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Abstract 

Tang, S. and R.V. Boo4, Polynomial-time reducibilities and “almost all” oracle sets, Theoretical 
Computer Science 81 (1991) 35-47. 

It is shown for every k > 0 and for almost every tally set T, f A 1 A d [_,, T} # {A 1 A s r,,+, ,_,! T). 
In contrast, it is shown that for every set A, the following holds: (a) for almost every set B, 
A s: B if and only if A ~~og,,j_T B; and (b) for almost every set B, A G 19 B if and only if A ~7 B. 

ntroductio 

The subject of this paper is the properties of polynomial-time reducibilities with 

respect to “almost all oracle sets”. There are two parts. In the first part we study 

the classes of sets reducible to oracle sets by different reducibilities computed in 

polynomial time, and in the second part we study the classes of oracle sets reducible 

from arbitrary sets by different reducibilities. 
In computational complexity theory, the study of reducibilities to almost all oracle 

sets appears to have first been studied by Bennett and Gill [3] in their work on the 

“random oracle hypothesis” and, more generally, on probabilistic arguments about 

complexity classes. (We make no claims about the random-oracle hypothesis, which 

has been refuted in several different ways.) More recently, arguments about 
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reducibilities to almost all oracle sets have arisen in the study of interactive proof 
systems and in attempts to connect that work with more traditional approaches to 
computational complexity theory, e.g., structural complexity theory. In this context 
the work of Babai and Moran [Z], Schoning [7], and Tang and Watanabe [9] has 
provided motivation for the present paper. Of particular importance for the questions 
studied here is the paper of Ambos-Spies [I]= 

Recall that the class of sets with polynomial-size circuits has been characeerized 
as the class of sets that are Turing reducible in polynomial time to sparse sets or 
to tally sets. For any type R of reducibility and any class C of sets, PR( C) denotes 
{A 1 there exists C E C such that A s L C}; thus, if we let SPARSE denote the class. 
of all sparse sets and TALLY denote the class of all tally sets, then the class of sets 
with polynomial-size circuits is precisely Pr(SPARSE) = P,(TALLY). Book rnd Ko 
[4] showed that the class of sets with polynomial *size circuits can be decomposed 
into a properly infinite hierarchy when considering the class SPARSE and the various 
bounded truth-table reducibilities computed in polynomial time: for every k> 0, 

P,_,,(SPARSE) is properly included in &+, I_11 (SPARSE). On the other hand, reduc- 
ing sets to tally sets results in a collapse if only the bounded truth-table reducibilities 
are considered: P,,,(TALLY) = P&TALLY). In the latter case, Book and Ko 
observed that for every set A, if T, is a tally set (i.e., a set on a one-letter alphabet) 
such that A sp btt T, , then there is a tally set T2 such that A s E T2. This does not 
mean that for every tally set T, Pbtt( T) = P,(T); in fact, we show that for almost 
every tally set T, this equality is false. 

We show that when considering the polynomial-time reductions to almost every 
tally oracle set, the crucial parameter is the number of questions asked in nonadaptive 
reducibilities. We make this formal by showing that for every k > 0 and for almost 
every tally set T, there is a set A such that A s pk+l l_tt T but A 6 r_tt T, that is, 
Pk_J T) f P . ( l\+l ,_[,( T). Hence, for almost every tally set r the classes Pm( T), 

PI-tt( T), . l . 3 htt( T) , . . . form a properly infinite hierarchy of classes. The analogous 
result holds for sets over an arbitrary alphabet (instead of a one-letter alphabet); 
essentially the same proof method can be used. 

Having studied the classes of sets that are polynomial reducible to a given set, 
we consider the classes of sets reducible from a given set. This theme appears to 
have been considered first by Simon and Gill [8], who studied “upwards diagonaliz- 
ations” and showed that if A g P, then for any two types R, S of reducibilities from 
{1-tt, . . . , k-tt, . . . , btt, tt, T}, the classes {B 1 A 6 L B} and {B 1 A =Z 5 B} are different, 
i.e., there exists a witness to the inequality {B 1 A s i B} # {B I A s g B}. We study 
the following question: for a given set A, how many sets witness the inequality 
{BIAS: B}f{BIAs; B}? 

We consider the polynomial-time reductiouc from a set over the alphabet (0, 1) 

to almost every oracle set, and we show that there is no difference between the 
adaptive and the nonadaptive polynomial-time reducibilities (and no difference 
between random oracle sets that are from the alphabet (0, 1) and random tally oracle 
sets). The only parameter that plays a role is whether there is a O(log PI) bound or 
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a polynomial bound on the number of oracle queries. We make this formal by 
proving that for every set A, the following hold: 

(a) for almost every set B, A s ,!f, B if and only if A s Eogn j_T B; 
(b) for almost every set B, A s c B if and only if A SF B. 
Part (a) is related to a result of Ambos-Spies characterizing membership in the 

class P, while part (b) is related to a result of Bennett and Gill and of Ambos-Spies 
characterizing membership in BPP. 

We conclude from this result that for any set A, the sets witnessing {B i A s E a) + 

{BIA GlgnJ-T B} are very rare since this collection has measure 0; the same thing 
is true for any other pair of different bounded truth-table reducibilities. In addition, 
we see that for any set A, the sets witnessing (B 1 A s L B} f {B 1 A ST B} are very 
rare since this collection has measure 0; but the situation is different if we restrict 
attention to tally sets since for every tally set T, A s L T if and only if A up T. 

There is an apparent exception to the remarks made above to the effect that it is 
only the O(log n) bound or polynomial bound on the number of oracle queries that 
makes the difference. We show that for every set A, A E P if and only if for almost 
every set B, A G$ B if and only if for almost every set B, A S& B; where ctt and 
dtt denote (unbounded) conjunctive and disjunctive truth-table reducibilities, 
respectively. However, the proof shows that in each case these reducibilities may 
be taken to be bounded. 

To prove the results described in the last paragraphs, we use results on “random- 
oracle sets” developed by Bennett and Gill [3] and Ambos-Spies [l]. Much of 
the work in the present paper is motivated by the recent results of Tang and 
Watanabe [9). 

2. Preliminaries 

In this section we review some definitions and establish notation. 
We WV! consider strings over the alphabet C = (0, 1). The set of all finite strings 

over 2 is denoted by E*, and the set of all one-way infinite sequences over C is 
denoted by Cw. We assume an enumeration e = w0 < w, < wZ < l l . of C* based on 
the dyadic representation of the nonnegative integers. The length of a string x will 
be denoted by 1x1. The cardinality of a set S will be denoted by IiSll. For a set S 
and an integer n, S” ={xESI(XI=~} and S5”={ x&+16 n). For a set S, xs 
denotes the characteristic function of S, and s = C* - S A tally set is any subset of 
(0)“; let TALLY denote the class of all tally sets. 

Let B c C*. The characteristic sequence cyR = b,,b, . . . of B is an element of C” 
such that b, = 1 if and only if w,, E B (where C * is enumerated as wo, M’~, . . . ). For 
an element a! E Z”, B, is the set with characteristic function cy. 

Let T be a tally set. The tally characteristic sequence TT = bob, . . . of T is an element 
in C” such that b,, = 1 if and only if 0” E T For an element ar E C’“, T,, is the tally 
set with tally characteristic function a. 
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We will identify a (tally) set wtth its (tally) characteristic sequence. 
For 2 E z*, let R, = {z)Zw = (TE TALLY 177. = 26 for some 6 E zw}. Thus, R, iS 

a “rectangular” infinite product in C”; such an infinite product \.yill be referred to 

as a basic rectangle. 
we &note by ( , ) some pairing function C” x C” + c* that can be compute 

polynomial time and has the property that when restricted to (0)” X {0}* takes values 
in {O}*. Abusing the notation, we also use ( , . . l , j to denote tuples of objects; this 
should cause no difficulty for the reader since it will be clear from the context what 

is intended. 
Define A (0) = A (1) = 4 on 2, making C into a probability space. By taking the 

completion of the infinite product on this probability space, we have the measure 
A on 2”‘. Two measures v and I_C are defined so that for any class C of sets (T of 

tally sets), v(C) (p(T)) is a real number in the interval [0, 11; these measures on 
C” correspond to the measure h on 2, which can be interpreted as the Lebesgue 
measure on the interval [0, l] if one identifies the element in 2” with the real 
number in [0, ? ] in the usual way. That is, for a class C of sets, V( C) = A ({a 1 B, E B}), 

and for a class T of tally sets, p( T) = A ({ a I& E T}). The different notations, u and 
p, are used to emphasize the difference between the notion of a characteristic 
sequence and a tally characteristic sequence. 

It will be useful to have notation for the conditional probability of a property of 
sets (or sets of strings). We will use the following: For a predicate P and natural 
number tn, Pr,[y : F(y)] is the conditional probability Pr[PlY] = 2-” x Il{y 1 lyl = m 

and fYv)lll- 
Bennett and Gill [3] used a version of the O-l law from probability theory. In 

this context we use the following version: if a measurable class of sets is closed 
under finite variation, then its measure is either 0 or 1. This provides justification 
for claiming that if T is a class of tally sets such that p( T) = 1, we say that the 
property identifying T holds for almost every tally set. Similar comments will be 
made when referring to a class of subsets of C? 

For an oracle machine M, L( M, A) denotes the set of strings accepted by M 
relative to oracle set A, and L(M) = L( M,, 0) denotes the set of strings accepted by 
M when no oracle queries are made (or allowed). For every set A, the collection 
{ L( M, A) 1 M is a deterministic oracle machine that runs in polynomial time} is 
denoted by J’(A). Set B is Turing-redudble to set A in polynomial time, denoted 
A @3, if AE P(B). 

Let PF denote the class of functions computable in polynomial time by determinis- 
tic machines. 

We are concerned with “bounded truth-table reducibilities” that are computed 
in polynomial time [6]: 

(i) set A is many-one reducible to set B, A s E B, if there is a function f~ PF 
such that for all x, x E A if and only if f(x) E B; 

(ii) for each k > 0, set A is k-truth-table reducible to set B, A s r_It B, if there 
exist .f and g in PIF: such that for all .“c, .f( x) is a list of k strings, g(x) is a truth-table 
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with k variables, and x E A if and only if the truth-table g(x) evaluates to tme on 

the k-tuple (xB(yI ), . . . 9 xdyd) where .fW = (y,, . . . , yd; 
(iii) set A is bounded truth-table reducible io set B, A s Ett B, if there is an integer 

k such that A G kqtt B; 

(iv) set A is truth-table reducible to set B if there exist f and g in PF such that 
for all x, f(x) is a list of strings, say k many strings, g(x) is a Boolean circuit with 
k inputs, and x E A if and only if the truth-table g(x) evaluates to true on the k-tuple 

(XdYA l l l 9 xdyk)) where f(x) = (Y* ). . . 9 yk). 
For any reducibility R and any class C of sets, let &(C) = {A 1 there exists C E 

such that A s L C}. 

We will use the following facts. 

Lemma 2.1. For any set A and any reducibility R, ~(1 T E TALLY 1 A s L T}) = I 
implies ~((Bc 2”)A s i B)) = 1, that is, if -for almost every tally set T, A s i T, 
then for almost every set B, A s L B. 

Proof (sketch). Notice that for any QI E X”, A G L T, implies that A G L B,. 0 

Lemma 2.2. If T is a class of tally sets such that p( T) > 0, then there is a basic 
rectangle R, such that p(Tn R,)>$(R,). 

For this paper, the appropriate references for the facts about random sets and 
measurability of sets are [3,9]. 

3. Reductions to a set 

It seems reasonable to assume that asking more questions of an oracle set will 
produce more information. Book and Ko showed that this is not true if one considers 
the sets reducible to the class of tally sets, i.e., P&TALLY) = p&TALLY). The 
proof of Book and Ko showed that for every set A and every tally set T, , if A sbqt TI, 
then there is a tally set T2 sw:‘h that A G L Tz. 

In this section we show that for almost every tally set, the assumption holds: for 
almost every tally set T, the class of sets that are bounded truth-table reducible to 
T in polynomial time forms a properly infinite hierarchy depending on the number 
of questions asked. This is the main result of this section. There is no similar result 
concerning truth-table vs. Turing reducibilities to tally sets since for every set A and 
every tally set T, A ~~7 T if and only if S;X 

We begin with a result that is more restricted than the main result but has the 
advantage of being constructive. 



S. Tang, R. V. Book 

Theorem 3.1. There is a recursive tally set T such that P,( T) # P,.,,( T) and for every 

k ’ 0, ~L,,( T) # h+, ,-I(( T). 

Proof. Let$“,j=0,1,2,..., be an effective enumeration of all many-one reduc- 

tions, i.e., all functions in PF. Then A s: B if and only if there exists a j such that 

for all X, x E A if and only if f;())(x) E B. 
For each integer k > 0, let ( fjk), gi”’ , j = 0, 1,2, . . . be au effective enumeration 

of all !pairs of k-tt generators f i ‘) E PF and all k-tt evaluators &) E PF. We say that 

A skqtt B via (fJ!“, g,;“)) if for all X, x E A if and only if 

g;“‘(x, NY, ), B(.vd, . . .) B(yd) = 1, where (Y, 9 YZ, . . . , yk) =fjk’(x). We say that 

A s kp.,, B if there exists a j such that A s r.tt B via (f,!“‘, gjk)). For each j and k, we 
assunne that the running time of a machine computing fi! k, and gjk) is bounded 
above by a polynomial pi. 

We will define a sequence A(()), A(“, At2), . . . of sets so that A”’ E P, _J T) - P,,,( T) 

and for each k>O Afkk P , clr+l,_tt( T) - P&T). For each k > 0, we will define A:‘, 

w = 0, 1,2, . . . with’ A’,k’ c A(,$, , and then define Atk’:= lJxBo A:‘. In addition, we 
will define a sequence T,, n = 0, 1,2,. . . , with T, c T,,, , and then define T := 

u, -0 Tlv 
A, pairing function ( , ) allows Por the enumeration of all pairs (k, m), k 2 0, 

m 3 0. Without loss of generality, assume that (0,O) # 0, k + m s (k, m), and 

p,((n, 4) < 2”. 
Let n[O] = 1 and n[m + l] = 2”““! 

0 for every i > 0, and let To := (d. 
Stage 7~: Let n=(k, j)>O. 

Case 1: k 2 1. Consider the pair (f; “, g,:” ‘) acting on input O(“[ nl*k). Let 
(yl, y2, . . . , yk) = fjk’(O(“‘*l*‘)). For each in 1 s i 6 k, let 6, = T,_,(yi). (Once again, 
we identify a set with its characteristic function.) 

If g~k)(O(n’rrl’k’, b,, . . . , bk) = 1, then let Tr := T,_, , and let AC’:= A:!_, for every 
i > 0. 

If gj" ‘( O(,II rI*k), 6, , , . . , bk) = 0, then let T, :- T,_, u {O(“[nl*‘)} where t is the 
minimal t’ such that 16 t’ 6 k + 1 and O(‘l[xlq”)@ {y, , . . . , yk}, let AZ’:= AZ!_, for every 
i > 0 with i # k, and let At ’ := A:!, u {O(‘l~?rl~k)}. 

Case 2: k = 0. If f~O’(O(‘i’rri*O)) E T,_, , then let T, := T,_, u {O(“[rrlqo)}, and let A:‘:= 

A:!, for each i > 0. If f ‘O’(O”“rrl*O)) JZ T,_, , then let T, := TV_, , and let A!‘:= AZ:, 

for each i > 0. (End of stage r). 
Let A(“’ = r i.e., A”” - - (0)” - T. There are some simple points to observe. 
(1) It is clear that T c (0)” and that for every i > 0, A”‘G (0)“. 

(2) For ever) k > 0, each string in A”’ has the form O(“*k), where for some r, 
n = n[ n]- In addition. O(“*“)E A”“ if and only if there exists j, 1 <j s k -I 1, such that 
O(‘lq’k T; thus, A”“ s ;; +; ,_,, CT: 

(3) The set T 

functions glA ’ , 
is recursit2 since the list of functions #“I, i 2 0, and the list of 

k 3 0, are effectvx enumerations, 
These facts and the following claims yield the desired result, 
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roof. Assume to the contrary that there is an m such that A’“’ < [_tt T ~12 (fl,“‘, g!:‘). 

Let 7r = (k, m). LetS,k’(O’“[“l*k’) = (y, , . . . , yk), and let bi = T(yi) for each i, 1~ i s k. 

Then, by the definition of Atk’ s kqtt T via (f$ ', gkt ‘), it is the case that O’“[ rr19k) E Afk’ 
if and only if gjnk)(O(“[““lqk), b,, . . . , bk) = 1. 

However, the construction in Case 1 of Stage 7~ yields the fact that O’“[ rrl*k)~ A’“’ 

if and only if g’,k’(O”‘[ W1*k), b, , . . . , bk) = 0, a contradiction. q (Claim 1). 

Proof. Assume to the contrary that A”’ G E T via f 2’. Let rr = (0, m). I\\ is immediate 
from the definition that O’“[ rr190)~ A”’ = 7 if and only if f!,!)‘(O(“Lxl*o)) E: T. 

However, the construction in Case 2 of Stage 7r yields the fact that O(‘lrrrlVo) E T if 
and only if fjno’(O(“’ rr’qo)) E T, a contradiction. 0 (Claim 2). 

This completes the proof of the theorem. Cl 

The reader may observe that the witness Atk% P (A+,)_~~( T) - &(T) is such that 
A’ k’ E P( k+ 1 ‘_& T), where dtt denotes disjunctive truth-table reducibility. 

N<w we have the main result of this section. It should be observed that Theorem 
3.2 &es a nonconstructive proof of Theorem 3.1. 

Theorem 3.2. For every k > 0 and for almost every tally set T, PL_({( T) # &+l)_lt( T). 

Thatis,foreveryk>O, ~((TETALLYIP&(T)#P~+,JT)})=I. 

Proof. Let k > 0 be fixed. For every tally T, let 

ODDT = {O” 1 Il{O”, On+‘, . . . , O”+k} n Tll is odd}. 

It is clear that for every taiiy set T, ODDT s r,+, ,_It T. We will show that for almost 
every set T, ODDT e P& T). 

Let (f, g) be a k-tt reduction that is computed in polynomial tize; let f = 
cfl,*- . , fk). For every taiiy set T and every n, iet (f, g) *@‘I) denote 

g(O”, WM")), . - ., T(f~(O”))).Observethat(~g)T(O”)istheresultofthereduction 
in the sense that for any tally sets T, , Tz, (J g) witnesses Ti s r_lI Tz if and only if 
for all nt T,(O”) = (5 g)‘z(O”). 

For any n, if ODD-r(O’r) = (f; g)T(O”), then we say that ODD. and (.f, g)T agree 
on 0”. 

In order to prove the theorem, we will show the following. 
(1) For any fixed k-tt reduction (A g), the set { TE TALLY1 (f; g) witnesses 

ODD7 s ;_I[ T} has measure 0. 
Since (,f, g) is a fixed k-tt reduction, it is clear that the question of whether ODD7 

and (.f, g)” agree on some 0” depends on only a finite subset of T. Let 4 be a 
polynomial with the properties that for all II, I.f;(O”)l d q( 11) for each 4 1 s i s k, and 
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n+ksq(n). Thus, {TETALLY)ODD~ and (f,g)’ agree on O”}GR~(,+ l ** u 
R y(m), where for each i, R_“( ij is the basic rectangle y( i)Z”, m 2 1, the y( i)‘s are 

distinct, and Iy( 1)1= l l l = Iy(m)l = q(n). Hence, for any finite set S c {O)“, { TE 

TALLY 1 ODDT and (ft g)’ agree on each word in S} is a union of finitely many 
basic rectangles. 

Claim. Let n bejxed and lety be a string such that lyl c n. Then p( { T E TALLY 1 ODDT 
and (f, g)T agree on On} n R,,) = $L( R,). 

Proof. Notice that 0” E ODD7 if and only if II{O”, On+‘, . . . , On+k}n Tll is odd. 
Because (f, g)T(O”) queries T about only k words, there exists some word in 
(O”, on+!, . . . , On+k} that is not queried; we lose no generality by assuming that On+k 
is such a word, that is, On+k ti {f,(O”) , . . . ,fk(O”)}. For any tally set T E R,,, if T’ and 
T differ only on On+k (i.e., T’ = TA{O”+k}),then T’E R, and (f, g)7(O”) = (f, g)‘(O”) 
but ODDT(O”) # ODD,(O”). Hence, exactly one of T and T’ is in { TE 
TALLY(ODDT and (f, g) agree on 0”) n R,,. 

Let R,,=Rvtfl,u •~ * u R,zW, where Iyz( 1)1= l l 9 =Jyz(t)l=q(n) and i#j 
implies Ryr(i) n R,,,(i) = 0. 

Since both ODD&O”) and (f, g)T(O”) depend only on Tsqtn), we have that for 
each i, either Ryz(il r{T(ODD, and (f;g)‘agree on 0”) or Ryzti,n(T(ODDT and 
(f, g)T agree on 0”) =Q). 

Suppose that for all j, 1 -J -Z l s lt, yz(2j) and yz(2j - 1) differ only on the (n + k)th 
bit (SO that TE R,,,(zj-l, if and only if TA {O”+k} E Ryztzj)). 

By the analysis above we have Ryr(Zj-1) c {T E TALLY ] ODDT and (f, g)’ agree 
on 0”) if and only if 

R,,zczj, n { T E TALLY 1 ODD T and (4; g)T agree on 0”) =0. 

Thus, among the basic rectangles RYzc 1j, . . . , R,,zc,j, exactly one half are in { T E 
TALLY I ODDT and (f; g)T agree on 0”); each of the others is disjoint with that class. 

This completes the proof of the Claim. Cl (CZuim). 

Continuing with the proof of (l), choose ra, c n2 c l l l such that for each i, 
n i+l> 4h) and $+I > ni + k. Let Ci = {T E TALLY 1 ODDT and (f, g)T agree on each 
of O”I, O”2, . . . , On!}. This implies that C, 2 C2 2 l l l 2 (T E TALLY 1 (f, g) witnesses 
ODD T skqtt T}. By the Claim, we have ~(Ci+l)=~~~(Ci)* Thus, ~({TE 
TALLY I (.A g) witnesses ODDT G F_lt T}) s ii for all ilo!, and so ~({TE 
TALLY 1 (J g) witnesses ODDT G r_tl T}) = 0 as desired. Thus, (1) is established. 

Notice that { T E TALLY 1 ODDT s r.tt T} = U { T E TALLY! (f, g) witnesses 
ODDT G ;.tt T} where the union is taken over all pairs (f( g) that witness a k-tt 
reduction computed in polynomial time. From (1) we see that each set on the 
right-hand side of the equation has measure 0 and so {T E TALLY 1 ODDT G [_lt T} 
has measure 0, that is, p(( TE TALLY 10 .r. s kp+ T}) = 0. Hence, for almost every 

roof of the theorem. 
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Using a similar argument it is easy to see that for almost every tally set T, 
P,,.,(T) # P,_,,(T). Hence, we have the following result. 

Corollary 3.3. For almost every tally set T, the classes P,.,,( T), 

Pd T), l l l 9 Pk-tt( T), n l l 
form a properly injinite hierarchy of classes. 

If one looks carefully at the proof of Theorem 3.2, then one car,- see that the 
(k + l)-tt reduction of ODDT to T can be carried out by a machine ihct uses only 
log n work space. Thus, we note that restricting the work space in t1-C~ way does 
not overcome the additional power gained by making one additional oracle query 

A different (and more complicated) argument can be applied to show that for 
almost every tally set T, Pk_J T) # p( k+ 1 l_ctt ( T) for k > 0, where ctt denotes conjunc- 
tive truth-table reducibility. 

In addition, the proof of Theorem 3.2 can be modified to show that the analogous 
result holds when sets over the alphabet (0, 1) are used instead of sets over the 
alphabet (0); that is, for almost every set B, Pk_J B) # Ptk+ 1 )_J B) for k > 0. The 
idea is to use the measure u instead of p and, for PL c (0, l}*, to define ODDA by 

{wn I llhl, Wn+l, l l ’ 9 wl+d n All is odd}. In addition, the notion of basic rectangle 
must be interpreted as R, = {B c C* I cyB = z6 for some 6 E Y’). 

While our interest here is in reducibilities computable in polynomial time, the 
proofs of Theorems Y. 1 and 3.2 yield precisely the same results for the corresponding 
reducibilities computable in polynomial space. 

4. Reductions from a set 

In Section 3 we showed that for almost every tally set T, the class of sets that are 
bounded truth-table reducible to T in polynomial time forms a properly infinite 
hierarchy depending on the number of questions asked. This shows that for almost 
every tally set the “downward” reductions associated with the different bounded 
truth-table reducibilities are different. In this section we consider the “upward” 
reductions. We will concentrate on results concerning almost every set; but every 
theorem remains true if one changes “‘almost every set” to “almost every tally set.” 

Simon and Gill [S] showed that if A af P, then for any two types r, s of reducibilities 
from {1-tt, . . . , k-tt, . . . t btt, tt, T}, the classes (B 1 A ss r B} and {B I A s r B} are 
different, {B I A s F B} # {B I A s y B}; their proof involves constructing witnesses 
for the inequality. We consider the following question: for a given set A, how many 
sets witness the inequality {B I A s fr B} # {B I A G y B}? We provide different answers 

to this question depending on the reducibilities. The single parameter that makes 
the difference in the answer is whether the number of oracle queries is O(log n) 
bounded or is bounded only by the polynomial running time. 

Ambos-Spies [l] first observed that A E if and only if for almost every set B, 
A G: B. We strengthen this in the first result. 
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Suppose that there is a deterministic polynomial-time bounded oracle machine 
M such that L( M, B) = A, and such that for some c > 0 and every input x, relative 
to any oracle set in M’s computation on x there are at most c 9 log n oracle queries. 
Then we write A s log,l)_T B. 

Theorem 4.1. For every set A, A E P ifand only iffor almost every set B, A s &, ,_T B. 

Proof. Let M1, A&, . . l be an enumeration of the deterministic polynomial time- 
bounded oracle machines that witness 6 E+ )_T. 

Suppose that for almost every set B, A 6 log,,j_T B, SO that v({ B 1 A s ~ognj-~ B}) = 1. 

Since { S 1 A s Eq, ,1 )_T B) = Ui {B 1 A = L( Mi, B)}, there is a fixed] such that v({ R 1 A = 

L( Mj, B))) > 0. By usual amplification accompanying the O-l law, this nteans that 
we can assume that IWi is such that v({ B 1 A = L( Mj, B)} > f . We will write M for Mj- 

We lose no generality by assuming that in any single computation, M never 
queries the oracle about the same string twice, and there is a fixed c such that for 
any input x every computation of M on x makes exactly c l loglxl oracle queries. 

Let n = Rx, Y)lY E (0, u*, IYI = c l loglxl, and y represents the answers to the 
sequence of Qgeries made in an :?ccepting computation of M on x}. It is clear 
that DE P. 

For any x and y with Iyl = c l loglxl, let C(x, yf = { BI y represents the sequence 
of answers to the oracle queries in M’s computittion on input x relative to B}. Thus, 
for any two sets B,, B-, in C(x, y), M’s computation on x relative to B, is exactly 
the same as M’s computation on x relative to B2. This means that for any fixed x 
and any y with lyl = c l loglxl, either C(x, y) c { BJ A and L( M, B) agree on x} or 
C(x, y) n {B I A and L( M, B) agree on x} = v). Hence, for any given x, {B I A and 
L(M, B) agree on x}= C(x, yl)u l l l u C(x, y,,) for some m > 0 and some 

Y19-At, where for each i, lyil = c. loglxl and i Z j implies yi z ~5. 
It is easy to see that in the equation {B I A and L( M, 8) agree on x} - C(x, y,) w 

l * l U c(x, y,, ), JJi # p?i implieS c(X, yi) n C(X, JJj) =v) and for each i, V( C(X, yi)) = 

2- 
(c~log~xl~ 

. In addition, {B 1 A = L( M, B)) C_ {B I A and L( M, B) agree on x). Hence, 
we have the following: 

* * p’loglrlh b = v({ B 1 A and L( M, B) agree on x)) 

T= v((BiA= L(M, S)})>& 

Now, {Y 1 A(x) = Wx, ~9)) 2 {Y , 9 . . . , y,,,} since if ~9 E C( X, vi), then D(Cx, vi)) 
agrees with L( M, B)(x) = A(x). Therefore, Pr c,op,J y : A(x) = D((x, y))] > f . Since 
DE P and (x, y) E D implies lyl = c l loglxl, there is a deterministic polynomial-time 
bounded machine MO that on input x can compute Il{y 1(x, y> E D>ll/c l loglxl, and 
accept x if and only if this fraction is greater than i. Thus, MO witnesses A’s 
membership in P. 0 

In the proof of Theorem 4.1, we constructed a language in P with the property 
that more than f of’ the y’s with length c** loglxl guarantee that A(x) and B((x. y)) 
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agree. If we regard y as the nondetzrministic choice in the computation on A, then 

IYI = cm loglxl means that only O(log n) many nondeterministic steps are allowed. 

Kintala and Fischer [5] proved that allowing O(log n) many nondeterministic steps 

is equivalent to being deterministic when only polynomial running time is involved. 

Here we are using the idea that we can deterministically count the number of 

accepting paths for such a machine. 

From Theorem 4.1, we have the following result. 

Theorem 4.2. For every set A, the following are equivalent: 
(a) AE P; 

(b) for almost every set B, A S: B; 
(c) for almost every set B, A 6 Et, B; 
(d) for almost every set B, P. s sogn)_T B. 

Now we consider reducibilities where the number of queries is bounded only by 
the polynomial running tilme. Recall the definition of the class BPP: 

A E BPP if and only if there exists a nondeterministic Turing machine 

NA such that for all x [X E A if and only if more than f of NA’s 

computations on x are accepting, and x E A if and only if less than 

a of NA’s computations on x are accepting]. 

Bennett and Gill clri:ned that A E BPP if and only if for almost every set B, 
A $ B; later, Ambos-Spies grlle a proof of this. We provide a small extension. 

Theorem 4.3. For every set A, the following are equivalent: 
(a) A E BPP; 

(b) for almost every set B, A s L B; 
(c) for almost every set B, A s 7 B. 

Proof. Tang and Watanabe showed that if A E BPP, then for almost every tally set 
T,ASL T. From Lemma 2.1, if for almost every tally set r9; A s E T, then for almost 

every set B, A SK B. On the other hand, if for almost every set B, A SL B, then for 

almost every set B, A 6: B, so that A, E BPP by the result cited above. Cl 

We apply these results as follows. 

Theorem 4.4. For every set A, the fbllowing hold: 
(a) for almost every set B, A s L 8’ if and only if A s zOg,, ,_-,- B; 
(b) for almost every set B, A s L B if and only if A s 7 B. 

of. Apply Theorem 4.2. If A E JP, then for almost every set B5 4 s z B and 

B. If A e P, then for almost every set B, A g E B (since v(( B 1 A s E B)) f 1 

if and only if v({ B I A 6 K B}) = 1 if’ and only if for almost every set 

Similarly, if @ P, then for almost every set Thus, (a) is proved. 

The proof of (b) is just the same only Theorem 4.3 is used. Cl 
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Thus, when considering upwards reduction to almost all oracle sets associated 
with an arbitrary set, there is no difference betvreen the adaptive and the nonadaptive 
polynomial-time reducibilities and no oifference between random oracle sets that 
are from !he -TkAabet C and random tally oracle sets. The only parameter that plays 
a role is M +. G.Y there is a bound of O(log m) or a polynomial bound on the number 
of oracle queri3, 

From Theor tirn 4.4(a) we see that for any set A, the collection of sets witnessing 
{BIAS: BIfIBIA=& B} has measure 0 so that such sets are very rare. The same 
thing is true for any other pair of different bounded truth-table reducibilities. From 
Theorem 4.4(k) we see that for any set A, the collection of sets witnessing 

WIA <A B}f(B(As; B} has measure 0 so that such sets are very rare. 
Consider the collection of sets witnessing (B 1 A s L B} # {B 1 A s s B}. Since A E P 

if and only if for almost every set B, A s g B, and A E BPP if and only if for almost 
every set B, A ~7 B, we see that the collection of sets witnessing {B I A G z B} # 
(B 1 A 6 F B} has measure 0 if A E BPP - P and has measure 1 if A E BPP - P (provided 
P # BPP). 

5. Conjunctive and disjmctive reducibilities 

We have claimed that when considering upwards reductions to almost all oracle 
sets associated with an arbitrary set, there is no difference between the bounded 
and unbounded polynomial-time reducibilities. Here we present a result which on 
the surface appears to be a counterexample to that statement but whose proof shows 
that it is not. 

Recall that set A is conjunctive truth-table reducible to set B via f in PF if for all 
x, f(x) is a list of strings, say y, , . . . , yktx ) , and x E A if and only if for each i, 
1 s i g k(x), yi E B. Set A is conjunctive truth-table reducible to set B, A szt B, if 
there exists f in PF such that A is conjunctive truth-table reducible to B via J 

Recall that set A is disjunctive truth-table reducible to set B via f in PF if for all 
x, f(x) is a list of strings, say y,, . . ..ykis). and XEA if and only if for some i, 
1 s i 6 k(x), yi E B. Set A is disjunctive truth-table reducible to set B, A & B, if 
there exists an f in PF such that A is disjunctive truth-table reducible to B via J 

In both cases we are interested only in the case of polynomial-time reducibilities. 

Theorem §.I. For every set A the following are equivalent: 

(a) AEP; 
(b) for almost every set B, A s Ftt B; 
(c) *for almost every set B, A s Itt B. 

Since many-one reducibility is a special case of both conjunctive and disjunc- 
tive reducibility, the fact that (a) implies both (b) and (c) follows from Theorem 4.2. 
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Suppose that (1)) is true. Then V( ( B 1 A G zt 8)) = 1 SO that there exists a function 
f~ PF such that Y({ B 1 A $ B viaf)) > 0. Iff(x) = y,# . . . *ykr ub, then let set-J(x) = 

{Y l,. . . , yktXj}. Let set-f(A) = U {set-f(x)lx E A}. 

From the definition notice that A ~2~ B via f means that for all x, x E and 
only if set-f(x) c_ B, and, hence, implies that 

) is finite, then set-f( 
A is in P. Assume that set-f (A) is infinite. 

Notice that we have shown that {B 1 A s Ftt 

tion, set-f (A) is infinite so that v( { B 1 set-f (A) c B}) = 0; hence, V( { B I A s zt B via 
f }) = 0, contradicting the choice of J This means that set-f (A) is finite. 

Suppose that (c) is t; ue. Notice that 
(i) for almost every set B, A 4 dqt B if and only if, 

(ii) for almost every set B, A’ 4 zt B if and only if, 
(iii) for almost every set B, A’ szt B if aird only if, 
(iv) A’ E P (since (b) implies (a)) if and only if, 
(v) A E P (since P is closed under complementation). Cl 
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