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Abstract

Tang, S. and R.V. Book, Polynomial-time reducibilities and *“‘almost all” oracle sets, Theoretical
Computer Science 81 (1991) 35-47.

It is shown for every k>0 and for almost every tally set T, {A|A =<} T}#{A|A<{i .. Th
In contrast, it is shown that for every set A, the following holds: (a) for almost every set B,
A <] Bifandonlyif A <, 1 B; and (b) for almost every set B, A <, Bifand only if A <} B.

1. Introduction

The subject of this paper is the properties of polynomial-time reducibilities with
respect to ‘“almost all oracle sets”. There are two parts. In the first part we study
the classes of sets reducible to oracle sets by different reducibilities computed in
polynomial time, and in the second part we study the classes of oracle sets reducible
from arbitrary sets by different reducibilities.

In computational complexity theory, the study of reducibilities to almost all oracle
sets appears to have first been studied by Bennett and Gill [3] in their work on the
“random oracle hypothesis’ and, more generally, on probabilistic arguments about
complexity classes. (We make no claims about the random-oracle hypothesis, which
has been refuted in several different ways.) More recentiy, arguments about
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reducibilities to almost all oracle sets have arisen in the study of interactive proof
systems and in attempts to connect that work with more traditional approaches to
computational complexity theory, e.g., structural complexity theory. In this context
the work of Babai and Moran [2], Schoning [7], and Tang and Watanabe [9] has
provided motivation for the present paper. Of particular importance for the questions
studied here is the paper of Ambos-Spies [1].

Recall that the class of sets with polynomial-size circuits has been characierized
as the class of sets that are Turing reducible in polynomial time to sparse sets or
to tally sets. For any type R of reducibility and any class C of sets, Pr(C) denotes
{A|there exists C € C such that A <} C}; thus, if we let SPARSE denote the class
of all sparse sets and TALLY denote the class of all tally sets, then the class of sets
with polynomial-size circuits is precisely Pr{SPARSE) = P(TALLY). Book :nd Ko
[4] showed that the class of sets with polynomial size circuits can be decomposed
into a properly infinite hierarchy when considering the class SPARSE and the various
bounded truth-table reducibilities computed in polynomial time: for every k>0,
P, .«(SPARSE) is properly included in P ,,..(SPARSE). On the other hand, reduc-
ing sets to tally sets results in a collapse if only the bounded truth-table reducibilities
are considered: P,(TALLY)= P, (TALLY). In the latter case, Book and Ko
observed that for every set A, if T, is a tally set (i.e., a set on a one-letter alphabet)
such that A <g, T,, then there is a tally set T, such that A <P T,. This does not
mean that for every tally set T, P, (T)= P,(T); in fact, we show that for almost
every tally set 7, this equality is false.

We show that when considering the polynomial-time reductions to almost every
tally oracle set, the crucial parameter is the number of questions asked in nonadaptive
reducibilities. We make this formal by showing that for every k> 0 and for almost
every tally set T, there is a sct A such that A S(Pkﬂ,_" T but A%}, T, that is,
Pi.o(T) # Py11,.u(T). Hence, for almost every tally set T, the classes P.(T),
P, (T),..., Pi.(T),...form a properly infinite hierarchy of classes. The analogous
result holds for sets over an arbitrary alphabet (instead of a one-letter alphabet);
essentially the same proof method can be used.

Having studied the classes of sets that are polynomial reducible to a given set,
we consider the classes of sets reducible from a given set. This theme appears to
have been considered first by Simon and Gill [8], who studied “upwards diagonaliz-
ations” and showed that if A g P, then for any two types R, S of reducibilities from
{1-tt,..., k-tt, ..., btt, tt, T}, the classes {B| A <} B} and {B|A <% B} are different,
i.e., there exists a witness to the inequality {B|A <} B}#{B|A <% B}. We study
the following question: for a given set A, how many sets witness the inequality
{B|A<} B}#{B|A<! B}?

We consider the polynomial-time reductions from a set over the alphabet {0, 1}
to almost every oracle set, and we show that there is no difference between the
adaptive and the nonadaptive polynomial-time reducibilities (and no difference
between random oracle sets that are from the alphabet {0, 1} and random tally oracle
sets). The only parameter that plays a role is whether there is a O(log n) bound or
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a polynomial bound on the number of oracle queries. We make this formal by
proving that for every set A, the following hold:

(a) for almost every set B, A <[, B if and only if A <{j,,,,.1 B;

(b) for almost every set B, A<} B if and only if A <} B.

Part (a) is related to a result of Ambos-Spies characterizing membership in the
class P, while part (b) is related to a result of Bennett and Gill and of Ambos-Spies
characterizing membership in BPP.

We conclude from this result that for any set A, the sets witnessing {B|A <|, B} #
{B|A S(P.og,,)_—r B} are very rare since this collection has measure 0; the same thing
is true for any other pair of different bounded truth-table reducibilities. In addition,
we see that for any set A, the sets witnessing {B|A <[ B} # {B|A <% B} are very
rare since this collection has measure 0; but the situation is different if we restrict
attention to tally sets since for every tally sei T, A<y, T if and only if A< T.

There is an apparent exception tc the remarks made above to the effect that it is
only the O(log n) bound or polynomial bound on the number of oracle queries that
makes the difference. We show that for every set A, A€ P if and only if for almost
every set B, A <0, B if and only if for almost every set B, A <}, B; where ctt and
dtt denote (unbounded) conjunctive and disjunctive truth-table reducibilities,
respectively. However, the proof shows that in each casc these reducibilities may
be taken to be bounded.

To prove the results described in the last paragraphs, we use results on *“random-
oracle sets” developed by Bennett and Gill [3] and Ambos-Spies [1]. Much of
the work in the present paper is motivated by the recent results of Tang and
Watanabe [9].

2. Preliminaries

In this section we review some definitions and establish notation.

We wi!' consider strings over the alphabet X = {0, 1}. The set of all finite strings
over 3 is denoted by * and the set of all one-way infinite sequences over X is
denoted by Z“. We assume an enumeration e = w,<w, < w,< - -+ of 2* based on
the dyadic representation of the nonnegative integers. The length of a string x will
be denoted by |x|. The cardinality of a set S will be denoted by ||S||. For a set S
and an integer n, §"={xe S||x|=n} and S™"={xe S||x|<n}. For a set S, xs
denotes the characteristic function of S, and S=3*—S. A tally set is any subset of
{0}*; let TALLY denote the class of all tally sets.

Let B< 3*. The characteristic sequence ag=byb, ...of B is an element of 2*
such that b, =1 if and only if w, € B (where 2* is enumerated as wo, w, ... ). For
an element a € X“, B, is the set with characteristic function a.

Let T be a tally set. The tally characteristic sequence 1 = bob, ... of T is an element
in X“ such that b, =1 if and only if 0" € T. For an element a € 3, T, is the tally
set with tally characteristic function a.
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We will identify a (tally) set with its (tally) characteristic sequence.

For ze 3*, let R,={z}2“ ={T e TALLY|7; =28 for some § € 2“}. Thus, R. is
a “rectangular” infinite product in £*; such an infinite product will be referred to
as a basic rectangle.

We denote by ( , ) some pairing function 2* x 2* - 3* that can be computed in
polynomial time and has the property that when restricted to {0}* x {0}* takes values
in {0}*. Abusing the notation, we also use (,...,) to denote tuples of objects; this
should cause no difficulty for the reader since it will be clear from the context what
is intended.

Define A(0)=A(1)=13 on 3, making ¥ into a probability space. By taking the
completion of the infinite product on this probability space, we have tie measure
A on 2“. Two measures v and u are defined so that for any class C of sets (T of
tally sets), »(C) (u(T)) is a real number in the interval [0, 1]; these measures on
3“ correspond to the measure A on 2, which can be interpreted as the Lebesgue
measure on the interval [0, 1] if one identifies the element in £ with the real
number in [0, 1] in the usual way. That s, for a class C of sets, »(C) = A({a| B, € B}),
and for a class T of tally sets, u(T) =A({a| B, € T}). The different notations, v and
u, are used to emphasize the difference between the notion of a characteristic
sequence and a tally characteristic sequence.

It will be useful to have notation for the conditional probability of a property of
sets (or sets of strings). We will use the following: For a predicate P and natural
number m, Pr,,[y: F{y)]is the conditional probability Prf[ P/ S™]1=2""x ||{y||y| = m
and P(y)}|-

Bennett and Gill [3] used a version of the 0-1 law from probability theory. In
this context we use the following version: if a measurable class of sets is closed
under finite variation, then its measure is either 0 or 1. This provides justification
for claiming that if T is a class of tally sets such that u(T)=1, we say that the
property identifying T holds for almost every tally set. Similar comments will be
made when referring tc a class of subsets of 3%,

For an oracle machine M, L(M, A) denotes the set of strings accepted by M
relative to oracle set A, and L(M)= L(M, @) denotes the set of strings accepted by
M when no oracle queries are made {or allowed). For every set A, the collection
{L(M, A)|M is a deterministic oracle machine that runs in polynomial time} is
denoted by P(A). Set B is Turing-reducible to set A in polynomial time, denoted
A<%B, if Ac P(B).

Let PF denote the class of functions computable in polynomial time by determinis-
tic machines.

We are concerned with “bounded truth-table reducibilities” that are computed
in polynomial time [6]:

(i) set A is many-one reducible to set B, A <!, B, if there is a function fe PF
such that for all x, x€ A if and only if f(x)e B;

(ii) for each k>0, set A is k-truth-table reducible to set B, A <}, B, if there
exist f and g in PF such that for all x, f(x) is a list of k strings, g(x) is a truth-table
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with k variables, and x € A if and only if the truth-table g(x) evaluates to true on
the k-tuple (xs(y1), ..., xs(¥)) where f(x)=(y,,..., w);

(iii) set A is bounded truth-table reducible io set B, A <, B, if there is an integer
k such that A<}, B;

(iv) set A is truth-table reducible to set B if there exist f and g in PF such that
for all x, f(x) is a list of strings, say k many strings, g(x) is a Boolean circuit with
k inputs, and x € A if and only if the truth-table g(x) evaluates to irue on the k-tuple
(xs(»), - - -, xa(¥)) where f(x)=(y,, ...,y

For any reducibility R and any class C of sets, let Px(C)={A|there exisis Ce C
such that A<} C}.

We will use the following facts.

Lemma 2.1. For any set A and any reducibility R, u({Te TALLY|A<} T})=1
impiies v({B< X*|A <} B}) =1, that is, if for almost every tally set T, A<y T,
then for almost every set B, A<} B.

Proof (sketch). Notice that for any ae Z“, A<% T, implies that A<} B,. O

Lemma 2.2. If T is a class of tally sets such that uw(T)>0, then there is a basic
rectangie R such that u(T ~ R.)>3u(R.).

For this paper, the appropriate references for the facts about random sets and
measurability of sets are [3,9].

3. Reductions to a set

It seems reasonable to assume that asking more questions of an oracle set will
produce more information. Book and Ko showed that this is not true if one considers
the sets reducible to the class of tally sets, i.e., P,(TALLY)= P, (TALLY). The
proof of Book and Ko showed that for everv set A and every tally set T;, ifA<{, T,
then there is a taily set T, such that A <[, T>.

In this section we show that for almost every tally set, the assumption holds: for
almost every tally set T, the class of sets that are bounded truth-table reducible to
T in polynomial time forms a properly infinite hierarchy depending on the number
of questions asked. This is the main result of this section. There is no similar result
concerning truth-table vs. Turing reducibilities to tally sets since for every set A and
every tally set T, A<| T ifand only if A<} T.

We begin with a result thiat is more restricted than the main result but has the
advantage of being constructive.
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Theorem 3.1. There is a recursive tally set T such that P, (T)# P,..(T) and for every
k>0, Po(T)# Piary.u(T).

Proof. Let £, j=0,1,2,...,be an effective enumeration of all many-one reduc-
tions, i.e., all functions in PF. Then A <! B if and only if there exists a j such that
for all x, x€ A if and only if f;”(x) € B.

For each integer k>0, let ( f ”", g, j=0,1,2,...be an effective enumeration
of all pairs of k-tt generators f;*’ € PF and all k-tt evaluators 2" e PF. We say that
A<}, B via (f”",gﬁ"’ if for all x, xeA if and only if

"’(x B(y,), B(»2),..., B(y)) =1, where (P15 Y2s-- > 2)=f1¥(x). We say that
A <. B if there exists a j such that A <}, B via (f}*’, g!*’). For each j and k, we
assume that the running time of a machine computing f;*’ and g{*’ is bounded
above by a polynomial p;.

We will define a sequence A'”, A", AY . of sets so that A'Y e P, (T)— P.(T)
and for each k>0, A*' ¢ P, ,,.«(T) = Pi.o(T). For each k>0, we will define A¥’,
7=0,1,2,...with A’ A%}, and then define A*:=J__, A'¥'. In addition, we
will define a sequence T,, w=0,1,2,...,with T,< T,,,, and then define T:=
U0 Toe

A pairing function ( , ) allows .or the enumeration of all pairs (k, m), k=0,
m=0. Without loss of generality, assume that (0,0)#0, k+m=(k, m), and
pi({n, n)) <2".

Let n[0]=1 and n[m+1]=2""],

Stage 0: Let Ay':==0 for every i >0, and let T,:=.

Stage w: Let w=(k,j)>0.

Case 1: k=1. Consider the pair (f{*',g!*’) acting on input 0" Let
(Vs Yoo oo ) =070 For each i, 1<i<k, let b;= T,_,(y;). (Once again,
we identify a set with its characteristic function.)

If g’ (0170 b, ..., b)=1, then let T, = T,_,, and let AY := A%, for every
i>0.

If g (0" b,,...,b) =0, then let T,:=T,_,u{0"!"""} where t is the
minimal 'suchthat 1< r'<sk+1and 0" g{y,, ..., y},let A := AY) | for every
i>0 with i # k, and let A== A" L {07}y,

Case 2: k=0.1f f;(0"' ") e T, _,, then let T, = T,_, 0{0"1"""}, and let A}':=
AGL, for each i>0. If f*°(0"'" ") g T,_,, then let T,:=T,_,, and let A"":= A"’
for each i>0. (End of stage ).

Let A" =T, ie., A ={0}* — T. There are some simple points to observe.

(1) It is clear that T < {0}* and that for every i >0, A"’ c {0}*.

(2) For every k>0, each string in A"’ has the form 0**’, where for some ,
n = n[). In addition, 0"’ € A"*" if and only if there exists j, 1 <j< k +1, such that
0""e T, thus, A*' <!, ., T

(3) The set T is recursive since the list of functions f,‘“, j=0, and the list of
functions g/*’, k=0, are effective enumerations.

These facts and the following claims yield the desired result.
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Claim 1. Forall k>0, A =% T

Proof. Assume to the contrary that there is an m suchthat A'*’ <! Twia (f (K, g'5).
Let 7 =(k, m). Let £, (0"l" ) = (y,, ..., yx),and let b, = T(y,) foreach i, 1<i<k.
Then, by the definition of A'X’ <}, T via (%', g'*), it is the case that 017K ¢ A0
if and only if g\ (0""™® b, ... b)) =1.

However, the construction in Case 1 of Stage 7 yields the fact that 0"["-F ¢ A%
if and nnlv if a(k)(n("["] ") h b. ) =0 a contradiction M A(Clain 1)

.......... DN Vi & wUrAti GBI wLAIULE. L \\ilsirrs 1.

Claim 2. Then AV <}, Tbut A <" T.

Proof. Assume to the contrary that A'” <[, T'via f\. Let = = (0, m). It is immediate
from the definition that 0"["1”¢ A9 = T if and only if f”(0" ™M e T

However, the construction in Case 2 of Stage = yields the fact that 01" ¢ T if
and only if £2(01" ) e T, a contradiction. [ (Claim 2).

This completes the proof of the theorem. O

The reader may observe that the witness A'*’ € P 1,.o(T) — Pio(T) is such that
A" € P s1).au( T), where dtt denotes disjunctive truth-table reducibility.

Ncw we have the main result of this section. It should be observed that Theorem
3.2 ;ives a nonconstructive proof of Theorem 3.1.

Theorem 3.2. For every k>0 and for almost every tally set T, P, (T) # Py+1).o(T).
That is, for every k>0, w({T € TALLY| Pi.o(T) # Pr1).o T)) =1.

Proof. Let k>0 be fixed. For every tally T, let
ODD;={0"|||{0",0"*",...,0""*}~ T is odd}.

It is clear that for every tally set T, ODD <{i.,,,.. T. We will show that for almost
every set T, ODD; g P, (T).

Let (f,g) be a k-tt reduction that is computed in polynomial tizie; let f=
(fi,-.-,fx). For every tally set T and every n, let (f, g)T(0") denote
g(0", T(£,(0™)), ..., T(fi(0"))). Observe that (£, g) " (0") is the result of the reduction
in the sense that for any tally sets T,, T, (f, g) witnesses T, <}, T- if and only if
for all n, T,(0")=(f, g)™(0").

For any n, if ODD(0")=(f, g)7(0"), then we say that CDD; and (f, g)” agree
on 0",

In order to prove the theorem, we will show the following.

(1) For any fixed k-tt reduction (f, g), the set {Te TALLY|(f, g) witnesses
ODD; <}, T} has measure 0.

Since (f, g) is a fixed k-tt reduction, it is clear that the question of whether ODD
and (f,g)" agree on some 0" depends on only a finite subset of 7. Let q be a
polynomial with the properties that for all n, |f;(0")| < q(n) for each i, s i<k, and
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n+k<gq(n). Thus, {Te TALLY|ODD; and (f, g)" agree on 0"}< R,(;u *+ - L
R,(m), where for each i, R, is the basic rectangle y(i)2“, m=1, the y(i)’s are
distinct, and |y(1)|= - - - =|y(m)|=q(n). Hence, for any finite set S<{0}*, {Te
TALLY|ODD and (f, g)" agree on each word in S} is a union of finitely many
basic rectangles.

Claim. Let n befixed and let y be a string such that |y| < n. Then u({T € TALLY|ODD+
and (f,g)" agree on 0"}~ R,)=3u(R,).

Proof. Notice that 0" € ODD+ if and only if ||{0",0",...,0""*}A T| is odd.
Because (f, g)7(0") queries T about only k words, there exists some word in
{0",0"*!, ..., 0"**} that is not queried; we lose no generality by assuming that 0"**
is such a word, that is, 0"** g {£,(0"), ..., £i(0™)}. For any tally set T€ R, if T’ and
T differonly on 0"** (i.e., T'= T A{0"**}),then T'e R, and (f, )" (0") = (£, 8) T (0")
but ODD,(0")#0ODD(0"). Hence, exactly one of T and T' is in {Te
TALLY|ODD7 and (f, g) agree on 0"} R,.

Let R,=R,., v *** YR, where |yz(1)|=--: =|yz(t)]=q(n) and i#j
implies Ry, R,,(;,=0.

Since both ODD+(0") and (f, g)”(0") depend only on T, we have that for
each i, either R,.;,<{T|ODD+ and (f, g)" agree on 0"} or R,.;,n{T|ODD; and
(f, g)" agree on 0"} =4.

Suppose that for all j, 1=<j=<3t, yz(2j) and yz(2j—1) differ only on the {n+k)th
bit (so that T € R,.5;-y, if and only if TA{0""*}e R, 5;)).

By the analysis above we have R,.;;-,,<{T e TALLY|ODD and (f, g)" agree
on 0"} if and only if

R,.)n{TeTALLY|ODD; and (f, g)" agree on 0"} =40.

Thus, among the basic rectangles R,,.),..., R,.), exactly one half are in {Te
TALLY|ODD7 and (f; g)" agree on 0"}; each of the others is disjoint with that class.
This completes the proof of the Claim. O (Claim).

Continuing with the proof of (1), choose n,<n,< -:-:such that for each i,
ni.>q(n;)and n;. > n;+ k. Let C;={Te TALLY|ODD and (f, g)" agree on each
of 0,0™,...,0"}. This implies that C,= C,2 + - - 2{Te TALLY|(f, g) witnesses
ODD; <;, T}. By the Claim, we have u(C.,)=31(C). Thus, pn({Te
TALLY|(f, g) witnesses ODD; <}, T}H<3% for all i>n, and so u({Te
TALLY|(f, g) witnesses ODD; <}, T}) =0 as desired. Thus, (1) is established.

Notice that {TeTALLY|ODD. =<}, T}=J{TeTALLY!(f,g) witnesses
ODD; <}, T} where the union is taken over all pairs (f, g) that witness a k-tt
reduction computed in polynomial time. From (1) we see that each set on the
right-hand side of the equation has measure 0 and so {Te TALLY|ODD; <}, T}
has measure 0, that is, u({ Te TALLY|ODD, <}, T}) = 0. Hence, for almost every
tally set T, ODD & P, ,(T).

This completes the proof of the theorem. [J
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Using a similar argument it is easy to see that for almost every tally set T,
P.(T)# P,.(T). Hence, we have the following result.

Corollary 3.3. For almost every tally set T, the classes P,(T),
P, .(T),..., P (T),...form a properly infinite hierarchy of classes.

If one looks carefully at the proof of Theorem 3.2, then one car- see that the
(k+1)-tt reduction of ODD to T can be carried out by a machine :hzt uses only
log n work space. Thus, we note that restricting the work space in this way does
not overcome the additional power gained by making one additional oracle query

A different (and more complicated) argument can be applied to show that for
almost every tally set T, P,.((T) # P+1).cu T) for k>0, where ctt denotes conjunc-
tive truth-table reducibility.

In addition, the proof of Theorem 3.2 can be modified to show that the analogous
result holds when sets over the alphabet {0, 1} are used instead of sets over the
alphabet {0}; that is, for almost every set B, Py (B)# Py.1).«(B) for k>0. The
idea is to use the measure v instead of u and, for A< {0, 1}*, to define GDD, by
{Wa | I{Wns Was1s- - - » Wark} N A|| is odd}. In addition, the notion of basic rectangle
must be interpreted as R, ={B< 3*|ay =25 for some 6 2“}.

While our interest here is in reducibilities computable in polynomial time, the
proofs of Theorems ~.1 and 3.2 yield precisely the same results for the corresponding
reducibilities computable in polynomial space.

4. Reductions from a set

In Section 3 we showed that for almost every tally set T, the class of sets that are
bounded truth-table reducible to T in polynomial time forms a properly infinite
hierarchy depending on the number of questions asked. This shows that for almost
every tally set the “downward” reductions associated with the different bounded
truth-table reducibilities are different. In this section we consider the “upward”
reductions. We will concentrate on results concerning almost every set; but every
theorem remains true if one changes “almost every set’ to ‘‘almost every tally set.”

Simon and Gill [8] showed that if A g P, then for any two types r, s of reducibilities
from {1-tt,..., k-tt,...,btt, tt, T}, the classes {B|A </ B} and {B|A</B} are
different, {B|A <¥ B}# {B|A <! B}; their proof involves constructing witnesses
for the inequality. We consider the following question: for a given set A, how many
sets witness the inequality { B| A <} B} # {B| A <[ B}? We provide different answers
to this question depending on the reducibilities. The single parameter that makes
the difference in the answer is whether the number of oracle queries is O(log n)
bounded or is bounded only by the polynomial running time.

Ambos-Spies [1] first observed that Ae P if and only if for almost every set B,
A <" B. We strengthen this in the first result.
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Suppose that there is a deterministic polynomial-time bounded oracle machine
M such that L(M, B) = A, and such that for some ¢ >0 and every input x, relative
to any oracie set in M’s computation on x there are at most c- log n oracle queries.
Then we write A <{iozn).7 B.

Theorem 4.1. For every set A, A€ P if and only if for almost every set B, A < (P,og,, y.r B.

Proof. Let M,, M,,...be an enumeration of the deterministic polynomial time-
bounded oracle machines that witness S(P,Jg,,)_T.

Suppose that for almost every set B, A <({iogn).T B, so that v({B| A <{,zn,.7 B} =1.
Since {B| A <{iogn,.T B} =\, {B|A=L(M,, B)}, thereis afixedj suchthat v({B| A=
L(M;, B)})> 0. By usual amplification accompanying the 0-1 law, this means that
we can assume that M, is such that v({B| A= L(M,, B)}>3. We will write M for M;.

We lose no generality by assuming that in any single computation, M never
queries the oracle about the same string twice, and there is a fixed ¢ such that for
any input x every computation of M on x makes exactly c- log|x| oracle queries.

Let D={(x,y)|ye{0,1}*, |y|=c'log|x|, and y represents the answers to the
sequence of gueries made in an accepting computation of M on x}. It is clear
that DeP.

For any x and y with |y|=c- log|x|, let C(x, y)={B|y represents the sequence
of answers to the oracle queries in M’s computation on input x relative to B}. Thus,
for any two sets B,, B, in C(x, y), M’s computiation on x relative to B, is exactly
the same as M’s computation on x relative tc B,. This means that for any fixed x
and any y with |y|=c- log|x|, either C(x,y)<{B|A and L(M, B) agree on x} or
C(x,y)n{B|A and L(M, B) agree on x}=¢. Hence, for any given x, {B|A and
L(M, B) agree on x}=C(x,y,)u -+ uCl(x,y,) for some m>0 and some
Yis-.., ¥m, Where for each i, |y;)| = c- log|x| and i # j implies y, # v,

It is easy to see that in the equation {B| A and L(M, B) agree on x} = C(x, y,) U
© V(X yn), yi# y; implies C(x, y;) N C(x, y;) =9 and for each i, v(C(x, y;)) =
27(<1°¢X In addition, {B|A = L(M, B)}= {B|A and L(M, B) agree on x}. Hence,
we have the following:

m- 27 = ,({B1 A and L(M, B) agree on x})
=v({BjA=L(M, B)})>}.

Now, {y|A(x)=D(x, y))}2{y,..., vu} since if Be C(x,y:), then D((x,y;))
agrees with L(M, B)(x)= A(x). Therefore, Proiogly: A(x) = D({x, y))]>3. Since
DeP and (x, y)e D implies |y| = ¢ log|x|, there is a deterministic polynomial-time
bounded machine M, that on input x can compute ||{y|(x, y)c D}|//c- log|x|, and

accept x if and only if this fraction is greater than i. Thus, M, witnesses A’s
membership in P. O

In the proof of Theorem 4.1, we constructed a language D in P with the property
that more than ; of the y’s with length ¢ - log|x| guarantee that A(x) and D((x. )



Polynomial-time reducibilities and **almost all orecle sets 45

agree. If we regard y as the nondeterministic choice in the computation on x, then
|y| = c- log|x| means that only O(log n) many nondeterministic steps are allowed.
Kintala and Fischer [5] proved that allowing O(log n) many nondeterministic steps
is equivalent to being deterministic when only polynomial running time is involved.
Here we are using the idea that we can deterministically count the number of
accepting paths for such a machine.

From Theorem 4.1, we have the following result.

Theorem 4.2. For every set A, the following are equivalent:
(a) AeP;
(b) for almost every set B, A <!,
(c) for almost every set B, A <{, B;
(d) for almost every set B, A<

Now we consider reducibilities where the number of queries is bounded only by
the polynomial running time. Recall the definition of the class BPP:

A € BPPif and only if there exists a nondeterministic Turing machine
N, such that for all x [xe A if and only if more than 3 of N,’s
computations on x are accepting, and x £ A if and orly if less than
i of N.’s computations on x are accepting].

Bennett and Gill clziined that Ae BPP if and only if for almost every set B,
A <Y B; later, Ambos-Sgies g=ve a proof of this. We provide a small extensicn.

Theorem 4.3. For every set A, the following are equivalent:
(a) A€ BPP;
(b) for almost every set B, A <{, B;
(c) for almost every set B, A <7 B.

Proof. Tang and Watanabe showed that if A€ BPP, then for almost every tally set
T, A<! T. From Lemma 2.1, if for almost every tally set T, A < T, then for almost
every set B, A<[ B.On the other hand, if for almost every set B, A <}, B, then for
almost every set B, A <7 B, so that A € BPP by the result cited above. [

Ve apply these results as follows.

Theorem 4.4. For every set A, the following hold:
(a) for almost every set B, A < \P B if and only if A \f’,og,,, T+ B;
(b) for almost every set B, A <, "Bifand only if A<

Proof Apply Theorem 4.2. If A€ P, then for almost every set B, A<P B and
As \(.ob,,, TBIfAZP, t]hen for almost every set B, A £, B (since v({B|A < <P B}) #1
if and only if »({B|A %" B})=1 if and only if for almost every set B, A %" B).
Similarly, if Ag P, then for almost every set B, A %’“ob,,,_T B. Thus, (a) is proved.
The proof of (b) is just the same only Theorem 4.3 is used. [
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Thus, when considering upwards reduction t~ almost all oracle sets associated
with an arbitrary set, there is no difference between the adaptive and the nonadaptive
polynomial-time reducibilities and no aifference between random oracle sets that
are from the slchabet 3 and random tally oracle sets. The only parameter that plays
arocleis w - u.r there is a bound of O(log n) or a polynomial bound on the number
of oracle quei:®s.

From Theor:m 4.4(a) we see that for any set A, the collection of sets witnessing
{B|A <!, B}# {B|A <}, B} has measure 0 so that such sets are very rare. The same
thing is true for any other pair of different bounded truth-table reducibilities. From
Theorem 4.4(t) we see that for any set A, the collection of sets witnessing
{B|A <! B}#{B|A <7 B} has measure 0 so that such sets are very rare.

Consider the collection of sets witnessing {B|A <!, B} # {B|A <} B}. Since Ac P
if and only if for almost every set B, A <[, B, and A € BPP if and only if for almost
every set B, A <% B, we see that the collection of sets witnessing {B|A <!, B} #
{B| A <¥ B} has measure 0if Ag BPP— P and has measure 1 if A< BPP— P (provided
P # BPP).

5. Conjunctive and disjunctive reducibilities

We have claimed that when considering upwards reductions to almost all oracle
sets associated with an arbitrary set, there is no difference between the bounded
and unbounded polynomial-time reducibilities. Here we present a result which on
the surface appears to be a counterexample to that statement but whose proof shows
that it is not.

Recall that set A is conjunctive truth-table reducible to set B via f in PF if for all
x, f(x) is a list of strings, say y;,..., Vi), and x€ A if and only if for each i,
1<is<k(x), y.€ B. Set A is conjunctive truth-table reducible to set B, A <[, B, if
there exists f in PF such that A is conjunctive truth-table reducible to B via f.

Recall that set A is disjunctive truth-table reducible to set B via f in PF if for all
x, f(x) is a list of strings, say y,,..., Yk, and x€ A if and only if for some i
1<is<k(x), yie B. Set A is disjunctive truth-table reducible to set B, A <5, B, if
there exists an f in PF such that A is disjunctive truth-table reducible to B via f.

In both cases we are interested only in the case of polynomial-time reducibilities.

Theorem S.1. For every set A the following are equivalent:
(a) AeP;
(b) for almost every set B, A <Y, B;
(c) for almost every set B, A <5, B.

Proof. Since many-one reducibility is a special case of both conjunctive and disjunc-
tive reducibility, the fact that (a) implies both (b) and (c) follows from Theorem 4.2.
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Suppose that (b) is true. Then »({B|A <J, B}) =1 so that there exists a function
fePFsuchthat v({B|A <, Bviaf})>0.If f(x)=y,” ... *yi(r), then let set-f(x) =
{1+ -5 Pro}- Let set-f(A) = {set f(x)lxE A}

From the definition notice that A <, B via f means that for al! x, xc A if and
onlv if set-f(x)c R, nnrl hence imnliac that cer-fl A R
only if set-f(x) < B, and, hence, implies that se:-f(A) < B.
If set-f(A) is finite, then set-f(A) is in P so that A <[, set-f(A) via f implies that
A ic i D Accrisman thnt cat £ A 24 1alinmitn
21D I e MADOULLIV Lilal DCl‘J \3) 1D LNILIEILS
Notice that we have shown that IRIA --P D oM ~fDlo ct ~ Dl n. Cemom
INOQUCT uldl WC HAVE SNOWIN Ud\D |A Sy Vid] r & 16 8CL _[ A } & Dj. DY assul ![

at{B ye{B
tion, set-f(A) is infinite so that »({B|set-f(A) < })=o h ence, v({BIA X"
1 =0, contradicting the choice of f. This means that se
Suppose that (c) is tiue. Notice that
(i) for almost every set B, A <}, B if and only if,
(ii) for almost every set B, A <!, B if and only if,
(iii) for almost every set B, A <!, B if aud only if,
(iv) AeP (since (b) implies (a)) if and only if,
(v) A€eP (since P is closed under complementation). [

:"
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