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Abstract. Hand gesture recognition for human computer interaction, being a 

natural way of human computer interaction, is an area of active research in 

computer vision and machine learning. This is an area with many different pos-

sible applications, giving users a simpler and more natural way to communicate 

with robots/systems interfaces, without the need for extra devices. So, the pri-

mary goal of gesture recognition research is to create systems, which can iden-

tify specific human gestures and use them to convey information or for device 

control. For that, vision-based hand gesture interfaces require fast and ex-

tremely robust hand detection, and gesture recognition in real time. In this study 

we try to identify hand features that, isolated, respond better in various situa-

tions in human-computer interaction. The extracted features are used to train a 

set of classifiers with the help of RapidMiner in order to find the best learner. A 

dataset with our own gesture vocabulary consisted of 10 gestures, recorded 

from 20 users was created for later processing. Experimental results show that 

the radial signature and the centroid distance are the features that when used 

separately obtain better results, with an accuracy of 91% and 90,1% respec-

tively obtained with a Neural Network classifier. These to methods have also 

the advantage of being simple in terms of computational complexity, which 

make them good candidates for real-time hand gesture recognition. 

Keywords. Hand gesture recognition, machine vision, hand features, HoG (His-

togram of Oriented Gradients), Fourier descriptors, Centroid Distance, Radial 

Signature, Shi-Tomasi corner detection. 

1 INTRODUCTION 

Hand gesture recognition, being a natural way of human computer interaction, is an 

area of active current research, with many different possible applications, in order to 

create simpler and more natural forms of interaction, without using extra devices [1, 

2]. To achieve natural human-computer interaction, the human hand could be consid-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55638594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

ered as an input device. Hand gestures are a powerful way of human communication, 

with lots of potential applications, and vision-based hand gesture recognition tech-

niques have many proven advantages compared with traditional devices. Compared 

with traditional HCI (Human Computer Interaction) devices, hand gestures are less 

intrusive and more convenient to explore, for example, three-dimensional (3D) virtual 

worlds. However, the expressiveness of hand gestures has not been fully explored for 

HCI applications. So, hand gesture recognition has become a challenging topic of 

research.  However, recognizing the shape (posture) and the movement (gesture) of 

the hand in images or videos is a complex task [3].  

The approach normally used for the problem of vision-based hand gesture recogni-

tion consists of identifying the pixels on the image that constitute the hand, extract 

features from those identified pixels in order to classify the hand, and use those fea-

tures to train classifiers that can be used to recognize the occurrence of specific pose 

or sequence of poses as gestures. 

In this paper we present a comparative study of seven different algorithms for hand 

feature extraction, for static hand gesture classification. The features were analysed 

with RapidMiner (http://rapid-i.com) in order to find the best learner, among the fol-

lowing four: k-NN, Naïve Bayes, ANN and SVM. We defined our own gesture vocabu-

lary, with 10 gestures as shown in Fig. 1, and we have recorded videos from 20 users 

performing the gestures, without any previous training, for later processing. Our goal 

in the present study is to learn features that, isolated, respond better in various situa-

tions in human-computer interaction. The results show that the radial signature and 

the centroid distance are the features that when used separately obtain better results, 

being at the same time simple in terms of computational complexity. The features 

were selected due to their computational simplicity and efficiency in terms of compu-

tation time, and also because of the good recognition rates shown in other areas of 

study, like human detection [4]. The rest of the paper is as follows. First we review 

related work in section 2. Section 3 introduces the actual data pre-processing stage 

and feature extraction. Machine learning for the purpose of gesture classification is 

introduced in section 4. Datasets and experimental methodology are explained in 

section 5. Section 6 presents and discusses the results. Conclusions and future work 

are drawn in section 7. 

 

 

 

Fig. 1. The defined gesture vocabulary 



 

2 Related work 

Hand gesture recognition is a challenging task in which two main approaches can be 

distinguished: hand model based and appearance-based methods [5, 6]. Although 

appearance-based methods are view-dependent, they are more efficient in computa-

tion time. They aim at recognizing a gesture among a vocabulary, with template ges-

tures learned from training data, whereas hand model-based methods are used to re-

cover the exact 3D hand pose. Appearance-based models extract features that are used 

to represent the object under study. These methods must have, in the majority of 

cases, invariance properties to translation, rotation and scale changes. There are many 

studies on gesture recognition and methodologies well presented in [7, 8]. Wang et al. 

[9] used the discrete Adaboost learning algorithm integrated with SIFT features for 

accomplishing in-plane rotation invariant, scale invariant and multi-view hand detec-

tion. Conceil et al. [6] compared two different shape descriptors, Fourier descriptors 

and Hu moments,  for the recognition of 11 hand postures in a vision based approach. 

They concluded that Fourier descriptors gives good recognition rates in comparison 

with Hu moments. Barczak et al. [10] performed a performance comparison of Fou-

rier descriptors and geometric moment invariants on an American Sign Language 

database. The results showed that both descriptors are unable to differentiate some 

classes in the database. Bourennane et al. [3] presented a shape descriptor comparison 

for hand posture recognition from video, with the objective of finding a good com-

promise between accuracy of recognition and computational load for a real-time ap-

plication. They run experiments on two families of contour-based Fourier descriptors 

and two sets of region based moments, all of them invariant to translation, rotation 

and scale-changes of hands. They performed systematic tests on the Triesch bench-

mark database [11] and on their own with more realistic conditions, as they claim. 

The overall result of the research showed that the common set Fourier descriptors 

when combined with the k-nearest neighbour classifier had the highest recognition 

rate, reaching 100% in the learning set and 88% in the test set. Huynh [12] presents an 

evaluation of the SIFT (scale invariant feature transform), Colour SIFT, and SURF 

(speeded up robust features) descriptors on very low resolution images. The perform-

ance of the three descriptors are compared against each other on the precision and 

recall measures using ground truth correct matching data. His experimental results 

showed that both SIFT and colour SIFT are more robust under changes of viewing 

angle and viewing distance but SURF is superior under changes of illumination and 

blurring. In terms of computation time, the SURF descriptors offer themselves as a 

good alternative to SIFT and CSIFT. Fang et al. [13] to address the problem of large 

number of labelled samples, the usually costly time spent on training, conversion or 

normalization of features into a unified feature space, presented a hand posture recog-

nition approach with what they called a co-training strategy [14]. The main idea is to 

train two different classifiers with each other and improve the performance of both 

classifiers with unlabelled samples. They claim that their method improves the recog-

nition performance with less labelled data in a semi-supervised way. Rayi et al [15] 

used the centroid distance Fourier descriptors as hand shape descriptors in sign lan-

guage recognition. Their test results showed that the Fourier descriptors and the Man-



 

hattan distance-based classifier achieved recognition rates of 95% with small compu-

tational latency. Classification involves a learning procedure, for which the number of 

training images and the number of gestures are important facts. Machine learning 

algorithms have been applied successfully to many fields of research like, face recog-

nition [16], automatic recognition of a musical gesture by a computer [17], classifica-

tion of robotic soccer formations [18], classifying human physical activity from on-

body accelerometers [19], automatic road-sign detection [20, 21], and static hand 

gesture classification [2]. K-Nearest Neighbour (k-NN) was used in [16, 18]. This 

classifier represents each example as a data in d–dimensional space, where d is the 

number of attributes. Given a test sample, the proximity to the rest of the data points 

in the training set is computed using a measure of similarity or dissimilarity. In the 

distance calculation, the standard Euclidean distance is normally used, however other 

metrics can be used [22]. An artificial neural network is a mathematical / computa-

tional model that attempts to simulate the structure of biological neural systems. They 

accept features as inputs and produce decisions as outputs [23]. Maung et al [1, 18, 

21, 24] used it in a gesture recognition system, Faria et al [18] used it for the classifi-

cation of robotic soccer formations, Vicen-Buéno [21] used it applied to the problem 

of traffic sign recognition and Stephan et al used it for static hand gesture recognition 

for human-computer interaction. Support Vector Machines (SVM’s) is a technique 

based on statistical learning theory, which works very well with high-dimensional 

data. The objective of this algorithm is to find the optimal separating hyper plane 

between two classes by maximizing the margin between them [25]. Faria et al. [16, 

18] used it to classify robotic soccer formations and the classification of facial expres-

sions, Ke et al. [26] used it in the implementation of a real-time hand gesture recogni-

tion system for human robot interaction, Maldonado-Báscon [20] used it for the rec-

ognition of road-signs and Masaki et al used it in conjunction with SOM (Self-

Organizing Map) for the automatic learning of a gesture recognition mode. Trigueiros 

et al. [2] have made a comparative study of four machine learning algorithms applied 

to two hand features datasets. In their study the datasets had a mixture of hand fea-

tures. In this paper all the features extracted are analysed individually with machine 

learning algorithms to understand their performance and robustness in terms of scale, 

translation and rotation invariant static hand gesture recognition. 

3 Pre-processing and Feature Extraction 

Hand segmentation and feature extraction is a crucial step in computer vision applica-

tions for hand gesture recognition. The pre-processing stage prepares the input image 

and extracts features used later with the classification algorithms. In the present study, 

we used seven data sets with different features extracted from the segmented hand. 

The hand features used for the training datasets are: the Radial Signature (RS), the 

Radial Signature Fourier Descriptors (RSFDs), the Centroid Distance (CD), the Cen-

troid Distance Fourier descriptors (CDFDs), the Histogram of Oriented Gradients 

(HoG), the Shi-Tomasi Corner Detector and the Uniform Local Binary Patterns 

(ULBP). 



 

For the problem at hand, two types of images obtained with a Kinect camera were 

used in the feature extraction phase. The first one, the hand

in the HoG operator, the LBP (local binary pattern) operator and the Shi

ner detector. The second one, the segmented hand blob, was used in the radial sign

ture and the centroid distance signature after contour extracti

3.1 Radial Signature

Shape signature is used to represent the shape contour of an object. The shape sign

ture itself is a one-dimensional function that is constructed from the contour coord

nates. The radial signature is on

A simple method to assess the gesture would be to measure the number of pixels 

from the hand centroid to the edges of the hand along a number of equally spaced 

radials [27]. For the present feature extraction problem, 100 equally spaced radials 

were used. To count the number of pixels along a given radial we only take into a

count the ones that are part of the hand, eliminating those that fall inside gaps, like the 

ones that appear between fingers or between the palm and a finger (

da referência não foi encontrada.

that the longest radial has a constant length. With this measure, we can have a radial 

length signature that is invariant to hand distance from the camera

hand with drawn radials (left); 

3.2 Histogram of Gradients

Pixel intensities can be sensitive to 

problems within the same gesture under different light conditions. The use of local 

orientation measures avoids this kind of problem, and the histogram gives us transl

tion invariance. Orientation histogram

ented in each possible direction, independent of the position of the hand inside the 

camera frame [28]. This statistical technique

hand. In our work, the hand is extracted and separated from the background, which 

provides a uniform black background, which makes this statistical technique a good 

method for the identification of different static

This method is insensitive to small changes in the size of the hand, but it is sens

tive to changes in hand orientation. 

For the problem at hand, two types of images obtained with a Kinect camera were 

used in the feature extraction phase. The first one, the hand grey scale image was used 

in the HoG operator, the LBP (local binary pattern) operator and the Shi-Tomasi co

ner detector. The second one, the segmented hand blob, was used in the radial sign

ture and the centroid distance signature after contour extraction. 

Radial Signature 

Shape signature is used to represent the shape contour of an object. The shape sign

dimensional function that is constructed from the contour coord

nates. The radial signature is one of several types of shape signatures. 

A simple method to assess the gesture would be to measure the number of pixels 

from the hand centroid to the edges of the hand along a number of equally spaced 

. For the present feature extraction problem, 100 equally spaced radials 

used. To count the number of pixels along a given radial we only take into a

count the ones that are part of the hand, eliminating those that fall inside gaps, like the 

ones that appear between fingers or between the palm and a finger (Erro! A origem 

da referência não foi encontrada.). All the radial measurements can be scaled so 

that the longest radial has a constant length. With this measure, we can have a radial 

that is invariant to hand distance from the camera.  

 

Fig. 2. Hand radial signature:  

and with drawn radials (left); obtained radial signature (right) 

Histogram of Gradients (HoG) 

Pixel intensities can be sensitive to lighting variations, which lead to classification 

problems within the same gesture under different light conditions. The use of local 

orientation measures avoids this kind of problem, and the histogram gives us transl

tion invariance. Orientation histograms summarize how much of each shape is or

ented in each possible direction, independent of the position of the hand inside the 

. This statistical technique is most appropriate for close-ups of the 

hand. In our work, the hand is extracted and separated from the background, which 

provides a uniform black background, which makes this statistical technique a good 

method for the identification of different static hand poses, as it can be seen in

This method is insensitive to small changes in the size of the hand, but it is sens

tive to changes in hand orientation.  

For the problem at hand, two types of images obtained with a Kinect camera were 

scale image was used 

Tomasi cor-

ner detector. The second one, the segmented hand blob, was used in the radial signa-

Shape signature is used to represent the shape contour of an object. The shape signa-

dimensional function that is constructed from the contour coordi-

A simple method to assess the gesture would be to measure the number of pixels 

from the hand centroid to the edges of the hand along a number of equally spaced 

. For the present feature extraction problem, 100 equally spaced radials 

used. To count the number of pixels along a given radial we only take into ac-

count the ones that are part of the hand, eliminating those that fall inside gaps, like the 

Erro! A origem 

). All the radial measurements can be scaled so 

that the longest radial has a constant length. With this measure, we can have a radial 

lighting variations, which lead to classification 

problems within the same gesture under different light conditions. The use of local 

orientation measures avoids this kind of problem, and the histogram gives us transla-

s summarize how much of each shape is ori-

ented in each possible direction, independent of the position of the hand inside the 

ups of the 

hand. In our work, the hand is extracted and separated from the background, which 

provides a uniform black background, which makes this statistical technique a good 

can be seen in Fig. 3. 

This method is insensitive to small changes in the size of the hand, but it is sensi-



 

We have calculated the local orientation using image gradients, represented by 

horizontal and vertical image pixel differences. If d� and d� are the outputs of the 
derivative operators, then the gradient direction is arctan (d�, d�), and the contrast 
is ��� + ��� . A contrast threshold is set as some amount k times the mean image con-
trast, below which we assume the orientation measurement is inaccurate. A value of 

k=1.2 was used in the experiments. We then blur the histogram in the angular domain 

as in [29], with a (1 4 6 4 1) filter, which gives a gradual fall-off in the distance be-

tween orientation histograms. 

This feature descriptor was extensively used in many other areas like human detec-

tion [4, 30], in conjunction with other operators like the Scale Invariant Feature 

Transformation (SIFT) [31], the Kanade-Lucas-Tomasi (KLT) feature tracker [32] 

and local binary patterns for static hand-gesture recognition [33]. Lu et al. [34] and 

Kaniche et al. [32] used temporal HOGs for action categorization and gesture recogni-

tion. 

 

Fig. 3. Hand gradients (left), Histogram of gradients (right) 

3.3 Centroid distance signature 

The centroid distance signature is another type of shape signature. The centroid dis-

tance function is expressed by the distance of the hand contour boundary points, from 

the centroid (�� , ��) of the shape. In our study we used N = 128 as the number of 
equally sampled points on the contour. 

d(i) = �x� − x��� + �y� − y���, i = 0, … . , N − 1 (1) 

where �($), is the calculated distance, and �% and �%  are the coordinates of contour 
points. This way, we obtain a one-dimensional function that represents the hand 

shape. Due to the subtraction of centroid, which represents the hand position, from 

boundary coordinates, the centroid distance representation is invariant to translation. 

Rayi Yanu Tara et al. [15] demonstrated that this function is translation invariant and 

that a rotation of that hand results in a circularly shift version of the original image. 



 

3.4 Local Binary Patterns

LBP (local binary pattern) is a 

ful discrimination and low computational complexity 

pixels of the image by thresholding the neighbourhood of each pixel 

1), being P the values of equally spaced pixels on a 
grey value of its center (

local texture [35, 37, 38

The code is derived as follows

LBPP,R = ∑ s-g/ −P01/23

where 

s(x) = 41, x 5 0
0, x 6 07 

Fig. 4 illustrates the computation of 

neighbourhood. g3 is always assigned to be the grey value of neighbour to the right of g�. In the general definit
which requires interpolation of the intensity values for exact computation. The coo

dinates of g3 are given by 
 

pixel neighbourhood (left);

The LBPP,R operator produces 
different binary patterns that can be formed by the P pixels in the 

As a rotation of a textured i

different location and to rotate about their origin, if rotation invariance is needed, it 

can be achieved by rotation invariance mapping. In this mapping, each LBP binary 

code is circularly rotated int

LBPP,R8� = min� ROR-LBP
where ROR(x, i) denotes the circular bitwise right shift on the P
For example, 8-bit LBP codes 00111100b, 11110000b, and 00001111b all map to the 

minimum code 00001111b. For P=8 a total of 36 unique different values is achieved. 

This operator was designated as LBPROT in 

ever, that LBPROT as such does not provide very good discrimination. They have 

observed that certain local binary patterns are fundamental properties of texture, pr

viding the vast majority of all 3x3 patterns presented in observed textures. They 

called this fundamental patterns “uniform” as they have one thing in common 

form circular structure that contains very few spatial transitions. They int

Local Binary Patterns 

LBP (local binary pattern) is a grey scale invariant local texture operator with powe

nation and low computational complexity [35-38]. This operator labels the 

pixels of the image by thresholding the neighbourhood of each pixel g3 (p =
, being P the values of equally spaced pixels on a circle of radius R (R > 0), by the 

grey value of its center (g�) and considers the result as a binary code that describes the 
38].  

as follows: 

- − g�= 2/ 

7 
illustrates the computation of LBP?,1 for a single pixel in a rectangular 3x3 

is always assigned to be the grey value of neighbour to the right of 

. In the general definition, LBP is defined in a circular symmetric neighbourhood, 

which requires interpolation of the intensity values for exact computation. The coo

are given by (−R sin(2πp/P), R cos(2πp/P)) [35].  

 

Fig. 4. Example of computing CDEF,G 
pixel neighbourhood (left); threshold version (middle); resulting binary code (right)

operator produces 2P different output values, corresponding to the 
different binary patterns that can be formed by the P pixels in the neighbourhood

As a rotation of a textured input image causes the LBP patterns to translate into a 

different location and to rotate about their origin, if rotation invariance is needed, it 

can be achieved by rotation invariance mapping. In this mapping, each LBP binary 

code is circularly rotated into its minimum value 

-LBPP,R , i= 
denotes the circular bitwise right shift on the P-bit number 

bit LBP codes 00111100b, 11110000b, and 00001111b all map to the 

nimum code 00001111b. For P=8 a total of 36 unique different values is achieved. 

This operator was designated as LBPROT in [39]. Ojala et.al [35] had shown ho

ever, that LBPROT as such does not provide very good discrimination. They have 

that certain local binary patterns are fundamental properties of texture, pr

viding the vast majority of all 3x3 patterns presented in observed textures. They 

called this fundamental patterns “uniform” as they have one thing in common 

ructure that contains very few spatial transitions. They introduced a 

scale invariant local texture operator with power-

. This operator labels the 

( = 0 … P −
circle of radius R (R > 0), by the 

) and considers the result as a binary code that describes the 

(2) 

(3) 

for a single pixel in a rectangular 3x3 

is always assigned to be the grey value of neighbour to the right of 

ion, LBP is defined in a circular symmetric neighbourhood, 

which requires interpolation of the intensity values for exact computation. The coor-

threshold version (middle); resulting binary code (right) 

different output values, corresponding to the 2P 
neighbourhood set. 

nput image causes the LBP patterns to translate into a 

different location and to rotate about their origin, if rotation invariance is needed, it 

can be achieved by rotation invariance mapping. In this mapping, each LBP binary 

(4) 

bit number x, i steps. 
bit LBP codes 00111100b, 11110000b, and 00001111b all map to the 

nimum code 00001111b. For P=8 a total of 36 unique different values is achieved. 

had shown how-

ever, that LBPROT as such does not provide very good discrimination. They have 

that certain local binary patterns are fundamental properties of texture, pro-

viding the vast majority of all 3x3 patterns presented in observed textures. They 

called this fundamental patterns “uniform” as they have one thing in common – uni-

roduced a 



 

uniformity measure U(pattern), which corresponds to the number of spatial transitions 

(bitwise 0/1 changes) in the “pattern”. Patterns that have a U value of at most 2 are 

designated uniform and the following operator for grey-scale and rotation invariant 

texture description was proposed: 

LBPP,R8�H� = I∑ s-g/ − g/=,P01/23      if U-LBPP,R= ≤ 2
P + 1,             otherwise

7 (5) 

Equation (5) assigns a unique label corresponding to the number of  “1” bits in the 

uniform pattern, while the non-uniform are grouped under the “miscellaneous” label 

(P+1). In practice the mapping from LBPP,R to LBPP,R8�H� is best implemented with a 
lookup table of 2P elements. The final texture feature employed in texture analysis is 
the histogram of the operator output (i.e., pattern labels).  

In the present work, we used the histogram of the uniform local binary pattern op-

erator, with R (radius) equal to 1 and P (number of pixels in the neighbourhood) equal 

to 8, as a feature vector for the hand pose classification. 

3.5 Fourier Descriptors 

Instead of using the original image representation in the spatial domain, feature values 

can also be derived after applying a Fourier transformation. The feature vector calcu-

lated from a data representation in the transform domain, is called Fourier descriptor 

[40]. The Fourier descriptor is another feature describing the boundary of a region 

[23] [41], and is considered to be more robust with respect to noise and minor bound-

ary modifications. In the present study Fourier descriptors were obtained for the his-

tograms calculated from the radial signature and the centroid distance. For computa-

tional efficiency of the FFT, the number of points is chosen to be a power of two [6]. 

The normalized length is generally chosen to be equal to the calculated histogram 

signature length (N). Hence the Fourier Transform leads to N Fourier coefficients CQ: 

CQ =  ∑ z�exp S�TU�Q
N WN01�23 , k = 0, … , N − 1 (6) 

Table 1 shows the relation between motions in the image and transform domains, 

which can be used in some types of invariance. 

Table 1. Equivalence between motions in the image and transform domains 

In the image In the transform 

A change in size Multiplication by a constant 

A rotation of Ø about 

the origin 

Phase shift 

A translation A change in the DC term 

 

The first coefficient C3  is discarded since it only contains the hand position. Hand 
rotation affects only the phase information, thus if rotation invariance is necessary, it 

can be achieved by taking the magnitude of the coefficients. Division of the coeffi-



 

cients by the magnitude of the second coefficient, C1, on the other hand, achieves 
scale invariance. This way we obtain N-1 Fourier descriptors IQ: 

IQ = |C\|
|C]| , k = 2, … , N − 1 (7) 

Conceil et.al [6], showed that with 20 coefficients the hand shape is well recon-

structed, so we used this in our experiments. Centroid Distance Fourier descriptors, 

obtained by applying Fourier transform on a centroid distance signature, were empiri-

cally proven to have higher performance than other Fourier descriptors [41, 42]. 

3.6 The Shi-Tomasi Corner Detector 

The Shi-Tomasi corner detector algorithm [43] is an improved version of the Harris 

corner detector [44]. The improvement is in how a certain region within the image is 

scored  (and thus treated as a corner or not). Where the Harris corner detector deter-

mines the score ^ with the eigenvalues _1 and _� of two regions (the second region is 
a shifted version of the first one to see if the difference between the two is big enough 

to say if there is a corner or not) in the following way: 

R = det(λ1λ�) − k(λ1 + λ�)� (8) 

Shi and Tomasi just use the minimum of both eigenvalues 

^ =  min(_1, _�) (9) 

and if R is greater than a certain predefined value, it can be marked as a corner. They 

demonstrated experimentally in their paper, that this score criterion is much better. 

4 Machine Learning 

The study and computer modelling of learning processes in their multiple manifesta-

tions constitutes the topic of machine learning [45]. Machine learning is the task of 

programming computers to optimize a performance criterion using example data or 

past experience [46]. For that, machine learning uses statistic theory in building 

mathematical models, since the core task is to make inference from sample data. In 

machine learning two entities, the teacher and the learner, play a crucial role. The 

teacher is the entity that has the required knowledge to perform a given task. The 

learner is the entity that has to learn the knowledge to perform the task. We can dis-

tinguish learning strategies by the amount of inference the learner performs on the 

information provided by the teacher. The learning problem can be stated as follows: 

given an example set of limited size, find a concise data description [45]. In our study, 

supervised learning was used, where the classification classes are known in advance. 

In supervised learning, given a sample of input-output pairs, called the training sam-

ple, the task is to find a deterministic function or model that maps any input to an 

output that can predict future observations, minimizing the error as much as possible. 

The models were learned from the extracted hand features with the help of the 



 

RapidMiner tool. The best learners identified for the produced datasets were the k-NN 

(k-nearest neighbour), the ANN (artificial neural network) and the SVM (support 

vector machines). 

5 Datasets & Experimental Methodology 

For data analysis, careful feature selection, dataset preparation and data transforma-

tion are important phases. In order to construct the right model it is necessary to un-

derstand the data under study. Successful data mining involves far more than selecting 

a learning algorithm and running it over your data [22]. In order to process the re-

corded videos, a C++ application, using openFrameworks and the OpenCV [47] and 

OpenNI [48] libraries, was developed. The application runs through all the recorded 

video files, and extracts for each algorithm the respective features. The features thus 

obtained are saved in text files, and converted later to Excel files so that they can be 

imported into Rapid Miner for data analysis, and find the best learner for each one. 

The experiments were performed in an Intel Core i7 (2,8 GHz) Mac OSX computer 

with 4GB DDR3. The experiments were performed under the assumption of the k-

fold method. The k-fold cross validation is used to determine how accurately a learn-

ing algorithm will be able to predict data that it was not trained with [16, 45]. A value 

of k=10 (10-fold cross validation) was used, giving a good rule of approximation, 

although the best value depends on the used algorithm and the dataset [22, 46]. The 

algorithms performance, based on the counts of test records correctly and incorrectly 

predicted by the model, was analysed. Table 2 summarizes the best learners for each 

dataset with the corresponding parameters. 

6 Results and Discussion 

After analysing the different datasets, the obtained results were in most of the cases 

encouraging, although in other cases weaker than one could expect. In order to ana-

lyse how classification errors are distributed among classes, a confusion matrix was 

computed for each learner with the help of RapidMiner. Following we present the 

different results obtained with each dataset, in terms of best learner, the respective 

confusion matrix and the average accuracy recognition rate.  

For the Radial Signature dataset, the best learner was the Neural Network with an 

accuracy of 91,0%. Table 3 shows the respective confusion matrix. For the Centroid 

Distance dataset, the best learner was the neural network, with an accuracy of 90,1%. 

Table 4 shows the respective confusion matrix. The k-NN classifier, with a value of 

k=1, was the one that obtained the best values for the Radial Signature Fourier De-

scriptors and the Centroid Distance Fourier Descriptors with an accuracy of 82,28% 

and 79,53% respectively. Table 5 and Table 6 show their respective confusion ma-

trixes. For the LBP operator and the HoG operator, the best learner was the SVM with 

a RBF (radial basis function) kernel type and soft margins with C = 6 and C = 2 and a 

bias (offset) of 0.032 and 0.149 respectively. The achieved accuracy was 89,3% for 

the LBP operator and 61,46% for the HoG operator. The SVM library used was the 



 

libSVM [49], since it supports multi-class classification. The obtained confusion ma-

trixes are shown in Table 7 and Table 8. For the Shi-Tomasi corner detector the best 

learner was the neural network with a learning rate of 0.1, but with very poor results. 

As it can be seen from the HoG confusion matrix and the Shi-Tomasi corner detector 

confusion matrix, a lot of misclassification occurred, resulting from similar results for 

different gestures. 

Table 2. ML algorithms identified as best learners for each dataset and used parameters 

Dataset Best learn. Algor. Parameters Accuracy 

Radial Signature Neural Net  91,0% 

Centroid Distance Neural Net  90,1% 

Radial Sign. Fourier Descriptors k-NN k=1 82,3% 

Centroid dist. Fourier Descriptors k-NN k=1 79.5% 

Uniform Local Binary Patterns SVM (libSVM) Kernel = RBF ; C=6; Bias = 0.032 89,3% 

Histogram of Gradients SVM (libSVM) Kernel = RBF ; C=2; Bias = 0.149 61,46% 

Shi-Tomasi corners Neural Net Learning rate = 0.1 21,90% 

 

Table 3. Radial signature dataset confusion matrix 

  Actual class 
 1 2 3 4 5 6 7 8 9 10 

P
re
d
ic
te
d
 c
la
ss
 

1 234 1 2 2 3 4 2 6 4 6 
2 2 290 8 2 2 3 1 3 0 6 
3 2 1 273 2 4 5 5 2 2 8 
4 1 1 4 252 6 3 2 4 1 0 
5 5 1 4 2 291 7 1 5 0 0 
6 2 1 2 5 1 281 8 6 2 0 
7 2 1 2 4 1 3 290 3 0 6 
8 2 3 5 3 2 4 0 250 1 5 
9 7 3 9 0 2 3 2 1 276 4 
10 0 8 3 4 4 2 2 2 1 258 

Table 4. Centroid distance dataset confusion matrix 

  Actual class 

  1 2 3 4 5 6 7 8 9 10 

P
re
d
ic
te
d
 c
la
ss
 

1 343 7 2 2 5 1 2 2 6 12 
2 9 335 4 4 8 4 12 3 1 1 
3 1 2 314 5 43 0 1 3 0 5 
4 1 0 2 287 7 3 1 12 1 8 
5 2 1 1 2 309 3 8 7 0 9 
6 2 1 0 7 4 345 3 5 9 4 
7 5 4 4 4 0 4 321 1 2 2 
8 3 3 9 3 5 2 1 299 3 3 
9 2 4 6 0 7 3 3 5 308 1 
10 2 4 3 8 11 5 5 9 1 271 

 

  



 

Table 5. Radial signature Fourier confusion matrix 

  Actual class 
  1 2 3 4 5 6 7 8 9 10 

P
re
d
ic
te
d
 c
la
ss
 

1 250 1 4 2 9 12 3 3 2 2 
2 2 275 10 6 8 3 17 8 1 17 
3 3 5 249 9 7 5 6 17 0 16 
4 7 12 11 248 8 6 7 10 1 0 
5 6 2 4 20 241 16 10 14 2 8 
6 12 3 3 2 21 245 9 4 2 2 
7 3 8 3 5 4 7 228 2 0 10 
8 3 2 13 6 7 9 12 220 1 9 
9 9 1 1 0 2 4 0 6 287 1 
10 1 3 6 0 2 1 6 5 1 232 

 

Table 6. Centroid distance Fourier confusion matrix 

  Actual class 

  1 2 3 4 5 6 7 8 9 10 

P
re
d
ic
te
d
 c
la
ss
 

1 261 17 4 3 13 9 8 5 12 5 
2 8 258 7 8 9 4 8 10 5 6 
3 9 12 295 11 8 2 6 5 6 7 
4 6 6 8 234 7 11 6 7 7 11 
5 2 3 5 6 273 3 12 4 17 17 
6 2 5 4 6 8 290 15 1 6 17 
7 1 6 6 8 3 10 284 12 9 11 
8 9 11 6 5 6 4 3 260 4 14 
9 9 6 7 11 5 7 6 6 242 8 
10 2 6 7 4 7 15 10 15 8 237 

 

Table 7. Local binary patterns dataset confusion matrix 

  Actual class 

  1 2 3 4 5 6 7 8 9 10 

P
re
d
ic
te
d
 c
la
ss
 

1 460 7 4 4 2 2 6 5 10 15 
2 12 499 7 7 8 9 7 3 11 7 
3 2 4 457 24 11 1 2 1 5 9 
4 9 9 12 486 30 6 0 0 8 17 
5 3 15 18 35 522 8 3 0 5 17 
6 10 14 2 4 11 531 4 2 7 15 
7 3 2 1 0 0 1 517 1 2 4 
8 10 1 1 0 0 5 3 554 1 0 
9 5 7 7 8 1 9 4 0 525 4 
10 15 5 31 13 9 4 2 0 1 457 

 

  



 

Table 8. Histogram of gradients dataset confusion matrix 

  Actual class 
  1 2 3 4 5 6 7 8 9 10 

P
re
d
ic
te
d
 c
la
ss
 

1 174 15 14 11 5 0 1 17 19 17 
2 24 207 8 11 10 13 8 9 25 12 
3 18 10 199 25 12 4 2 6 20 13 
4 7 5 22 168 24 15 3 4 10 24 
5 8 7 11 18 181 19 15 4 6 19 
6 0 7 2 9 24 195 19 5 7 15 
7 16 39 16 21 34 62 259 39 20 38 
8 10 4 3 5 6 2 1 189 5 3 
9 30 19 17 9 8 3 1 12 176 14 
10 10 15 16 23 13 11 11 3 19 161 

Table 9. Shi-Tomasi corner detector confusion matrix 

  Actual class 

  1 2 3 4 5 6 7 8 9 10 

P
re
d
ic
te
d
 c
la
ss
 

1 45  26 36 22 23 19 15 17 30 25 
2 22 77  34 16 10 18 16 5 15 59 
3 46 40 49  52 49 40 27 33 25 42 
4 28 30 41 43  48 35 27 23 22 27 
5 23 16 36 36 30  42 22 23 14 11 
6 29 21 39 42 46 56  53 26 29 27 
7 16 23 15 30 34 35 75  16 31 28 
8 27 5 37 23 32 37 16 139 14 9 
9 27 22 12 13 20 26 38 7 104 24 
10 24 58 21 26 23 17 27 7 30 63  

 

7 Conclusions and future work 

This paper presented a comparative study of seven different algorithms for hand fea-

ture extraction, aimed at static hand gesture classification and recognition, for human 

computer interaction. We defined our own gesture vocabulary, with 10 gestures (Fig. 

1), and we have recorded videos from 20 persons performing the gestures for hand 

feature extraction. The study main goal was to test the robustness of all the algo-

rithms, applied individually to scale, translation and rotation invariance. After analys-

ing the data and the obtained results we conclude that further pre-processing on the 

video frames is necessary in order to minimize the number of different feature values 

obtained for the same hand posture. The depth video images obtained with the Kinect 

have low resolution and some noise, so it was concluded that some imprecision on 

data recordings results from those problems, leading to more difficult class learning. 

There are several interpretations of noise as explained in [46]. Due to this situation, it 

was decided that a temporal filtering and/or a spatial filtering should be used and will 

be tested and analysed to see if better results are achieved. It has been found that the 

radial signature and the centroid distance are the best shape descriptors discussed in 

this paper in terms of robustness and computation complexity. Sometimes we have to 

apply the principle known as Occam’s razor, which states that “simpler explanations 



 

are more plausible and any unnecessary complexity should be shaved off”. The Shi-

Tomasi corner detector implemented in OpenCV was the one that achieved the 

weaker results, and we will try it with the bag-of-features approach [50, 51]. Better 

results were expected from the Fourier descriptors, after having analysed related work 

on the area, so we will evaluate them further after having implemented the video 

streaming temporal filtering. In the local binary pattern operator, different radius and 

number of neighbours will be tested to analyse if better results are obtained.  

Recent studies and implementations for image noise minimization, without degrad-

ing the performance in terms of frame rate was a cumulative average of hand position. 

We were able to prove in the recent implementations, that this method was able to 

improve feature extraction accuracy with implications in the final gesture classifica-

tion. 
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