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Genericity and measure for exponential time’ 

Klaus Ambos-Spies a, Hans-Christian Neis b, Sebastiaan A. Terwijn ‘.* 

B Universitiit Heidelberg, Mathemutisches Institut. D-69120 Heidelberg 
b Universitdt F&burg, Matlzematisches Institut, D-79106 Freiburg 

’ Unitersiteit oan Arrwterdam, Facuiteit Wiskunde en Informutica. NL-1018 TV Anwterdam, Nrtherlunds 

Abstract 

Recently, Lutz [14, 151 introduced a polynomial time bounded version of Lebesgue measure. 
He and others (see e.g. [ 11, 13-18,201) used this concept to investigate the quantitative struc- 
ture of Exponential Time (E = DTIME(2”“)). Previously, Ambos-Spies et al. [2,3] introduced 
polynomial time bounded genericity concepts and used them for the investigation of structural 
properties of NP (under appropriate assumptions) and E. Here we relate these concepts to each 
other. We show that, for any c 3 1, the class of n’-generic sets has p-measure 1. This allows us 
to simplify and extend certain p-measure l-results. To illustrate the power of generic sets we 
take the Small Span Theorem of Juedes and Lutz [ 111 as an example and prove a generalization 
for bounded query reductions. 

1. Introduction 

The classical Lebesgue measure was effectivized by Martin-LGf [ 191, Schnorr [21], 

and others. Recently, Lutz [14, 151 further persued this approach to define a feasible, 

i.e., polynomial time computable, measure concept. He and others showed that this 

p-measure is a natural tool for the quantitative analysis of the class E = 

DTIME(2”“) of exponential time computable sets (see [ 161 for a survey). For example, 

Mayordomo [20] and Juedes and Lutz [ 1 l] showed that concepts like p-bi-immunity 

and p-incompressibility, respectively, which play a fundamental role in the structural 

analysis of E, have p-measure 1. Another important result with various applications 

is the Small Span Theorem of Juedes and Lutz [l l] which asserts that, for any set 

A E E, the class P,(A) n E of sets in E which are p-m-reducible to A or the class 

P;‘(A) of the sets to which A is p-m-reducible has p-measure 0. 

’ This work was supported in part by the Human Capital and Mobility program of the European Community 

under grant CHRXCT93.0415. The third author was supported by the Dutch VSB foundation during the 

time of this research. 
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Preceeding Lutz’s work on resource bounded measure, Ambos-Spies et al. [2,3,7,X] 

introduced resource bounded genericity concepts. These genericity concepts, which 

were inspired by restricted arithmetical forcing concepts in recursion theory (see e.g. 

Jockusch [lo]), formalize standard diagonalization concepts and classify these concepts 

by the complexity of the conditions corresponding to the single diagonalization steps. 

The corresponding generic sets share all properties which can be enforced by the di- 

agonalization arguments of given complexity. In [2] Ambos-Spies et al. consider only 

such diagonalizations which have tally witnesses. (This restriction became necessary 

by the goal to characterize a diagonalization concept which pertains to P, in the sense 

that it allows diagonalization over P but not over any larger complexity class. That 

is for this concept generic sets can be found in any “smooth” hyperpolynomial time 

class.) Then, in [3], general diagonalization concepts were studied. Here we will relate 

these latter concepts to the p-measure of Lutz. 

In Section 2 we introduce the genericity concept adequate for p-measure, namely 

nc-genericity (c> l), which in [3] was called DTIME(nC)-2-genericity. By modify- 

ing the proof in [3] that P-2-generic sets exist in DTIME(2”‘) we obtain a general 

existence theorem for t(n)-generic sets, for t any time constructible time bound. In par- 

ticular this result implies that there are tic-generic sets in DTIME(2(Ct2)“) of arbitrary 

density. To show how to work with generic sets we prove that, for any n”-generic 

set A (~22) A $ DTIME(2Cn), A is 2Cn-bi-immune and A is 2(C-‘)“-incompressible. 

Moreover, we show that the nc-generic sets witness the separation of the common 

polynomial reducibilities between one-one and (bounded) truth-table. As a corollary 

we obtain that, for c 22, nc-generic sets are not p-btt-complete for E. Finally we 

complement the latter by constructing n“-generic sets which are p-tt-complete for E. 

Then, in Section 3, we relate genericity to measure. Fleischhack [7,8] has shown 

that, for any recursive t, the class of t(n)-generic sets has measure 1 in the classi- 

cal sense. Here we prove the analogous result for p-measure, by showing that, for 

any c 3 1, the class of nc-generic sets has p-measure 1. So any property implied by 

nc-genericity occurs with p-measure 1. This gives a new way to obtain p-measure l- 

results which can be technically and combinatorically considerably simpler than the 

direct approach. 

We illustrate this approach in Section 4, by first reproving the Small Span Theorem 

of Juedes and Lutz [ 1 I] (for p-m-reducibility) using genericity. The technical main 

result required for this approach is that, for any nk-generic set A E DTIME(2”“) 

no set B E P;‘(A) is nd(‘) -generic (for some constant d(c) depending on c), whence 

pp(Pil(A)) = 0. Then we extend the Small Span Theorem to polynomial-time bounded- 

query (p-k-tt) reductions. The proof of this theorem, which is considerably more com- 

plex, depends - besides the results on the measure of generic sets from Section 3 - 

only on structural properties of the generic sets. We conclude this section by discussing 

some serious obstacles for extending the Small Span Theorem to still weaker polyno- 

mial reducibilities. Moreover, we apply our results to determine the p-measure of the 

E-hard and E-complete sets under the strong polynomial reducibilities. 



K. AmhwSpies et al. I Theoretical Computer Scww 168 (1996) 3-19 5 

Finally, in Section 5, we point out the limitations of our generic-set approach to 

p-measure l-results. We show that in general nc-generic sets are not n“-random. This 

distinction follows from the observations (made first in [3] and [17], respectively) that. 

in contrast to genericity, randomness determines the density of a set. 

We conclude this section by introducing some notation. N denotes the set of natu- 

ral numbers. The lower case letters c, d, i, j, k, m, n denote numbers. Let C = (0, I} 

and let C* be the set of (finite) binary strings. A subset of Z* is called a lun- 

guaye or simply a set. Strings are denoted by lower case letters from the end of 

the alphabet (u,t;,w,x, y,z), languages are denoted by capital letters A,B, c’, Bold- 

face capital letters A, B, C, denote classes of languages, i.e., subsets of the power set 

of C’. ln particular, P is the class of polynomial time computable languages, E = 

Uca, DTIME(2’“) is the class of linear exponential time sets, and El = lJ, ~, (2”’ ) is 

the class of polynomial exponential time sets. For a deterministic time class C we let 

FC denote the class of functions ,f : Z* + C” which can be computed within C’s 

time bound. 

The concatenation of two strings x and y is denoted by .YY; i is the empty string; lal-/ 

denotes the length of the string x; < is the length-lexicographical ordering on C*; z,? is 

the nth string under this ordering; and x + k is the kth successor of x under < (k >, 1). 

We identify a language A and its characteristic function, i.e., x E A iff A(x) = 1. and 

we let llAi[ denote the cardinality of A. For A C C” and x E C” we let .4/x denote the 

finite initial segment of A below X, i.e., Alx = {J: _y < x & J’ E A}, and we identify 

this initial segment with its characteristic string, i.e., AIz,, = A(q). . A(z,,_ 1 ) E z‘“. 

Accordingly, we let (Alxl denote the length of the characteristic string of .4]x. Note 

that 

21.Yl - 1 < IAlxl < 2”‘+’ - 1. (1.0) 

We say A is C-m-reducible to B (A <tern B) via ,f‘ if ,f E FC and, for every x E C*. 

A(x) = B(f(x)). Instead of P-m-reducible and DTIME(t(n))-m-reducible we shortly 

say p-m-reducible and t(n)-m-reducible, respectively, and write Gp-,?, and < i(,i)-n,. 

In case of the other resource bounded reducibilities we will consider only the poly- 

nomial case. We assume the reader to be familiar with the polynomial time bounded 

versions of one-one (p-l), truth-table (p-tt), and Turing (p-T) reducibility (see 

Ladner et al. [ 121). As intermediate reducibilities between p-m and p-tt we consider 

the bounded-query reductions: A p-k-tt-reduction h(y), , gk) consists of polynomial 

time computable functions h : C* x 1’ + 1 (evaluator) and .I/( : C* - Z* (1 <i <A; 

srkec~tors). For an evaluator function h we define h,(al,. ,a~) = h(x,a[,. ,a~ ). So 

h, is the k-ary Boolean function which evaluates the k oracle queries on input X. A 

set 4 is p-k-tt-reducible to a set B (A <p-kstt B) via h(gl,. , qk) if Vx E C* (A(x) = 

h(x, R(gl (x)), , B(gk(x)))). A is p-k-tt-reducible to B if A <[,-k+ B via some p-k-tt- 

reduction h(cgl,. . . , ~1). Finally, A is p-btt-reducible to B (A Gp-btr B) if A <,,-k..tt B for 

some k>l. 
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2. Generic sets 

We now introduce the central concept of this paper. 

Definition 2.1 (Ambos-Spies et al. [3]). A condition is a set CC C*. A language A 

meets the condition C if, for some string x, A(x E C. C is dense along A if 

!l”Ox E ,X*li E C ((Alx)i E C); 

and C is dense if C is dense along all languages. A language A is C-generic if A 

meets every condition C E C which is dense along A. 

This genericity concept was introduced by Ambos-Spies et al. in [3]. Of the three 

types of genericity concepts introduced there, here we consider only the second type. 

In [3], C-generic sets were called C-2-generic sets. For deterministic time classes 

we abbreviate DTIME(t(n))-generic by t(n)-generic and we call a condition C E 

DTIME(t(n)) a t(n)-condition. 

A condition C should be viewed as a finitary property P of languages, where C 

contains all finite initial parts XIX of languages such that all languages Y extending 

Xix have the property P. So a language A has the property P if and only if A meets 

C. C is dense along A if and only if in a construction of A along the ordering <, 

where at stage s of the construction we decide whether or not the string z, belongs 

to A, there are infinitely many stages s such that by appropriately defining A(z,) we 

can ensure that A has the property P (i.e. Al(zs + 1) E C). Finally, in case of a 

t(n)-condition, the complexity for the correct choice for A(z,) is t(n)-time bounded in 

jAIzsl, i.e., by (1.0) t(2”)-time bounded in the length of z,. So a t(n)-generic set will 

have all finitary properties P of time complexity t(n) (relative to the length n of the 

initial segment) which can be ensured in a construction of the above type infinitely 

often. 

In the following we will mainly consider nc-generic sets (c 2 1) which are adequate 

for analyzing the structure of E. We start, however, with some more general results. 

Proposition 2.2. (i) Let C and D be classes such that C C D. Then any D-generic 

set is C-generic. In particular, if t and t’ are recursive functions such that t(n) <t’(n) 

almost everywhere then any t’(n)-generic set is t(n)-generic. 

(ii) For any recursive function t, the complement 2 of a t(n)-generic set A is 

t(n)-generic too. 

Proof. The first part is immediate by definition. The second part follows from closure 

of DTIME(t(n)) under complements. 

In [3] Ambos-Spies, Fleischhack and Huwig have shown that there are sparse P- 

generic sets in DTIME(2”‘). By a simple modification of this proof we obtain a strong 

general existence theorem for t(n)-generic sets. 
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Theorem 2.3. Let t(n), t’(n) and f(n) be nondecreasingfunctions on N such that t(n) 

and t’(n) are time-constructible, t(n),t’(n)>n, f(n) is polynomial time computable 

with respect to the unary representation, and the range off is unbounded. Moreover, 

let B be a set in DTIME(t’(n)). Then there is a t(n)-generic set A such that 

A E DTIME(2”+’ (t’(n) + n2 . t(2”+‘). log(t(2”+‘)))) 

and, for any n >O, 

Il(AdB) n {x E c”: 1x1 = n}\l <.f(n). 

Proof. We construct a t(n)-generic set A with the required properties in stages, where 

at stage s we decide whether or not z, E A. By means of a standard universal machine 

we may fix a recursive enumeration {C, : e E N} of DTIME(t(n)) such that 

C = (0’1~: x E Ce} E DTIME(e t(lxl) log(t(lxl)) + e). (2.0) 

Then to ensure that A is t(n)-generic it suffices to meet the requirements 

R,: C, dense along A + A meets C, 

for all numbers e E N. Simultaneously with A we enumerate a list Sat of the indices of 

the requirements which are satisfied by diagonalization, and we let Sat, be the part of 

Sat enumerated by the end of stage s (Sat-i = 0). So, by the end of stage s - 1, Alz, 

and Sat,_, are given. 

Stage s: We say that the requirement R, requires attention (at stage s) if e < 

.f(l~l), e $ SAT,-1 and 

3 d l((Alz,)i E C,). 

Distinguish the following two cases. 

(*) 

Case 1: Some requirement requires attention. Fix the least e such that R, requires 

attention and fix i< 1 minimal with (A( E C,. Let A(z,) = i and Sa& = Sat,_, U {e} 

and say that R, receives attention. 

Case 2: Otherwise. Let A(z,) = B(z,Y) and let Sat, = Sat,_]. 

This completes the construction, To show that A is t(n)-generic, first note that every 

requirement receives attention at most once and that Sat, contains the indices of the 

requirements which received attention by the end of stage s. So, by a straightforward 

induction, every requirement requires attention only finitely often. Hence if C, is dense 

along A, (*) will hold at infinitely many stages s, whence R, will eventually receive 

attention, thereby ensuring that A meets C,. So every requirement R, is met, whence 

A is t(n)-generic. 

Moreover, at a stage s with lzsl = n, only a requirement R, with e < f(n) may re- 

ceive attention. So Case 1 can apply to at most f(n) such stages, whence, by definition 

of A in Case 2, II(AdB) n {x E C*: 1x1 = n}II <f(n) will hold. 

It remains to show that A E DTIME(2”+’ (t’(n) + t”(n))), where t”(n) = 

n2. t(2n+‘) log(t(2”+’ )). Fix any string z, of length n. Then, by (1 .O), s < 2”+’ whence 
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it suffices to show that, given A(z, and Sat,_,, A(z,) and Sat, can be computed in 

t’(n) + t”(n) steps. To do so, without loss of generality assume that f(n) dn. More- 

over, since f(n) can be computed in poly(n) steps, we may assume that f(n) is given. 

Then t”(n) steps suffice to decide whether Case 1 applies to stage s and if so to perform 

the corresponding action: Since, by assumption Alz, and Sat,_, are given, it suffices to 

check for each of the n numbers e < lzsl and for i < 1 whether (Ajz$)i E C, which, by 

(2.0), can be done in O(n . t(2”+‘)log(t(2”+‘))) steps for each such e. Finally, since 

Case 2 can be performed in t’(n) steps this implies the claim. 

Corollary 2.4. There is a sparse n”-generic set in DTIME(2(c+2)“). 

Proof. Apply Theorem 2.3 to t(n) = n’, t’(n) = f(n) = n and B = 8. Since 

2 ‘+’ . (n + n2 (zn+‘>c log((2”+‘)“)) < 2(C+2)n 

almost everywhere, this yields an n’-generic set A EDTIME(~(“+~)“) with 

lIA n {x E C*: 1x1 = rz}II dn. 

As the following theorem shows, Theorem 2.3 provides an almost optimal lower bound 

on the time complexity of t(n)-generic sets. 

Theorem 2.5. Let A be t(n)-generic. Then A eDTIME(t(2”)). In particular, there is 

no nc-generic set in DTIME(2C”). 

Proof. For a contradiction assume that A E DTIME(t(2n)). Then, by (1 .O), 

C = {X/(x + 1): A(x) # X(x>} 

is a t(n)-condition which is obviously dense. So, by t(n)-genericity, A meets C. By 

definition of C this implies that A(x) # A(x) for some x, a contradiction. 

The argument in the proof of Theorem 2.5 is typical for showing that a generic set 

has a certain property. In the following we give two further examples: we prove that 

generic sets are incompressible under many-one reductions and bi-immune. Here as in 

the following we will restrict ourselves to n’-genericity. 

A function f : C* + C * is almost l- 1 if the collision set of f, 

COLLf = {x E c*: 3y < x (f(x>=f(y))}, 

is finite. f is consistent with a set A if, for all x,y E C”, A(x) # A(y) implies 

that f(x) # f(y). Then A is C-incompressible if, for any f E FC which is con- 

sistent with A, f is almost 1-l. Again we abbreviate DTIME(t(n))-incompressible 

by t(n)-incompressible and we write p-incompressible for P-incompressible. Note that 

A<c_~ B via f implies that f is consistent with A. So, for C-incompressible A, any 

C-m-reduction from A is almost l-l. 



Theorem 2.6. Let A be n’qeneric (c 32). Then A is 2 (‘-’ )“-incompressible. 

Proof. Fix ,f‘ E FDTIME(2(C-1 1”) such that J‘ is consistent with A. To show that ,f’ is 

almost I-1, define C = {X1(x + 1): 3~ < x (,f(x) = f(,~) & X(x) # X(y))}. Then 

C is an n’-condition. Moreover, by consistency of ,f with A, A does not meet C. So, 

by n”-genericity of A, C is not dense along A. By definition of C, it follows that the 

collision set of ,f‘ is finite. 

It is easy to show that any 2”‘-incompressible set A is 2“‘-hi-immune, i.e., A n B # 8 

and jf1L3 # 0 for any infinite B E DTIME(2’“) (see [S]). So Theorem 2.6 implies that 

any n’-generic set is 2(“-‘)n-bi-immune (~22). By a direct argument we can slightly 

improve this result. 

Theorem 2.7. Let A be n’genrric (~22). Then A is 2’“-bi-immunr. 

Proof. By Proposition 2.2 it suffices to show that A is 2”n-immune, i.e., that A n B # 8 

for any infinite B E DTIME(2’“). So fix such a set B. Define 

C = {X1(x + 1): X(x) = B(x) = l}. 

Then, by (1 .O), C is an n’-condition which, by infinity of B, is dense. Hence. A meets 

C which, by definition of C, implies that A n B # (D. 

We can also apply n‘-genericity to separate the standard polynomial time reducibili- 

ties between p-one-one and p-bounded-truth-table (see [ 121). As a corollary we obtain 

that rz”-generic sets cannot be p-btt-complete for E. 

Theorem 2.8. Let A be n’generic (~32). 

(i) AdA jlrp-l A, 

(ii) A &-,,I A, 
(iii ) Ax $:,-k-tt A, bvhere Ak = {x : {x,x + 1,. . ,s + k} n A # (o} (k 3 I), 

(iv) A,., &-btt A, where A,,, = {Oklx: x t Ak}. 

We omit the proof of Theorem 2.8 since it is very similar to the proof of the 

corresponding facts for the tally p-generic sets in [2] (see [2], Theorem 5.9). Note 

that, for any set A, A e A <P-m A, A <p-l-tt A, Ax <p-(k+l jetI A, and A,, <p-tt A. So we 

can mutually distinguish p- 1, p-m, p- 1 -tt, p-(k + 1 j-tt(k 2 1 j, p-tt and p-tt reductions 

to n”-generic sets. 

Corollary 2.9. Let A be n’qmeric (~22). There are .sets B1, B2,Bx.k (k 3 1) und B4 

such thut 

(i) BI 6,-, A but BI $=,-I A, 
(ii) Bl <p-l-tt A but B2 $p-m A, 

(iii) B3.k <p-(k+l)-tt A but h,k $.p-k-tt A (k 3 11, 

(iv) B4 <[,+A but 84 dp-btt A. 
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Corollary 2.10. Let A be nc-generic (c > 2). Then A is not p-btt complete for E. 

Proof. Assume that A E E. Then, for A, as in Theorem 2.8, A, E E but A, 6 p-~tt A. 
So A is not p-btt-complete for E. 

We conclude this section with the observation that Corollary 2.10 is optimal. Given 

f : N 4 N we say that A is p-f(n)-tt-reducible to B if there is a p-tt-reduction 

from A to B for which the number of oracle queries on inputs of length n is bounded 

by f(n). 

Theorem 2.11. Let f : N ----) N be nondecreasing, unbounded and polynomial time 
computable with respect to the unary representation. There is an nc-generic set A 
which is complete for E under p-f (n)-tt-reductions (c> 1). In particular, there is an 
nc-generic set A which is p-ii-complete for E. 

Proof. Fix a p-m-complete set C for E. We will use the following transitivity law for 

p-m- and p-f(n)-tt-reductions: Since a p-m-reduction increases the size of the input 

only by a polynomial factor and since f is nondecreasing, for any sets X, Y,Z, 

x dp-mY & Y < p-f(log(n))-ttz =+ x bp-f(n)-ttz. 

Hence, it suffices to show that there is an nc-generic set A E E with CQ~-I(~,,~(~))-~A. 
Let B = {xy : Ix/ = (yl & x E C}. Then, by Theorem 2.3, there is an nc-generic 

set A E E such that 

II(AAB) n {x E C* : 1x1 = 2n)ll d l/3 . f (log(n)). 

Hence, x E C if and only if IIA fl F,/I 22/3 f (log(lxl), where F, consists of the 

lexicographically first f(log(lxl)) strings xy with 1x1 = ]y(. So C is p-f (log(n))-tt- 
reducible to A. 

Remark 2.12. As the results of this section show, the nc-generic sets pertain to 

diagonalizations over the levels of the linear exponential time hierarchy E = 

Uca, DTIME(T”). So, since a set is P-generic iff it is nc-generic for all c 3 1, P- 

generic sets relate to diagonalizations over E. In particular, by Theorem 2.5, no set in 

E is P-generic. In fact, by Theorems 2.6 and 2.7, P-generic sets are E-incompressible 

and E-bi-immune. On the other hand, by Theorem 2.3, P-generic sets can be found 

in all sufficiently closed, smooth deterministic time classes properly containing E. For 

example, as shown already in [3], there are P-generic sets in the class DTIME(2(“*)). 
In an analogous way, the 2 (losn)C-generic sets pertain to the levels DTIME(2cnc)) of 

the polynomial exponential time hierarchy E2. For example, by Theorem 2.5, there is 

no 2(10sn)C-generic set in DTIME(2(“‘)), and the proofs of Theorems 2.6 and 2.7 can 

easily be modified to show that 2(“‘s”)‘-generic sets are DTIME(2(“‘-I))-incompressible 

and DTIME(2(“‘))-bi-immune (~22). On the other hand, by Theorem 2.3, there are 

2@sn)“-generic sets in DTIME(2(““‘)). So, for P2 = UC>, DTIME(2(“‘s”,‘), the 
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Pz-generic sets relate to diagonalizations over El just as the P-generic sets relate 

to diagonalizations over E. In particular, observe that the proof of Theorem 2.11 can 

easily be modified to show that, for any function ,f‘ as there and for any c 3 1, there is 

a 2(“sn)’ -generic set (hence a P-generic set) which is complete for El under p-,f(n)- 

tt-reductions. 

3. Genericity and measure 

We first introduce a fragment of Lutz’s measure theory which will be sufficient for 

our investigations. Our presentation follows [ 161. A more complete account of resource 

bounded measure theory can be found in [ 151. 

A martingale is a function d : C* + [O,co) such that, for all x E Z*, d(x0) + 

d(x1) <2d(x). A martingale d succeeds on a language A C C* if lim supn d(A(z,) = 3~. 

Note that the values of martingales are reals. So to define computability of a martin- 

gale we consider approximations dk : .I* + Q+, where Q+ is the set of nonnegative 

rationals, satisfying Idk(x) - d(x)1 <2-k (k E N). For such approximation functions 

we can define the time complexity in the standard way and we can say that a martin- 

gale d is t(n)-computable if it has uniformly t(n)-computable approximation functions 

dk, k 30. If d is p(n)-computable for some polynomial p then we say that d is 

p-computable. 

Now a class C of languages has t(n)-measure 0 (prcn,(C) = 0) if there is a t(n)- 

computable martingale which succeeds on every language in C. The class C has t(n)- 

measure 1 &,)(C) = 1) if colt = 0 for the complement C’ = {A C: C*: A @ C} 

of C. We write pt(,Z)(C) # 0 to indicate that C does not have t(n)-measure 0. The p- 

measure of a class C is defined similarly by p-computable martingales and is denoted 

by ,+(C). The measure of a class C relative to E is defined by saying that C has 

measure 0 in E (p(C]E) = 0) if ~lp(C n E) = 0 and C has measure 1 in E(p(C]E) = 

1) if p(CIE) = 0. We write p(CIE) # 0 to indicate that C does not have measure 0 in 

E. Lutz has shown that the measure in E is nontrivial: Since pJE) # 0, p(CIE) = 1 

implies that p(C]E) # 0. 

We should remark that, for technical convenience, our martingale definition differs 

slightly from Lutz’s definition: while he requires that d(x0) + d(x1) = 2d(x) we only 

require that d(x0) +d(xl) <2d(x) (In the literature such a function is sometimes called 

a super-martingale and Lutz calls it a density function). As a consequence the resulting 

t(n)-measure notions may differ by a linear factor. In both cases, however, we obtain 

the same notion of p-measure and measure in E. As a technical tool we will need the 

following (weak) version of o-additivity of the p-measure: 

Lemma 3.1 (Lutz [15]). Let C, (e E N) be classes of languages and let C = IJraO C,. 

Assume that, for some c 3 1, there is an n”-computable function d : N x C* + Q+~ 

such that, for any e E N, d, = Ax.d(e,x) is a martingale ichich succeeds on every 

language in C,. Then uL,<+j(C) = up(C) = 0. 
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Theorem 3.2. For any c3 1, the class of n“-yenerb sets bus nc+3-measure 1, hence 

p-measure 1. 

Proof. Fix c and let {C, : e E N} be a recursive enumeration of DTIME(n”) such that 

C = (0”l.x: x E Ce} E DTIME(e . 1x1’ . log(lx(“) + e) (3.0) 

holds. Let C, = {X: C, is dense along X &X does not meet Ce} and let C = Ue>O C,. 

Then C is the class of languages which are not n”-generic. So, by Lemma 3.1, it suffices 

to define an nc+2-computable function d such that, for e E N, d, is a martingale which 

succeeds on every language in C,. For x with IxJ<2” let d(e,x) = 1 and, for x with 

1x1 >2e and for id 1, let 

0 if xi E C, &x(1 -i) +Z C,, 

d(e,xi) = 2d(e,x) if x( 1 - i) E C, &xi +Z C,, 

d(e,x) otherwise. 

Then each d, is a martingale. Moreover, it easily follows from (3.0) that d is nc+2- 

computable. So it only remains to prove that each d, succeeds on the languages in 

C,. Fix e and X E C,. Then C, is dense along X but X does not meet C,. By the 

latter, Xix # C, for all x, whence d(e,Xlx) # 0 for all x. It follows that d(e,Xlz,) 

is nondecreasing in n. So it suffices to show that there are infinitely many x such 

that d(e,Xl(x + 1)) = 2d(e,Xlx), i.e., by definition of d, such that, for some i< 1, 

X1(x + 1) = (XIx)i, (X1x)( 1 - i) E C, and (XIx)i @ C,. But this is immediate by 

definition of C,. 

By Theorem 3.2, any property shared by all n’-generic sets (for some c 3 1) occurs 

with p-measure 1. For example, from Theorem 2.4 we may conclude that the class 

of 2”“-incompressible set has p-measure 1. This was first shown by Juedes and Lutz 

[l l] using a direct argument. Though, in general, the direct proof that a property P 

has p-measure I uses the same ideas as showing that any #-generic set (for some 

c) has this property, the latter may turn out to be less complex, since it suffices to 

consider single requirements. In particular in more involved arguments this simplified 

machinery can help to keep down the combinatorical complexity of proofs. In the next 

section we will give an example for this. 

Remark 3.3. Besides the measure on, E Lutz also introduced a measure on E2. Let 

P2 = UC31 DTIME(2@a”)‘). Then thvz-measure of a class C is defined by letting 

pppz(C) = i (i E 0,l) if th ere is a number c such that, for t(n) = 2(“gnY, P,(~)(C) = i. 

Moreover, C has measure 0 in E2 (,u( CIE2) = 0) if ppp: (C n E2 ) = 0 and C has 

measure 1 in E2 (p(CIE2) = 1) if p(C’/Ez) = 0. By duplicating the above argument 

we can show that, for any c, the class of the 2(“gn)’ -generic sets has pz-measure 1, 

hence measure 1 in El. In particular, the class of P-generic sets has pz-measure 1 and 

measure 1 in E2. 
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4. The Small Span Theorem for bounded query reductions 

For a polynomial time bounded reducibility <p-r the kower and upper span of a set A 

are defined by P,(A) = {B: B $-,.A} and P;‘(A) = {B: A + B}, respectively. The 

intersection of the upper and lower span of A is the p-r-degree of A : degp_,.( A) = {B : 

B _p_,. A}. Juedes and Lutz [ 1 l] have shown that, for any set A E E, the upper span of 

A or the lower span of A under p-m-reducibility has measule 0 in E. Hence deg,_,?,(A) 

has measure 0 in E for any set A E E. So, in particular, the class of p-m-complete 

problems for E has measure 0 in E. 

Here, we first deduce the Small Span Theorem for p-m-reducibility from Theorem 

3.2 and a theorem on the distribution of the nc-generic sets under p-m-reducibility 

which we will prove next. Then, by extending this theorem to bounded truth-table 

reductions, we generalize the Small Span Theorem to these reductions. 

Theorem 4.1. Let A and B be sets such that A dp-,,, B, A is n”-generics and A E 

DTIME(2d”) where c, d 22. Then B is not ndf’-generic. 

Proof. Fix f E FP such that A <P-m B via .f and let D = {x: if(x)1 3 IxI}. Note that, 

by Theorem 2.6, A is p-incompressible whence f is almost l-1. This easily implies 

that D is infinite. So the condition 

C = {-WY+ 1): ~X(IxIGl~l&f‘tx) = Y&A(X) #X(v))) 

is dense. Moreover, as one can easily check, C E DTIME(n”+‘) and, since A <p-m B 

via j’, B does not meet C. So B is not ndi’-generic. 

Note that the main step in the above proof shows that, for any p-incompressible 

A E DTIME(2d”) and for any B with A <p-m B, B is not 2(d+‘)“-bi-immune. The first 

proof of this fact is due to Lindner [ 131. 

Corollary 4.2 (Small Span Theorem of Juedes and Lutz [ 1 I]). Let A E E. Then 

II(P,(A)IE) = 0 or pp(P;‘(A)) = p(P;‘(A)IE) = 0. 

Proof. If there is no n*-generic set in P,(A) n E then p(P,,(A)JE) = p,,(P,(A) n 
E) = 0 by Theorem 3.2. Otherwise, fix A’ and d 32 such that A’ is n*-generic, 

A’ $,-,A, and A’ E DTIME(2d”). Since P;‘(A) is contained in P;‘(A’) it follows 

from Theorem 4.1, that Pi’(A) does not contain any ndf’-generic set. So, again by 

Theorem 3.2, pIl(P;l(A)) = p(P;‘(A)JE) = 0. 

Lutz [ 161 raised the question whether the Small Span Theorem generalizes to the 

weaker polynomial reducibilities. Lindner [ 131 proved the Small Span Theorem for 

p-I-tt-reducibility. So the positive character of p-m-reducibility is not necessary for 

the theorem. This still left the question what happens for reducibilities which may ask 

more than one query. Here we prove the Small Span Theorem for any p-k-tt-reductions 

for any k > 1, i.e., for reductions where the number of queries does not depend on the 
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input (for the definition of p-k-tt-reducibility, see the introduction). The main step in 

the proof is an analogue of Theorem 4.1 for p-k-tt-reducibility. 

Theorem 4.3, Let A and B be sets such that A <p-k-tt B for some k > 1, A is nc-generic 

for some c 22, and A E DTIME(2d”) for some d 22. Then B is not n(k+‘)(d+‘)-generic. 

For the proof of this theorem we need an incompressibility concept for p-k-tt- 

reductions and some more technical tools. 

Definition 4.4. The collision set of a p-k-tt-reduction h(gl, . . . , gk) is defined by 

COLLY,, ,...>Yl ) = {xEC*: 3y <x(g,(x)=gl(y) &...L?L 

gk(X) = gk(y) & hx = A,)}. 

The reduction h(g,,. ..,gk) is almost 1-Z if COLLhcy ,,..., yi) is finite; and h(gl,. ..,gk) 

is consistent with a language A if 

vxk, Y E C*([gi(x) = St(v) &. . . & gk(X) = gk(y) & hx = &I =+ 4x1 = A(Y)). 

A language A is p-k-tt-incompressible if, for any p-k-tt-reduction h(gl, . . . , gk) which 

is consistent with A, h(gl,. . . ,gk) is almost l-l. 

Note that A<p-k-aB via h(gl,. . . ,qk) implies that h(gl,. . . ,gk) is consistent with 

A, whence for p-k-tt-incompressible A, h(gl , . . . , gk) is almost l-l. As we show 

next, p-k-tt-incompressibility coincides with p-incompressibility. So, by Theorem 2.6, 

#-generic sets are incompressible under p-k-tt-reductions. 

Lemma 4.5. For any k 3 1, A is p-k-tt-incompressible ifs A is p-incompressible. 

Proof. Since any p-m-reduction may be viewed as a p-k-tt-reduction, obviously any 

p-k-tt-incompressible set is p-incompressible. For a proof of the nontrivial direction, 

let A be p-incompressible and fix any p-k-tt-reduction h(gl, . . . , gk) which is consistent 

with A (k > 1). We have to show that h(gl,. ,gk) is almost l-l. Let 

A’ = {(hx,g,(x),...,gk(X)): x EA}. 

Since h(gl,. , gk) is consistent with A, A $,-m A’ via f(x) = (h,, g1 (x), . . . , gk(X)). So, 

by p-incompressibility of A, f is almost l-l, whence h(gl,. . . , gk) is almost l-l too. 

For technical convenience, in the following we assume that all p-k-tt-reductions are 

in a normal form, where the queries are listed in decreasing order and redundant queries 

are replaced by /1: A p-k-tt-reduction h(gl , . . . , gk ) is normal if, for any x E c*, there is 

some i < k such that, for 1 <j < i, gj(x) > gi+l(x) and, for j 3 i, gj(x) = 3,. It is easy 

to show that, for any p-k-tt-reduction, there is an equivalent normal p-k-tt-reduction. 

For a normal p-k-tt-reduction h(gl, . , . , gk), the rank of h(gl,. . . , gk) is defined to be 

the greatest number r E { 1,. . . , k} such that 

3”~ E C*(lxl <(k + l)lg&)l). 

(If no such Y exists then the rank of h(gl,. , gk) is 0.) 
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Lemma 4.6. Let h(y,,. ., gk) be u normul p-k-it-rrduuction uyhich is ulmost l-l. Then 

the runk qf‘h(gl,. ,qk) is yrruter thun 0. 

Proof. Fix II such that 2” > 22A and no x with 1x1 an is in the collision set of 

h(yi,...,yk-). It suffices to show that, for some x with 1x1 = (k + l)n, lgi(x)larz. 

Let 

BC,, = {(~.yi,. .,~k): c( is a k-ary Boolean function and. for 1 Gi<k. J’, E I* 

and I,% < n}. 

Since h(gl,.... gk) is normal, for any x with Igi( < 17, (h,,ql(x) ,..., <IL(x)) E BC,,. 

So, since, by choice of n, h(yl,.. .,cgk) is l-1 on {x E Z*: Ix/ = (k + 1)n). the 

existence of an x with the desired properties will follow from 

IIBC,,I( < 11(x E C*: Ix/ = (k + l)n}~i = 2(k+‘)‘i. 

This holds since there are 2” - 1 strings of length less than n and 221 k-ary Boolean 

functions, whence by choice of n, lIBC,,ll < 221 (2’1)k < 2” (2”)k = 2(k-t’)“. 

We are now ready to prove Theorem 4.3. 

Proof of Theorem 4.3. Fix a normal p-k-tt-reduction h(qI,. . ,gk) from A to B of 

minimal rank, say Y. Note that, by Lemma 4.5, h(gi,. .,yk) is almost 1-I whence, by 

Lemma 4.6, 7 > 0. We first show that there are infinitely many strings x satisfying 

l-v/ G(k + 1 )I.y~@)l& 
~7,(O>BM-~)h.. .,Btydx))) # h.,(l,QJz(x)),. . ,B(Mx))). (4.0) 

For a contradiction assume that (4.0) fails for almost all strings x, and fix n such that 

no string x with 1x1 an has this property. Define a p-k-tt-reduction h’(g’,. , qi ) as 

follows. For x with n< 1x1 <(k + l)lgi(x)l let 

(g;(x) . . . . ,u;.(X)) = (&),...,g/ctx),j~) & J((,j,,....jk) = h,-(%ji,...,.jl,-I) 

(for any ,ji ,...,. jk E C), and let (g;(x) ,..., gi(x)) = (yi(x) . . . . . .(/k(x)) and h{. = h, 

otherwise. Note that in the first case, 

h.~.(B(ll~(x)),B(y~(x)),...,B(y~(x)))=h,(O,B(yz(x)),....B(yl,(x))) 

= hu(B(yl(-~)),B(y2(.~)),. .,B(M-y))). 

where the second equality follows from failure of (4.0). So A <,J-a-tt B via 

h’(y{, , gi). Moreover, this reduction is normal, and, for almost all x with 1.~1 < 

(k+ I)/cII(x)~> h’(&..., gk) is obtained from h(yl.. . ,gk) by eliminating the greatest 

query gl(x). So the rank of h’($, ,q:) is I’ - 1, contrary to minimality of Y. So (4.0) 

holds infinitely often. Hence, the condition 

C = {Xiy+ 1: 3x(lxld(k + I)l_v/ & ye = y & 

h,(X(gl(x)), ,X(a(x))) # A(x))} 
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is dense. Moreover, C E DTIME(n(k+‘)(d+l)) and, since A <p-k-n B via h(gl,. . . ,gk), 

B does not meet C. So B is not n(k+‘)(d+‘)-generic. 

Corollary 4.7 (Small Span Theorem for dp-k-a). Let A E E and k> 1. Then 

P(JS-&)IE) = 0 or &P;;(A)) = p(P$(A)jE) = 0. 

Proof. This is shown as Corollary 4.2, using Theorem 4.3 in place of Theorem 4.1. 

We do not know whether Corollary 4.7 can be extended to p-btt-reducibility. Note 

that in Theorem 4.3 the polynomial bound on the genericity for the successors (under 

p-k-tt-reducibility) of the nc-generic set A in E grows with k so that we do not get 

a polynomial bound for the successors under all btt-reductions. We expect that an 

extension of Theorem 4.3 and Corollary 4.7 to p-btt-reducibility (if possible) will be 

of technical interest. 

An interesting consequence of Corollary 4.7 is that, for any k 3 1, the class of 

p-k-tt-hard languages for E has p-measure 0. A corresponding result for generic sets 

follows from Theorem 4.3. 

Corollary 4.8. Let A be I&+‘) -generic (k3 1). Then A is not E-hard under 

p-k-tt-reductions. Hence, the class of E-hard languages under p-k-tt-reducibility has 

p-measure 0. 

Proof. By Corollary 2.4 there is an n2-generic set in DTIME(2”n), whence, by The- 

orem 4.3, no p-k-tt-hard set for E can be n5(k”)-generic. 

Though Corollary 4.8 does not settle the question whether the class of the p-btt-hard 

languages for E has p-measure 0, we obtain two partial results: First, by Corollary 4.8, 

no P-generic set is p-btt hard for E, whence, by Remark 3.3, the class of p-btt-hard 

problems for E has pz-measure 0. The second partial result concerns the complete sets. 

Here, a p-measure-0 result follows immediately from Corollary 2.10 and Theorem 3.2: 

Theorem 4.9. ,+({A : A p-btt-complete for E}) = 0. 

By using a different method, Buhrman and Mayordomo (private communication) 

independently but earlier proved a weaker version of the latter two results, namely that 

the class of the p-btt-complete languages for E has p2-measure 0. 

The question, whether there are Small Span Theorems for the weak p-reducibilities, 

namely polynomial truth-table (p-tt) and polynomial Turing (p-2”) reducibility, and 

the more specific question whether the classes of E-hard problems under these re- 

ducibilities have p-measure 0 seem to be much more fundamental. By Theorem 2.11 

our approach by generic sets fails for the weak reducibilities. Moreover, as observed 

already by Lutz, these questions may depend on the relation between E and BPP: 

For the classical measure p, Bennet and Gill [6] have shown that p(P,‘(A)) = 1 iff 
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A E BPP while Ambos-Spies [l] has shown that p(P;‘(A)) = 1 iff A E P. Moreover, 

Ambos-Spies (unpublished) and, independently, Tang and Book [22] extended these 

results to the intermediate reducibilities by showing that p(P,,’ (A)) = 1 iff A E BPP 

while p(P&‘(A)) = 1 iff A E P. Since, ,u(C) = 1 implies that C does not have 

p-measure 0, these results imply that, assuming EC BPP, the Small Span Theorem 

fails for p-tt-reducibility and p-Turing-reducibility and the classes of the E-hard sets 

under these reducibilities do not have p-measure 0. Moreover, Heller [9] has con- 

structed an oracle relative to which El = BPP. So a proof of the Small Span Theorem 

for the weak p-reducibilities would require nonrelativizable techniques. 

5. Conclusion 

We have shown that many properties which occur with p-measure 1 are shared by all 

nL’-generic sets (some c 32). This gives a new, modular approach to some p-measure 

l-results which can be combinatorically much simpler than the direct approach. This 

approach, however, does not cover all p-measure l-results. Generic sets are designed 

to be universal for standard resource bounded diagonalization arguments. In such a 

diagonalization argument, a single diagonalization step corresponding to one of the 

subrequirements has to be performed only once and only under the proviso that there 

are infinitely many chances to do so. Though, in general, this easily implies that the 

action for a single requirement will be performed infinitely often (provided there are 

infinitely many chances to do so), we cannot say anything about the frequency with 

which the opportunities are taken. The latter contrasts with a typical measure 1 con- 

struction where we have to take the majority of the opportunities. To illustrate this 

difference we consider the density of a set. We have shown already that a generic 

set can be sparse (Corollary 2.4). As first observed in [17], the class of sparse sets, 

however, has p-measure 0. To see this consider the n*-martingale d: C* + Q+ de- 

fined by d(E,) = 1, d(x0) = 3/2 . d(x), and d(x1) = l/2 d(x). Then it is easy to 

see that Ii succeeds on any sparse set, in fact on any set which is not exponentially 

dense. 

Though this example points out limitations of the generic set approach to 

p-measure l-results, we would like to emphasize that the generic sets help us to 

distinguish between those properties which can be forced by standard diagonalizations 

and those which require a measure diagonalization argument. Moreover, this example 

also shows that the assumption that a class C contains an n”-generic set is weaker than 

the assumption that C has nonzero p-measure. This observation might be of particular 

interest when studying the structure of NP assuming that NP is sufficiently large. Lutz 

defines that NP is not small if &NP) # 0, and in [ 181 he and Mayordomo proved 

that under this nonsmallness hypotheses p-T-completeness and p-m-completeness for 

NP do not coincide. We can show that this result already follows from the (apparently 

weaker) assumption that NP contains an n2-generic set. 
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Moreover, the relations between resource bounded genericity and measure which we 

explored here for the polynomial case hold for arbitrary time (and space) bounds. In 

particular, as shortly indicated in Remarks 2.12 and 3.3 already, we obtain correspond- 

ing results for the pz-measure analysis of E2 by Lutz. 

Finally, we want to remark that there is a generaI modular approach to p-measure l- 

results by using random sets in place of generic ones. Following Schnorr [21] and Lutz 

[16] we say that a language A is t(n)-random if no t(n)-computable martingale suc- 

ceeds on A, i.e., if A does not belong to any class of t(n)-measure 0. The existence of 

nc-random sets in E is shown in [4]. In fact, there it is shown that the class of 

#-random sets has p-measure 1, and random sets are used to further analyze the 

p-measure on E. Moreover, as also shown in [4], randomness is a refinement of 

genericity, namely, any nC+’ -random set is nc-generic whence any P-random set is 

P-generic, whereas, by the above observation on sparseness, the converse is not true. 
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