lot of computation time which is the main disadvantage

of this methodology. Another possibility for power estimation of processors is

the so-called instruction-level power analysis (ILPA) [124]. This methodology is

based on low-level simulations or physical measurement of the power consumption

of each instruction out of the instruction set of a processor. By analysis of the as-

sembler code of a task it is possible to estimate the specific power consumption of

this program performed on a certain processor. The instruction-level power anal-

March 7, 2013 Santhosh Kumar Rethinagiri Page 44

2.9. POSITIONING OF METHODOLOGIES

ysis methodology allows to cover such inter-instruction effects by measuring the

energy consumption of groups of processor instructions, but the huge number of

possible combinations makes this approach very complex [25]. A more attractive

approach for power estimation is the Functional Level Power Analysis (FLPA)

methodology. This methodology has been introduced in [102]. Furthermore, in

[119] or [26] it could be shown that a good estimation accuracy can be achieved

for typical digital signal processor architectures.

In the context of this thesis, first, we propose an efficient power modeling

methodology based on functional level parameters. We choose functional level

models due to their faster development rate and easy integration at the system-

level. This is due to the development rate of the lower level models are slow

and it relies on the technological parameters which cannot be retrieved from the

system-level environment. Another important issue is to develop power models

for complex MPSoC as it needs more effort and longer time. Thus, an extension of

FLPA power modeling methodology is used in order to model complex embedded

processor core, homogeneous and heterogeneous based platforms which feature

a strong dependency of the corresponding power consumption on the performed

algorithms. Second, we propose a hardware/software co-simulation environment.

The co-simulation environment starts from usual RTL and extends upto the al-

gorithmic level. The objective here is to unify the hardware and software design

and to offer a rapid system-level prototyping. In the recent years, there have

been lots of researches centred around the software/hardware co-simulation issue

as the conventional RTL and CA tools cannot adequately support the complex-

ity of future MPSoC since they are too slow for a meaningful execution of the

software. For this reason, we propose a novel approach for hardware/software co-

simulation by coupling fast JIT simulation with TLM to tackle this issue. Finally,

we combine both functional level power models and fast JIT/TLM approach to

propose a hybrid power estimation methodology at system-level [45]. Based on

this methodology, a standalone Power Estimation Tool at System-level (PETS)

is proposed. PETS consists of two phases. First phase denoted for developing

the power model for the system under test and second phase is for power estima-

tion at system-level through co-simulation of hardware/software related to the

different platforms. The activities for the power models developed in the first

March 7, 2013 Santhosh Kumar Rethinagiri Page 45

2.10. CONCLUSION

phase are collected through the simulation. PETS is similar to the majority of

the simulation-based approaches reviewed in the past sections, especially from

those based on SystemC such as Metropolis, Milan, MESH, StateC and CAFD.

In fact, many of these approaches carry out estimation through co-simulation of

hardware and software. However, these tools rely on Instruction-Set Simulation

(ISS) to simulate their applications where the simulation time is very large for

a complex embedded applications. To reduce the simulation time without com-

promising on the accuracy of activities inside the embedded systems, particularly

those incorporating MPSoC, our solution tends towards a virtual platform tool

defined with Just-In-Time (JIT) technique, also known as dynamic translation

instead of traditional ISS. This abstraction must be sufficient enough to verify

the behavior of the system (applications deployed on the architecture) and also

allows to measure the execution time and extract activities accurately needed by

the power models.

2.10 Conclusion

In this chapter, we review the evolution and state-of-the-art in power consumption

modeling and estimation methodologies that rely on the simulation-based and

analytical-based. In general two main abstraction levels for power modeling are

surveyed in this chapter. The low-level power modeling and estimation techniques

cover the circuit-level, gate-level, RTL and the micro-architecture level. The high-

level techniques can be divided into two categories, the ILPA and the FLPA.

This survey leads us to the appropriate power estimation technique for complex

processors based platforms. Second, we go through different abstraction levels

software and hardware based co-simulation, with a special focus on the recent

attempts to evaluate the impact of different system-level approaches on the power

consumption usage of a complex embedded processors based platforms. Finally,

we outline the variety of existing research efforts that investigate the effect of

applying simulation based estimation of energy and power consumption.

March 7, 2013 Santhosh Kumar Rethinagiri Page 46

CHAPTER 3

POWER MODELING

METHODOLOGY

3.1 Introduction

The typical system design flow has known a paradigm shift with the reuse of

Intellectual Properties (IP). An application can be now developed in a very short

time with the association of existing MPSoC platforms. Although this design

methodology enhances the designer efficiency and reduces the time-to-market, its

weak point remains the consideration of the power consumption metric. Current

system power estimation is obtained after design place and route or developing

power models at the RTL level. At these levels, when the power estimation

exceeds the power budget, the designer must backtrack on architecture and algo-

rithm parameters. This operation is time consuming and the power estimation

are not always obvious. Moreover, this estimation is not useful to design a new

system or extend it for a complex embedded system. To improve the design flow

effectiveness, it is necessary to adapt new approaches for considering the power

metric in the design flow.

In this chapter, a methodology based on real-board measurements is proposed

for modeling the power consumption of nowadays embedded processor based plat-

March 7, 2013 Santhosh Kumar Rethinagiri Page 49

3.2. MODELED PLATFORMS

forms with high-level parameters. This modeling methodology relies on the Func-

tional Level Power Analysis (FLPA), which enables these models to fit into the

power model library of a system-level environment provided by the proposed

power estimation tool described in the later part of this thesis. This activity is

time consuming, but it is justified as being a one-time activity that is used by

multiple end-users. The methodology is applied to the Virtex-II Pro and OMAP

platforms (3530 and 5912) as a case study and extended to the homogeneous

and heterogeneous MPSoC platforms to ensure the scalability of the proposed

methodology. There are four main highlights of this proposed methodology and

they are: first, the accuracy level is high due to the characterization of the power

models using the real-board measurements. Second, the developed power models

can be used in the system-level environment in order to enable faster estima-

tion. Third, this power modeling methodology can be extended to be applicable

for MPSoC platforms and to have a reliable Design Space Exploration (DSE).

Fourth, the development rate (in terms of days and modeling effort) of these

power models is faster compared to other available state-of-the-art approaches.

This chapter is organized as follows: Section 3.2, gives a brief description

about the modeled embedded platforms in this thesis. In Section 3.3, the FLPA

methodology is presented. Section 3.4 shows the power consumption measure-

ment environment. Section 3.5 presents the developed power models of different

mono-processor based platforms. Section 3.6 presents the adaptation of our power

modeling approach to homogeneous and heterogeneous MPSoC platforms. Sec-

tion 3.7 validates the proposed power models accuracy against the real-board

measurements.

3.2 Modeled platforms

In this section, we will introduce the different embedded processor based platforms

chosen by the OPEN-PEOPLE project.

March 7, 2013 Santhosh Kumar Rethinagiri Page 50

3.2. MODELED PLATFORMS

3.2.1 OMAP platforms

The Open Multimedia Applications Platform (OMAP) developed by Texas In-

struments is a category of proprietary system on chips (SoCs) for portable and mo-

bile multimedia applications. OMAP devices generally include a general-purpose

ARM architecture processor core plus one or more specialized co-processors. In

this thesis, we considered using the OMAP3530 with ARM Cortex-A8 proces-

sor and the OMAP5912 with ARM9 processor due to the capability of having

high-performance processors to run complex embedded applications and inten-

sive signal & media processing applications. The ARM Cortex-A8 provides a 4x

performance improvement over ARM9 devices to achieve laptop like performance.

Additionally, these new devices provide reduced power consumption for smaller,

battery-operated, energy-efficient products.

3.2.1.1 ARM Cortex-A8

The ARM Cortex-A81 is 32-bit general purpose processor which is targeted for

mobile platform. Both the hardware and instruction set architecture are based

on the ARMv7 reference architecture. Like the ARMv7T, the ARM Cortex-A8

processor is based on a Harvard architecture. It consists of a Cortex-A8 Reduced

Instruction Set Computer (RISC) processor core and separate instruction and

data caches (16kB, 2-way set associative each) and combined L2 cache (256kB

each). The Cortex-A8 is dual-issue superscalar, achieving roughly twice the in-

structions executed per clock cycle.

The block diagram of the ARM Cortex-A8 architecture is shown in the 3.1.

The ARM Cortex-A8 (manufactured in a 0.18um technology with a core voltage

of VDD = 1.6 V to 3.3 V and an adaptable core clock frequency of 125 to 720

MHz) RISC processor core consists of 13 stages pipeline, which is controlled by

a 32-bit instruction word. Normally, all the instruction words are derived from

the standard ARM instruction set. As a consequence, the source data of different

instructions must be loaded separately into one or two source registers. The

result is written back to a target register. Therefore, the instruction set can be

divided into load/store and arithmetic instructions. However, branch and control

1http://www.arm.com/products/processors/cortex-a/cortex-a8.php

March 7, 2013 Santhosh Kumar Rethinagiri Page 51

3.2. MODELED PLATFORMS

Figure 3.1: Block diagram of ARM Cortex-A8 processor : source [16]

instructions are supplied by the standard ARM instruction set. To improve the

code density the Cortex-A8 processor core also features a dynamic instruction set

exchange to the Thumb instruction set. These 16-bit instructions are compressed

versions of a subset of the standard ARM instructions. The exchange is performed

by dynamic decompression in the ARM Cortex-A8 pipeline. The platform used

for power modeling purpose is OMAP35301. The OMAP3530 contains an ARM

Cortex A8 processor (16kB, 2-way set associative instruction and data caches and

256kB L2 cache).

3.2.1.2 ARM9

The ARM940T is a 32-bit general purpose processor2 which was introduced to

target for mobile platforms such as smart phones. Both hardware and instruction

1http://www.ti.com/product/omap3530
2http://www.arm.com/products/processors/classic/arm9/

March 7, 2013 Santhosh Kumar Rethinagiri Page 52

3.2. MODELED PLATFORMS

set architecture are based on the ARMv4T reference architecture. The ARM940T

consists of an ARM9TDMI reduced instruction set processor core and separate

4kB of instruction cache and data cache respectively.

Figure 3.2: Block diagram of ARM9TDMI processor : source [17]

A block diagram of the ARM940T architecture is shown in 3.2. The ARM9TDMI

RISC-processor core consists of a five stages pipeline, which is controlled by a 32-

bit instruction word. Each instruction word is derived from the standard ARM

instruction set. The standard ARM instruction set itself is based on a load/store

architecture. For the purpose of power modeling, we used ARM Integrator Core

Module featuring an ARM940T (manufactured in a 0.18um technology with a

core voltage of VDD = 2.5 V and an adaptable core clock frequency of (12 -

160 MHz) has been deployed as reference platform. The platform used for power

modeling purpose is OMAP5912 1. The OMAP5912 contains an ARM926EJ- S

processor (16kB instruction cache and 8kB data cache).

1http://www.ti.com/product/omap5912

March 7, 2013 Santhosh Kumar Rethinagiri Page 53

3.2. MODELED PLATFORMS

3.2.2 Xilinx Virtex-II Pro platform

The Xilinx Virtex-II Pro FPGA platform has features that include two hard-

core processors (PowerPC), reconfigurable logic blocks, PCI-Express controllers,

Ethernet MAC blocks and high-speed transceivers. In the context of this thesis,

we used this platform to extend our power modeling methodology to homoge-

neous (two PowerPC) and heterogeneous MPSoC (two PowerPC and a hardware

accelerator).

3.2.2.1 PowerPC 405

The PowerPC 4051 CPU core is a 32-bit RISC processor. The PowerPC 405 CPU

core is 90nm fourth technology generation. The PowerPC 405 CPU has an opti-

mized interfaces to the CoreConnect bus structure provided for a high bandwidth

and low latency system interface solution. It combines the performance and fea-

tures of standalone microprocessors with the modularity, low power and small die

area of embedded CPU cores. This processor has developed for hand-held devices

to super computers.

Figure 3.3: Block diagram of PowerPC processor : source [55]

1https://www-01.ibm.com/chips/techlib/techlib.nsf/products/PowerPC 405 Embedded Cores

March 7, 2013 Santhosh Kumar Rethinagiri Page 54

3.3. FLPA METHODOLOGY

The PowerPC 405 CPU core consists of a five stage single issue execution

pipeline, a 32 element set of 32-bit general purpose registers (GPRs), 64-entry

TLB memory management unit, L1 instruction and data caches of 16KB each, ar-

chitecturally provided set of timers, a program model accessible hardware debug

module and several system interfaces. Fig. 3.3 contains a high-level block diagram

of the PowerPC 405 CPU core. The PowerPC 405 CPU operates on instructions

in a five stages pipeline consisting of a fetch, decode, execute, write-back, and

load write-back stage. The platform used for power modeling purpose is Xilinx

Virtex-II Pro FPGA. The Virtex-II Pro FPGA contains two PowerPC 405 pro-

cessors that have a 16kB, 2-way set associative instruction and data caches. Each

processor has access to the on-chip memory (BRAM) and the off-chip memory

(SDRAM) via the bus.

3.3 FLPA methodology

Figure 3.4: Functional Level Power Analysis (FLPA) general methodology :
source [69]

As discussed in the previous chapter, creating power models is time-consuming

and it is done only once in the flow of our power estimation methodology. This

March 7, 2013 Santhosh Kumar Rethinagiri Page 55

3.3. FLPA METHODOLOGY

OMAP

Figure 3.5: Power characterization and modeling methodology framework: source
[41]

modeling activity relies on Functional Level Power Analysis (FLPA) methodology.

The basic principle of the FLPA methodology is depicted in Fig. 3.4 [69]. The

FLPA methodology allows to model the processor and peripheral power consump-

tion with a set of high level parameters. In this approach, processor architecture

is divided into different building blocks. Each block is separately stimulated with

a particular set of assembler instructions in order to model their power consump-

tion. The FLPA is based on physical measurements which guarantee realistic

values with good accuracy. As shown on Fig. 3.5 [41], this methodology has four

main parts, which are given below:

1. A functional analysis of the processor allows to determine the parameters

which have a significant impact on the power consumption: relevant algo-

rithmic and architectural parameters are then selected.

2. Then, the power characterization step explicits the power consumption be-

March 7, 2013 Santhosh Kumar Rethinagiri Page 56

3.4. POWER MEASUREMENT ENVIRONMENT

havior (obtained by measurements) when each parameter varies indepen-

dently.

3. After curve fitting, the complete power model is obtained; it expresses the

whole power consumption variations related to all the parameters with math-

ematical laws.

4. Finally, the accuracy of the model obtained is validated using different bench-

marking applications comparing to real-board measurement.

In our contribution, this approach is extended for modeling both the mem-

ory systems and reconfigurable logic blocks power consumption on the selected

platforms (OMAP and Virtex-II pro). Each memory systems and reconfigurable

logic blocks will be considered as a black box with a specific granularity level.

There are two types of parameters: algorithmic parameters that depend on the

executed algorithm (typically the cache miss rate for a processor and area uti-

lization for a hardware accelerator) and architectural parameters that depend on

the component configuration set by the designer (typically the clock frequency).

These sets of parameters are defined for a general class of embedded systems.

Additional specific parameters can be identified for complex architectures.

Furthermore, the generated power model through the FLPA methodology

can be easily adapted to the system-level environment, which is one of our main

contribution to the system-level power estimation. In this chapter, the generation

of the power model for the OMAP3530, OMAP5912 and Virtex-II Pro platforms

are used as case studies.

3.4 Power measurement environment

An automatic power measurement bench was developed in order to reduce the

time of each scenario measurements as shown in the Fig. 3.6. In order to mea-

sure the block power consumption, we use the Virtex-II Pro FPGA, OMAP3530

and OMAP5912. We successively implement the various block configurations

and then placed a stimuli generator. The frequency generator is used to provide

the various frequencies to both FPGAs. The logic analyzer allows to test the

block functionality on chip. All the measurement equipments communicate with

March 7, 2013 Santhosh Kumar Rethinagiri Page 57

3.4. POWER MEASUREMENT ENVIRONMENT

Figure 3.6: Fully automated test bench for current/voltage measurement

the host computer by General Purpose Interface Bus (GPIB). The measurement

bench can be used by a distant computer through a LAN connection. The mea-

surement procedure is done as follows: first, we program both FPGA and OMAP

board by the host PC using JTAG link. Then, for various parameters values

and clock frequencies, we record the supply current consumed by the FPGA core

in which block are established. Finally, The power consumed is obtained as the

product of the current measured with the FPGA core supply voltage.

3.4.1 Measurement environment for OMAP boards

Fig. 3.7 shows the measurement environment for OMAP3530 and OMAP5912

platforms composed of a power measuring instrument (Agilent LXI digitalizer) in

a dedicated private network. The digitalizer accurately measures the static and

dynamic current consumption across the resistors place. The Agilent Technologies

L4532A is a high-resolution, standalone LXI digitizers. It offers 2 channels of

simultaneous sampling at up to 20 MSa/s, with 16 bits of resolution. Inputs are

isolated and can measure up to 250 V to handle the most demanding applications.

Fig. 3.8 and Fig. 3.9 show a simple way to take quick power measurements on

March 7, 2013 Santhosh Kumar Rethinagiri Page 58

3.4. POWER MEASUREMENT ENVIRONMENT

!"#$%&%'(

Agilent LXI
Digitizers!
L4532A!

Figure 3.7: Measurement environment for OMAP3530 and OMAP5912

Figure 3.8: Jumpers for OMAP3530
Figure 3.9: Power measurement probes
across the jumpers for OMAP3530

the OMAP3530 EValuation Module (EVM) with using a multimeter to measure

the voltage drop across the jumpers J5, J6, and J9. Doing this will provide

March 7, 2013 Santhosh Kumar Rethinagiri Page 59

3.4. POWER MEASUREMENT ENVIRONMENT

an instantaneous power measurement and is a good representation of the power

consumed in a scenario where the power profile is relatively flat. For scenarios

where power changes drastically a multimeter might not present the full power

picture. For such cases we will need a more sophisticated tool that can obtain

and record several voltage readings over time. For tools with their own built-in

current measuring shunt resistors, we could remove the resistors on the EVM.

The EVM has three separate power rails: processor rail, interconnects and

peripherals rail, and the EVM 1.8 rail. Each can be measured by measuring the

voltage on the specific jumper assigned to that particular rail. Fig. 3.8 and Fig.

3.9 will give an idea about the location of the jumpers for each rail on the board.

The following steps describe how to take the measurements on the board.

1. Measure voltage drop across the jumper pins.

2. Calculate the current being consumed by dividing the measured voltage drop

by the resistance in parallel with the jumper pins.

3. Measure the voltage seen by the OMAP pin by measuring the voltage from

the jumper pin tied to the OMAP side of the series resistor to ground on the

board.

4. Calculate power by multiplying the current from step 2 by the voltage in step

3.

This procedure can be used to calculate the power for the different parts on

OMAP3530 platform as shown in the Fig. 3.10:

• VDD1/vddmpuiva the processors power supply rail. Do this on J6.

• VDD2/vddcore the interconnects and peripherals supply rail. Do this on J5.

• EVM 1.8V - note that this includes not just OMAP3530 1.8V rails, but also

other devices on the EVM. Do this on J9.

3.4.2 Measurement environment for Virtex-II Pro FPGA

As shown in Fig.3.11, the measurement environment platform for Virtex-II Pro

composed of a power measuring instrument (Agilent Power Analyzer N6705A

DC) in a dedicated private network. The power analyzer provides power supplies

to the devices and accurately measures the static and dynamic consumption. The

March 7, 2013 Santhosh Kumar Rethinagiri Page 60

3.5. POWER MODELS FOR UNIPROCESSOR BASED EMBEDDED
PLATFORMS

Figure 3.10: Power measurement jumpers for the OMAP3530 platform

Power Analyzer provides unrivalled productivity gains for sourcing and measuring

DC voltage and current into the Design Under Test (DUT) by integrating up to 4

advanced power supplies with DMM, Scope, Arb, and Data Logger features. The

N6705A eliminates the need to gather multiple pieces of equipment and create

complex test setups including transducers (such as current probes and shunts) to

measure current into your DUT. Devices configuration and power consumption

measurements are automated thanks to a sophisticated benchmark server. For

Virtex-II pro, we need three power source for the processor core (1.5 V) and for

off-chip memories and peripherals (2.5 V)

3.5 Power models for uniprocessor based em-

bedded platforms

In this section, the generation of the power model for embedded uniprocessor

based platforms by using FLPA methodology will be elaborated in detail. This

section will also stress on derivation of functional parameters (those parameters

which can be retrieved from the system-level environment) affecting the power

March 7, 2013 Santhosh Kumar Rethinagiri Page 61

3.5. POWER MODELS FOR UNIPROCESSOR BASED EMBEDDED
PLATFORMS

Figure 3.11: Measurement environment for Virtex-II Pro FPGA

consumption and the power model generation for the whole platform.

3.5.1 ARM Cortex-A8

As explained before, the FLPA methodology is used to generate a power model

for ARM Cortex-A8. As a first step, the architecture is divided into different

functional blocks such as the core clock unit, the memory unit, and the pipeline

stage unit as shown in the Fig. 3.12. A parameter is denoted for each functional

block of the processor and they are γ1 and γ2 respectively for L1 and L2 cache

miss rates, Instruction Per Cycle (IPC) for the pipeline stage unit and f for the

core clock unit. The second step is the characterization of the power model by

varying the parameters. These variations are obtained by using some elemen-

tary assembly programs (called scenario) or built in test vectors elaborated to

stimulate each block separately. In our work, characterization is performed by

measurements on OMAP board. For example, we have shown the curve fitting

in the Fig. 3.13 presenting the variation of the power consumption according

to the IPC parameter using different benchmark programs. In the Fig. 3.13,

seq mul denotes sequential execution of multiply instruction. An example of the

March 7, 2013 Santhosh Kumar Rethinagiri Page 62

3.5. POWER MODELS FOR UNIPROCESSOR BASED EMBEDDED
PLATFORMS

!"#$%&'"&(%)*)+$,%

-.)+#/&0".%1$+&2% -.)+#/&0".%34$&/+$%

5"678)+"#$%

-.)+#/&0".%9$,"#*%:;<%=>?%% @6+6%9$,"#*%:;<%=>?%

1$+&28@$&"7$%A.B+%

-.)+#/&0".%@$&"7$%

5;%!6&2$%9$,"#*%

1$+&28@$&"7$%A.B+%

!"#$%&'"&(%)*)+$,%!"#$%&'"&(%)*)+$,%

C#"&$))B.D%A.B+% :-C!?%

E$67%6&&$))%#6+$% F#B+$%6&&$))%#6+$%

9$,"#*%

5;%-.)+#/&0".%,B))%#6+$% 5;%@6+6%,B))%#6+$%

5G%-.)+#/&0".%,B))%#6+$% 5G%@6+6%,B))%#6+$%

-.)+#/&0".%9$,"#*%:;<%=>?%% @6+6%9$,"#*%:;<%=>?%

%:!;?%

%:!G?%

1#$H/$.&*%

5G%A.BI$7%-.)+#/&0".8@6+6%!6&2$%:GJ<%=>?%

%:1?%

Figure 3.12: Main functional blocks of ARM Cortex-A8 processor

benchmark executing parallel add is shown in the Listing 3.1. Another example

regarding frequency is given in the Fig. 3.14. We manipulated the core clock

by running the platform on different frequencies starting from 120 to 720 MHz.

From the Fig. 3.14, we are able to extract the relationship between the frequency

and the power and taking into the consideration the static and dynamic power

consumption. The overall operation of a processor can be classified as being in

active or in standby mode. Active mode refers to the period of time when the

block is actively computing to produce valuable output; the remaining period

is called standby mode. In active mode, there are two components of power

consumption: dynamic and static power. Dynamic power is consumed while an

application is running. The length of time that it runs is usually a small pro-

portion of a clock cycle; for the remaining time, the processor consumes static

power. Standby mode, which does not involve any application running, consists

of static power alone (assuming that there is also no activity in a clock). It is

March 7, 2013 Santhosh Kumar Rethinagiri Page 63

3.5. POWER MODELS FOR UNIPROCESSOR BASED EMBEDDED
PLATFORMS

y = 1.1721x
R² = 0.8864

0

0.5

1

1.5

2

2.5

0

5

10

15

20

25
cost in power (mW) Instruction per cycle Linear (cost in power (mW))

IP
C

P
o

w
e

r
(m

W
)

Assembly scenarios

Figure 3.13: Power consumption cost according to the Instruction Per Cycle
(IPC)

important to understand that the static power in active mode is a transient one,

while that in standby mode is a static one. By using the proposed power mod-

eling methodology, we are able to distinguish between dynamic power and static

power and their results as shown in the Fig. 3.14.

Listing 3.1: Benchmark featuring two parallel ADD instructions

Loop : ADD R0 , R0 , #1

ADD R1 , R1 , #1

Jump Loop ; infinite loop

Listing 3.1 shows that the ARM Cortex-A8 is executing exemplary parallel

ADD assembler scenario. The results show that there are significant differences

between execution of individual instructions and parallel executions inside the

pipeline stage which affects the power consumption. It has to be regarded, that

the distribution of basic instructions significantly varies according to the appli-

March 7, 2013 Santhosh Kumar Rethinagiri Page 64

3.5. POWER MODELS FOR UNIPROCESSOR BASED EMBEDDED
PLATFORMS

y = 77.297x
R² = 0.9667

y = 92.983x
R² = 0.9656

0

100

200

300

400

500

600

125 250 500 550 600 720

static power (mW) Total power (mW) Linear (static power (mW)) Linear (Total power (mW))

Operating frequencies (MHz)

Po

w
er

 (m
W

)

Figure 3.14: Power consumption cost according to the change in frequency

cation.

Table 3.1: Consumption law for the ARM Cortex-A8 platform
Functional parameter Power model

Fprocessor,IPC,γ P(mW) = 0.79(FProcessor)
+ 18.65(IPC) + 0.26(γ1 + γ2) + 10.13

Finally, a curve fitting of the graphical representation will allow us to deter-

mine the power consumption laws by regression. The analytical form expresses

the obtained power laws. Table 3.1 shows that the power consumption law for

the ARM Cortex-A8 processor and its memory system.

3.5.2 ARM9

The ARM9 is the simplest processor compared to the ARM Cortex-A8 processor.

As the first step of the power modeling approach, there are three main functional

March 7, 2013 Santhosh Kumar Rethinagiri Page 65

3.5. POWER MODELS FOR UNIPROCESSOR BASED EMBEDDED
PLATFORMS

blocks in ARM940T. They are core clock frequency, the instruction cache and the

data cache as shown in the Fig. 3.15. A parameter is denoted for each functional

block of the processor and they are γ for L1 cache miss rate and f for core clock

frequency. Previous works on the StrongARM have established that the power

consumption essentially depends on the clock frequency and the supply voltage.

The maximum difference in power consumption between the scenarios is 26%.

Increasing the number of instructions in a test scenario (here, more than 4000

instructions) leads to cache misses. Table 3.2 shows that the power consumption

law for the ARM9 processor and its memory system.

!"#$%&'()"*'+',-* .+$+*'+',-*

/-0)%1*

23/*')%-*'4)'5*6%-7&-"'1*+"8*6-$',*+"8*8-')8-*&"9$*:;<=%)'>*

?*

Figure 3.15: Main functional blocks of ARM9 processor

Table 3.2: Consumption laws for the ARM9 platform
Functional parameter Power model

Fprocessor,γ P(mW) = 1.03(FProcessor)
+ 0.6 (γ) + 5.3

March 7, 2013 Santhosh Kumar Rethinagiri Page 66

3.6. POWER MODELS FOR MULTIPROCESSOR PLATFORMS

3.5.3 PowerPC

In a similar fashion to ARM9, the PowerPC 405 is also divided into three func-

tional block. As the first step of the power modeling approach, there are two main

functional blocks in PowerPC 405. They are core clock frequency, the instruction

cache and the data cache. A parameter is denoted for each functional block of

processor and they are γ for L1 cache miss rate and F for core clock frequency.

Table 3.3: Consumption laws for the PowerPC 405 platform
Mapping Voltage Power laws

BRAM 1.5V P(mW) = 0.40 Fprocessor + 3.24 Fbus + 74
2.5V P(mW) = 5.37 Fbus + 1588

SDRAM 1.5V P(mW) = 0.38 Fprocessor + 3.45 Fbus + 79
2.5V P(mW) = 4.1γ + 6.3Fbus + 1599

Table 3.3 shows the power consumption laws for the PowerPC405 processor

and its memory system. These models predict consumption of the processor ker-

nel separately, since distinct supplier devices power them with constant voltage:

1.5V for the processor and 2.5V for the SDRAM respectively.

The obtained power models shown in the Table 3.3 depend also on the memory

mapping. For this reason, there are different power models for on-chip memory

(BRAM) and for external memory (SDRAM). The input parameters on which the

power models rely are the frequency of the processor (Fprocessor), bus frequency

(Fbus (MHz)), and the cache miss rate (0 < γ < 100 (%)). The system designer

chooses the frequency of the processor and bus while cache miss rate is considered

as an activity of the processor, which could be extracted from the simulation

environment. According to these power laws, the static consumption is dominant

which is a drawback of the FPGA technology. For this reason, the latest FPGA

circuits come with an optimized static power factory setting.

3.6 Power models for multiprocessor platforms

The above developed power models will be used in the framework of system

level power estimation of homogeneous and heterogeneous multiprocessor plat-

form that may contain several processors. In the context of this thesis, we have

March 7, 2013 Santhosh Kumar Rethinagiri Page 67

3.6. POWER MODELS FOR MULTIPROCESSOR PLATFORMS

Table 3.4: Generic power model parameters
Software parameters

Algorithmic Name Description

τ External memory access rate

γ Cache miss rate for a processor

α area utilization for a CLB

Architectural Fprocessor Frequency of the processor

Fbus Frequency of the bus

N Number of processors

used Virtex-II Pro platform, which contains two PowerPC and reconfigurable

logic blocks. This approach is mandatory in the design flow for the generation

of power models which can be faster than the other RTL level and another im-

portant benefit is that it can be ported into the system-level environment. For

instance, Table 3.4 presents the common set of parameters of our generic power

model. These sets of parameters are defined for a general class of multiprocessor

embedded systems. Additional parameters can be identified for more complex

architectures based platforms.

3.6.1 Power model for homogeneous MPSoC

As we have said before that the platform used for the generation of power model

for homogeneous multiprocessor system is Xilinx Virtex-II Pro. The above de-

veloped power models will be used in the frame of system level estimation of

homogeneous MPSoC that may contain several processors. This approach is

mandatory in the design flow for two reasons, even if the corresponding estimates

are less accurate than those provided by real board measurements. First, system-

level estimation can be achieved with acceptable accuracy 10-1000x faster than

the physical level taking into account the required design time. Second, it allows

exploring architectures that cannot be implemented due to the hardware resource

limitation or the unavailability of the target component. For instance, we can-

not exceed two PowerPC based architecture using our Virtex-II Pro platform.

Thus, it is important to have a scalable approach to address the complex sys-

tem power/energy estimation issue. The equation 3.1 will be considered for the

March 7, 2013 Santhosh Kumar Rethinagiri Page 68

3.6. POWER MODELS FOR MULTIPROCESSOR PLATFORMS

Figure 3.16: Xilinx EDK 10.1 design for two PowerPC processors with shared
memory

total system power estimation. We find the sum of the power consumptions of

every hardware tasks and the consumption of the synchronization part required

to access the shared resources.

Fig. 3.16 shows that the two PowerPC processors are configured inside the

Xilinx EDK platform with a shared memory (RAM) and their configuration with

the Processor Local Bus (PLB). There are two bridges configured to connect the

two PLB buses of the two processors. In order to run the application, we use two

methods. First, we split the application into two different parts and then run it

on the two different processors, where first processor starts the application and

second processor completes the application. Second, As shown in the Fig. 3.16

March 7, 2013 Santhosh Kumar Rethinagiri Page 69

3.6. POWER MODELS FOR MULTIPROCESSOR PLATFORMS

Figure 3.17: JPEG mutex implementation between the two PowerPC processors

there are two JPEG applications ported on the two processors to run indepen-

dently. These two processors are synchronized by using the mutex call as shown

in the Fig. 3.17.

While running the application on the Virtex-II Pro board, we measured the

power across the jumper and its details are shown in the Fig. 3.18. From Fig.

3.18, we can notice that there are three different measurements from left to right.

First one from the left denotes the power measured across the Virtex-II Pro

running two applications with one processor and it take twice the time (2 x

T), Ps denotes the static power and Pj denotes the dynamic power running the

board. Middle one denotes two different PowerPC running two different JPEG

applications, here static power remains the same Ps, while there is a change in the

dynamic power (Pj’) and reduced time (T’). In the third one, JPEG application

is split to run on both the processor and here mutex power comes into play (Pm).

From this figure, we are able to notice that processor increases linearly with a

addition of synchronisation power to the power model and its memory and I/O

devices if any.

The equation 3.1 will be considered for the total system power (Ptotal) es-

timation. In addition to the processor (Ppi), the equation involves the power

consumption of the synchronization part (Psync) required to access the shared

March 7, 2013 Santhosh Kumar Rethinagiri Page 70

3.6. POWER MODELS FOR MULTIPROCESSOR PLATFORMS

Figure 3.18: Power/time/energy consumption and measurement

memory (Pmem) and the shared I/O resources (PI/O).

Ptotal =
∑
i

Ppi + Pmem + Psync + PI/O (3.1)

3.6.2 Power model heterogeneous MPSoC

Nowadays, various techniques are used to improve the performance; hardware ac-

celeration is one of them. Hardware accelerators are designed for computationally

intensive software code. Depending upon granularity, hardware acceleration can

vary from a small functional unit to a large functional block (like motion estima-

tion in MPEG-2). Many hardware accelerators are built on top of FPGA chips.

In this thesis, we use the hardware accelerator built upon a Xilinx Virtex-II Pro

FPGA.

A power model has been built for the reconfigurable part of the FPGA compo-

nent on the Virtex-II Pro board. For a given FPGA, the parameters that can be

extracted from the high-level specification are the frequency F (Hz), the toggle

rate β (%), and the utilized area α (% slices) of the targeted FPGA. Using a

high-level architecture synthesis tool such as GAUT [4], these parameters can be

predicted with good estimates. According to the experimental results, the model

March 7, 2013 Santhosh Kumar Rethinagiri Page 71

3.6. POWER MODELS FOR MULTIPROCESSOR PLATFORMS

does not come as a multi-linear equation of the above-mentioned parameters.

For this reason, a 3 entries table of consumption values is used. The power is

estimated by interpolation of these 3 input parameters. For instance, Fig 3.19

illustrates the variation of the FPGA power consumption according to area uti-

lization by changing the toggle rate and Fig 3.20 illustrates the variation of the

FPGA power consumption according to the switching activity by changing the

surface area with an operating frequency set to 100 MHz.

Figure 3.19: FPGA power consump-
tion with 100MHz frequency for differ-
ent surfaces occupied

Figure 3.20: FPGA power consump-
tion with 100MHz frequency for differ-
ent toggle rates

The equation 3.2 will be considered for the total system power (Ptotal) esti-

mation. We mention here that it is necessary to compute the power before the

deduction of the total energy consumption. In addition to the processor (Ppi) and

the conventional blocks (PCLB), the equation involves the energy consumption of

the synchronization part (Psync) required to access the shared memory (Pmem)

and the shared I/O resources (PI/O). Whereas, i and j are the total number of

processor’s and hardware accelerator’s (CLB) respectively.

March 7, 2013 Santhosh Kumar Rethinagiri Page 72

3.6. POWER MODELS FOR MULTIPROCESSOR PLATFORMS

50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

1.5V power supply
BUS: 50MHz
1.5V power supply
BUS: 100MHz
2.5V power supply
BUS: 50MHz
2.5V power supply
BUS: 100MHz

CPU frequency (MHz)

P
ow

er
 (m

W
)

Figure 3.21: Mutex power consumption

Ptotal =
∑
i

Ppi + Pmem + Psync + PI/O +
∑
j

PCLB (3.2)

In our Virtex-II Pro platform, synchronization between parallel tasks running

on different processors or hardware accelerators is performed by a call to a hard-

ware mutex and and its power consumption in the Fig. 3.21. Several experiments

have been conducted to evaluate the additional power cost of this hardware com-

ponent. This study includes three parameters which are the number of masters,

and the processor & bus frequencies. Experimental results show that the mutex

power consumption depends mainly on the PLB frequency.

So far, power models for the different processors, homogeneous and hetero-

geneous multiprocessor based platforms has been developed. Validation of the

overall power models will be briefed up with the results in the next section.

March 7, 2013 Santhosh Kumar Rethinagiri Page 73

3.7. VALIDATION OF THE POWER MODELS

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

$)!"

$'!"

$*!"

+!!"

+(!"

+$!"

++!"

+%!"

,-." ,,/" 0$&%" 1234"

56789:6;"2<=6:">?@A"

38B?7C6;"2<=6:">?@A"

3::<:">DA"

""""""""""""""""""E6FGH?7:I"JKKLMG7B<F"

3::
<:
">D

A"

2<
=6

:">
?@

A"

Figure 3.22: Validation of the power model for ARM Cortex-A8

3.7 Validation of the power models

In this section, we will be validating the different processor power models against

the real board measurement in order to find the efficiency of FLPA modeling

methodology used in this thesis. The flow of the benchmark evaluation is as

follows. First, the applications are compiled using respective cross-compilers for

the FPGA and OMAP platforms. The binary files are transferred into the plat-

forms (OMAP and Virtex-II pro) and the corresponding power consumption is

recorded. Finally, the experimental values measured from the platforms must be

compared with the estimations from the power consumption model by extracting

the needed activities of the power model from the real-board. The cache miss

rate is obtained by executing the valgrind1 tool on the real-board and IPC is

extracted by activating the pipeline counters inside the processor.

March 7, 2013 Santhosh Kumar Rethinagiri Page 74

3.7. VALIDATION OF THE POWER MODELS

0.54

0.56

0.58

0.6

0.62

0.64

0.66

130
130.5

131
131.5

132
132.5

133
133.5

134
134.5

135
135.5

136
136.5

137
137.5

138
138.5

139

FIR FFT JPEG H264

Estimated power (mW) Measured power (mW) Error (%)

Po
we

r (
mW

)

Err
or

 (%
)

Benchmark applications

Figure 3.23: Validation of the power model for ARM9

3.7.1 Evaluation of ARM Cortex-A8 power model

Fig. 3.22 represents the estimated total power consumption of each bench-

mark using the power model shown in Table 3.1 for ARM Cortex-A8 processor.

Fig. 3.22 illustrates the results and shows the comparison between the proposed

methodology and the real board measurements. Our power modeling approach

has a negligible maximum error equal to 1.5%, which offers better accuracy. This

is due to better characterization of the power model.

3.7.2 Evaluation of ARM9 power model

Fig. 3.23 exemplarily shows the comparison between measurements and estima-

tion results of the benchmarking programs at 120MHz frequency using the power

model shown in Table 3.2. All estimations are lower than the real board mea-

surements. The maximum relative error across all benchmarks is 0.62% at a total

variation in all scenarios of up to 2% (depending on the clock frequency) which

is a large estimation improvement.

1http://valgrind.org/info/tools.html

March 7, 2013 Santhosh Kumar Rethinagiri Page 75

3.8. CONCLUSION

3.7.3 Evaluation of PowerPC power model

Err
or

 (%
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2280

2300

2320

2340

2360

2380

2400

2420

2440

2460

FIR FFT JPEG H264

Measured power (mW) Estimated power (mW) Error (%)

Po
we

r (
mW

)

Benchmark applications

Figure 3.24: Validation of the power model for PowerPC

Fig. 3.24 shows the average error obtained with our high-level power modeling

approach against real board measurements for the PowerPC using the power

model shown in Table 3.3. The results obtained for the different experiments

validate this approach. Thus, a good adequacy between architecture, algorithm,

and power consumption can be found with our model at early design stage. Our

power modeling approach has a negligible maximum error equal to 1.4%, which

offers better accuracy.

3.8 Conclusion

This chapter has described the proposed power modeling methodology for ex-

isting different RISC processors, homogeneous and heterogeneous MPSoC based

on FLPA. Specifically, the impact of each parameter on the power for different

processors has been investigated and modeled. The interest of our approach is to

enhance the accuracy of the power models. The time consumption in the design

backtrack is strongly reduced and power models can be reused for designing a

March 7, 2013 Santhosh Kumar Rethinagiri Page 76

3.8. CONCLUSION

new system. Validation has then been done against real board measurements for

estimation accuracy, incurring an average error of 0.715% for the models.

Note that, thanks to FLPA approach applied to the power models generation

process, this approach is quite general and can therefore be easily adapted and

used on different architectures. More important, this modeling exercise has the

goal of showing how power models can be implemented in practice. Another

example of how the power models developed in this chapter can be adapted for

system-level environment will be presented in the upcoming chapters. In this

thesis, the models have been expressed using an analytical representations for

processors and LUTs for FPGA.

March 7, 2013 Santhosh Kumar Rethinagiri Page 77

CHAPTER 4

CO-SIMULATION ENVIRONMENT

AT SYSTEM-LEVEL FOR POWER

ESTIMATION

4.1 Introduction

Before multiprocessor system-on-chip (MPSoC) architectures became so complex,

the hardware and software components of an embedded system were designed se-

quentially. As research pushes for better programming models for multiprocessor

and multicore embedded systems, virtual platforms solve one of today’s biggest

challenges. The benefits of virtual platform are software development, debug,

validation before the hardware board is available and rapid prototyping of the

hardware boards available in the market, enabling concurrent hardware/software

co-design. Virtual platform models the hardware architecture in the form of a

simulator, including processors, memories, communication links and peripherals.

They enable engineers to start developing and testing the software substantially

earlier than it has been possible in the past. Although these platform models

enhance the designer efficiency and reduces the time-to-market, its weak point

remains the consideration of power consumption metric. Most of the current

March 7, 2013 Santhosh Kumar Rethinagiri Page 79

4.1. INTRODUCTION

system power estimation tools are still working at the RTL or Cycle-Accurate

(CA) levels and there is a scarcity of tools enabling power estimation at the

system-level.

In the previous chapter, we have proposed an efficient power modeling method-

ology to cover a large spectrum of embedded systems. In this chapter, we will

propose a system-level environment for hardware/software co-simulation to ex-

tract the activities needed by the power models developed. This chapter will

focus on three main objectives: first, accurate extraction of the activities on

which the power model relies. The second is a faster simulation technique and

a suitable abstraction level for rapid reuse of IPs. Third, we aimed to provide a

framework for homogeneous and heterogeneous MPSoC platforms to ensure the

ease in scalability for DSE. Two simulation approaches are used in this thesis. In

the earlier phase of this thesis, to build an MPSoC system, we reused IPs (pro-

cessor, cache, memories etc.,) provided by the SoCLib 1 environment which are

described on SystemC/TLM-DT level. In the later phase of this thesis, to have

a rapid prototyping and faster simulation, we switched to virtual platform IPs

provided by Open Virtual Platform (OVP), whose processors use Just-In-Time

(JIT) simulation technique instead of traditional Instruction Set Simulator (ISS).

This chapter is structured as follows: Section 4.2 presents a detailed descrip-

tion of modeling with the help of SoCLib environment and their performance

estimation based on extraction of activities need for the power model. Section

4.3 presents a proof of using the JIT/TLM level for simulation and evaluation of

MPSoC systems and describes the various hardware models developed and reused

from the OVP library to implement and to improve the performance of the pro-

posed virtual system-level framework. Section 4.4 details the implementation of

OVP IPs inside the System/TLM environment. In Section 4.6, the effectiveness

of our proposal is illustrated through the JPEG encoder application performed on

PowerPC based MPSoC and also presents the comparison of our proposed MP-

SoC environment with ISS/TLM level in terms of estimation speed and modeling

efforts.

1http://www.soclib.fr/trac/dev

March 7, 2013 Santhosh Kumar Rethinagiri Page 80

4.2. VIRTUAL PROTOTYPING WITH THE HELP OF SOCLIB
ENVIRONMENT

4.2 Virtual prototyping with the help of SoCLib

environment

In the earlier phase of this thesis, we used SoCLib library to build our platform.

SoCLib is a library of hardware components that enables to build an MPSoC

system at SystemC/TLM level. By using the IPs provided by this platform, we

instantiated the hardware: first, to emulate the behavior of the embedded plat-

form selected in the frame of the OPEN-PEOPLE project. Second, to explore

different architectural solutions based on the activities retrieved from the simu-

lation. In this section, we will start by describing the different components that

have been reused to design our experimental platform.

4.2.1 Available models at TLM-DT level for MPSoC de-

sign

As we said before, SoCLib provides different hardware models such as cache,

bus protocol, processor, memory models, interconnects etc., Understanding the

behavior of each component is an essential step in order to extract the needed

activities for the power models. In this section, we will describe the various

hardware models used to built an MPSoC.

• Virtual Component Interface (VCI) protocol: In general, most of the com-

ponents are connected by an on-chip bus. It can be either by a Network

on Chip (NoC), a simple bus or a crossbar. In this thesis, components are

connected mainly using the VCI on-chip-bus protocol. This makes the com-

ponents to easily interoperable. Moreover, VCI is simple enough to integrate

new components, without forbidding translation of VCI to other protocols.

• Xcache: This hardware component is a generic cache controller, fully com-

pliant with the VCI advanced protocol. It can be used to interface a single

instruction issue - 32 bits RISC processor (in our case PowerPC 405) to a

VCI based multi-processor system. They act directly as a wrapper for any

Instruction Set Simulator (ISS) respecting the generic cache/processor inter-

face defined in the ISS header file. We used this component to inject counters

to extract the cache activities such as: Instruction cache read hit/miss, Data

March 7, 2013 Santhosh Kumar Rethinagiri Page 81

4.2. VIRTUAL PROTOTYPING WITH THE HELP OF SOCLIB
ENVIRONMENT

cache read/write hit/miss. The description about the configuration of In-

struction and Data cache are given below:

– Instruction Cache

∗ It is a read-only cache.

∗ It uses the mapping table to support uncached segments.

∗ In case of read miss or read uncached, the processor is stalled until the

missing instruction is available.

∗ The two VCI transactions generated by the Instruction cache are given

below:

· read burst corresponding to a missing cache line,

· one word read, when the corresponding address is uncached.

– Data Cache

∗ The write policy is write-through (the data is immediately written in

memory and the cache is updated only in case of hit).

∗ The data cache contains a write buffer and builds a burst when there

are successive write requests in the same cache line.

∗ It uses the mapping table to support uncached segments.

∗ The data Cache supports the following requests : read, write, linked

load and store Conditional

∗ The data cache accepts a line invalidate command.

∗ Three types of VCI transactions can be generated by the data cache

and they are given below:

· read burst corresponding to a missing cache line.

· one word transaction corresponding to an uncached read, a linked

load or a store conditional.

· write burst of variable length (no larger than a cache line)

∗ The processor is stalled in case of cached read MISS, in case of uncached

read or in case of write, if the write buffer is full.

• Processor: There are wide range of processors available in the SoCLib library.

In this thesis, we used PowerPC405 ISS and ARM ISS. This ISS uses the

March 7, 2013 Santhosh Kumar Rethinagiri Page 82

4.2. VIRTUAL PROTOTYPING WITH THE HELP OF SOCLIB
ENVIRONMENT

ISS2 API and should be wrapped with a VciXcacheWrapper. The simulation

model is actually an ISS, organised as a two-stage pipeline:

– First stage: instruction fetch execute with a possible access to the ex-

ternal data cache.

– Second stage: read memory access is written back to registers.

The main functional specifications are as follows:

– The floating point instructions are not supported.

– There is no TLB, and no hardware support for virtual memory directly

in the ISS. Nevertheless, Memory Management Unit(MMU) may be sup-

ported through the cache.

• Interconnection network: This hardware component is a VCI compliant full

crossbar, it contains two independant crossbars for VCI commands and VCI

responses. It must only be used in clusterized architecture, to interconnect

a limited number of VCI initiators and targets in a local sub-system. The

associated sub-system is identified by a global index.

– The number of VCI initiators and VCI targets are parameters that should

not be larger than 4 each.

– The VciLocalCrossbar component has a dedicated VCI interface (both

initiator and target) to connect the local subsystem to the global VCI

interconnect.

When several initiators try to reach the same target, the arbitration policy is

round-robin (RR). As any VCI advanced compliant interconnect, this com-

ponent uses the MSB bits of the VCI ADDRESS field to route the command

packets to the proper target, thanks to a routing table implemented as a

ROM. This routing table is build by the constructor from the informations

stored in the mapping table. It uses the VCI RSRCID field to route the

response packet to the initiator.

• Memory module: This VCI target is an embedded SRAM controller. It is ac-

tually a simplified version of the VciRam component and provides the same

services. It handles one or several independent memory segments. Each seg-

ment is defined by a base address and a size (number of bytes). Both the base

and the size parameters must be a multiple of 4. The segments allocated to

March 7, 2013 Santhosh Kumar Rethinagiri Page 83

4.2. VIRTUAL PROTOTYPING WITH THE HELP OF SOCLIB
ENVIRONMENT

a given instance of this component must be defined in the Mapping Table.

The segments are implemented as dynamically allocated arrays in the con-

structor. This component supports an optional latency parameter, defining

the RAM access latency.

4.2.2 Estimating performance with Soclib environment

In order to estimate and evaluate performance, we used Virtex II Pro as reference

platform to built our simulation framework. We choose this platform because of

its availability of two PowerPC processors and configurable logic blocks. Hence,

we can able to built and evaluate our mono-processor, homogeneous and hetero-

geneous multiprocessor architectures.

Using the components described in the previous sub-section 4.2.1, different

multiprocessor architectures can be modeled, simulated and evaluated. These

can contain a variable number of processors, hardware accelerators, peripherals,

I/O, etc.

Figure 4.1 shows an simulation framework emulating the Virtex II Pro FPGA

based MPSoC. These architectures are built for running intensive signal process-

ing application requiring high computation rate. To run these applications with

the simulator, different tasks are set and then compiled to the target processor.

Manipulated data are located on the memory component. To ensure correct se-

quencing of tasks between processors, synchronization variables are set. These

synchronization variables are stored in memory. They are read and modified by

different processors. The estimated performance of the application is given by

the simulator in cycles. Each processor is programmed with a timer counter reg-

ister. The timer counter is incremented at each clock cycle. Thus, to estimate

the execution time of a task on a processor, we have to read the register value

before and after the execution of the task. Furthermore, the execution time of

the entire application is given by the global clock of the SystemC simulator. As

we have pointed out, the description of an architecture at TLM-DT provides ac-

curate performance estimates. But our objective here is to accurately extract

the activities needed for the power model. For this purpose, we have injected

several activity counters for the hardware components such cache, memory and

March 7, 2013 Santhosh Kumar Rethinagiri Page 84

4.2. VIRTUAL PROTOTYPING WITH THE HELP OF SOCLIB
ENVIRONMENT

Memory I/O
Peripherals

Bus

Task 3

Memory
Data

Activity counter Interface

Virtual Platform for FPGA Based MPSoC

PowerPC
ISS xcache

Hardware
Accelerator

Activity counter InterfaceActivity counter Interface

Task 1 Task 2 Task 2

PowerPC
ISS xcache

Figure 4.1: Simulation Environment with SoCLib

the processor. For each and every access to the cache or memory, the coun-

ters are incremented during the simulation. The activity results obtained at this

level will enable our framework to provide an accurate power estimation and also

yield a reliable design space exploration. For hardware accelerator power model,

the GAUT1 tool is used to estimate the activities such as surface occupied and

toggle rate. GAUT is an academic high-level synthesis tool dedicated to signal

processing applications. Starting from a pure C function GAUT extracts the po-

tential parallelism before selecting/allocating operators, scheduling and binding

operations. The mandatory design constraints are the throughput (the initiation

interval), the clock period and the target technology. The optional design con-

straints are I/O timing diagram and the memory mapping. GAUT synthesizes a

potentially pipelined architecture composed of a processing unit, a memory unit,

a communication and multiplexing unit and a GALS/LIS interface.

1http://hls-labsticc.univ-ubs.fr/

March 7, 2013 Santhosh Kumar Rethinagiri Page 85

4.2. VIRTUAL PROTOTYPING WITH THE HELP OF SOCLIB
ENVIRONMENT

Table 4.1: Application miss rates for PowerPC based ISS/TLM
Program Instruction miss rate Read Miss rate Write Miss Rate Total Miss Rate

acquisition 0.004386 3.56 37.73 0.10

rgb2yuv 0.001228 3.73 99.01 6.00

dct y 0.002983 4.89 45.72 4.00

dct u 0.000365 4.99 45.72 4.00

dct v 0.000354 4.39 45.72 4.00

qt y 0.000852 2.66 99.90 6.00

qt u 0.000476 2.66 99.90 6.00

qy v 0.000476 2.66 99.90 6.00

huff y 0.004435 4.98 20.11 1.00

huff u 0.000575 4.97 20.8 1.00

huff v 0.000693 4.96 20.61 1.00

rebuild image 0.298380 3.95 30.19 3.00

complete application 0.000342 0.129 0.59 0.22

Table 4.1 shows an example of extracting activities (cache miss rates) at TLM-

DT. The results are reported for the JPEG decoder application which will be

detailed in the section 4.6.1. The extracted activities are compared with the

values generated by the valgrind 1 tool executed on the real-board for the cache

miss rate and the results shows an average error of 1%. The objective here is

to show that, through this environment it is possible to accurately extract the

activities needed for the power model and performance. Despite the accuracy of

these estimates, the major problem is the time required to obtain the results at the

TLM-DT level. The simulation time at this level for JPEG encoder application

is around 300 sec for decoding a JPEG file image size of 512x443 pixels using a

machine Pentium M (2.2 GHz). The simulation speed is slow due to the use of

interpreted ISS, which executes the target binary instruction by instruction. In

each iteration, the interpreted ISS fetches, decodes and executes the instruction.

The interpreted ISS’s are slow due to their interpreted nature, but provide very

detailed estimation of cache, pipeline and memory model. The interpreted ISS’s

are very flexible. For this reason, in the next section we will be focusing on

fast estimation aspect without compromising the accuracy of the activities using

virtual platforms.

1http://valgrind.org/

March 7, 2013 Santhosh Kumar Rethinagiri Page 86

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

4.3 Virtual prototyping with the help of OVP

platform

To reduce the simulation time without compromising on the accuracy of activities

inside the embedded systems, particularly those incorporating MPSoC, our solu-

tion tends towards a virtual platform defined at JIT/TLM level. This abstraction

must be sufficient to verify the behavior of the system (applications deployed on

the architecture) and also to measure the execution time and to extract activi-

ties accurately. Our case study is built around a family of MPSoC on which an

application is deployed. From the deployment of this architecture, we evaluate

the performance of our system which allows us to extract the most appropriate

solution. In this section, we limit ourselves to performance criteria such as exe-

cution time and accuracy of the activities in comparison with ISS/TLM level. In

our work, we have set the following objectives:

• The functional verification of this platform is to run the target application

on a defined architecture and to ensure the accuracy of the simulation result.

• The analysis of system performance without excessively penalizing the sim-

ulation time.

• The analysis of the power consumption activities of the system for architec-

tural exploration.

• Reduced development effort compared to the lower levels.

4.3.1 OVP platform models for MPSoC design

In this section, we present the component models that have been used in our

virtual MPSoC prototype. These components are generic and allow us to evaluate

the performance for a class of systems with shared memory MPSoC. Component

models used in our work are: processor, memory caches and interconnection

networks (bus).

March 7, 2013 Santhosh Kumar Rethinagiri Page 87

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

4.3.2 OVPsim

OVPsim1 is equipped with an infrastructure to program multiprocessor platforms.

The OVPsim simulator can simulate arbitrary multiprocessor shared memory

configurations and heterogeneous multiprocessor platforms. OVPsim platform

models can be compiled as shared objects, they can be encapsulated in any sim-

ulation environment that is able to load shared objects. This includes C, C++,

and SystemC simulation environments. In the context of this thesis, OVPsim has

been wrapped inside a SystemC wrapper. OVP simulator is built as a slave and

thus callable from other environments such as SystemC. The reverse is however

not true. OVPsim cannot call a SystemC model. This is quite natural since the

calling of SystemC would bring the entire simulator performance back down to

the very performance it is trying to replace. On the other hand, substituting

part of the system which is a SystemC based platform with an OVP model may

bring about a large performance gain in relative terms. Putting OVP models in

SystemC environment therefore requires careful scheduling.

OVP models and subsystems can be encapsulated in SystemC platforms and

harnessed using:

• sc clock(), i.e. at the detailed instruction or clock level

• TLM 2.0, i.e. the new OSCI transaction level approach

Since modeling in pure ISS/SystemC brings down the simulation speed and

hence the rate of power estimation at system-level, we emphasize on integrating

OVP models at the transaction level.

The several key points due to which the OVPsim is faster are explained in the

sections below:

• Just-In-Time (JIT) code morphing technology:

Traditional processor models are written in HDL or similar modeling lan-

guages, which are activated by a clock signal and implemented by a loop.

When the clock is activated, the model will fetch the next instruction, de-

code it and calls the specific function to execute the instruction. The conven-

tional style may be accurate and straightforward in structure but they are

not fast. Instead of the traditional style, the OVP tool provides Just-In-Time

1http://www.ovpworld.org/dlp/

March 7, 2013 Santhosh Kumar Rethinagiri Page 88

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

(JIT) code morphing technology. This style is slightly similar to dynamically

compled ISS. The working mechanism of this technology is given below:

– Whenever there is a new instruction encountered during the program

execution is morphed into its native machine code. The exact translations

to be made are specified by the processor modeler using the Virtual

Machine Interface (VMI) API.

– Adjacent sections of translated processor instructions are gathered into

code blocks, which are held in a library for the processor. Separate

libraries are held for supervisor mode code fragments and user mode

code fragments.

– There is no need to morph the code which is already done once, the

simulator simply re-executes the existing code block from the library.

OVP technology handles the generation of native machine code and the

efficient management of code blocks and libraries to give extremely fast

simulation. This is possible because, as simulation proceeds, run time

(execution of translated code blocks) dominates morph time (JIT com-

pilation). It may be possible that not all instructions map closely to the

JIT code morphing opcode set. Such a simulation method is capable of

providing speed improvements if the application under test has a portion

of code used repeatedly, which in general, all the real time applications

do.

• Program counter modeling

The simulator always knows the address of the current instruction. Instead of

maintaining the program counter value each time in the processor model, it is

fetched directly from the simulator when required. Thus the processor models

do not explicitly model the register values that are infrequently referenced

and can be created easily on demand. The same is the case very often for

processor status registers. This makes processor models execute at a faster

rate.

March 7, 2013 Santhosh Kumar Rethinagiri Page 89

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

4.3.3 Interfaces of OVPsim

In order to model an MPSoC, several components have to be modeled such as

peripherals, processor, bus architecture etc. OVP is thus made of four interfaces.

• Innovative CPU Manager (ICM): The ICM interface is used to create the

platform netlist of the system to use with OVPsim simulator. It allows

instantiation of multiple processors, buses, memories and peripherals that

can further be connected together and application programs executables can

be loaded in simulated memories. This interface is written in C.

• Virtual Machine Interface (VMI): The VMI interface allows the processor

model to communicate with the simulation kernel and also the other compo-

nents of the system. Processors developed by OVP uses an code morphing

approach which is coupled with a Just-In-Time (JIT) complier to map the

processor instructions. Few of the abilities of VMI is listed below: First, The

VMI can be used for any type instruction set of the processor (CISC and

RISC). Second, VMI allows modeling of several peripheral in a short time

such as L2 cache. Third, VMI allows a form of virtualization for capabilities

such as file I/O. This allows direct execution on the host using the standard

libraries provided. Fourth, encapsulating existing ISS models within OVP-

sim helps to export some basic features (for example, the existing ISS model

should be available as a shared object, provide an API to allow it to be

run instruction-by-instruction or for a number of instructions, and provide

an API allowing memory to be modeled externally) through VMI interface.

Finally, VMI enables modeling of the mode dependent behavior (kernel/user

mode) of an instruction. Using the VMI, OVPsim can implement arbitrary

multiprocessor systems.

• Behavioral Hardware Modeling (BHM) and Peripheral Programming Model

(PPM): They are used to write behavioral models of hardware/software sys-

tems which are peripheral to the processors in the platform being developed.

Each instance of a peripheral model runs on its own virtual machine with an

address space large enough for the model. This processor and its memory

are separate from any processors, memories and buses in the platform be-

ing simulated; they exist only to execute the code of the peripheral model.

March 7, 2013 Santhosh Kumar Rethinagiri Page 90

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

This processor is called a Peripheral Simulation Engine(PSE). The difference

between PPM and BHM is:

– BHM: This API gives access to behavioral modeling processes (threads),

simulated delays, events diagnostic control and simulator message stream.

This API can support more general forms of communication and provides

the piece that TLM is missing.

– PPM: This API gives access to connectivity of peripherals in platforms,

creation and control of ports, nets, address spaces and windows into

memory address space. Thus, this API understands about buses and

networks and is similar in terms of functionality with the OSCI TLM

interface proposal.

The BHM/PPM has similar concepts to SystemC, but each instance of each

model exists in its own private address space. It is normally pretty easy and

simple to wrap existing C functions in a BHM/PPM peripheral model.

To build a whole platform, the combination of above mentioned interfaces

plays a major role. The Fig.4.2 shows the interaction between the interface.

Each instance of a peripheral model runs on its own virtual machine with an

address space large enough for the model.

OVP provides with processor models like ARM processors, MIPS processors,

PowerPC processors, Tensilica and OpenRISC OR1K. A number of standard

embedded devices to allow assembly of a complete platform, including various

types of memories, traps, bridges, DMA engines and UARTs, to name a few are

also modeled. OVP processor models are instruction accurate in purely func-

tional space and not in the behavioral space as compared to the commonly used

approximately timed models. To make it clear, the functional model does not

consider the timing, however it includes the sequence while the behavioral model

includes timing but the detail of timing is not defined. OVP models are functional

models. Instruction accuracy in terms of OVP means that the registers hold the

correct values at the end of each instruction and create the right effects from

executing that instruction. Now, they have added another feature to this model

called multi-execution pipelines and out of order execution. Listing 4.1, shows

the instantiation of the processor model and in our case, it is ARM Cortex-A8

March 7, 2013 Santhosh Kumar Rethinagiri Page 91

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

!"#$%&'()*+,$
-$
.
"$

.+'&,/$
"$
%$
.

"$
%$
.

0$
0$
.

0+,)(1+,2*$
'&34*+$

5$
6$
.

5$
6$
.

5+127)&,2*$
.&34*+$

"$
%$
.

0,&8+99&,$.&34*+$

.+'&,/$.&34*+$

Figure 4.2: Communication of OVP interfaces

processor with a 32 bits address mode.

Listing 4.1: Instantiation of the processor

int main (int argc , char ∗∗ argv) {

// i n i t i a l i z e CpuManager

icmInit (0 , 0 , 0) ;

// c r e a t e a p ro c e s s o r

icmProcessorP processor = icmNewProcessor (

"cpu1" , // CPU name

\ "Cortex -A8" , // CPU type

0 , // CPU cpuId

0 , // CPU model f l a g s

32 , // address b i t s

model , // model f i l e

"modelAttrs" , // morpher a t t r i b u t e s

0 , // enable t r a c i ng e t c

0 , // user−de f ined a t t r i b u t e s

semihosting , // semi−hos t ing f i l e

March 7, 2013 Santhosh Kumar Rethinagiri Page 92

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

"modelAttrs" // semi−hos t ing a t t r i b u t e s

) ;

// load the p ro c e s s o r ob j e c t f i l e

icmLoadProcessorMemory (processor , argv [1] , False , False , True) ;

// run s imu la t i on

icmSimulatePlatform () ;

// terminate s imu la t i on

icmTerminate () ;

return 0 ;

}

4.3.4 VMI Memory Model

The functions in this interface are used to build Memory Model Components

(MMC), such as instruction and data caches, that supplement OVP processor

models. An MMC fits between a bus master such as a processor or a peripheral

with bus mastership capability, and a bus slave such as a RAM, ROM or periph-

eral with a bus slave port. MMCs can also be cascaded to model, for example,

multi-level caches.

There are two distinct kinds of memory component models: full and trans-

parent. Full models implement storage and so can be used to accurately model

components such as caches that are incoherent with main memory. Transpar-

ent models do not implement storage (so cannot be incoherent) but can be used

to create very fast performance monitors. As an example, a transparent cache

model would model only the cache tags and use this information to count hits

and misses.

Listing 4.2: Instantiation of the full cache model

const char ∗vlnvRoot = 0 ; // when n u l l use d e f a u l t l i b r a r y

const char ∗model = icmGetVlnvString (

vlnvRoot , "ovpworld.org" , "processor" , "or1k" , "1.0" , "model"

) ;

const char ∗semihosting = icmGetVlnvString (

vlnvRoot , "ovpworld.org" , "semihosting" , "or1kNewlib" , "1.0" ,

"model") ;

const char ∗mmc_model = icmGetVlnvString (

March 7, 2013 Santhosh Kumar Rethinagiri Page 93

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

vlnvRoot , "ovpworld.org" , "mmc" , "wb_1way_32byteline_2048tags" ,

"1.0" , "model") ;

// i n i t i a l i z e CpuManager

icmInit (0 , 0 , 0) ;

// c r e a t e a p ro c e s s o r

icmProcessorP cpu1h = icmNewProcessor (

"cpu1" , // CPU name

"Cortex -A8" , // CPU type

0 , // CPU cpuId

0 , // CPU model f l a g s

32 , // address b i t s

model , // model f i l e

"modelAttrs" , // morpher a t t r i b u t e s

0 , // s imu la t i on a t t r i b u t e s

0 , // user−de f ined a t t r i b u t e s

semihosting , // semi−hos t ing f i l e

"modelAttrs" // semi−hos t ing a t t r i b u t e s

) ;

// c r e a t e t ransparent MMCs

icmMmcP mmcL1I = icmNewMMC ("mmcL1I" , mmc_model , "modelAttrs" , 0 , 0 , True) ;

icmMmcP mmcL1D = icmNewMMC ("mmcL1D" , mmc_model , "modelAttrs" , 0 , 0 , True) ;

icmMmcP mmcL2 = icmNewMMC ("mmcL2" , mmc_model , "modelAttrs" , 0 , 0 , True) ;

// connect l e v e l −1 mmcs d i r e c t to p ro c e s s o r por t s

icmConnectTransparentMMC (cpu1h , mmcL1I , "sp1" , mmcL1D , "sp1") ;

// cascade l e v e l −1 mmcs to l e v e l −2

icmChainTransparentMMC (mmcL1I , "mp1" , mmcL2 , "sp1") ;

icmChainTransparentMMC (mmcL1D , "mp1" , mmcL2 , "sp1") ;

// c r e a t e the p ro c e s s o r bus

icmBusP bus = icmNewBus ("bus" , 3 2) ;

// connect master port o f l e v e l −2 MMC to bus

icmConnectMMCBus (mmcL2 , bus , "mp1" , True) ;

// c r e a t e and connect memories . . .

In order to speed-up the simulation without compromising accuracy, first, we

decided to tune the data pattern granularity of the application and to analyse its

effect in the accuracy and speed.

March 7, 2013 Santhosh Kumar Rethinagiri Page 94

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

In the context of this thesis, we use both transparent and full cache models

depending on their need. Transparent cache is used whenever there is a need

for performance and full cache models are used to accurately extract the cache

activities for the processor with a slight reduction in the performance. Implemen-

tation of the cascaded transparent cache model is given in Listing 4.2. Mostly,

full cache models are used for multiprocessor architecture and it is connected to

a VMI interface of a processor by a ICM interface of a bus. Cache model settings

are given in the Listing 4.3. From this listing, we are able to configure different

cache models for different processors by changing the values of the lines, ways

and size. Cache Ratio Monitor (CRM) is an essential component of this work.

With the help of CRM, we are able to extract the activities of the cache models.

Full implementation of cache model and CRM are given in the Listing 4.4. Cache

readInfo gives the details about the read activities inside the cache and cache

writeInfo for the write activities.

Listing 4.3: Cache model settings

#include v m i /vmiMmc . h

#include v m i /vmiMmcAttrs . h

#include v m i /vmiMessage . h

typedef struct cacheObjectS {
Uns32 lines ;

Uns32 ways ;

Uns32 size ;

} cacheObject , ∗cacheObjectP ;

// Cache ob j e c t con s t ruc to r

static VMIMMC_CONSTRUCTOR_FN (cacheConstructor) {

cacheObjectP cache = (cacheObjectP) component ;

cache−>lines = (Uns32) vmimmcGetUns64Attribute (component , l i n e s) ;

cache−>ways = (Uns32) vmimmcGetUns64Attribute (component , w a y s) ;

cache−>size = (Uns32) vmimmcGetUns64Attribute (component , l i n e s) ;

Listing 4.4: Cache Ratio Monitor (CRM)

// Cache ob j e c t

typedef struct cacheObjectS {

March 7, 2013 Santhosh Kumar Rethinagiri Page 95

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

// MODELLING ARTIFACTS

vmimmcPortP nextPort ; // next port (TRANSPARENT)

memDomainP nextDomain ; // next domain (FULL)

memRegionP lastRegion ; // l a s t acce s s ed (FULL)

Uns32 mruKey ; // a c c e s s opt imiza t i on

cacheLineP mruLine ; // a c c e s s opt imiza t i on

cacheAccessInfo readInfo ; // read a c c e s s r e co rd ing

cacheAccessInfo writeInfo ; // wr i t e a c c e s s r e co rd ing

// TRUE CACHE CONTENTS

Uns32 keys [CACHE_TAGS] [CACHE_WAYS] ; // s e t o f keys f o r cache

cacheLineP index [CACHE_TAGS] [CACHE_WAYS] ; // index in to cache l i n e s

cacheLine lines [CACHE_TAGS] [CACHE_WAYS] ; // s e t o f l i n e s f o r cache

} cacheObject , ∗cacheObjectP ;

// Cache ob j e c t l i n k

static VMIMMC_LINK_FN (cacheLink) {

vmiPrintf (

"\n\%s called for \%s\n" ,

FUNC_NAME ,

vmimmcGetHierarchicalName (component)

) ;

cacheObjectP cache = (cacheObjectP) component ;

vmimmcPortP nextPort = vmimmcGetNextPort (component , "mp1") ;

memDomainP nextDomain = vmimmcGetNextDomain (component , "mp1") ;

// san i ty check that we know whether we are in t ransparent or f u l l

// mode

VMI_ASSERT (

! (nextPort && nextDomain) ,

"\%s: expected either nextPort (transparent)"

"or nextDomain (full), not both" ,

FUNC_NAME

) ;

// s e t the next connected MMC model port

cache−>nextPort = nextPort ;

cache−>nextDomain = nextDomain ;

if (nextPort) {

March 7, 2013 Santhosh Kumar Rethinagiri Page 96

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

vmimmcAttrCP attrs = vmimmcGetPortAttrs (nextPort) ;

// s e t t ransparent f u n c t i o n s to c a l l on a miss

if (attrs) {
cache−>readInfo . missCB = attrs−>readNTransparentCB ;

cache−>writeInfo . missCB = attrs−>writeNTransparentCB ;

}
}

}

4.3.5 Memory models

The ICM API allows the OVP models to be exported into a SystemC environ-

ment. There are two levels at which the ICM API can be used: C and C++. It

is the C++ API that is utilized in the SystemC environment. Once exported,

an OVP model can be controlled from the SystemC interface by, for example,

allowing it to be clocked one instruction at a time. Listing 4.5 gives the details

about memory model implementation. Memory models are connected via its ICM

interface to the ICM interface of the processor. In Listing 4.5, the configuration

of the memory model and its connectivity to bus and processor is also given.

Listing 4.5: Implementation of the memory models

int main (int argc , char ∗∗ argv) {
// i n i t i a l i z e CpuManager

icmInit (0 , 0 , 0) ;

// c r e a t e a p ro c e s s o r

icmProcessorP processor = icmNewProcessor (

"cpu1" , // CPU name

"Cortex -A8" , // CPU type

0 , // CPU cpuId

0 , // CPU model f l a g s

32 , // address b i t s

model , // model f i l e

"modelAttrs" , // morpher a t t r i b u t e s

0 , // s imu la t i on a t t r i b u t e s

0 , // user−de f ined a t t r i b u t e s

semihosting , // semi−hos t ing f i l e

"modelAttrs" // semi−hos t ing a t t r i b u t e s

) ;

// c r e a t e the p ro c e s s o r bus

March 7, 2013 Santhosh Kumar Rethinagiri Page 97

4.3. VIRTUAL PROTOTYPING WITH THE HELP OF OVP PLATFORM

icmBusP bus = icmNewBus ("bus" , 3 2) ;

// connect the p ro c e s s o r busses

icmConnectProcessorBusses (processor , bus , bus) ;

// c r e a t e two s imulated memories f o r low and high r e g i o n s

icmMemoryP memory1 = icmNewMemory ("mem1" , ICM_PRIV_RWX , 0x003fffff) ;

icmMemoryP memory2 = icmNewMemory ("mem2" , ICM_PRIV_RWX ,

0xffffffff−0x00401000) ;

// map the address range 0x00400000 : 0 x 0 0 4 0 0 f f f e x t e r n a l l y to the proces sor ,

// read only

icmMapExternalMemory (bus , "external" , ICM_PRIV_R , 0x00400000 , 0x00400fff ,

extMemReadCB , extMemWriteCB , 0

) ;

// connect memories to bus

icmConnectMemoryToBus (bus , "mp1" , memory1 , 0) ;

icmConnectMemoryToBus (bus , "mp2" , memory2 , 0x00401000) ;

// show the bus connect i ons

icmPrintBusConnections (bus) ;

// load the p ro c e s s o r ob j e c t f i l e

icmLoadProcessorMemory (processor , argv [1] , False , False , True) ;

Bool done = False ;

while (! done) {
Uns32 currentPC = (Uns32) icmGetPC (processor) ;

// d i sa s semble i n s t r u c t i o n at cur rent PC

icmPrintf (

"0x\%08x:\%s\n" , currentPC ,

icmDisassemble (processor , currentPC)

) ;

// execute one i n s t r u c t i o n

done = (icmSimulate (processor , 1) != ICM_SR_SCHED) ;

// dump r e g i s t e r s

icmDumpRegisters (processor) ;

}

// f r e e s imu la t i on data s t r u c t u r e s

icmTerminate () ;

return 0 ;

}

March 7, 2013 Santhosh Kumar Rethinagiri Page 98

4.4. OVP IN SYSTEMC/TLM ENVIRONMENT

Fig. 4.3 gives a detail view about the connectivity between ARM Cortex-

A8 processor and its cache models and the main memory. Processor model is

connected to its cache models via VMI interface. L1 to L2 cache connection is

also through VMI interface, whereas memory model is connected via its ICM

interface to the VMI interface of the L2 cache.

JIT Processor (ARM Cortex-A8)

L1 Instruction cache L1 Data Cache

L2 Unified Cache

RAM

VMI

VMI

VMI

VMI

VMI VMI

ICM

ICM

VMI VMI

Figure 4.3: Cortex-A8 interface implementation

4.4 OVP in SystemC/TLM environment

Components reuse becomes mandatory in order to design challenge and design

time. This requires design methodologies for inter IP communication and im-

plementation. TLM2.0 provides new level of performance and interoperability.

With TLM2.0 it is possible to enable models from different vendors to work to-

gether in a virtual platform. The OVP provides C++ interface to encapsulate

their models in the SystemC environment. New developments have been made

March 7, 2013 Santhosh Kumar Rethinagiri Page 99

4.4. OVP IN SYSTEMC/TLM ENVIRONMENT

to make OVP models work in TLM2.0 compliant SystemC platforms. The avail-

ability of SystemC TLM2.0 technology to use with OVP CPU models allows the

encapsulation of OVP models in existing TLM2.0 compliant SystemC platforms,

thereby solving the model interoperability issue and enabling fast solutions for

successful deployment of virtual platforms by hybrid simulation of OVP and Sys-

temC. To integrate the existing OVP model, SystemC wrappers are written for

communication.The conventional APIs in OVP are built in C. To make TLM2.0

compliant, SystemC wrappers are used by several new classes in which the con-

ventional C routines for the models are called. These classes build the wrapper

around the binaries of the OVP processor, peripheral, memories and bus mod-

els allowing them to be exported to an outer simulation environment other than

OVP. Once exported to SystemC environment, these models can then be con-

trolled from the SystemC interfaces. Of the various abstraction levels provided

by TLM2.0, it is the loosely timed modeling that gives a higher performance. It

enables processes to run ahead of simulation time (temporal decoupling) and uses

a quantum keeper. It is this abstraction level on which wrappers have been built

so that the models could be run as fast as possible. Features like Direct Memory

Interface (DMI) are used to provide direct pointer to the memory in the target

bypassing the sockets in the transport calls enabling a faster simulation needed

by the application. The processor has the option to invalidate DMI in which

the transport call goes over the bus. The wrappers are supported for TLM2.0

blocking transport interface with timing annotation.

4.4.1 OVP inside TLM2.0

The wrapper used around the OVP processor model in the TLM2.0 environment

are generic in nature. These wrapper can be manipulated for any kind of processor

under test. These wrappers gives free running of each processor for a large number

of instruction rather than putting them all in a bottleneck. SC MODULE defines

the class of each generic wrapper for the processor model. Fig.4.4 shows the detail

of the wrapper. The implementation of the bus wrapper is shown in Fig.4.5. In

order to mask the IP at TLM level, first C++ wrapper are built which can collect

every move of a processor, bus etc., inside separate classes, as shown in Fig.4.4.

March 7, 2013 Santhosh Kumar Rethinagiri Page 100

4.4. OVP IN SYSTEMC/TLM ENVIRONMENT

!"#$%&'()%*+&,-(./+0123()+45+

*%6+7,-(./+0823()+95+

%)&.(::&)+#&;(1+
07<%5+

=>:+#&;(1+
07<%5+

%)&.(::&)+&,-(./+
0823()+?5+

=>:+&,-(./+0823()+?5+

Figure 4.4: Wrapper configuration

These classes (wrappers) assess the OVPsim core for the functionality of the

respective model. The outer SC MODULE calls objects of these processor and

bus classes. Based on this hierarchy of wrappers the module of processor shown

in the Fig.4.5 has objects of the bus instantiated inside it. This allows mapping

of the OVP processor address space to a local OVP memory/peripheral (through

OVP Bus) as well as an external memory or peripheral with TLM2.0 target socket.

In order to connect to an external memory/peripheral, a portion of address space

of the local OVP bus, directly connected to the OVP processor is bridged to

another bus (TLM Bus shown in figure) over which read/write callbacks are

registered. Initiator sockets are opened on the processor model. Any access to this

TLM bus address space which is mapped to an external memory/peripheral will

trigger these read/write callback functions on the TLM bus, indirectly connected

to the processor. The callback functions then create the appropriate transaction

request and forward the transport call with its generic payload over the initiator

March 7, 2013 Santhosh Kumar Rethinagiri Page 101

4.4. OVP IN SYSTEMC/TLM ENVIRONMENT

SC_MODULE

Bus
Bridge

Generic Payload

TLM2.0
Initiator
Socket

Figure 4.5: Wrapper implementation

sockets. Fig.4.6 gives the full system of the OVP and its wrappers.

This is a generic wrapper put around CPU models and is used in a proces-

sor configuration specific layer to create specific processor wrappers like that for

ARM, PowerPC etc., which is then instantiated into the SystemC platform. The

processor thus, on encountering an instruction that do a load/store to/from mem-

ory location on the bus, will call a function in the wrapper code which in turn

issues the necessary blocking transactions on the bus. Wrappers for the periph-

eral model are also constructed in a similar fashion using the read/write callbacks

registered on the bus connected to the peripheral model within an SC MODULE.

The TLM2.0 wrapper also provides a bus decoder with a configurable number of

initiator and target sockets which are used to forward the transaction arriving

on its target port to the proper initiator port based on the bus address map.

The SystemC environment then calls the OVP simulator through this wrapper.

Proper synchronization between the two simulators needs to be maintained to

March 7, 2013 Santhosh Kumar Rethinagiri Page 102

4.4. OVP IN SYSTEMC/TLM ENVIRONMENT

Figure 4.6: Full system implementation: Source [89]

achieve correct working of the models in the platform. As the simulation starts,

each processor runs from a SystemC thread. The thread executes IPQ instruc-

tions on the processor without advancing SystemC time, where the function call

asking the processor to simulate for IPQ instructions is from OVP environment

through the wrapper. When the allotted instructions have completed, the thread

calls SystemC wait() to advance time. The OVP simulator synchronizes with the

SystemC simulation kernel every time the quantum is over. Thus each processor

executes a number of instructions at a time in a round-robin schedule. Based on

this background, a wrapper is prepared to enable OVP models to communicate

with Open SCML based models. Listing 4.6 shows an view about the OVPSim

implemenation inside SystemC/TLM.

Listing 4.6: Instantiation of the memory models

class simple : public sc_core : : sc_module {

March 7, 2013 Santhosh Kumar Rethinagiri Page 103

4.4. OVP IN SYSTEMC/TLM ENVIRONMENT

public :

simple (sc_module_name name) ;

icmTLMPlatform Platform ;

decoder <2,3> bus1 ;

ram ram1 ;

ram ram2 ;

Cortex−A8 cpu1 ;

} ; /∗ s imple ∗/

simple : : simple (sc_module_name name)

: sc_core : : sc_module (name)

, Platform ("icm" , ICM_VERBOSE | ICM_STOP_ON_CTRLC

| ICM_ENABLE_IMPERAS_INTERCEPTS

| ICM_WALLCLOCK)

, bus1 ("bus1")

, ram1 ("ram1" , "sp1" , 0x100000)

, ram2 ("ram2" , "sp1" , 0x10000)

, cpu1 ("cpu1" , 0)

{

// bus1 masters

cpu1 . INSTRUCTION . socket (bus1 . target_socket [0]) ;

cpu1 . DATA . socket (bus1 . target_socket [1]) ;

// bus1 s l a v e s

bus1 . initiator_socket [0] (uart1 . bport1 . socket) ; // Pe r iphe ra l

bus1 . setDecode (0 , 0x90000000 , 0x90000007) ;

bus1 . initiator_socket [1] (ram1 . sp1) ; // Memory

bus1 . setDecode (1 , 0x0 , 0xfffff) ;

bus1 . initiator_socket [2] (ram2 . sp1) ; // Memory

bus1 . setDecode (2 , 0xffff0000 , 0xffffffff) ;

int sc_main (int argc , char ∗argv []) {

simple top ("top") ;

top . cpu1 . setIPS (100000) ; // 1MHz

sc_core : : sc_start () ;

}

March 7, 2013 Santhosh Kumar Rethinagiri Page 104

4.5. THE SIMULATION ENVIRONMENT

4.5 The simulation environment

In this section, we will show graphical representation of our simulation platform

and also eclipse based environment for system-level co-simulation with detailed

pictures.

Memory I/O
Peripherals

Bus

Task 2

Memory
Data

Activity counter Interface

Virtual Platform

PowerPC
OVPsim CRM PowerPC

OVPsim CRM

Activity counter InterfaceActivity counter Interface

Task 3 Task 1 Task 1

PowerPC
OVPsim CRM

SystemC wrapper SystemC wrapper SystemC wrapper

Figure 4.7: Proposed virtual platform prototype

Our proposed virtual platform prototype of a ARM Cortex-A8, ARM9, and

PowerPC405 based architecture has been developed. This prototype uses different

virtual hardware models as discussed in the previous section, a cache ratio monitor

(CRM) provided with the virtual platform for cache miss rate, virtual memory

model and the JIT for the target processor as shown in Fig. 4.7. From the

CRM, we are able to determine the occurrences of the main activities which are

recorded into activity counter interface such as cache miss rates. For all the three

processors the following counters are used for different cache miss rates: read

data miss, write data miss and read instruction miss. In a similar fashion, we

extracted the activities for the homogeneous and heterogeneous MPSoC.

March 7, 2013 Santhosh Kumar Rethinagiri Page 105

4.5. THE SIMULATION ENVIRONMENT

Figure 4.8: Preferences for processor and application setting

Fig. 4.8 shows the new SystemC project creation wizard in order to guide the

hardware model developer in the initial instantiation of an IP and build settings.

In this wizard, we are able to create a SystemC project with mono-processor and

multiprocessor architecture and at the same time, we are able to port the use case

application into the eclipse framework for hardware/software co-simulation. Sam-

ple projects are provided (e.g. ARM IP’s, memory and multimedia applications)

to quickly show how our eclipse environment looks like in Fig. 4.9. Fig. 4.9 also

shows how to run the application upon the simulated platform like the real plat-

form and also to debug the embedded application. Fig. 4.10, Fig. 4.11 and Fig.

4.12 show the different activity counters simulation results for a mono-processor

architecture, which are needed for the power models to estimate the power con-

sumption and to optimize the application for a better architectural solution. In

the Fig. 4.13, we present the results of multiprocessor architecture running an

application and displaying its timing details and total number of instructions.

March 7, 2013 Santhosh Kumar Rethinagiri Page 106

4.6. EXPERIMENTAL RESULTS

Figure 4.9: Hardware/Software co-simulation

4.6 Experimental results

In this section, the effectiveness of our proposal is illustrated through the JPEG

encoder application performed on PowerPC based MPSoC and we also presents

the comparison of proposed MPSoC environment with JIT/TLM and ISS/TLM

level in terms of estimation speed and modeling efforts.

4.6.1 JPEG algorithm

In order to simulate the platforms, there is a need to choose proper application

which could be executed on the processor. The choice of application should be

such that the workload on the processor is quite high. Baseline JPEG Decoder is

chosen as a benchmark application for our current simulation framework. Joint

Photographic Experts Group or in short, JPEG is a widely used image compres-

sion technique. It is used in image processing systems such as copiers, scanners

March 7, 2013 Santhosh Kumar Rethinagiri Page 107

4.6. EXPERIMENTAL RESULTS

Figure 4.10: L1 cache result after the
simulation

Figure 4.11: L2 cache result after the
simulation

and digital cameras. A JPEG decoder is capable of reconstructing image data

from a stream of compressed image data. This requires that some transformations

be applied to the compressed image data. This results in the reconstruction of the

image data. The fact that this coding method forms the basis for all DCT-based

JPEG decoders makes it an interesting. For that reason it was selected to be im-

plemented in this project. JPEG decoder is a streaming multimedia application

which has a degree of parallelism and consists of 5-6 tasks. The JPEG decoding

process is graphically depicted in Fig.4.14. Before the operations performed by

the decoder are explained, we look at the encoder. The JPEG encoder divides an

image in blocks of 8 by 8 pixels. The encoder then has a number of blocks, which

when placed in the right order, form the original image. The encoder applies a

number of operations on each of these blocks. These operations include a discrete

cosine transform, quantization, zigzag scan and variable length encoding. The

result of these operations, and of the encoder, is a compressed image.

The decoder reverts the transformations applied by the encoder to the im-

age data. The decoder takes the compressed image data as its input. It then

subsequently applies following operations to the compressed image.

March 7, 2013 Santhosh Kumar Rethinagiri Page 108

4.6. EXPERIMENTAL RESULTS

Figure 4.12: IPC simulation results

• Variable Length Decoding (VLD)

• Zigzag scan (ZZ)

• De-quantization (DQ)

• Inverse Discrete Cosine Transform (IDCT)

• Color Conversion

• Reordering

The decoder then obtains the reconstructed bitmap image. The compressed

image data forms a byte stream input for the decoder. This byte stream con-

tains so called markers. A marker is a two-byte combination, which identifies a

structural part of the compressed image data. The incoming bit stream is parsed

to get header information and image data based on the markers and various

transformations are then applied.

March 7, 2013 Santhosh Kumar Rethinagiri Page 109

4.6. EXPERIMENTAL RESULTS

Figure 4.13: Simulation results for multiprocessor architecture

4.6.2 Application task graph mapping for dual processor

platform

The JPEG decoder application is made to run on the developed monoprocessor,

homogeneous and heterogeneous multiprocessor platforms based on PowerPC405

architecture and then tested. The case is limited to two processor systems but

could be extended to several cores depending on the workload of the application.

In order to execute the same application on two processors, we need to partition

the total tasks among two processors in such a way that each processor has almost

equal computation and communication load. As seen from Fig.4.14, the various

tasks in the decoder are performed one after the other. Thus the platform will

be having processors which are active one after the other.

To select proper task partitioning for the application under experimentation,

careful study of the application is done to find the match between JPEG decoder,

the two processors platform and MPSoC platform with hardware accelerators.

March 7, 2013 Santhosh Kumar Rethinagiri Page 110

4.6. EXPERIMENTAL RESULTS

Variable
Length

Decoding
(VLD)

Zigzag Scan
(ZZ)

De-
quantization

(DQ)

Compressed
Image

Reordering
Color

Conversion
(CC)

Inverse Discrete
Cosine

Transform
(IDCT)

IMAGE

Figure 4.14: JPEG decoder flow

The compressed image data is connected to the VLD in the JPEG decoder.

Therefore, the VLD must be incorporated in the first processor. As seen in

Fig.4.14, re-ordering is connected to the output. In order to divide the ZZ,

DQ, IDCT and color conversion over the two processors, the data consumption

and production rate of the various parts of the system are looked upon. The

VLD consumes data from the outside world and produces data in blocks. The

zigzag scan, de-quantization and IDCT also consume and produce one block at

a time. The color conversion and re-ordering requires one or more (up to 10)

blocks before they can run. The color conversion however produces data in a

block-by-block basis and sends this to the re-ordering unit which then produces

output data. This implies that the communication over connection 2 of our two

processor system is always in blocks. Thus every division of the JPEG decoder in

two processors require the same data rate. The subdivision of the JPEG decoder

does not influence the communication load of the system. Similarly, when we

March 7, 2013 Santhosh Kumar Rethinagiri Page 111

4.6. EXPERIMENTAL RESULTS

Variable
Length

Decoding
(VLD)

Zigzag Scan
(ZZ)

De-
quantization

(DQ)

Reordering
Color

Conversion
(CC)

Inverse Discrete
Cosine

Transform
(IDCT)

Image Properties

F Blocks

Processor 1

Processor 2

Compressed Image

Bitmap Image

Figure 4.15: JPEG decoding process
with 2 processors

Variable
Length

Decoding
(VLD)

Zigzag Scan
(ZZ)

De-
quantization

(DQ)

Inverse Discrete
Cosine

Transform
(IDCT)

Image Properties

F Blocks

Processor 1

Hardware
Accelerator

Compressed Image

Reordering
Color

Conversion
(CC)

Bitmap Image

P Blocks Processor 2

Figure 4.16: JPEG decoding process
with 2 processors and hardware acceler-
ator

use the JPEG application with a hardware accelerator, we port the IDCT on the

hardware accelerator.

For the proper partitioning of decoder, first 2 processors platform and second

2 processors with a hardware accelerator platform, the computation load on two

processors must be more or less same. This enables processor2 or hardware

accelerator to start as soon as processor1 has produced one block. The survey

result of the system load for various parts of the JPEG decoder is shown in Tables

4.2 and 4.3. The Tables 4.2 & 4.3 show that partitioning just before and after

IDCT-function is the easiest to realize.

This choice enables almost 50-50% of load sharing among two processor plat-

form and 50-20-30% with a hardware accelerator. It also has the advantage that

the Huffman decoding and de-quantization tables required by the VLD and DQ

units respectively do not need to be shared by both processors. Based on this

task partitioning, the data flow among the two processors in the system is shown

in Fig. 4.15 and Fig. 4.16.

March 7, 2013 Santhosh Kumar Rethinagiri Page 112

4.6. EXPERIMENTAL RESULTS

Table 4.2: JPEG workload on 2 processors
Processor 1 Task Name workload (%)

Variable Length Decoding (VLD) 35
Zigzag scan 5
De-quantization (DQ) 10

Processor 2 Inverse Discrete Cosine Transform (IDCT) 20

Color Conversion 15
Reordering 15

Table 4.3: JPEG workload on 2 processors and hardware accelerator
Processor 1 Task Name workload (%)

Variable Length Decoding (VLD) 35
Zigzag scan 5
De-quantization (DQ) 10

Hardware Accelerator Inverse Discrete Cosine Transform (IDCT) 20

Processor 2 Color Conversion 15
Reordering 15

4.6.3 Performance estimation and simulation results of

our proposed virtual platform

Validation of the proposed PowerPC based virtual platform is performed against

PowerPC based ISS/TLM for the accuracy of the activities and the timing mea-

surement. Table 4.4 summarizes the results for the cache activity inside the

platform. The table shows JPEG application performing on a PowerPC with a

cache. Note that, for this validation, the actual applications chosen are not so

important, since the main goal is to verify the ability to accurately capture the

activities when compared to ISS/TLM simulation. On comparison with Table

4.1, we are able to confirm that there is no accuracy loss incurred while changing

to Instruction Accurate simulation from ISS/TLM. Besides, validation based on

more and larger applications like audio/video encoding would be not feasible, due

to the very long time necessary to perform on ISS/TLM simulation and extrac-

tion of the activities. From Table 4.4, it can be observed that the generalized

platform shows a very good degree of accuracy, with an error within 0.23% of the

cycle accurate level.

For speed comparison, ISS/TLM has been chosen as a reference. The reason

March 7, 2013 Santhosh Kumar Rethinagiri Page 113

4.6. EXPERIMENTAL RESULTS

Table 4.4: Application miss rates for PowerPC based virtual platform
Program Instruction miss rate Read Miss rate Write Miss Rate Total Miss Rate

acquisition 0.003386 3.56 31.73 0.02

rgb2yuv 0.001128 3.03 99.91 5.64

dct y 0.002283 4.49 40.72 3.88

dct u 0.000315 4.49 40.72 3.88

dct v 0.000314 4.49 40.72 3.88

qt y 0.000812 2.06 99.88 5.58

qt u 0.000406 2.06 99.93 5.58

qy v 0.000406 2.06 99.94 5.58

huff y 0.004375 4.58 20.11 0.85

huff u 0.000515 4.57 19.8 0.84

huff v 0.000643 4.56 19.61 0.84

rebuild image 0.298380 3.05 25.19 2.87

complete application 0.000012 0.029 0.09 0.012

is that this represents the high-level methodology for system-level estimation

commonly used at present. For this purpose, a dedicated ISS/TLM level model

in SystemC has been implemented for the reference MPSoC architecture. The

implementation has been as abstract as possible, since it exclusively represents the

transactions occurring across the platform among the different IPs. In addition,

communication is handled using bidirectional blocking interfaces.

Table 4.5: Timing comparison between proposed single processor environment
and SoCLib environment

Application JIT/TLM ISS/TLM
JPEG 2000 3.22 sec 900 sec
H.264 56 sec 3600 sec
FFT 1.2 sec 300 sec
Downscaler 7.2 sec 2100 sec

For this experiment, a set of very large application examples have been cho-

sen. The reason was to show that our system-level environment can handle very

large examples and also to make the difference between ISS/TLM simulation and

IA/TLM simulation execution speed more evident. The applications chosen are

the image JPEG2000, the video compression codec H.264, FFT and Downscalar.

The JPEG has been applied to a image size of 256x256. The H.264 has been

March 7, 2013 Santhosh Kumar Rethinagiri Page 114

4.6. EXPERIMENTAL RESULTS

Table 4.6: Timing comparison between proposed two processors environment and
SoCLib simulation environment

JIT/TLM ISS/TLM
Simulated Instruction/cycles 411322456 Instructions 342446113 cycles
Simulation time 3.66 sec 396 sec
Speedup 106.91 1

used for a video with a resolution of 176x144. The results of this comparison

are reported in Table 4.5 and show an average speed improvement of 300x for

JIT/TLM compared to ISS/TLM simulation. Besides, note that the advantage

of JIT/TLM over ISS/TLM increases as the number of instructions increases.

This confirms the capacity of JIT/TLM to be used for complex and real use-case

scenarios.

Table 4.6 shows the results for two PowerPC processors running with JPEG

application with an equal workload. From Table 4.6, we are able study that the

proposed platform is 100x faster than the traditional ISS/TLM simulation.

256x256 128x128 64x64 32x32 16x16 8x8
0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Speed up
Error (%)

Data pattern granularity

S
pe

e
du

p

E
rr

or
 (

%
)

Figure 4.17: Power estimation error and
speedup according to the data pattern
granularity

1 2 4 8

19

19.5

20

20.5

21

21.5

22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Speed up
Error (%)

Number of phases

S
pe

ed
up

E
rr

o
r

(%
)

Figure 4.18: Power estimation error and
speedup according to the number of
phases

To simulate the full JPEG2000 application, it took 4 sec. per image. In order

to speed-up the simulation without compromising accuracy, first, we decided to

tune the data pattern granularity of the application and to analyse its effect in

the accuracy and speed. To do so, we alter the input data size from 256×256

to 8×8 and we re-perform the simulation of the entire application. Fig. 4.17

March 7, 2013 Santhosh Kumar Rethinagiri Page 115

4.6. EXPERIMENTAL RESULTS

summarizes the experimental results. We achieved a maximum speed-up of 21x

with 8×8 data pattern compared to a full image simulation and the accuracy

remained under 1.5% of error. Let us note that this approach is made possible

by several specificities of the context, first by the fact we are targeting intensive

parallel application that presents a low dependency between the data patterns.

This is not a specific characteristic of the JPEG application, however a common

feature of embedded signal processing applications. The second specificity is

the parameters on which the elaborated functional power model relies. Mainly

in our case, we bank on the cache miss rate which hide the handled data size

while keeping the general behavior of the application. This is one of the main

advantages of using FLPA methodology for power modeling.

As a second attempt to make power activities extraction faster, we used a

sampling approach in order to reduce the total number of executed instructions.

We vary the number of phases between 1 to 8 and we measured the simulation

speed and the activity accuracy as shown in Fig. 4.18. In general, increasing the

number of sampling phases will increase the accuracy while reducing the speed.

This scenario is observed also in our case. We reached a maximum speedup of

21.5x with 1 phase compared to an entire application simulation and the accuracy

remained under 1.4% of error. Due to the high task parallelism inside the JPEG

application, few number of phases are sufficient for generating the pertinent ac-

tivities for the power model. As all the JPEG tasks handle the same pattern

data (blocks 8×8) in a repetitive fashion, the results of Fig. 4.17 and Fig. 4.18

were correlated. In other words, reducing the data pattern size will decrease the

number of iterations inside the tasks. Thus, considering a 8×8 pattern size is

equivalent to 1 sampling phase. For this reason, the simulation speed-ups in the

two cases were similar. Nevertheless, for other applications the above two aspects

can have an additional impact to increase the simulation speed.

4.6.4 Modeling efforts

Until now we have shown the usefulness of our approach in terms of simula-

tion speed and accurately extracting the activities. However, this approach has

proven its effectiveness also in terms of modeling effort. It allows designers to

March 7, 2013 Santhosh Kumar Rethinagiri Page 116

4.7. CONCLUSION

develop, reuse and validate MPSoC systems in a short time. Table 4.7 presents

the modeling effort needed to express in terms of Lines Of Code (LOC) to design

an MPSoC system at JIT/TLM compared to ISS/TLM level. According to the

results, the modeling effort with JIT/TLM is reduced by a factor of 28%.

Table 4.7: Modeling efforts
JIT/TLM (LOC) ISS/TLM (LOC)

Processor 220 1486
Cache 112 244
Memory 89 183
Interconnect 75 177
Total 571 2090
Reduction (%) 28

4.7 Conclusion

This chapter has presented the proposed system-level virtual platform framework

for co-simulation of hardware/software, reuse of platforms used for power esti-

mation and to accurately extract the activities for the power models. This is

done with the intent of maintaining system-level environment regardless of the

platforms used. A PowerPC processor has been taken as a reference processor,

while MPSoC has been taken as reference platform and JPEG application has

been used as a benchmark application to validate the framework. Here, we em-

phasis again that the main contribution of this chapter is that we have proposed

a fast JIT/TLM simulation framework to obtain the needed micro-architectural

activities for the power models, which allows us to reach accurate estimates.

With such proposed framework, the designer can explore several implementation

choices: monoprocessor, homogeneous and heterogeneous multiprocessor systems.

After proposing the system-level power estimation framework, we have validated

the simulation speed against ISS/TLM simulation technique.

March 7, 2013 Santhosh Kumar Rethinagiri Page 117

CHAPTER 5

POWER ESTIMATION TOOL AT

SYSTEM-LEVEL (PETS) AND

EXPERIMENTAL RESULTS

5.1 Introduction

As mentioned in the earlier chapters, the contribution of this thesis is to propose

a tool based on fast and accurate power estimation methodology that operates

at system-level. This chapter presents the proposed hybrid power estimation

methodology, which is a combination of the power modeling approach proposed in

Chapter 3 and the system-level framework proposed in Chapter 4. This methodol-

ogy is proposed to work as a proof-of-concept for power estimation at system-level

for a given MPSoC platform. Hence, we introduce a Power Estimation Tool at

System-level (PETS) based on the hybrid power estimation methodology. This

chapter also presents and analyses results of experiments carried out using PETS

tool and compares them to other tools described in the literature such as Soft Ex-

plorer1 and SimplePower2. This chapter also explains the power estimation flow

1http://www.softexplorer.fr/
2http://www.cse.psu.edu/ mdl/software.htm

March 7, 2013 Santhosh Kumar Rethinagiri Page 119

5.2. HYBRID POWER ESTIMATION METHODOLOGY

for monoprocessor, homogenous and heterogeneous multiprocessor system for sys-

tem designers. This comparison is performed using different types of benchmark

applications in terms of accuracy and speed.

Section 5.2 starts with the flow of the hybrid power estimation methodology

making profit from our power modeling methodology and our system-level co-

simulation environment. Section 5.3 presents the flow of the PETS design for

power estimation. Section 5.4 presents the experimental results and also offers a

comparison of the power estimation speed of the proposed tool against the other

existing tools.

5.2 Hybrid power estimation methodology

!"#$%&#'()
*&+,-)
.&/,()

0,#,-'%&#)
1-'#2'$%&#'()

34-5"'()6('7&-8)

*'-'8,5,-29)
:!);(<&-45=84$)
:!)>'$=,)8422)-'5,)
:!)?#25-"$%&#)6,-))
$@$(,A)

*&+,-)
.&/,(2)
B4C-'-@)

*&+,-)
,2%8'%&#)

-,2"(52)

D&E+'-,)
F'-/+'-,)

;66(4$'%)

1G) 1H) 1I)

1H)

JK*D48)*-&$,22&-2)))

A) **>);L.M)

.'664#<)

K4-5"'()*('7&-8)

D@25,8>)?*)
B4C-'-@)

!"#$%&#'()B,3,()
*&+,-);#'(@242)

!"#$%&'%()&

'(*+,-&'%()&

./012324&./013567&

;L.)
>&-5,N;O)

8"#%(9&::&1#+&

Figure 5.1: Power estimation flow

Fig. 5.1 is used as a reference throughout the chapter in order to ease the

approach description.

March 7, 2013 Santhosh Kumar Rethinagiri Page 120

5.2. HYBRID POWER ESTIMATION METHODOLOGY

We propose hybrid system-level power estimation methodology, which is di-

vided into two parts as shown in Fig. 5.1. The first part concerns the power

model elaboration for the system hardware components at functional level. In our

framework, the FLPA methodology is used to develop generic power models for

different target platforms. The main advantage of this methodology is to obtain

power models, which rely on the functional parameters of the system with a re-

duced number of experiments. The second part of the methodology defines the

architecture of our hybrid power estimation methodology that includes the Power

Estimator Kernal and fast Just In Time (JIT) system-level simulator provided

by OVPSim as shown.

5.2.1 Part 1: Power model generation

As explained in the previous chapters, FLPA comes with few consumption laws,

which are associated to the consumption activity values of the main functional

blocks of the system. The generated power models have been adapted to sys-

tem level design, as the required activities can be obtained from a system-level

environment. For a given platform, the generation of power model is done at

once. To estimate the power consumption of an MPSoC system, the first step

is to divide the architecture into different functional blocks and then to cluster

the components that are concurrently activated when the code is running. The

second step is the characterization of the processor power consumption when the

parameters vary. These variations are obtained by using some elementary as-

sembly programs (called scenario) or built in test vectors elaborated to stimulate

each block separately. Characterization are performed by measurements on real

boards. Finally, a curve fitting of the graphical representation will allow us to

determine the power consumption models by regression. The analytical form or

a table of values expresses the obtained power models. This power modeling ap-

proach was proven to be fast and precise. In our work, this approach has been

applied to model power consumption for processor and its memory systems.

March 7, 2013 Santhosh Kumar Rethinagiri Page 121

5.2. HYBRID POWER ESTIMATION METHODOLOGY

5.2.2 Part 2: System-level environment development

As explained in the previous section, the second part contains a functional power

estimator and a system-level simulator. The functional power estimator evalu-

ates the consumption of the target system with the help of the elaborated power

models from the first part. It takes into account the architectural parameters

(e.g. the frequency, the number of processors, the processor cache configuration,

etc.) and the application mapping. It also requires the different activity val-

ues on which the power models rely. In order to collect accurately the needed

activity values, the functional power estimator communicates with a fast JIT

simulator. The combination of the above two components described at differ-

ent abstraction levels (functional and virtual platform) leads to a hybrid power

estimation that gives a better trade-off between accuracy and speed. The vital

function of the proposed PETS tool is to offer a detailed power analysis by the

means of a complete simulation of the application. This process is initiated by

the functional power estimator through the processor and application mapping

interface (Fig. 5.2). In this way, the mapping information is transmitted to the

fast JIT simulator at system-level. In our previous framework with SoCLib [108],

we presented an accurate TLM simulation technique that allows to evaluate the

MPSoC performances. In this work, the processor is a JIT simulator provided by

OVPSim wrapped inside a SystemC interface to communicate with the shared

memory and the peripherals. In the power estimation step, the simulator collects

the activities that are influenced by the application and the input data. At the

end of the simulation, the values of the activities are transmitted to the power

consumption models or power estimator kernal using the activity counter interface

in order to calculate the global power consumption as illustrated in Fig. 5.1.

Hybrid power estimation methodology expects to receive two pieces of infor-

mation from the user: a data (architecture) specification and a task (use case)

specification. The data specification tells about the processor description (IPs),

connection and their configuration. The IPs that can be used in the data spec-

ification must have a corresponding model in the SystemC IP library. The task

specification contains information on how to use the design described in the data

specification to be used. For example: first, the applications used for the spe-

March 7, 2013 Santhosh Kumar Rethinagiri Page 122

5.2. HYBRID POWER ESTIMATION METHODOLOGY

cific test case; two, the way such applications have been mapped to the resources

specified in the data specification; three, the time offset at which each applica-

tion gets triggered; fourth, the input data; fifth, the I/O from which the data is

received, and sixth, the I/O through which the data is sent out. As for the data

specification case, the applications mentioned in the task specification must be

present in the applications database. In simple words, the data specification con-

tain the information about the architecture of the system under test and the task

specification contains the application to be simulated on system. As of today,

data specification and task specification are in the form of a file.

5.2.3 Engineering efforts

The main aim of this section is to quantify the engineering effort required by

the hybrid power estimation methodology. For this purpose, the hybrid power

estimation methodology is divided into three phases: a characterization phase, a

SystemC IP development phase and an estimation phase.

The characterization phase is laborious and thus it requires a large amount

of engineering effort. This phase includes generation of power models (Part

1) and development of SystemC IPs. As summarized in 5.2.1, the creation of

power model implies characterizing each parameter for power. As summarized

in 5.2.2, SystemC IPs phase consist of development and reuse of the IP’s for the

system-level environment where the impact of certain elements like caches, bus

and transaction between the IPs are modulated. Although time-consuming, this

characterization phase and SystemC IP phase are justified for the following three

reasons: first, it is done only once; second, it gives high accuracy to the whole

hybrid power estimation methodology since it is carried out by direct measure-

ment; third, it is a shared activity, which helps to bring the engineering effort

down. As opposed to the characterization phase, the estimation phase is very fast

and interactive, and the engineering efforts are minimal as we reuse most of the

IPs available in the open source libraries. In the estimation phase, power values

are collected from the simulation environment and given to the power estimation

kernel. Where, the estimation kernel calculates the total power. Based on these

considerations, the overall engineering effort required by our methodology is low.

March 7, 2013 Santhosh Kumar Rethinagiri Page 123

5.3. PETS TOOL DESIGN FLOW

The reason is that JIT/TLM simulation relies on the availability of IPs.

5.3 PETS tool design flow

In order to verify power requirements during the design phase of a given system,

power estimation has become an essential part of the design process. Due to

the advances in process technology scaling as well as rising demands for compu-

tational performance and functionality, increasingly complex designs have to be

handled in the power estimation process. Systems-on-chips (SoC) are typically

composed of a large number of sub-components, each contributing to the overall

power consumption. Furthermore, it can be observed that the power consump-

tion of these devices is progressively more dependent on software applications,

determining the utilization of system components as well as actuating available

on-chip power management features. It is therefore favourable, to provide auto-

mated and reprogrammable power estimation resources not only to system archi-

tects and hardware designers but also to power-aware software application and

operating system developers.

For the purpose of fast yet accurate software power estimation, system-level

power estimation tool (PETS) are considered promising. With proposed tool, we

achieve a considerable power estimation speed-up compared to Low-level-based

methods. However, the time-consuming task of power model generation and

required SystemC models adaptation for these complex platform power estimation

has been best of our knowledge. In the context of system-level power estimation,

the novel contributions of the proposed PETS tool are as follows:

• We propose a systematic, automated power estimation and modeling tool

that automatically determines power of a given system under test and an

application (provided in the library).

• We develop an automated technique for implementing this power model in

system-level environment .

• A case study on a several state-of-the-art benchmarks are used to illustrates

the benefits of our automated power estimation tool.

Flow of our standalone power estimation tool is given in the Fig.5.2. The

March 7, 2013 Santhosh Kumar Rethinagiri Page 124

5.3. PETS TOOL DESIGN FLOW

!"#$%&' ()*'
+"%,-."%/01'''''''''''''''

231'

''

4/15'6'

!"#$%&'
7/8/'

'!/--,9:',98"%;/<"' =<>?,8&'<$398"%'(98"%;/<"'

+%$<"11$%'@'/--0,</>$9'
#/--,9:' +$A"%'"1>#/8$%'B"%9"0'

!"#$%&#'()*+,+())

-./0"'()1('2&/3)

'!/--,9:',98"%;/<"'

4-15.3) CD!' 4-15.3) CD!'

=<>?,8&'<$398"%'(98"%;/<"'=<>?,8&'<$398"%'(98"%;/<"' +$
A"

%'#
$E

"0
1'

4/15'F' 4/15'G'

'!/--,9:',98"%;/<"'

4/15'G'
=D!'C$%8"H=I' +$A"%+C'

4-15.3) CD!'

=D!J'

Figure 5.2: PETS tool

developed power models in Chapter 3 are loaded into power model library in the

form of C code and by similar way the developed SystemC IP’s, OVPsim module

and benchmark application are loaded into their IP and application libraries. The

user by using a script file can load the system, where in the script the description

of the processor, type of power model and type of application to be ran are

given. The virtual platform module runs the needed platform and application.

The counter interface which collects the needed architecture data for the power

and gives it to the power data which gives out the total power estimation of the

particular benchmark application.

March 7, 2013 Santhosh Kumar Rethinagiri Page 125

5.4. EXPERIMENTAL RESULTS

5.4 Experimental results

5.4.1 Power estimation accuracy of monoprocessor based

platform

5.4.1.1 ARM Cortex-A8 based platform (OMAP3530)

!"#$
%&'$

()*+,-%.$
()*,$

!
"!
#!
$!
!
%!
&!
'!
!
(!
)!
*!
+!
(!
)!
,!
!

/01+,2(345'$
2,2)*0$678+$

(9:;,$&9<)$
')78+)*$
=(&'>$

()67+,*$
?7+,*@9:,$

#)A,*$
B1<29+)*$
C,*7,D$

(9:;,$&9<)$

/01+,2($A*9EE,*$

?71+*6:<)7$
#,*$(0:D,$
()67+,*$

?71+*6:<)7$

?7+,*@9:,$

Figure 5.3: Mono-processor platform of ARM Cortex-A8

A system level prototype of a ARM Cortex-A8 based architecture has been

developed. This prototype uses different virtual hardware models, a Cache Ratio

Monitor (CRM) provided with the virtual platform for cache miss rate, and the

JIT for the target processor and SystemC wrapper around the processor in order

to capture the activities. In such prototype, OVP processor with a TLM 2.0

compliant SystemC wrapper is made to interact with simple TLM 2.0 target

memories and other peripherals. This is done by connecting a processor model to

a SystemC based bus decoder which has TLM 2.0 target and initiator sockets as

shown in the Fig. 5.3. The bus decodes the incoming address and based on the

address, forwards the transaction to one of its initiator port which is connected

to TLM 2.0 target socket of the memory. Furthermore, the cache parameters and

March 7, 2013 Santhosh Kumar Rethinagiri Page 126

5.4. EXPERIMENTAL RESULTS

the bus latencies are set to emulate the real platform behaviour. From the CRM,

we are able to determine the occurrences of the main activities. This prototype

uses different SystemC models especially the OVPsim for the target processor. A

set of counters are injected into the simulator to determine the values of different

cache miss rates: read data miss, write data miss and read instruction miss and

Instruction Per Cycle (IPC) counter.

!
"
#
$
%
&'
(
)
*&

+
%
%
"
%
&'
,
*&

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

("

(#$"

&)!"

&*!"

&+!"

'!!"

'%!"

'&!"

''!"

'(!"

'$!"
-$./&0".%1&2"#$%&($.34%$($56&'()*& !+78&2"#$%&$39(.9"5&'()*& $%%"%&

Figure 5.4: Power estimation accuracy vs real board measurement using ARM
Cortex-A8 at 500 MHz

In the next step, we estimated the total power consumption of each task using

the power model shown in Table 3.1. Fig. 5.4 illustrates the results and shows

the comparison between the proposed PETS, and the real board measurements.

First, our power estimator has a negligible average error equal to 1%, which

offers better accuracy. This is due to better accuracy of the captured activities

in the simulator. For this reason, we calculate again the average error without

taking into account the static power. Our methodology produces a maximum

error of 4.3% and the SoftExplorer gives around 9.4% in comparison with real

March 7, 2013 Santhosh Kumar Rethinagiri Page 127

5.4. EXPERIMENTAL RESULTS

board measurement.

5.4.1.2 ARM9 based platform (OMAP5912)

!"#$
%&'($
)*+,$

!
"!
#!
$!
!
%!
&!
'!
!
(!
)!
*!
+!
(!
)!
,!
!

-./0,1)234'$
1,1*+.5670

)89:,$&8;*$
1*670*+$

)*560,+$
<60,+=89,$

#*>,+$
?/;180*+$
@,+6,A$

-./0,1)$>+8BB,+$

Figure 5.5: Mono-processor platform (ARM9)

Similar to the ARM Cortex-A8, PETS tool contains a virtual platform pro-

totype of an ARM9 architecture, which has been developed with the help of

SystemC and OVPsim processor. This prototype uses different virtual hard-

ware models, a Cache Ratio Monitor (CRM) provided with the virtual platform

for cache miss rate, and the JIT for the target processor and SystemC wrapper

around the processor in order to capture the activities. In such prototype, OVP

processor with a TLM 2.0 compliant SystemC wrapper is made to interact with

simple TLM 2.0 target memories and other peripherals. This is done by connect-

ing a processor model to a SystemC based bus decoder which has TLM 2.0 target

and initiator sockets as shown in the Fig.5.5. Furthermore, the cache parameters

and the bus latencies are set to emulate the real platform behaviour. From the

March 7, 2013 Santhosh Kumar Rethinagiri Page 128

5.4. EXPERIMENTAL RESULTS

!"!!!!#$

!"!!!#$

!"!!#$

!"!#$

!"#$

#$

#!$

#!!$

%&'()&*$&+,*(-.$ %&/01+2312(+$ 4+5&*6&$
,*1+67(*8$

9(2(+$
'(8-&+612(+$(*$
4+,*1$-*&):'2(+$

%&;<('=:+>$?<<,&*$ @(8-<&,&$
1--<:'12(+$$

4+6,*0'2(+$9:66$*1,&ABC D&1)$9:66$*1,&ABC E*:,&$9:66$D1,&ABC F(,1<$9:66$D1,&ABC

Figure 5.6: Cache miss rate for the H.264 application (ARM9 at 120 MHz)

CRM, we are able to determine the occurrences of the main activities. For the

ARM9 processor the following counters are used for different cache miss rates:

read data miss, write data miss and read instruction miss. In some of the cases,

simulations have been carried out in backdoor mode. This is a way to access

memory/peripheral in which the transaction request does not actually goes over

the bus. As a main application, we used the H.264/AVC baseline profile decoder

that supports intra and inter-coding, and entropy coding with Context-Adaptive

Variable-Length Coding (CAVLC) as a benchmark for ARM9 processor. The

H.264 decoder application consists of 5 main tasks: decoder entropy, dequantiza-

tion, inverse transform, motion compensation or intra prediction and de-blocking

filter.

Fig. 5.6 shows the detailed results of the activities fetched by the fast JIT-

SystemC simulator for each task of the H.264 application for ARM9 processor.

From these results several remarks can be drawn. First, we can notice that

March 7, 2013 Santhosh Kumar Rethinagiri Page 129

5.4. EXPERIMENTAL RESULTS

!"

!#$"

%"

%#$"

&"

&#$"

'"

'#$"

%&("
%&)"
%&*"
%'!"
%'&"
%'("
%')"
%'*"
%(!"

+,-./,0"
,120.34"

+,56718978.1" :1;,0<,"
2071<=.0>"

?.8.1"
-.>3,1<78.1"
.0":1207"
30,/@-8.1"

+,AB.-C@1D"
EBB2,0"

F.>3B,2,"
733B@-78.1""

G.H,0",<8>78.1"I>JK" G.H,0">,7<60,>,12"I>JK" L00.0"IMK"

L
00
.
0"
IM
K"

G
.
H
,
0"
I>
J
K"

Figure 5.7: Power estimation accuracy for the H.264 application using ARM9 at
120 MHz

instruction cache miss rates and read data miss rates are very low when compared

with write data miss rates. This is due to the reduced task kernel and data pattern

sizes that are very low compared to the cache size (4 KB of instruction cache and

data cache respectively), which decreases the access to the external memory and

thus having a minimal effect on the dynamic power consumption. Second, the

data write miss rates have a high impact on the total power consumption of

the system. This is because of the algorithm’s structure, which does not favour

the reuse of data output arrays and the usage of write through cache policy.

Therefore, the statistics collected in Fig. 5.6 could help in tuning the application

structure for a better optimization of the system power consumption.

In the next step, we estimated the total power consumption of each task using

the power model shown in Table 3.2. Fig. 5.7 illustrates the results and shows

the comparison between the proposed methodology and the real board measure-

ments. First, our power estimator has a negligible average error of 2%. This

March 7, 2013 Santhosh Kumar Rethinagiri Page 130

5.4. EXPERIMENTAL RESULTS
!
"
#

$
%
&'
(

)
*&

+
%
%
"
%
&'
,

*&

-&

-./&

-.0&

-.1&

-.2&

3&

3./&

3.0&

3.1&

3.2&

334&

3/-&

3/4&

35-&

354&

30-&

304&

6786$7& %9:& %;%& <9=:& <9>=:& <9?=:& @A
B!+C/---&

D/10&
$6E"9$%&

F"#67EG?G%& B!+C/---&
9$E"9$%&

!"#$%&$7H(GH"6&'()*& !"#$%&($G7I%$($6<&'()*& +%%"%&',*&

Figure 5.8: Power estimation accuracy vs real board measurement using ARM9
at 120 MHz

study offers a detailed power analysis for each task in order to help designers to

detect peaks of consumption and thus to propose efficient mapping or optimiza-

tion techniques. In order to evaluate the accuracy of our methodology, we carried

out power estimation on several image & signal processing benchmarks. Fig. 5.8

illustrates the power results by showing the estimation accuracy between the

proposed power estimation methodology and the real board measurements. Our

proposed methodology tool has an negligible average error of 1.24% for ARM9,

which is considered as a high accuracy level when compared to SoftExplorer’s

average error of 8% for ARM9 processor.

5.4.1.3 PowerPC based platform (Virtex II Pro)

A system level prototype of a PowerPC based architecture has been developed.

This prototype uses different SystemC models especially the OVPsim for the

March 7, 2013 Santhosh Kumar Rethinagiri Page 131

5.4. EXPERIMENTAL RESULTS

target processor. Similar to ARM9 model, a set of counters are injected into the

simulator to determine the values of different cache miss rates: read data miss,

write data miss and read instruction miss.

Fig. 5.9 shows the detailed results of the activities fetched by the OVP en-

abled fast SystemC simulator for each task of the JPEG application. From these

results several remarks can be drawn. First, we can notice that instruction cache

miss rates and read data miss rates are very low when compared with write data

miss rates. This is due to the reduced task kernel and data pattern sizes that

are very low compared to the cache size (16 KB), which decreases the access to

the external memory and thus having a minimal effect on the dynamic power

consumption. However, with the new sub-micron technologies the effect of the

static consumption cannot be neglected. For this reason, a softcore processor

such as the Microblaze comes with reconfigurable cache size to fit with the ap-

plication requirements. Second, the data write miss rates have a high impact

on the total power consumption of the system. This is because of the algorithm

structure, which does not favour the reuse of data output arrays and the usage

of write-through cache policy. Therefore, the statistics collected in Fig. 5.9 could

help in tuning the application structure for a better optimization of the system

power consumption. Detailed results from H.264/AVC decoder and several other

multimedia benchmarks show a similar behaviour as like the JPEG application

as shown in the Fig. 5.11 .

In the next step, we estimated the total power consumption of each task using

the power models shown in Table 3.3 (SDRAM mapping). Fig. 5.11 illustrates the

results and shows the comparison between the proposed PETS, SoftExplorer tool,

and the real board measurements. First, our power estimator has a negligible

average error equal to 1.59%, which offers better accuracy than SoftExplorer’s

with its average error of 4.32%. This is due to better accuracy of the captured

activities in the simulator than the static analysis or rapid profiling of the code.

The average error obtained here is negligible due to the dominance of static power.

For this reason, we calculate again the average error without taking into account

the static power. Our methodology produces an average error of 4.3% and the

SoftExplorer gives around 9.4% in comparison with real board measurement.

March 7, 2013 Santhosh Kumar Rethinagiri Page 132

5.4. EXPERIMENTAL RESULTS

!"!!!#$

!"!!#$

!"!#$

!"#$

#$

#!$

#!!$

%&'()*+$,-.$)$,-.$*$,-.$+$ /.$)$ /.$*$ /)$+$ 0*1$)$ 0*1$*$ 0*1$+$ -23456.6$
74458-792:$

;:<.%*-92:$=8<<$>7.6$?@A$ >67,$=8<<$%7.6$?@A$ B%8.6$=8<<$>7.6$?@A$ C2.75$=8<<$>7.6$?@A$

Figure 5.9: JPEG application cache miss rates

5.4.2 Homogeneous multiprocessor based platform

This study involves a multiprocessor architecture with two identical PowerPC

processors to run several image & signal processing applications. Based on the

available task partitioning of the JPEG, the application was split into two parts,

each part being executed on a separate processor. The platform constructed to

simulate such a system is illustrated in Fig.5.12. Each processor has its own

program memory which contains the executable in .elf format. In the current

framework, the cores communicate with each other via shared memory. This

shared memory is used to transfer necessary information among the processors like

the image properties consisting parameters as image size, number of components,

sampling rate and the necessary blocks from core 1 to core 2 for computation

purpose. The two processors synchronize via polling mechanism in which the

semaphore present in shared memory is constantly polled by both processors.

Thus processor 1 reads the input image from the memory. Each time processor

March 7, 2013 Santhosh Kumar Rethinagiri Page 133

5.4. EXPERIMENTAL RESULTS

!"#$

!%#$

!&#$

!'#$

(#$

'#$

&#$

%#$

"#$

'((($

'()($

'*(($

'*)($

''(($

'')($

'+(($

'+)($

'&(($

'&)($

,-.'/01$ 234/$ 2340$ 2341$ 54/$ 540$ 5/1$ 607/$ 6070$ 6071$

!
"
"
#
"
$

%
#
&
'
"
$(
)
*
+
$$

89:;0,9<9=4;$ >?@A$>BC9,$?;D<:DB=$ ABE?FGHB,9,$?,,B,$>?@A$>BC9,$?;D<:DB=$?,,B,$ABE?FGHB,9,$

Figure 5.10: Power estimation accuracy

1 generates an 8x8 block after quantization step, it places the block into the

shared memory and sets the semaphore to high. It then waits for this semaphore

to set back to a low value, which is done by Processor 2. Processor 1 writes

the block to the shared memory only when the semaphore is low. Processor 2

on the other hand, waits for the high value of semaphore. When semaphore is

found high, it reads the block from the shared memory, and reset the semaphore

to a low value so that next block could be written by Processor 1. Processor 2

then performs DCT on the block. When sufficient numbers of blocks are obtained,

color-conversion and re-ordering is performed and the reconstructed data is stored

back in the output memory. Similarly, we executed the JPEG application for

1 to 8 processors. To go further, we would like to address another important

issues, i.e., the energy and execution time of the application while increasing the

number of processors. To evaluate the impact of the number of processors on the

execution time and total energy/power consumption, we executed the JPEG on

March 7, 2013 Santhosh Kumar Rethinagiri Page 134

5.4. EXPERIMENTAL RESULTS

!"

#"

$"

%"

&"

'!"

'#"

'$"

!"

(!!"

'!!!"

'(!!"

#!!!"

#(!!"

)!!!"

+,-./0+121"/+321"-45675+8"96:;" <-="/+321"245675+8"96:;" >270"?+71@"A274B12628C"96:;"

+,-./0+121"/+321"245675+8"-11+1"9D;" <-="/+321"245675+8"211+1"9D;"

!
""
#
"$
%&

'$

(
#
)
*
"$
%+

,
'$

Figure 5.11: Comparison of power estimation accuracy for PowerPC based archi-
tecture)

systems with 1 upto 8 processors. The PowerPC frequency was set to 300MHz

and the PLB frequency to 100MHz. All the processors execute the same workload

but on different image macroblocs. Fig. 5.13 reports the execution time inms and

the total energy consumption in mJ for JPEG application. Fig. 5.13 shows that,

for the implemented parallel JPEG application, adding processors to the system

decreases the execution time, which improves the system performance. This

variation is not linear because the processors share resources, which generates

conflicts at some times and reduces the speed-up as waiting cycles are added

to the execution time. In terms of energy consumption, we observed that until

a certain number of processors, the total system energy consumption decreases

March 7, 2013 Santhosh Kumar Rethinagiri Page 135

5.4. EXPERIMENTAL RESULTS

!"#$%!&'
!%"($))"%'
&"%$'*'

+"(,-'
.$/"%0'

+"(,-'
.$/"%0'

!"#$%!&'
!%"($))"%'
&"%$'1'

23,%$4'
.$/"%0'

&"567$%'
867$%9,($'

!"#$%'
:);/,7"%'
<$%6$-'

&=.'

&=.'

Figure 5.12: Dual core PowerPC platform

as the execution time is reduced, and then it tends to stabilize as the system

performance improves. But increasing the number of processors over a certain

limit tends to be ineffective, as it just adds new conflicts at the bus level, leading

to more waiting cycles.

From Fig. 5.14, we are able to conclude that proposed PETS tool is accurate

and efficient for a dual processor system with its negligible average error of 0.89%

when compared to the real board measurements. Compared to real board energy

measurements, PETS tool achieved an error of 0.79% and 3.49% respectively for

one and two processors. This accuracy is obtained because of three main reasons.

First, power models are extracted from real board measurements. Second, our

tool considers the synchronization part while using multiprocessor system. Fi-

nally, additional activities that are intrinsic in parallel processing such as shared

data communication overheads are accurately evaluated by using our JIT simu-

lator. The above mentioned reasons encourage us to consider architectures with

March 7, 2013 Santhosh Kumar Rethinagiri Page 136

5.4. EXPERIMENTAL RESULTS
!"
#$
%&
'()

*+'

!,
#-
./

0"
'/
)
#'
()

1+
'

2.)3#$'04'5$0-#110$1'

6'

766'

866'

966'

:66'

;66'

<66'

=66'

>66'

966'

;66'

=66'

?66'

7766'

7966'

7;66'

7=66'

7?66'

7' 8' :' >'

!"#$%&')#@1.$#A'' !"#$%&'!1/)@B#A'(5!CD+''

!,#-./0"'/)#'#1/)@B#A'(5!CD+' '!,#-./0"'/)#')#@1.$#A'

Figure 5.13: Execution time and energy variation according to the number of
processors

a higher number of processors in the context of exploring new complex MPSoC.

At present, the exploration phase in the design flow of an embedded system

focuses more on multi-objective optimisation problems, which tries to identify a

solution with the optimal function cost involving criteria such as time, area, and

power. In order to find the best implementation solution, a set of experiments

have to be considered and evaluated. For the above mentioned reason, we tried

to estimate the energy for different types of multimedia applications with 1 to 8

processors PowerPC based-architecture. We used parallel algorithm to run the

multimedia benchmarks on the different processors. Fig. 5.15 gives the detailed

energy estimation results and the corresponding execution time for different con-

figurations. From this figure, we are able to extract several conclusions. First,

depending on the execution time, we are able to find the optimal architecture

that could satisfy the application requirement in term of computation rate. For

instance, depending on the frame rate to achieve such as 15 or 30 frames per

March 7, 2013 Santhosh Kumar Rethinagiri Page 137

5.4. EXPERIMENTAL RESULTS
!
"
#
$%
&'
(
)
*&

+%
%"
%&
',

*&
-&

-./&

-.0&

-.1&

-.2&

3&

3./&

3.0&

3.1&

4/5-&

44--&

445-&

40--&

405-&

45--&

455-&

41--&

!+67&8"#$%&$9:(;:"<&'()*& =$;>&?";%@&A$;9B%$($<C&'()*& !+67&8"#$%&$9:(;:"<&$%%"%&',*&

Figure 5.14: Power estimation of homogeneous two PowerPC multiprocessor ar-
chitecture

March 7, 2013 Santhosh Kumar Rethinagiri Page 138

5.4. EXPERIMENTAL RESULTS
!
"
#
$%

&'
()

*+
'

,
-)

#
'(
)

.+
'

/'

0//'

1///'

10//'

2///'

20//'

3///'

30//'

4///'

/'

1///'

2///'

3///'

4///'

0///'

5///'

6///'

7///'

8///'

*9!:';' *9!:';;' <254'=;>' <254'?=;>' @9!:A4' *9!:2///' <B253' C254'#"DEF#$'

7'G$ED#..E$.'(!"#$%&+' 4'G$ED#..E$.'(!"#$%&+' 2'G$ED#..E$.'(!"#$%&+' 1'G$ED#..E$'(!"#$%&+'

7'G$ED#..E$.'(#H#DIJE"'J)#+' 4'G$ED#..E$.'(!H#DIJE"'J)#+' 2'G$ED#..E$.'(!H#DIJE"'J)#+' 1'G$ED#..E$'(!H#DIJE"'J)#+'

Figure 5.15: Energy estimation according to the number of processors using Pow-
erPC

second (f/s), the H.264 decoder could be executed more or less efficiently. From

the simulation results, 4 and 8 processors based-architectures offer respectively a

total performance of 15 f/s and 19 f/s. We conclude that using 4 processors is

sufficient to reach a rate of 15 f/s, however the 8 processors based-architecture

offers a more energy-efficient solution. Indeed, with the price of area cost, the

total energy is decreased by 9% while moving from 4 to 8 processors. Neverthe-

less, this behavior is not the same for all the applications. As an example for the

JPEG application, using 8 processors instead of 4 leads to a reduced the total

energy by a factor of 2.2%. Consequently, the corresponding additional area cost

cannot be justified.

March 7, 2013 Santhosh Kumar Rethinagiri Page 139

5.4. EXPERIMENTAL RESULTS

5.4.3 Heterogeneous multiprocessor based platform

In this part, we emphasize the benefit of our estimation methodology in the

context of heterogeneous architecture. In general, the choice of a hardware accel-

erator is driven principally by the performance requirements of the application

and the processor usage of each task. For the JPEG application, the DCT is the

most time consuming task. Thus, it is selected to be implemented as a hardware

accelerator. Various trade-offs can be done between the amount of consumed

hardware resources, the execution time and the power consumption. The DCT

task is highly regular and has large repetition spaces in its multiple hierarchical

levels. Such large repetition spaces allow us to fully exploit the existing parti-

tioning in VHDL. We selected a configuration, which is about 200 times faster

than a software execution with a PowerPC processor running at 100 MHz. The

synthesized hardware occupies 18% of the XupV2Pro. According to the FPGA

power model, the power consumption of the chosen hardware DCT is around

300mW offering 40% of power saving compared to the software execution and

25% of reduction in execution time.

5.4.4 Estimation speed comparison

In this section, first, we will present our simulation speed results of hybrid power

estimation approach and other different approaches available at the system-level.

Second, we go ahead in comparing our proposed PETS tool with other power

estimation tools available in the industries and academics.

5.4.4.1 Estimation speed comparison of different approaches

We will compare the efficiency of the proposed hybrid power estimation methodol-

ogy approach in term of simulation speed with other approaches OVP standalone,

ISS+TLM2.0 and Cycle-Accurate (CA). This comparison is for the quantification

of our proposed tool to the state-of-art power approaches used in current prac-

tices. All the approaches re executed on a PC (Intel, 1.8 GHz, 2 Go of RAM).

In order to compare the results, computer benchmarking has been done. Power

estimation has been carried out with a JPEG application.

March 7, 2013 Santhosh Kumar Rethinagiri Page 140

5.4. EXPERIMENTAL RESULTS

Table 5.1: JPEG application power estimation speed
OVP Hybrid power ISS+TLM2.0 CA

estimation methodology
Single processor 1.22 sec 1.22 sec 190.34 sec 891 sec
multiprocessor 0.8 sec 0.89 sec 160.54 sec 821 sec

From the table 5.1 it is clear that OVP provides a simulation speed improve-

ment. Also, when switching from pure OVP environment to the OVP-TLM2.0

environment, there is no drop in simulation speed. For multiprocessor, the ap-

plication is programmed in a way with strict data dependency among processor

cores in which both the processors continuously polls the memory to get the pixel

block. A tight synchronization is maintained among them. Table 5.1 shows that

the speed improvements are not as high as for standalone single core systems

when compared to the standalone OVP processor. Also when working with OVP

models at TLM2.0 environment, a slight drop in simulation performance is ob-

served for multiprocessor platforms. This drop generally falls in the range of

3-4%. Reduced speed improvements are because of the synchronization needed

between the two processors.

5.4.4.2 Estimation speed comparison of different tools

Now, we will compare the efficiency of the proposed PETS tool in term of esti-

mation speed with the state-of-the art tools such as, SimplePower, TLM with ISS

based simulation and SoftExplorer (functional level simulator) approaches. This

comparison is for the quantification of our proposed tool to the state-of-art power

estimation tools used in current industrial and academic practices. SoftExplorer,

TLM with ISS based simulation (HSL), and our proposed tool are executed on

a PC (Intel, 1.8 GHz, 2 Go of RAM), whereas SimplePower on a Workstation

(Ultra Sparc T2+, 1.6 GHz, 2 Go of RAM). In order to compare the results,

computer benchmarking has been done to confirm that the workstation is always

faster compared to the PC for all kind of applications. Power estimation has been

carried out with a set of image & signal processing applications and also with

SPEC 2008 1 benchmarks.

1http://http://www.spec.org/benchmarks.htmlpower/

March 7, 2013 Santhosh Kumar Rethinagiri Page 141

5.4. EXPERIMENTAL RESULTS

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

()*+"," ()*+",," -)*+"$" ./0012" -345/14" 6/789" ::;"$!%'"

<=>*?@1=A2A" B<C" <75@12)=D2A")*;<"

)=
D
2A
"2
EF
5
3F
=G
"F
5
2"
HE
28
=G
IE
J"

Figure 5.16: Comparison of estimation time for the different tools

From Fig. 5.16, we can notice that SoftExplorer and TLM with ISS based sim-

ulation have an average estimation time of 5 seconds, which is faster when com-

pared to the SimplePower’s average estimation time of 20 seconds. Our proposed

tool has an average estimation time of 2.45 seconds, which is faster compared to

the other tools. Our tool works by running the application on the virtual plat-

form thereby collecting the dynamic activities. SimplePower uses cycle accurate

specifications to collect the necessary power data, whereas SoftExplorer realizes

a static profiling of the code, which results in reduced execution time and thus

resulting in a low power consumption estimation time. Static profiling of the

C code is not sufficient to determine the average execution time and the global

energy consumption, for this reason we need to run the application on the virtual

platform in order to collect the activities accurately and efficiently. Experimental

results prove that our proposed tool is efficient, fast and accurate.

March 7, 2013 Santhosh Kumar Rethinagiri Page 142

5.5. CONCLUSION

5.5 Conclusion

A hybrid power estimation methodology has been presented for rapid and ac-

curate estimation of power in MPSoCs. The proposed approach consists of two

steps: first, a one-time activity performed for power modeling, aimed at identi-

fying and characterizing the main parameters affecting the power consumption;

second, the development of a estimation simulation environment at system-level,

performed to account for the occurrence of such parameter activities for a number

of processors hosting different types of applications. As a result, a high estimation

accuracy is achieved, which is within 5.7% of the real board measurement. This

chapter has also presented our proposed PETS tool based on hybrid power esti-

mation methodology. This study was conducted with different RISC processors,

homogeneous and heterogeneous MPSoC running different benchmark applica-

tions. It was an opportunity to show the use of proposals described in chapter

3 and chapter 4. This chapter also shows that with this tool it is easy to ex-

plore the space of architectural solutions based on power and timing. Finally, we

compared the simulation results of the PETS tool to different the state-of-the-art

tools. Significant acceleration factors were measured and accurate comparison

of the power has been validated against the real board measurements with an

average error of less than 6%.

March 7, 2013 Santhosh Kumar Rethinagiri Page 143

CHAPTER 6

CONCLUSIONS AND FUTURE
WORKS

This chapter summarizes the main contributions of the thesis that have been dis-

cussed in the previous chapters and proposes extensions to the present PETS as

part of the future works.

6.1 Summary

Power estimation at system-level has become primary concern for an efficient

hardware design. Increasing adoption of system-level tools in design flow is ne-

cessitating the proposal of power estimation methodologies at higher levels of

abstraction. This thesis developed a system-level tool (PETS tool) cum frame-

work for power and energy estimation, which is based on hybrid power estimation

methodology. In most of our approaches, we put an effort in providing a rationale

behind the idea and then backed it with experimental results. The need of having

efficient system-level power estimation tools is justified as the power becoming a

critical pre-design metric in complex embedded systems and the increasing broad-

ness of the design space at the system-level, which makes it very difficult to take

the best architectural decisions. Decisions taken at the system-level, early in the

design phase, are however essential in affecting the quality of the final design.

March 7, 2013 Santhosh Kumar Rethinagiri Page 145

6.1. SUMMARY

Taking such decisions manually, based on the experience matured from previ-

ous designs and on rules of thumb, as it has been done so far, is not a feasible

approach any more. Efficient system-level power estimation tools are therefore

necessary to automate the activities performed at system-level. Specifically, such

tools can be used to perform power and timing based design-space exploration.

The objective of this thesis was to design an efficient system-level power estima-

tion tools for MPSoC based platforms for that we have extracted the three main

challenges related to this thesis and they are:

1. what is the power modeling methodology suitable for MPSoC system-level

design that can offer a better trade-off between the time needed to generate

the power model and its corresponding accuracy?

2. what are the appropriate simulation technique and the abstraction level suit-

able for rapid MPSoC prototyping and for extracting accurately the activities

for the defined power model (the first challenge)?

3. How to provide a tool at system-level in order to guide the designer during

the different design choices based on power estimation?

To answer the above challenges, we proposed a power estimation tool (PETS)

which rely on system-level simulation of the target to carry out the power es-

timation. Its estimation activity is based on the following two steps. First, a

power model generation step which create the power models based on FLPA.

These are not executable models, since they come in the form of either look-

up tables or analytical expressions. Although the power model development is

time-consuming, since it is generated on a real board measurements for each pa-

rameter. This step still makes sense since it is a one-time activity performed by

the user and it gives high accuracy to the whole estimation tool. A case study has

been presented in Chapter 3, where different power models have been developed

for different RISC processors. The accuracy of the model has then been validated

against direct measurements from the real board and has shown to be within 5%.

Chapter 4 presented different case studies about system-level environment used

in this framework. The accuracy of the system-level models has been measured

to be within 2% of the TLM model estimation. A combination of power mod-

eling methodology and system-level framework gives a hybrid power estimation

March 7, 2013 Santhosh Kumar Rethinagiri Page 146

6.2. FUTURE WORKS

methodology which works as a standalone irrespective of the platforms under test

as described in the Chapter 5.

Different case studies have been presented in Chapter 5, where PETS has been

used to estimate power and execution time for a set of benchmark applications.

PETS estimation accuracy has been validated against real board measurement

and proved to be within 6%. PETS estimation speed has also been validated

against ISS based TLM and various other state-of-the-art tools, showing an av-

erage speedup of 70X. It is emphasized that, because of the very large size of real

use-cases and the large amount of factors to be considered when doing system-

level power estimation, it was not possible to deal with all these aspects within

this work. Instead, smaller use-cases have been used as case studies and sensi-

ble simplifications have been made. As a consequence, the PETS tool presented

in this thesis comes as a proof of concept, with the goal of showing the overall

feasibility of the PETS approach as a system level power estimation tool. Fur-

ther extensions are required to make this tool more general and complete, as is

discussed in the next section.

6.2 Future works

Despite the detailed presentation that was given in this thesis work, further devel-

opment is needed for PETS to be used as a complete, stand-alone tool. Among

the aspects that can be improved, the following ones are considered to be the

most relevant:

• Power estimation tool presented in this thesis can be extended in many ways.

One of the possible extensions is to provide model for leakage power at

system-level. Regression model presented in this thesis considers constant

leakage power. However, for lower technology nodes this relationship is not

constant, thus an effort is required to improve the developed model. Second

possibility is to extend the regression model for multiple IPs, that is one

model to measure power consumption of multiple IPs. Such a model will

make the estimation task very easy and requires minimal changes for new

architectures and technology nodes.

March 7, 2013 Santhosh Kumar Rethinagiri Page 147

6.2. FUTURE WORKS

• One of the possible extension of this work can be done for battery life predica-

tion at system-level. Predicting the residual energy of the battery source that

powers a portable electronic device is imperative in designing at system-level

and applying an effective dynamic power management policy for the device.

This work can be done by closed-form analytical expression for predicting

the remaining capacity of a lithium-ion battery. Then proposing a high level

model, which relies on power, correctly accounts for the temperature and

cycle ageing effects. Then integrating the high level model into the system-

level framework. Power optimization will become another key motivation

adopting system-level for this work as 32 nm technology ushers in dramatic

increases in power density, affecting battery life as well as thermal and supply

integrity.

• Another important extension would be to consider thermal models at system-

level, by using infrared measurement setup to capture run-time power con-

sumption and thermal characteristics of modern chips. It can be done by

using infrared cameras with high spatial resolution (10x10m) and high frame

rate (125fps) to capture thermal maps and then to generate a detailed power

breakdown (leakage and dynamic) for each processor floorplan. Then propos-

ing a genetic algorithm to find a power equation for each floorplan block

that produces the measured temperature for a given thermal package. The

difference between the predicted power and the externally measured power

consumption for the processor and enabling this at the system-level.

• Next future scope would to provide system-level modeling for reliability and

device degradation by constructing a hierarchical power modeling tree and

augment the transaction level models with power estimation functions. In the

system-level reliability modeling, we can able to propose a transaction-based

error susceptibility model for a bus-based System-on-Chip system. This re-

liability model provides a detailed analysis of different kinds of errors and

the susceptibility of such systems to such errors on various components that

comprise the bus. By injecting single and multi-bit error during the exe-

cution of various transactions and examine the effect of the errors. At the

system-level modeling for device degradation can be explored any Negative

Bias Temperature Instability (NBTI) and Hot Carrier Effects (HCE) that

March 7, 2013 Santhosh Kumar Rethinagiri Page 148

6.2. FUTURE WORKS

cause device degradation in the system. There are tools such as HCE and

NBTI Incorporated Tool for ASICs (HANITA), for the complete analysis of

circuit degradation. These tools analyze the degradation impact on bus sys-

tems and the vulnerability of buses to such circuit degradation. By using this

information, we can propose a hardware-based mechanism to detect the tim-

ing degradation and we can further propose a PROactive BUS (PROBUS)

architecture that dynamically adapts to retain the system functionality even

after the system timing degrades.

March 7, 2013 Santhosh Kumar Rethinagiri Page 149

REFERENCES

[1] Carbon design systems. http://carbondesignsystems.com. 42, 43

[2] Cofluent design. http://www.cofluentdesign.com. 44

[3] Comet, meteor. http://www.synopsys.com/Systems/

VirtualPrototyping/VPModels/Pages/CoMET-METeor.aspx. 43

[4] The Gaut Website. http://www-labsticc.univ-ubs.fr/www-gaut/. 71

[5] Imperas inc. http://www.ovpworld.org/. 43

[6] Innovator. https://www.synopsys.com/ARCHIVE/VIRTUALPLATFORMS/

Pages/Innovator.aspx. 42

[7] The mathworks, eda simulator link, simulink. http://www.mathworks.com.

43

[8] Mentor graphics. http://www.mentor.com. 43

[9] Synopsys. www.synopsys.com. 18

[10] Synopsys, innovator, platform architect, comet, meteor. http://www.

synopsys,com. 42

March 7, 2013 Santhosh Kumar Rethinagiri Page 151

http://carbondesignsystems.com
http://www.cofluentdesign.com
http://www.synopsys.com/Systems/VirtualPrototyping/VPModels/Pages/CoMET-METeor.aspx
http://www.synopsys.com/Systems/VirtualPrototyping/VPModels/Pages/CoMET-METeor.aspx
http://www-labsticc.univ-ubs.fr/www-gaut/
http://www.ovpworld.org/
https://www.synopsys.com/ARCHIVE/VIRTUALPLATFORMS/Pages/Innovator.aspx
https://www.synopsys.com/ARCHIVE/VIRTUALPLATFORMS/Pages/Innovator.aspx
http://www.mathworks.com
 http://www.mentor.com
www.synopsys.com
http://www.synopsys,com
http://www.synopsys,com

REFERENCES

[11] Network calculus. In Jean-Yves Boudec and Patrick Thiran, editors,

Network Calculus, volume-2050, Lecture Notes in Computer Science, pages

3–81. Springer Berlin Heidelberg, 2001. 40

[12] Ctos. http://www.cadence.com/Community/tags/CTOS/default.aspx,

jun 2005. 21

[13] Cadence design systems. www.cadence.com, jun 2010. 18

[14] Platform architect. http://www.synopsys.com/Systems/

ArchitectureDesign/Pages/PlatformArchitect.aspx, 2011. 42

[15] Vikram S. Adve and Mary K. Vernon. Parallel program performance

prediction using deterministic task graph analysis. ACM Trans. Comput.

Syst., 22[1]:94–136, February 2004. 40

[16] ARM Cortex-A8. Cortex-a8 core runs faster, sips power. http://www.

linuxfordevices.com/c/a/News/Samsung-CortexA8/, 2009. xiv, 52

[17] ARM9 TDMI. Arm940t technical reference manual. http://infocenter.

arm.com/, 2012. xiv, 53

[18] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infras-

tructure for computer system modeling. Computer, 35[2]:59–67, February

2002. 38

[19] H. Schmit B. Klass, D. E. Thomas and D. F. Nagle. Modeling

inter-instruction energy effects in a digital signal processor. in Power Driven

Microarchitecture Workshop in conjunction with International Symposism

Computer Architecture, 1, June 1998. 29

[20] M. Balakrishnan. Low power design.

http://embedded.cse.iitd.ernet.in/homepage/course/low power/in-

dex.shtml., 2008. 30

[21] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,

and A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic

system design environment. Computer, 36[4]:45 – 52, april 2003. 33

March 7, 2013 Santhosh Kumar Rethinagiri Page 152

http://www.cadence.com/Community/tags/CTOS/default.aspx
www.cadence.com
http://www.synopsys.com/Systems/ArchitectureDesign/Pages/PlatformArchitect.aspx
http://www.synopsys.com/Systems/ArchitectureDesign/Pages/PlatformArchitect.aspx
http://www.linuxfordevices.com/c/a/News/Samsung-CortexA8/
http://www.linuxfordevices.com/c/a/News/Samsung-CortexA8/
http://infocenter.arm.com/
http://infocenter.arm.com/

REFERENCES

[22] Felice Balarin, Yosinori Watanabe, Harry Hsieh, Luciano

Lavagno, Claudio Passerone, and Alberto Sangiovanni-

Vincentelli. Metropolis: An integrated electronic system design envi-

ronment. Computer, 36[4]:45–52, April 2003. xiv, 34, 36

[23] Nikhil Bansal, Kanishka Lahiri, Anand Raghunathan, and Sri-

mat T. Chakradhar. Power monitors: A framework for system-level

power estimation using heterogeneous power models. In Proceedings of the

18th International Conference on VLSI Design held jointly with 4th In-

ternational Conference on Embedded Systems Design, VLSID ’05, pages

579–585, Washington, DC, USA, 2005. IEEE Computer Society. 39

[24] Reinaldo A. Bergamaschi, Youngsoo Shin, Nagu Dhanwada,

Subhrajit Bhattacharya, William E. Dougherty, Indira Nair,

John Darringer, and Sarala Paliwal. Seas: a system for early analy-

sis of socs. In Proceedings of the 1st IEEE/ACM/IFIP international confer-

ence on Hardware/software codesign and system synthesis, CODES+ISSS

’03, pages 150–155, New York, NY, USA, 2003. ACM. 28

[25] H. Blume, D. Becker, L. Rotenberg, M. Botteck, J. Braken-

siek, and T. G. Noll. Hybrid functional- and instruction-level power

modeling for embedded and heterogeneous processor architectures. J. Syst.

Archit., 53[10]:689–702, October 2007. 45

[26] H. Blume, M. Schneider, and T. G. Noll. Power estimation on

functional level for programmable processors. In Advances in Radio Science,

2004. 45

[27] A. Bogliolo, L. Benini, and G. De Micheli. Adaptive least mean

square behavioral power modeling. In Proceedings of the 1997 European

conference on Design and Test, EDTC ’97, pages 404–, Washington, DC,

USA, 1997. IEEE Computer Society. 28

[28] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli.

Regression-based rtl power modeling. ACM Trans. Des. Autom. Electron.

Syst., 5[3]:337–372, July 2000. 25

March 7, 2013 Santhosh Kumar Rethinagiri Page 153

REFERENCES

[29] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli.

Characterization-free behavioral power modeling. In In Proceedings of the

Design Automation and Test in Europe, pages 767–773, 1998. 28

[30] S. Boukhechem, E.-B. Bourennane, and H. Samahi. Co-simulation

platform based on systemc for multiprocessor system on chip architecture

exploration. In Microelectronics, 2007. ICM 2007. Internatonal Conference

on, pages 105 –110, dec. 2007. 33

[31] C. Brandoleseč. A Codesign Approach to Software Power Estimation

for Embedded Systems. PhD thesis, Politecnico di Milano, Institute of Elec-

tronics and Information, 2000. 23, 24

[32] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch:

a framework for architectural-level power analysis and optimizations.

SIGARCH Comput. Archit. News, 28[2]:83–94, May 2000. 27

[33] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch:

a framework for architectural-level power analysis and optimizations.

SIGARCH Comput. Archit. News, 28[2]:83–94, May 2000. 44

[34] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0.

SIGARCH Computer Architecture News, 25:13–25, 1997. 27

[35] M. Casas-Sanchez C. J. Bleakley and J. Rizo-Morente. Software

level power consumption models and power saving techniques for embedded

dsp processors. Journal of Low Power Electronics, 2:281290, 2006. 22

[36] M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni,

L. Pieralisi, and C. Turchetti. System-level power analysis method-

ology applied to the amba ahb bus. In Proceedings of the conference on

Design, Automation and Test in Europe: Designers’ Forum - Volume 2,

DATE ’03, pages 20032–, Washington, DC, USA, 2003. IEEE Computer

Society. 39

[37] Samarjit Chakraborty, Simon Kunzli, and Lothar Thiele. A

general framework for analysing system properties in platform-based em-

March 7, 2013 Santhosh Kumar Rethinagiri Page 154

REFERENCES

bedded system designs. In Proceedings of the conference on Design, Au-

tomation and Test in Europe - Volume 1, DATE ’03, pages 10190–, Wash-

ington, DC, USA, 2003. IEEE Computer Society. 40

[38] Y. Chen. The Analysis and Practice on Open Source Embedded System

Software–Based on SkyEye and ARM Developing Platform. Beihang Uni-

versity Press, 2004. 26

[39] T. Chou and K. Roy. Accurate estimation of power dissipation in cmos

sequential circuits. IEEE Transaction VLSI Systems, 4:369380, 1996. 24

[40] Saadia Dhouib, Eric Senn, Jean-Philippe Diguet, Dominique

Blouin, and Johann Laurent. Energy and power consumption es-

timation for embedded applications and operating systems. J. Low Power

Electronics, 5[4]:416–428, 2009. 31

[41] David Ellouet, Yannig Savary, and Nathalie Julien. An fpga

power aware design flow. In Integrated Circuit and System Design. Power

and Timing Modeling, Optimization and Simulation, 4148 of Lecture Notes

in Computer Science, pages 415–424. Springer Berlin Heidelberg, 2006. xv,

56

[42] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) challenge. Interna-

tional Journal of Computer Vision, 88[2]:303–338, June 2010. 17

[43] Jerry Frenkil. Tools and methodologies for low power design. In Pro-

ceedings of the 34th annual Design Automation Conference, DAC ’97, pages

76–81, New York, NY, USA, 1997. ACM. 44

[44] Daniel Gajski and Robert H. Kuhn. New vlsi tools - guest editors

introduction. IEEE Computer, 16[12]:11–14, 1983. xiv, 12

[45] A. Gerstlauer, C. Haubelt, A.D. Pimentel, T.P. Stefanov, D.D.

Gajski, and J. Teich. Electronic system-level synthesis methodologies.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-

actions on, 28[10]:1517 –1530, oct. 2009. 45

March 7, 2013 Santhosh Kumar Rethinagiri Page 155

REFERENCES

[46] Frank Ghenassia. Transaction-level modeling with systemc: Tlm con-

cepts and applications for embedded systems. Springer, 2005. xiv, 16, 19,

20, 21

[47] Matthias Gries, Chidamber Kulkarni, Christian Sauer, and

Kurt Keutzer. Exploring trade-offs in performance and programma-

bility of processing element topologies for network processors. In in Proc.

of Network Processor Workshop in conjunction with Ninth International

Symposium on High Performance Computer Architecture (HPCA-9, pages

75–87. Morgan Kaufmann, 2003. 40

[48] Thorsten Grotker. System design with systemc. Kluwer Academic

Publishers, Norwell, MA, USA. 18

[49] Rajesh Kumar Gupta. Co-synthesis of hardware and software for digital

embedded systems. PhD thesis, Stanford, CA, USA, 1994. UMI Order No.

GAX94-14572. 17

[50] Subodh Gupta and Farid N. Najm. Power macromodeling for high

level power estimation. In Proceedings of the 34th annual Design Automa-

tion Conference, DAC ’97, pages 365–370, New York, NY, USA, 1997.

ACM. 23

[51] Subodh Gupta and Farid N. Najm. Power macromodeling for high

level power estimation. In Proceedings of the 34th annual Design Automa-

tion Conference, DAC ’97, pages 365–370, New York, NY, USA, 1997.

ACM. 24

[52] Subodh Gupta and Farid N. Najm. Energy and peak-current per-cycle

estimation at rtl. IEEE Trans. Very Large Scale Integr. Syst., 11[4]:525–

537, August 2003. 28

[53] Sudhanva Gurumurthi, Anand Sivasubramaniam, Mary Jane

Irwin, N. Vijaykrishnan, Mahmut Kandemir, Tao Li, and

Lizy Kurian John. Using complete machine simulation for software power

estimation: The softwatt approach. In Proceedings of the 8th International

March 7, 2013 Santhosh Kumar Rethinagiri Page 156

REFERENCES

Symposium on High-Performance Computer Architecture, HPCA ’02, pages

141–, Washington, DC, USA, 2002. IEEE Computer Society. 26

[54] Charlie X. Huang, Bill Zhang, An-Chang Deng, and Burkhard

Swirski. The design and implementation of powermill. In Proceedings of

the 1995 international symposium on Low power design, ISLPED ’95, pages

105–110, New York, NY, USA, 1995. ACM. 23

[55] IBM. Ppc405 product overview. https://

www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

3D7489A3704570C0872571DD0065934E/, 2006. xiv, 54

[56] ITRS. Design, 2010 edition. http://public.itrs.net/, 2010. 2

[57] N. Julien J. Laurent, E. Senn and E. Martin. High level energy es-

timation for dsp systems. in proceedings International Workshop on Power

And Timing Modeling and Optimization and Simulation PATMOS01, pages

311–316, September 2001. 30

[58] C. P. Joshi, Anshul Kumar, and M. Balakrishnan. A new perfor-

mance evaluation approach for system level design space exploration. In

Proceedings of the 15th international symposium on System Synthesis, ISSS

’02, pages 180–185, New York, NY, USA, 2002. ACM. 38

[59] Nathalie Julien, Johann Laurent, Eric Senn, and Eric Martin.

Power consumption modeling and characterization of the ti c6201. IEEE

Micro, 23[5]:40–49, September 2003. xiv, 31

[60] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J.

Irwin, and A. Sivasubramaniam. vec: virtual energy counters. In

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program

analysis for software tools and engineering, PASTE ’01, pages 28–31, New

York, NY, USA, 2001. ACM. 27

[61] Torsten Kempf, Malte Doerper, R. Leupers, G. Ascheid,

H. Meyr, Tim Kogel, and Bart Vanthournout. A modular simula-

tion framework for spatial and temporal task mapping onto multi-processor

March 7, 2013 Santhosh Kumar Rethinagiri Page 157

https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3D7489A3704570C0872571DD0065934E/
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3D7489A3704570C0872571DD0065934E/
https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/3D7489A3704570C0872571DD0065934E/
http://public.itrs.net/

REFERENCES

soc platforms. In Proceedings of the conference on Design, Automation and

Test in Europe - Volume 2, DATE ’05, pages 876–881, Washington, DC,

USA, 2005. IEEE Computer Society. 33

[62] Jari Kreku, Mika Hoppari, Tuomo Kestil, Yang Qu, Juha-

Pekka Soininen, and Kari Tiensyrj. Application workload and sys-

temc platform modeling for performance evaluation. In Martin Radet-

zki, editor, Languages for Embedded Systems and their Applications, 36

of Lecture Notes in Electrical Engineering, pages 131–147. Springer Nether-

lands, 2009. 38

[63] Thomas H. Krodel. Powerplay-fast dynamic power estimation based on

logic simulation. In Proceedings of the 1991 IEEE International Conference

on Computer Design on VLSI in Computer & Processors, ICCD ’91, pages

96–100, Washington, DC, USA, 1991. IEEE Computer Society. 41

[64] M. Favalli L. Benini, A. Bogliolo and G. De Micheli. Regres-

sion models for behavioral power estimation. Integrated Computer-Aided

Enggineering, 5:95106, 1998. 25

[65] D. Gajski L. Cai and M. Olivarez. Introduction of system level ar-

chitecture exploration using the specc methodology. In In Circuits and

Systems, The 2001 IEEE International Symposium on, volume 5, pages 9,

May 25-27 2001. 17

[66] Marcello Lajolo, Anand Raghunathan, and Sujit Dey. Efficient

power co-estimation techniques for system-on-chip design. In Proceedings

of the conference on Design, automation and test in Europe, DATE ’00,

pages 27–34, New York, NY, USA, 2000. ACM. 40

[67] Paul E. Landman and Jan M. Rabaey. Activity-sensitive architectural

power analysis for the control path. In Proceedings of the 1995 international

symposium on Low power design, ISLPED ’95, pages 93–98, New York, NY,

USA, 1995. ACM. 25

[68] J. Laurent, N. Julien, and E. Martin. Functional level power analy-

sis: An efficient approach for modeling the power consumption of complex

March 7, 2013 Santhosh Kumar Rethinagiri Page 158

REFERENCES

processors. In Proceedings of the Design, Automation and Test in Europe

Conference, Munich, 2004. 31, 41

[69] J. Laurent, N. Julien, E. Senn, and E. Martin. Functional Level

Power Analysis: An efficient approach for modeling the power consumption

of complex processors. In Proc. Design Automation and Test in Europe

DATE, Paris, France, march 2004. xv, 55, 56

[70] J. Laurent, N. Julien, E. Senn, and E. Martin. Functional level

power analysis: an efficient approach for modeling the power consumption

of complex processors. In Design, Automation and Test in Europe Con-

ference and Exhibition, 2004. Proceedings, 1, pages 666 – 667 Vol.1, feb.

2004. 41

[71] Paul Lieverse, Todor Stefanov, Pieter van der Wolf, and

Ed Deprettere. System level design with spade: an m-jpeg case study. In

Proceedings of the 2001 IEEE/ACM international conference on Computer-

aided design, ICCAD ’01, pages 31–38, Piscataway, NJ, USA, 2001. IEEE

Press. 33

[72] D. Liu and C. Svensson. Power consumption estimation in cmos vlsis

chips. IEEE Journal of Solid-State Circuits, 29:663670, 1994. 25

[73] C. Silvano M. Sami, D. Sciuto and V. Zaccaria. An instruction-

level energy model for embedded vliw architectures. IEEE Transaction on

CAD of Integrated Circuits and Systems, 21:998–1010, 2002. 30

[74] H. Blume M. Schneider and T. G. Noll. Power estimation on func-

tional level for programmable processors. in journal of Advances in Radio

Science, 2:215–219, 2005. 32

[75] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson,

Daniel Forsgren, Gustav Hållberg, Johan Högberg, Fredrik

Larsson, Andreas Moestedt, and Bengt Werner. Simics: A full

system simulation platform. Computer, 35[2]:50–58, February 2002. 38

March 7, 2013 Santhosh Kumar Rethinagiri Page 159

REFERENCES

[76] Laurent Maillet-Contoz and Frank Ghenassia. Transaction level

modeling. In Frank Ghenassia, editor, Transaction Level Modeling with

SystemC, pages 23–55. Springer US, 2005. 10.1007/0-387-26233-42.19

[77] Diana Marculescu, Radu Marculescu, and Massoud Pedram. Infor-

mation theoretic measures of energy consumption at register transfer level. In

Proceedings of the 1995 international symposium on Low power design, ISLPED

’95, pages 81–86, New York, NY, USA, 1995. ACM. 24

[78] H. Mehta, R. M. Owens, and M. J. Irwin. Instruction level power profiling.

In Proceedings of the Acoustics, Speech, and Signal Processing, 1996. on Confer-

ence Proceedings., 1996 IEEE International Conference - Volume 06, ICASSP

’96, pages 3326–3329, Washington, DC, USA, 1996. IEEE Computer Society. 25,

29

[79] Huzefa Mehta, Robert Michael Owens, and Mary Jane Irwin. Energy

characterization based on clustering. In Proceedings of the 33rd annual Design

Automation Conference, DAC ’96, pages 702–707, New York, NY, USA, 1996.

ACM. 28

[80] Brett H. Meyer, Joshua J. Pieper, JoAnn M. Paul, Jeffrey E. Nel-

son, Sean M. Pieper, and Anthony G. Rowe. Power-performance simu-

lation and design strategies for single-chip heterogeneous multiprocessors. IEEE

Trans. Comput., 54[6]:684–697, June 2005. 37

[81] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapid design

space exploration of heterogeneous embedded systems using symbolic search and

multi-granular simulation. SIGPLAN Not., 37[7]:18–27, June 2002. 33

[82] S. Mohanty and V.K. Prasanna. Rapid system-level performance evaluation

and optimization for application mapping onto soc architectures. In ASIC/SOC

Conference, 2002. 15th Annual IEEE International, pages 160 – 167, sept. 2002.

xiv, 36, 37

[83] Sumit Mohanty and Viktor K. Prasanna. A hierarchical approach for

energy efficient application design using heterogeneous embedded systems. In

March 7, 2013 Santhosh Kumar Rethinagiri Page 160

REFERENCES

Proceedings of the 2003 international conference on Compilers, architecture and

synthesis for embedded systems, CASES ’03, pages 243–254, New York, NY, USA,

2003. ACM. 35

[84] L. Rader N. Kumar, S. Katkoori and R. Vemuri. Profile-driven behav-

ioral synthesis for low-power vlsi systems. IEEE Design and Test, 12:7084, 1995.

25

[85] F. N. Najm. A survey of power estimation techniques in vlsi circuits. IEEE

Transactions on VLSI Systems, 2:446455, 1994. 23

[86] Farid N. Najm. Towards a high-level power estimation capability. In Proceedings

of the 1995 international symposium on Low power design, ISLPED ’95, pages

87–92, New York, NY, USA, 1995. ACM. 28

[87] Luca Negri and Andrea Chiarini. Power simulation of communication

protocols with statec. In A. Vachoux, editor, Applications of Specification and

Design Languages for SoCs, pages 277–294. Springer Netherlands, 2006. 38

[88] University of Berkeley. The University of Berkeley website: Spice manual.

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/. 22

[89] Open Virtual Platform. Ovpsim, 2012. World Wide Web document, URL:

http://www.ovpworld.org/technology_ovpsim.php. xvi, 103

[90] Bassem Ouni, Cecile Belleudy, and Eric Senn. Energy characterization

and classification of embedded operating system services. In Digital System De-

sign (DSD), 2012 15th Euromicro Conference on, pages 684 –691, sept. 2012.

32

[91] Preeti Ranjan Panda. Systemc: a modeling platform supporting multiple de-

sign abstractions. In Proceedings of the 14th international symposium on Systems

synthesis, ISSS ’01, pages 75–80, New York, NY, USA, 2001. ACM. 17, 18

[92] Joann M. Paul, Donald E. Thomas, and Andrew S. Cassidy. High-level

modeling and simulation of single-chip programmable heterogeneous multiproces-

sors. ACM Trans. Des. Autom. Electron. Syst., 10[3]:431–461, July 2005. 33, 37

March 7, 2013 Santhosh Kumar Rethinagiri Page 161

http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://www.ovpworld.org/technology_ovpsim.php

REFERENCES

[93] Kees Vissers Paul Lieverse, Pieter Van Der Wolf and Ed Depret-

tere. A methodology for architecture exploration of heterogeneous signal pro-

cessing systems. J. VLSI Signal Process. System, 5[3]:103–108, 2001. xiv, 34

[94] M. Pedram. Power aware design methodologies. J. M. Rabaey, Ed. Norwel,

MA, USA: Kluwer Academic Publishers, 2002. 27

[95] R. Peset-Lopis and K. Goossens. The petrol approach to high-level power

estimation. In Proc. of the ISLPED, Monterey, California, USA, August 1998.

22

[96] Philips Research. Philips Electronic Design and Tools Group. DIESEL User Man-

ual, 2001. 22

[97] A. D. Pimentel, S. Polstra, F. Terpstra, A. W. van Halderen, J. E.

Coffland, and L. O. Hertzberger. Embedded processor design challenges.

chapter Towards efficient design space exploration of heterogeneous embedded

media systems, pages 57–73. Springer-Verlag New York, Inc., New York, NY,

USA, 2002. 33

[98] Andy D. Pimentel, Louis O. Hertzberger, Paul Lieverse, Pieter

van der Wolf, and Ed F. Deprettere. Exploring embedded-systems ar-

chitectures with artemis. Computer, 34[11]:57–63, November 2001. 33

[99] Nachiketh R. Potlapally, Anand Raghunathan, Ganesh Lakshmi-

narayana, Michael S. Hsiao, and Srimat T. Chakradhar. Accurate

power macro-modeling techniques for complex rtl circuits. In in Proc. Int. Conf.

VLSI Design, pages 235–241, 2001. 25, 26

[100] S. Powell and E. M. Chau. Estimating power dissipation of vlsi signal

processing chips: the pfa technique. in VLSI Signal Processing IV, pages 250–

259, 1990. 24

[101] M. Pedram Q. Wu, Q. Qiu and C.-S. Ding. Cycle-accurate macro-models

for rtlevel power analysis. IEEE Transaction VLSI Systems, 6:520–528, 1998. 25

March 7, 2013 Santhosh Kumar Rethinagiri Page 162

REFERENCES

[102] Gang Qu, Naoyuki Kawabe, Kimiyoshi Usami, and Miodrag Potkon-

jak. Function-level power estimation methodology for microprocessors. In Pro-

ceedings of the 37th Annual Design Automation Conference, DAC ’00, pages 810–

813, New York, NY, USA, 2000. ACM. 45

[103] D. Brooks R. Joseph and M. Martonosi. Runtime power measurements

as a foundation for evaluating power/performance tradeoffs. in proceedings of

the Workshop on Complexity Effectice Design WCED, held in conjunction with

ISCA01, pages 13–25, 2001. 27

[104] J. N. Rabaey and M. Pedram. Low power design methodologies. The

Springer International Series in Engineering and Computer Science, 4:366, 1996.

24

[105] Santhosh Kumar Rethinagiri, Rabie Ben Atitallah, Jean-Luc

Dekeyser, Eric Senn, and Smail Niar. An efficient power estimation

methodology for complex risc processor-based platforms. In Proceedings of the

great lakes symposium on VLSI, GLSVLSI ’12, pages 239–244, New York, NY,

USA, 2012. ACM. 41, 42

[106] S.K. Rethinagiri, R.B. Atitallah, and J. Dekeyser. A system level power

consumption estimation for mpsoc. In System on Chip (SoC), 2011 International

Symposium on, pages 56 –61, 31 2011-nov. 2 2011. 41

[107] S.K. Rethinagiri, R. Ben Atitallah, S. Niar, E. Senn, and

J. Dekeyser. Fast and accurate hybrid power estimation methodology for em-

bedded systems. In Design and Architectures for Signal and Image Processing

(DASIP), 2011 Conference on, pages 1 –7, nov. 2011. 41

[108] S.K. Rethinagiri, R. Ben Atitallah, S. Niar, E. Senn, and J.-C.

Dekeyser. Hybrid system level power consumption estimation for fpga-based

mpsoc. In Computer Design (ICCD), 2011 IEEE 29th International Conference

on, pages 239 –246, oct. 2011. 41, 42, 122

[109] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and

Stephen A. Herrod. Using the simos machine simulator to study complex

March 7, 2013 Santhosh Kumar Rethinagiri Page 163

REFERENCES

computer systems. ACM Trans. Model. Comput. Simul., 7[1]:78–103, January

1997. 38

[110] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling

Language Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

41

[111] J.T. Russell and M.F. Jacome. Software power estimation and optimiza-

tion for high performance, 32-bit embedded processors. In Computer Design:

VLSI in Computers and Processors, 1998. ICCD ’98. Proceedings. International

Conference on, pages 328 –333, oct 1998. 29

[112] J.P. Diguet S. Douhib. Model driven high-level power estimation of embedded

operating systems communication and synchronization services. In Proceedings

of the 6th IEEE International Conference on Embedded Software and Systems,

China, May 25-27 2009. 31, 32, 42

[113] S. Neema S. Mohanty, V. K. Prasanna and J. Davis. Rapid design space

exploration of heterogeneous embedded systems using symbolic search and multi-

granular simulation. In Proceedings of the joint conference on Languages, compil-

ers and tools for embedded systems: software and compilers for embedded systems,

LCTES/SCOPES 02, New York, NY, USA, 2002. ACM. ISBN 1-58113-

527-0. URL http://doi.acm.org/10.1145/513829.513835:1827, 2001. 35

[114] P. Neofotistos K. Kosmatopoulos T. Laopoulos S. Nikolaidis,

N. Kavvadias and L. Bisdounis. Instrumentation set-up for instruction level

power modeling. in proceedings of the 12th International Workshop on Power

and Timing Modeling, Optimization and Simulation PATMOS02, London, UK:

Springer-Verlag:71–80, 2002. 29

[115] T. Laopoulos L. Bisdounis S. Nikolaidis, N. Kavvadias and

S. Blionas. Instruction level energy modeling for pipelined processors. Journal

of Embedded Computing, 1:317324, 2005. 29

[116] Akshaye Sama, J. F. M. Theeuwen, and M. Balakrishnan. Speeding up

power estimation of embedded software. In Proceedings of the 2000 international

March 7, 2013 Santhosh Kumar Rethinagiri Page 164

REFERENCES

symposium on Low power electronics and design, ISLPED ’00, pages 191–196,

New York, NY, USA, 2000. ACM. 29

[117] Gunar Schirner and Rainer Dmer. Quantitative analysis of the speed/ac-

curacy trade-off in transaction level modeling. ACM Trans. Embed. Comput.

Syst., 8(1. ISSN 1539-9087:1–29, 2008. 18

[118] Eric Senn, Nathalie Julien, Johann Laurent, and Eric Martin. Power

consumption estimation of a c program for data-intensive applications. In Pro-

ceedings of the 12th International Workshop on Integrated Circuit Design. Power

and Timing Modeling, Optimization and Simulation, PATMOS ’02, pages 332–

341, London, UK, UK, 2002. Springer-Verlag. 31

[119] Eric Senn, Nathalie Julien, Johann Laurent, and Eric Martin. Power

consumption estimation of a c program for data-intensive applications. In Pro-

ceedings of the 12th International Workshop on Integrated Circuit Design. Power

and Timing Modeling, Optimization and Simulation, PATMOS ’02, pages 332–

341, London, UK, UK, 2002. Springer-Verlag. 45

[120] Hyunchul SHIN and Changhee LEE. Operation mode based high-level

switching activity analysis for power estimation of digital circuits(energy in elec-

tronics communications). IEICE transactions on communications, 90[7]:1826–

1834, jul 2007. 28

[121] Chris Spear. SystemVerilog for Verification, Second Edition: A Guide to Learn-

ing the Testbench Language Features. Springer Publishing Company, Incorpo-

rated, 2nd edition, 2008. 17

[122] Lothar Thiele, Samarjit Chakraborty, Matthias Gries, and Simon

Knzli. Design space exploration of network processor architectures. In In Net-

work Processor Design: Issues and Practices, Volume 1, pages 30–41. Morgan

Kaufmann Publishers, 2002. 40

[123] Lothar Thiele, Samarjit Chakraborty, Matthias Gries, Alexander

Maxiaguine, Er Maxiaguine, and Jonas Greutert. Embedded software

in network processors - models and algorithms. In In First Workshop on Embedded

Software, LNCS 2211, pages 416–434. Springer Verlag, 2001. 40

March 7, 2013 Santhosh Kumar Rethinagiri Page 165

REFERENCES

[124] V. Tiwari, S. Malik, A. Wolfe, and M.T.-C. Lee. Instruction level power

analysis and optimization of software. In VLSI Design, 1996. Proceedings., Ninth

International Conference on, pages 326 –328, jan 1996. 44

[125] Elias Todorovich, Eduardo I. Boemo, F. Cardells, and Javier Valls.

Power analysis and estimation tool integrated with xpower. In Russell Tessier

and Herman Schmit, editors, Proceedings of the ACM/SIGDA 12th Interna-

tional Symposium on Field Programmable Gate Arrays, FPGA 2004, Monterey,

California, USA, February 22-24, 2004, page 259. ACM, 2004. 41

[126] S. Malik V. Tiwari and A. Wolfe. Power analysis of embedded software

a first step towards software power minimization. IEEE Transaction on VLSI

Systems, page 437445, 1994. 28

[127] M. Kandemir W. Ye, N. Vijaykrishnan and M. J. Irwin. The design and

use of simplepower: A cycle-accurate energy estimation tool. in proceedings of

the 37th conference on Design automation DAC2000, New York, NY, USA:

ACM:340–345, 2000. 26

[128] Wayne Wolf. Household hints for embedded systems designers. Computer,

35[5]:106–108, May 2002. 40

[129] W. Ye, N. Vijaykrishnam, M. Kandemir, and M.J. Irwin. The design

and use of simplepower: a cycle accurate energy estimation tool. In Proc. Design

Automation Conference DAC’00, June 2000. 41

[130] W. Ye, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin. The design

and use of simplepower: a cycle-accurate energy estimation tool. In Design Au-

tomation Conference, 2000. Proceedings 2000, pages 340 –345, 2000. 41

[131] Dohyung Kim Youngmin Yi and Soonhoi Ha. Fast and accurate cosim-

ulation of mpsoc using trace-driven virtual synchronization. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 26(12):21862200,

2007. 19

[132] Lin Zhong, S. Ravi, A. Raghunathan, and N. K. Jha. Power estima-

tion for cycle-accurate functional descriptions of hardware. In Proceedings of the

March 7, 2013 Santhosh Kumar Rethinagiri Page 166

REFERENCES

2004 IEEE/ACM International conference on Computer-aided design, ICCAD

’04, pages 668–675, Washington, DC, USA, 2004. IEEE Computer Society. 39

March 7, 2013 Santhosh Kumar Rethinagiri Page 167

