26 research outputs found

    List of R.V. Book's publications

    Get PDF

    Polynomial-time reducibilities and “almost all” oracle sets

    Get PDF
    AbstractIt is shown for every k>0 and for almost every tally setT, {A|A ⩽Pk−ttT} ≠ {A|A ⩽P(k+1)−ttT}. In contrast, it is shown that for every set A, the following holds: (a) for almost every set B,A ⩽ Pm B if and only if A ⩽ P(logn)−T B; and (b) for almost every set B, A ⩽Ptt B if and only ifA ⩽PTB

    A Pseudorandum Oracle Characterization of BBP

    Get PDF
    Every language that is polynomial time many-one hard for ESPACE is shown to have unusually small complexity cores and unusually low space-bounded Kolmogorov complexity. It follows that the polynomial time many-one complete languages form a measure 0 subset of ESPACE

    Genericity and measure for exponential time

    Get PDF
    AbstractRecently, Lutz [14, 15] introduced a polynomial time bounded version of Lebesgue measure. He and others (see e.g. [11, 13–18, 20]) used this concept to investigate the quantitative structure of Exponential Time (E = DTIME(2lin)). Previously, Ambos-Spies et al. [2, 3] introduced polynomial time bounded genericity concepts and used them for the investigation of structural properties of NP (under appropriate assumptions) and E. Here we relate these concepts to each other. We show that, for any c ⩾ 1, the class of nc-generic sets has p-measure 1. This allows us to simplify and extend certain p-measure 1-results. To illustrate the power of generic sets we take the Small Span Theorem of Juedes and Lutz [11] as an example and prove a generalization for bounded query reductions

    On the structure of intractable sets

    Get PDF
    There are two parts to this dissertation. The first part is motivated by nothing less than a reexamination of what it means for a set to be NP-complete. Are there sets in NP that in a mathematically meaningful sense should be considered to be complete for NP, but that are not NP-complete in the usual sense that every set in NP is ≤q[subscript]spmP-reducible to it? We define a noneffective binary relation that makes precise the notion that the complexity of A is polynomially related to the complexity of B, This relation yields new completeness and hardness notions for complexity classes, and we show that there are sets that are hard for NP that are not NP-hard in the usual sense. We also show that there are sets that must be considered to be complete for E that are not even ≤q[subscript]spTP-complete for E;In a certain way, hardness and completeness with respect to the relation we define is related to the notion of almost everywhere (a.e.) complexity, and so we initiate this study by first investigating this notion. We state and prove a deterministic time hierarchy theorem for a.e. complexity that is as tight as the Hartmanis-Stearns hierarchy theorem for infinitely often complexity. This result is a significant improvement over all previously known hierarchy theorems for a.e. complex sets. We derive similar, very tight, hierarchy theorems for sets that cannot be a.e. complex for syntactic reasons, but for which, intuitively, a.e. complex notions should exit. Similar results are applied to the study of P-printable sets and sets of low generalized Kolmogorov complexity;The second part of this study deals with relativization. Does the fact that DTIME(O (n)) ≠ NTIME(n) help in leading us to a proof that P ≠ NP? Does one imply the other? We seek evidence that this is a hard . We construct an oracle that answers this question in the affirmative, and we construct an oracle that answers this question in the negative. We conclude that the result that DTIME(O (n)) ≠ NTIME(n) does not imply P ≠ NP by recursive theoretic techniques;Finally, we study the relationships between P, NP, and the unambiguous and random time classes UP, and RP. Questions concerning these relationships are motivated by complexity issues to public-key cryptosystems. We prove that there exists a recursive oracle A such that P[superscript]A ≠ UP[superscript]A≠ NP[superscript]A, and such that the first inequality is strong, i.e., there exists a P[superscript]A-immune set in UP[superscript]A. Further, we constructed a recursive oracle B such that UP[superscript]B contains an RP[superscript]B-immune set. As a corollary we obtain P[superscript]B ≠ RB[superscript]B≠ NP[superscript]B and both inequalities are strong. By use of the techniques employed in the proof that P[superscript]A≠ UP[superscript]A≠ NP[superscript]A, we are also able to solve an open problem raised by Book, Long and Selman

    The Quantitative Structure of Exponential Time

    Get PDF
    Recent results on the internal, measure-theoretic structure of the exponential time complexity classes E = DTIME(2^linear) and E2 = DTIME(2^polynomial) are surveyed. The measure structure of these classes is seen to interact in informative ways with bi-immunity, complexity cores, polynomial-time many-one reducibility, circuit-size complexity, Kolmogorov complexity, and the density of hard languages. Possible implications for the structure of NP are also discussed

    A Relativization Perspective on Meta-Complexity

    Get PDF
    Meta-complexity studies the complexity of computational problems about complexity theory, such as the Minimum Circuit Size Problem (MCSP) and its variants. We show that a relativization barrier applies to many important open questions in meta-complexity. We give relativized worlds where: 1) MCSP can be solved in deterministic polynomial time, but the search version of MCSP cannot be solved in deterministic polynomial time, even approximately. In contrast, Carmosino, Impagliazzo, Kabanets, Kolokolova [CCC'16] gave a randomized approximate search-to-decision reduction for MCSP with a relativizing proof. 2) The complexities of MCSP[2^{n/2}] and MCSP[2^{n/4}] are different, in both worst-case and average-case settings. Thus the complexity of MCSP is not "robust" to the choice of the size function. 3) Levin’s time-bounded Kolmogorov complexity Kt(x) can be approximated to a factor (2+ε) in polynomial time, for any ε > 0. 4) Natural proofs do not exist, and neither do auxiliary-input one-way functions. In contrast, Santhanam [ITCS'20] gave a relativizing proof that the non-existence of natural proofs implies the existence of one-way functions under a conjecture about optimal hitting sets. 5) DistNP does not reduce to GapMINKT by a family of "robust" reductions. This presents a technical barrier for solving a question of Hirahara [FOCS'20]
    corecore