Title	Truth－table reductions and minimum sizes of forcing conditions：preliminary draft（Proof Theory of A rithmetic）
Author（s）	Kumabe，Masahiro；Suzuki，Toshio；Y amazaki，Takeshi
Citation	数理解析研究所講究録（2007），1533：8－14
Issue Date	2007－02
URL	http：／hdl．handle．net／2433／58970
Right	Departmental Bulletin Paper
Type	publisher
Textversion	

Truth－table reductions and minimum sizes of forcing conditions（preliminary draft）

Masahiro Kumabe ${ }^{1)}$ ，Toshio Suzuki ${ }^{2)}$ ，Takeshi Yamazaki ${ }^{3)}$
1）：University of the Air， 31－1，Ōoka 2，Minami－ku，Yokohama 232－0061，Japan kumabe＠u－air．ac．jp
2）：Department of Mathematics and Information Sciences Tokyo Metropolitan University， Minami－Ohsawa，Hachioji，Tokyo 192－0397，Japan toshio－suzuki＠center．tmu．ac．jp 3）：Department of Mathematics， Tohoku University，Sendai 980－8578，Japan yamazaki＠math．tohoku．ac．jp

October 29， 2006

放送大学 教食 隈部正博，首都大学東京 理工 鈴木 登志雄，
 東北大学 理 山崎 武

Abstract

This note is a refinement of our former note［KSY05］＂Logarithmic truth－ table reductions and minimum sizes of forcing conditions（preliminary draft）＂ Sūrikaiseki－kenkyūsho Kōkyūroku 1442 （2005），42－47．The current note ex－ tends and corrects［KSY05］．In our former works，for a given concept of reduc－ tion，we study the following hypothesis：＂For a random oracle A ，with proba－ bility one，the degree of the one－query tautologies with respect to A is strictly higher than the degree of A ．＂In our former works，the following three results

[^0]are shown: (1) the hypothesis for polynomial-time Turing reduction is equivalent to the assertion that the probabilistic complexity class R is not equal to NP, (2) the hypothesis for polynomial-time truth-table reduction implies that P is not NP, (3) [KSY05] the hypothesis holds for $(\log n)^{O(1)}$-question truth-table-reduction (without polynomial-time bound). In this note, we show that if ε is an enough small positive number, then we can substitute $\varepsilon \ell$ for $(\log n)^{O(1)}$ in the statement of (3), where ℓ denotes the total number of occurrences of symbols in a relativized formula. We also show the hypothesis holds for monotone truth-table reduction.

1 Preface

In our former works [Su98, Su99, Su00, Su01, Su02, Su05, KSY05], by extending the work of Ambos-Spies [Am86] and related works, we consider the relationships with the canonical product measure of Cantor space and complexity of one-query tautologies. A formula F of the relativized propositional calculus is called a onequery forumla if F has exactly one occurrence of a query symbol. For example,

$$
\left(q_{0} \Leftrightarrow \xi^{3}\left(q_{1}, q_{2}, q_{3}\right)\right) \Rightarrow\left(q_{1} \Rightarrow q_{0}\right)
$$

is a one-query formula, where $q_{0}, q_{1}, q_{2}, q_{3}$ are usual propositional variables. We assume that each propositional variable takes the value 0 or 1 (0 denotes false and 1 denotes true). And, ξ^{3} in the above formula is a query symbol. For a given oracle A, a function A^{3} is defined as follows, where λ is the empty string, and the query symbol ξ^{3} is interpreted as the function A^{3}.

$$
\begin{array}{lcc}
A^{3}(000)=A(\lambda), & A^{3}(001)=A(0), & A^{3}(010)=A(1), \\
A^{3}(100)=A(01), & A^{3}(011)=A(00) \\
\end{array}
$$

Thus, more informally, the following holds for each $j=0,1, \cdots, 2^{3}-1$, where the order of strings is defined as the canonical length-lexicographic order.

$$
A^{3}(\text { the }(j+1) \text { st } 3 \text {-bit string })=A(\text { the }(j+1) \text { st string }) .
$$

For each n, an n-ary Boolean function A^{n} is defined in the same way, and an interpretation of the query symbol ξ^{n} is defined in the same way. For an oracle A, the concept of a tautology with respect to A is defined in a natural way. If a one-query formula F is a tautology with respect to A, then we say F is a one-query tautology with respect to A. The set of all one-query tautologies with respect to A is denoted by 1 TAUT ${ }^{A}$.

In [Su02], for a given concept \leq_{α} of reduction, we study the following hypothesis, where 1 TAUT X denotes the set of all one-query tautologies with respect to an oracle X.

One-query-jump hypothesis for \leq_{α} : The class $\left\{X: 1 \operatorname{TAUT}^{X} \leq_{\alpha} X\right\}$ has measure zero.

For a given reduction \leq_{α}, we denote the corresponding one-query-jump hypothesis by $\left[\leq_{\alpha}\right]$.

In [Su98], it is shown that the one query-jump hypothesis for p -T reduction is equivalent to " $R \neq N P$."

And, in [Su02], it is shown that the one query-jump hypothesis for p -tt reduction implies "P \neq NP."

In [Su05], we show that the one query-jump hypothesis for p -btt reduction holds, where p-btt denotes polynomial-time bounded-truth-table reduction. The anonymous referee of [Su05] noticed that the one query-jump hypothesis holds for bounded-truth-table reduction without polynomial-time bound, and Kumabe independently noticed the same result. The referee's proof, which may be found in [Su05], uses some concepts of resource-bounded generic oracles in [AM97]. Kumabe's proof is more simple.

In [KSY05] we show that the one query-jump hypothesis holds for $(\log n)^{O(1)}$ _ question tt-reduction (without polynomial-time bound).

A Boolean formula is called monotone if every propositonal conncetive in it is either disjunction or conjunction, and it does not have an occurrences of negation symbol. A tt-reduction is called a monotone tt-reduction if its truth table is monotone for every input. In $\S 3$, we show that the one query-jump hypothesis holds for monotone tt-reduction (without polynomial-time bound). In §4, we show the following. If ε is an enough small positive number then the one query-jump hypothesis holds for $\varepsilon \ell$-question tt-reduction (without polynomial-time bound), where ℓ denotes the total number of occurrences of symbols in a relativized formula. In $\S 5$, we apply the result of $\S 4$ to minimum sizes of forcing conditions.

Corrigendum to our former note Theorem 4 in our former note [KSY05, p.45] has an error in its proof.

2 Notation

Most of our notation is the same as that of [Su02], [Su05] and [KSY05]. Almost all undefined notions may be found in these papers.
ω stands for $\{0,1,2,3 \cdots\}$, while \mathbb{N} stands for $\{1,2,3 \cdots\}$. In some textbooks, the complexity class R is denoted by RP. For the detail of the class R, see for example [BDG88].

The definition of polynomial-time truth-table reduction and its variant may be found in [LLS75].
monotone tt-reduction
If A is tt-reducible to B via f and, if for any input x, propositional connectives used in the truth table (i.e., the φ_{x} of $f(x)=\left(\varphi_{x}, s_{x, 1}, \cdots, s_{x, k}\right)$) is conjunction and
disjunction only, and negation is not used, then we say " A is monotone tt-reducible to B via f ". If A is monotone tt-reducible to B via some function, then we say " A is monotone tt-reducible to $B^{\prime \prime}$.
$\ell(F)$, length of a formula
In this note, a given relativised formula F, the symbol $\ell(F)$ denotes the total number of occurrences of propositional variables ($q_{0}, q_{1}, q_{2}, \cdots$), propositonal connectives ($\wedge, \vee, \neg, \Rightarrow, \Leftrightarrow)$, query symbols $\left(\xi^{1}, \xi^{2}, \xi^{3}, \cdots\right)$ and punctuation marks (commas, parentheses). In the case of a given string x is not (the binary code of) a relativized formula, the symbol $\ell(x)$ denotes the binary length of x.
$\varepsilon \ell$-question tt-reduction
Suppose that ε is a positive real number. If A is tt-reducible to B via f and, if for any input x it holds that

$$
k \leq \varepsilon \ell(x)
$$

where k is the norm of f at x, then we say " A is $\varepsilon \ell$-question tt-reducible to B via f ". If A is $\varepsilon \ell$-question tt-reducible to B via some function, then we say " A is $\varepsilon \ell$-question tt-reducible to $B^{\prime \prime}$.

3 Monotone truth table redcution

Theorem 1 The Lebesgue measure of the set

$$
\left\{X: \text { 1TAUT }^{X} \text { is monotone tt-reducible to } X\right\}
$$

is zero. In other words, one-query jump hypothesis holds for monotone tt-reduction (without polynomial-time bound).

4 The case where norm is linear of length of a formula

Theorem 2 (Main Theorem) Let ε be a positive real number and suppose that ε is enough small. Then the Lebesgue measure of the following class is zero.

$$
\left\{X: 1 \mathrm{TAUT}^{X} \leq_{\varepsilon \ell-\mathrm{tt}} X\right\}
$$

In other words, the one-query-jump hypothesis holds for $\varepsilon \ell$-question tt-reduction (without polynomial-time bound).

5 Lower bounds for forcing complexity

Theorem 3 Let ε be a positive real number and suppose that ε is enough small. Let $\mathcal{D}_{\mathrm{e} \ell}$ be the class of all oracles D such that there exists a positive integer c (c may
depend on D) of the following property. For any $F \in 1^{T A U T}{ }^{D}$ such that $\ell(F) \geq c$, there exists a forcing condition S such that S is a subfunction of D, S forces F to be a tautology and such that $|\operatorname{dom} S| \leq \varepsilon \ell(F)$, where the left-hand side denotes the cardinality of $\operatorname{dom} S$. Then $\mathcal{D}_{\varepsilon \ell}$ has measure zero.

References

[Am86] Ambos-Spies, K.: Randomness, relativizations, and polynomial reducibilities. In: Structure in Complexity Theory, Lect. Notes Comput. Sci. 223 (A. L. Selman, Eds.), pp.23-34, Springer, Berlin, 1986.
[AM97] Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. In: Complexity, logic, and recursion theory, Lecture Notes in Pure and Applied Mathematics 187 (A. Sorbi, Eds.), pp.1-47, Marcel Dekker, New York, 1997.
[BDG88] Balcázar, J. L., Díaz, J., Gabarró, J.: Structural complexity I. Springer, Berlin, 1988.
[BG81] Bennett, C. H., Gill, J.: Relative to a random oracle $A, \mathrm{P}^{A} \neq \mathrm{NP}^{A} \neq$ co-NP ${ }^{A}$ with probability 1. SIAM J. Comput., 10 (1981), pp. 96-113.
[Do92] Dowd, M.: Generic oracles, uniform machines, and codes. Information and Computation, 96 (1992), pp. 65-76.
[KSY05] Kumabe, M., Suzuki, T. and Yamazaki, T.: Logarithmic truth-table reductions and minimum sizes of forcing conditions (preliminary draft). Sūrikaisekikenkyūsho Kōkyūroku, 1442 (2005), pp. 42-47.
[LLS75] Ladner, R. E., Lynch, N. A., Selman, A. L.: A comparison of polynomial time reducibilities. Theoret. Comput. Sci., 1 (1975), pp.103-123.
[Su98] Suzuki, T.: Recognizing tautology by a deterministic algorithm whose while-loop's execution time is bounded by forcing. Kobe Journal of Mathematics, 15 (1998), pp. 91-102.
[Su99] Suzuki, T.: Computational complexity of Boolean formulas with query symbols. Doctoral dissertation (1999), Institute of Mathematics, University of Tsukuba, Tsukuba-City, Japan.
[Su00] Suzuki, T.: Complexity of the r-query tautologies in the presence of a generic oracle. Notre Dame J. Formal Logic, 41 (2000), pp. 142-151.
[Su01] Suzuki, T.: Forcing complexity: minimum sizes of forcing conditions. Notre Dame J. Formal Logic, 42 (2001), pp. 117-120.
[Su02] Suzuki, T.: Degrees of Dowd-type generic oracles. Inform. and Comput., 176 (2002), pp. 66-87.
[Su05] Suzuki, T.: Bounded truth table does not reduce the one-query tautologies to a random oracle. Archive for Mathematical Logic, 44 (2005), pp. 751-762.

[^0]: ＊Corresponding author．He was partially supported by Grant－in－Aid for Scientific Research （No． 14740082 and No．17540131），Japan Society for the Promotion of Science．

