3,298 research outputs found

    Ridgelet-based signature for natural image classification

    Get PDF
    This paper presents an approach to grouping natural scenes into (semantically) meaningful categories. The proposed approach exploits the statistics of natural scenes to define relevant image categories. A ridgelet-based signature is used to represent images. This signature is used by a support vector classifier that is well designed to support high dimensional features, resulting in an effective recognition system. As an illustration of the potential of the approach several experiments of binary classifications (e.g. city/landscape or indoor/outdoor) are conducted on databases of natural scenes

    A comparative study of different image features for hand gesture machine learning

    Get PDF
    Vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition. Hand gesture recognition for human computer interaction is an area of active research in computer vision and machine learning. The primary goal of gesture recognition research is to create a system, which can identify specific human gestures and use them to convey information or for device control. In this paper we present a comparative study of seven different algorithms for hand feature extraction, for static hand gesture classification, analysed with RapidMiner in order to find the best learner. We defined our own gesture vocabulary, with 10 gestures, and we have recorded videos from 20 persons performing the gestures for later processing. Our goal in the present study is to learn features that, isolated, respond better in various situations in human-computer interaction. Results show that the radial signature and the centroid distance are the features that when used separately obtain better results, being at the same time simple in terms of computational complexity.(undefined

    Hand gesture recognition for human computer interaction: a comparative study of different image features

    Get PDF
    Hand gesture recognition for human computer interaction, being a natural way of human computer interaction, is an area of active research in computer vision and machine learning. This is an area with many different possible applications, giving users a simpler and more natural way to communicate with robots/systems interfaces, without the need for extra devices. So, the primary goal of gesture recognition research is to create systems, which can identify specific human gestures and use them to convey information or for device control. For that, vision-based hand gesture interfaces require fast and extremely robust hand detection, and gesture recognition in real time. In this study we try to identify hand features that, isolated, respond better in various situations in human-computer interaction. The extracted features are used to train a set of classifiers with the help of RapidMiner in order to find the best learner. A dataset with our own gesture vocabulary consisted of 10 gestures, recorded from 20 users was created for later processing. Experimental results show that the radial signature and the centroid distance are the features that when used separately obtain better results, with an accuracy of 91% and 90,1% respectively obtained with a Neural Network classifier. These to methods have also the advantage of being simple in terms of computational complexity, which make them good candidates for real-time hand gesture recognition

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)
    corecore