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RÉSUMÉ.Dans cet article nous proposons une nouvelle représentation des images naturelles
permettant de les organiser en groupes sémantiquement consistants. Les catégories concernées
par la méthode sont identifiées par les propriétés statistiques des scènes naturelles. Les images
sont décrites par une signature basée sur lesridgelets. Elle est combinée à une classifieur
à vecteur support (SVM),qui est particulièrement adapté à la représentation des données en
grande dimension, résultant en un système de reconnaissance efficace. Le potentiel de notre
approche est démontré par une série de classifications binaires (e.g. ville/paysages or scènes
extérieures/intérieures) sur une base de 1900 images.

ABSTRACT.This paper presents an approach to grouping natural scenes into (semantically) mean-
ingful categories. The proposed approach exploits the statistics of natural scenes to define
relevant image categories. A ridgelet-based signature is used to represent images. This sig-
nature is used by a support vector classifier that is well designed to support high dimensional
features, resulting in an effective recognition system. As an illustration of the potential of the
approach several experiments of binary classifications (e.g. city/landscape or indoor/outdoor)
are conducted on databases of natural scenes.
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1. Introduction

For the last fifteen years, several fields of research have converged in order to
address the management of multimedia databases. A new discipline has been crea-
ted from this collective effort, usually calledContent-Based Image Retrieval (CBIR)
[SAN 01]. One of the key-issues, termed thesemantic gap, is the lack of coincidence
between the information extracted from the visual data at the lowest level (pixel va-
lues) and the interpretation that the same data has for a user in a given situation
[SME 00]. Finding a general solution to this problem is a long-term research chal-
lenge that will involve not only computer science (integrated databases) and pictorial
analysis but also cognitive sciences. Some successes have already been reported for
particular problems, using various image processing and machine learning techniques.
A comprehensive study of these works can be found in [SME 00]. It is well worth no-
ting that the efficiency of a given technique is generally dependent on the particular
image domain (or application) it was developed for. For instance, research efforts were
specifically developed for face detection, in order to deal with the high degree of va-
riability in appearance [Hje 01].

Among the wide variety of applications related to CBIR, this paper deals specifi-
cally with the management ofnatural scenes. This consists of the natural environment
in the every-day life of a digital camera owner for instance. In fact, natural scenes have
a particular statistical structure that has been widely studied in the literature, and we
argue these properties can be used to address the semantic gap for this kind of content.
In the context of CBIR, automatic image categorisation can help to large-scale image
database retrieval and browsing by hierarchically classifying images into narrower ca-
tegories that reduce the search time [VAI 98]. Such an organization may also be useful
for image enhancement by allowing a selection of scene to which can apply a specific
color and exposure adjustment.

In CBIR, one can broadly distinguish between the description of images and the
computation of the similarity between images, even if both are closely linked. This
paper mainly focus on determining which features must be extracted from natural
images in order to group them in semantically meaningful categories. The usual ap-
proach to the classification of natural scenes is to use some general tools of image
analysis that are justifieda posterioriby their relative efficiency for a given problem.
One of the first attempts in this direction was [GOR 94] in which the authors extracted
the dominant direction of texture by a multiscale steerable pyramid to separate pic-
tures of cities and suburbs from others. In [SZU 98], 1324 images were classified into
indoor and outdoor classes using color (histogram), texture (autoregressive model)
and frequency (discrete cosine transform) information. In [VAI 98] several two-class
discriminations are performed using color histogram, color coherence vector, DCT
coefficients, edge histogram and edge direction coherence vector. In [OLI 99], 700
images are classified into landscapes and “artificial scenes” that contains man-made
structures such as buildings or roads. The authors employed a combination of Gabor
filters to define prototypical “templates” of each category. A major contribution to the
definition of content-based image descriptors was realized during the development of



the ISO/MPEG-7 standard. We refer to [MAN 01] for a comprehensive presentation
of the standard and the descriptors. These descriptors were shown to be efficient for
particular applications, but they do not take into account the statistical structure of na-
tural images. On the contrary, we propose in this paper to fully exploit this structure to
overcome the semantic gap for natural scenes. The representation of images is based
on the ridgelet transform [CAN 99] that is optimally designed to represent edges in
natural images.
The paper is structured as follows. In section 2, we discuss the statistics of natural
scenes to motivate our approach. In particular, we explain how their power spectrum
relates to the semantics of images categories. In section 3 we present the ridgelet
transform and the representation model we propose for natural scenes. In section 4
experimental results show the efficiency of our representation using a Support Vector
classifier. We conclude and present directions for future work in section 5.

2. Structure of natural scenes

A fundamental characteristic of natural images is their high degree of redundancy.
If natural images were composed of random pixels, the redundancy would be null.
They have a non-random statistical structure, resulting from regularities in the tex-
tures, shapes and surfaces of objects and scenes represented. Thus it follows that if we
know what some sections of an image look like we are able to guess the missing sec-
tions [RUD 94]. Hence, among the set of all images, natural scenes form a particular
subset that has been studied by many authors [SIM 01]. Because of the high dimen-
sionality of the image space this subset is probably impossible to fully characterize,
but some properties can be identified.

One of the most noticeable properties states that the average power spectrum of na-
tural scenes decreases according to a law1/fα, wheref is the spatial frequency and
α is approximatively 2 (or 1 if one considers the amplitude spectrum instead of the
power spectrum) [RUD 94]. As a first approximation, this was considered true regard-
less of the direction in the spectrum. Nonetheless, some studies refined this assertion
[OLI 99, TOR 03]. Natural scenes with small depth (“closed scenes”) have actually
a spectrum in1/f2 in all directions, but when the depth of the scene increases, the
presence of a strong horizontal line enhances vertical frequencies (termed “open sce-
nes”). Moreover, images representing human constructions contain a lot of horizontal
and vertical lines, enhancing the corresponding frequencies. These characteristics are
illustrated in figure 1. In [TOR 03] it was shown that some categories can then be
defined according the shape of their spectrum, corresponding on the one hand to an
approximate depth of the scene and on the other hand to a level of semantic meaning.
It well worth noting the categories are defined by their global statistics, but that useful
classification information can be extracted at local scales [TOR 03].
Rather than “yet an other global descriptor” to recognize any category of image, we
propose to identify generic classes of scenes that are defined by their intrinsic proper-
ties. They form coherent perceptive sets of images that are congruent with a semantic
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Figure 1. Logarithm of prototypical power spectrum of natural scene categories.
From left to right, categories are “outdoor cities”, “indoor scenes”, “open scenes”
and “closed scenes” (from [OLI 99]).

meaning. In a CBIR system, this can be used as a pre-classification step to organize
large databases of natural images according to the user perception. Several tools can
potentially serve as image descriptors, but it makes sense to choose one that fits to the
properties of natural scenes, such as ridgelets.

3. Image representation

3.1. Ridgelet

The continuous ridgelet transform (CRT) of an integrable bivariate functionf(x)
is defined by the following real function [CAN 99] :

CRTf =
∫

R2
ψa,b,θ(x)f(x)dx (1)

where the bidimensional ridgeletsψa,b,θ(x) are defined from a unidimensional wave-
let ψ(x) as :

ψa,b,θ(x) = a−1/2ψ

(
x1cosθ + x2sinθ − b

a

)
(2)

wherea is a scale parameter,b a shift parameter, andx = (x1, x2)T . Hence, a ridgelet
is constant along the linex1cosθ + x2sinθ = const and has the shape of the wavelet
ψ(x) in the perpendicular direction.
Finding a discrete form of the ridgelet transform is a challenging issue. The key point
for this is to consider the CRT of an image as the 1-D wavelet transform of the slices
(i.e. projections) of its Radon transform. This later is a simpler version of the Hough



transform that enhances the lines present in an image. An implementation of discrete
ridgelets was proposed in [DO 02], based on the finite Radon transform. This method
uses finite geometry and can then be applied to image of sizep × p with p a prime
number, which limits its use in our context. The method developed in [AVE 01] is
based on the pseudopolar Fourier transform that evaluates the 2-D Fourier transform
on a non-Cartesian grid. This transform is used to compute the Radon transform, and
supports several nice properties, such as invertibility, algebraic exactness, geometric
fidelity and rapid computation for images of size2n× 2n. In the following we use the
Beamlab package [DON 03] that implements the method proposed in [AVE 01].

3.2. Image signature

The ridgelet transform of an image corresponds to the activity of a mother ridgelet
at different orientations, scales and spatial localizations. At a given orientation, there
are2n localization at the highest scale,2n−1 at the immediate lower scale, and so on
until the lowest scale. For an image of size2n × 2n, this results in a response of size
2n+1 × 2n+1, introducing a redundancy factor equal to four.
In this work, we consider the global activity of ridgelets on the image because, as
explained in section 2, it can fully characterize the semantic of the scene. As a conse-
quence, we average the activity of similar ridgelets at different spatial locations. Hence
we obtain one coefficient for each of the2n+1 orientations andn− 1 scales, resulting
in a signature of size(n − 1) ∗ 2n+1. Moreover, since the sign of the activity simply
corresponds to an opposite contrast, we compute the average of the absolute value of
the activity.
This scheme is valid for image of size2n × 2n only. In order to deal with images
of any size, we extract the largest square part of the image and reduce it to an image
of suitable size (i.e. the side is a power of two). This process determines the size of
the signature that has a direct influence on the computation time and the recognition
performance (see section 4.1). The scheme requires the central part of the image to
be significant with respect to the whole scene. This assumption is very reasonable for
images that are slightly rectangular (e.g.4/3 format) but may seem quite weak for
particular formats such as16/9 or panoramic. If the statistics of the scene are statio-
nary, any square part is representative and can be used to characterize the image. In
the other case, the picture can not strictly be considered as a coherent scene and is out
of the scope of this work. In this case, one could attempt to divide the picture in two
or three parts with stationary statistics, and characterize each of them independently.

3.3. Support vector classifier (SVC)

To demonstrate the advantages of the proposed signature for natural scene recog-
nition we use a support vector machines (SVM) [VAP 95] classifier, because of its
efficiency to classify high dimensional data. The SVC is commonly used because of
several attractive features, such as simplicity of implementation, few free parameters



required to be tuned, ability to deal with high-dimensional input data and good genera-
lisation performances on many pattern recognition problems. This last property is due
to the fact that SVM tend to minimise an upper bound on the expected risk (structural
risk minimisation), while other learning techniques such as neural networks usually
tend to minimise the error on the training set (empirical risk minimisation).
We now describe how SVM can be applied to classification in linear separable case.
Let us consider a set of training samples{(xi, yi)1≤i≤N ,xi ∈ X ,yi ∈ Y}, with X the
input space (e.g.RD), andY , {−1, +1} the label space. In the linear case, one as-
sumes the existence of a separating hyperplane between the two classes, i.e. a function
h(x) = w>x + b parameterized by(w, b), such that the sign of this function applied
to xi gives its label. If such a function exists, then an infinity can be identified. By
fixing mini |h(xi)| = 1, we choose the normal vectorw such that the distance from
the closest point of the learning set to the hyperplane is1/‖w‖.

When the training data is not linearly separable, a more complex function can be
used to describe the boundary. This is done by using a non-linear mapping of data into
a potentially much higher dimensional feature space, in which a simple classification
is easier to find [VAP 95]. In the following we will use a polynomial kernel of the
form (< xi, xj > +1)d whered varies from 0 to 3. The best result is then used to
measure performance. Similar results were obtained when the value ofd is fixed to 3.

Several methods were proposed to extent SVM to multi-class case [HSU 02]. The
one-against-all method consists of constructing as many SVC as classes. Theith SVC
is trained with all the example in theith class with positive label and all other examples
with negative labels. It results in a set of decision functions which the cardinal is the
number of classes. Then a test dataxi is attributed to the class with the largest decision
value. Another popular method is called the one-against-one method. For a set ofC
classes, it consists of constructingC(C−1)/2 binary classifiers where each is trained
on data from two classes. Test dataxi is then classified by theC SVC, each of them
giving a vote for the class to choose. Thexi is predicted to be in the class with the
largest vote [FRI 96]. However, no theoretical result exists to determine the optimal
method. Hence, in this paper we limit our approach to binary classifications, keeping
the possibility of using one of the above strategies for multi-class classification in
future works.

4. Experimental results

4.1. Size of the signature

The size of the signature depends directly on the size of the central square image
on which the ridgelet transform is computed. The computation time of the signature
mainly depends on this size and, less significantly on the original size of the image
(because of the dimension reduction). Table 1 gives the size of the signature and its
average computation time on 1903 images for different sizes of central square. The



Size of central
square (pixel)

Length of signature Computation time
(seconds)

128× 128 1536 1.66± 0.1
64× 64 640 0.75± 0.05
32× 32 256 0.40± 0.04
16× 16 96 0.25± 0.03

Tableau 1.Characteristics of the signature. Computation time is computed on 1903
images (3 Ghz CPU with 512 MB of RAM).

interesting property of the proposed representation is that it can be easily adapted to
time or storage capacity constraints.

4.2. Recognition performances

The database consists of 1903 images of different sizes collected on the web and
professional databases1. They were divided into four classes : 452cities, 405 open
(landscapes with a marked horizon line), 544indoor scenes and 502closedscenes
(landscapes without depth). Labels of the images were chosen according to the pre-
classification of the professional databases and the judgement of two experts (one is
the first author). The signatures of images are computed as explained in section 3.2.
The classifier was implemented using the LibSVM package [CHA 01] with a poly-
nomial kernel (see section 3.3). Two kinds of experiments were conducted : indoor
versusoutdoor (cities, open, closed) and citiesversuslandscapes (open, closed) with
individual experiments focusing on classification between specific subcategories in
each case. The binary classifications were repeated 20 times with randomly chosen
learning and testing databases without overlap (cross-validation). The size of the lear-
ning database was fixed to 20 images, but larger sizes gave similar results on our
databases.

In Table 2 we compare the performance as a function of the size of the signature.
As expected, the recognition rate is an increasing function of size for all experiments.
With the largest signature, classification rates are more than 87% for most experi-
ments. The lower performance of city/indoor experiments is due to the similarity of
their power spectrums (figure 1).
We also compare our signature to other descriptors.Edge histograms(EH) detects
edges oriented at four directions (0 ◦, 45 ◦, 90 ◦, 135 ◦) and one “non direction” in
16 adjacent regions of the image, resulting in a 80-dimensional vector.Homogeneous
texture(HT) is computed by filtering the image with a bank of Gabor filters at 5 scales
and 6 orientations. The descriptors contains the mean intensity, the standard devia-
tion and the mean and standard deviation energy of the output filters, resulting in a
62-dimensional vector [MAN 01]. Contrary to the proposed signature that takes into

1. www.corel.com - www.goodshoot.com



Experiment Ridg128 Ridg64 Ridg32 Ridg16

city/open 93.0(2.0) 90.7(2.6) 86.2(1.5) 80.4(1.9)
city/closed 88.5(2.9) 84.3(2.6) 75.1(3.3) 65.2(3.4)
city/indoor 66.6(2.5) 63.4(2.8) 61.6(3.6) 56.7(2.0)
open/indoor 93.0(1.5) 89.7(1.5) 85.8(1.3) 80.2(2.4)
closed/indoor 87.5(2.2) 84.7(2.4) 75.7(2.9) 63.9(2.6)

Tableau 2.Average classification rate (average and standard deviation) for different
size of signature on several experiments (20 cross-validations).

account the central part of the image only, these two descriptors (EH and HT) are
computed on the whole image. Results of classification, are given in Table 3. Our me-
thod is significantly better than the two others to discriminate cities from landscapes
with at least 4% better classification rate than EH and 10% than HT. In the “indoor
versus outdoor” paradigm, it outperforms Homogeneous Texture but is comparable to
Edge Histograms for two experiments (taking into account the uncertainty measured
by standard deviation) and lower for the open/indoor experiment.

Experiment Ridg128 EH HT
city/open 93.0(2.0) 88.8(1.7) 81.0(1.6)
city/closed 88.5(2.9) 82.3(2.2) 72.4(2.6)
city/indoor 66.6(2.5) 68.2(2.8) 63.3(2.2)
open/indoor 93.0(1.5) 96.7(0.6) 89.5(1.3)
closed/indoor 87.5(2.2) 88.6(1.6) 75.9(2.4)

Tableau 3.Comparison of our signature withedge histogram(EH) andhomogeneous
texture(HT).

5. Conclusion and future work

In this paper, we proposed a new representation of natural images, based on a rid-
gelet description, which takes into account the statistical structure of natural image
categories. These intrinsic statistical properties allow to identify perceptively coherent
categories, for which the perception of the scenes match the semantic a human can at-
tribute to the images. Hence, the method we proposed relevant and efficient to classify
such images into the corresponding categories. In a CBIR system, this can be used as
a pre-classification step to organize large databases of natural images according to the
user perception.

In association with a support vector classifier, this results in an efficient scheme to
discriminate cities from landscapes. We showed the limit of the current implementa-
tion of our method that is less efficient to separate pictures of outdoor cities from those
of indoor rooms, but is still efficient to discriminate outdoor landscapes from indoor
scenes.



Future work will deal with reduction of redundancy in the signature, in order to
obtain a more compact representation of images and work on the implementation of
the ridgelets, in order to obtain a faster computation. For instance identifying the most
useful parts of the signature would allow to reduce the computation time of the si-
gnature by limiting the number of Radon projections required. This work is required
to make our method applicable in a real case (e.g. 100,000 images) since the current
computation cost is still too large. Finally, our method will be extended to the local sta-
tistical analyze, that was shown relevant to predict the presence of object (or people)
in natural scenes.
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