44 research outputs found

    Finite-horizon estimation of randomly occurring faults for a class of nonlinear time-varying systems

    Get PDF
    This paper is concerned with the finite-horizon estimation problem of randomly occurring faults for a class of nonlinear systems whose parameters are all time-varying. The faults are assumed to occur in a random way governed by two sets of Bernoulli distributed white sequences. The stochastic nonlinearities entering the system are described by statistical means that can cover several classes of well-studied nonlinearities. The aim of the problem is to estimate the random faults, over a finite horizon, such that the influence from the exogenous disturbances onto the estimation errors is attenuated at the given level quantified by an H∞-norm in the mean square sense. By using the completing squares method and stochastic analysis techniques, necessary and sufficient conditions are established for the existence of the desired finite-horizon H∞ fault estimator whose parameters are then obtained by solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the effectiveness of the proposed fault estimation method

    On H∞ Estimation of Randomly Occurring Faults for a class of nonlinear time-varying systems with fading channels

    Get PDF
    This technical note is concerned with the finite-horizon H∞ fault estimation problem for a class of nonlinear stochastic time-varying systems with both randomly occurring faults and fading channels. The system model (dynamical plant) is subject to Lipschitz-like nonlinearities and the faults occur in a random way governed by a set of Bernoulli distributed white sequences. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a time-varying fault estimator such that, in the presence of channel fading and randomly occurring faults, the influence from the exogenous disturbances onto the estimation errors is attenuated at the given level quantified by a H∞-norm in the mean square sense. By utilizing the stochastic analysis techniques, sufficient conditions are established to ensure that the dynamic system under consideration satisfies the prespecified performance constraint on the fault estimation, and then a recursive linear matrix inequality approach is employed to design the desired fault estimator gains. Simulation results demonstrate the effectiveness of the developed fault estimation design scheme

    Fault estimation for time-varying systems with Round-Robin protocol

    Get PDF
    summary:This paper is concerned with the design problem of finite-horizon HH_\infty fault estimator for a class of nonlinear time-varying systems with Round-Robin protocol scheduling. The faults are assumed to occur in a random way governed by a Bernoulli distributed white sequence. The communication between the sensor nodes and fault estimators is implemented via a shared network. In order to prevent the data from collisions, a Round-Robin protocol is utilized to orchestrate the transmission of sensor nodes. By means of the stochastic analysis technique and the completing squares method, a necessary and sufficient condition is established for the existence of fault estimator ensuring that the estimation error dynamics satisfies the prescribed HH_\infty constraint. The time-varying parameters of fault estimator are obtained by recursively solving a set of coupled backward Riccati difference equations. A simulation example is given to demonstrate the effectiveness of the proposed design scheme of the fault estimator

    Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties

    Get PDF
    This paper is concerned with the problem of designing a non-fragile state estimator for a class of uncertain discrete-time neural networks with time-delays. The norm-bounded parameter uncertainties enter into all the system matrices, and the network output is of a general type that contains both linear and nonlinear parts. The additive variation of the estimator gain is taken into account that reflects the possible implementation error of the neuron state estimator. The aim of the addressed problem is to design a state estimator such that the estimation performance is non-fragile against the gain variations and also robust against the parameter uncertainties. Sufficient conditions are presented to guarantee the existence of the desired non-fragile state estimators by using the Lyapunov stability theory and the explicit expression of the desired estimators is given in terms of the solution to a linear matrix inequality. Finally, a numerical example is given to demonstrate the effectiveness of the proposed design approach

    Non-fragile state estimation for discrete Markovian jumping neural networks

    Get PDF
    In this paper, the non-fragile state estimation problem is investigated for a class of discrete-time neural networks subject to Markovian jumping parameters and time delays. In terms of a Markov chain, the mode switching phenomenon at different times is considered in both the parameters and the discrete delays of the neural networks. To account for the possible gain variations occurring in the implementation, the gain of the estimator is assumed to be perturbed by multiplicative norm-bounded uncertainties. We aim to design a non-fragile state estimator such that, in the presence of all admissible gain variations, the estimation error converges to zero exponentially. By adopting the Lyapunov–Krasovskii functional and the stochastic analysis theory, sufficient conditions are established to ensure the existence of the desired state estimator that guarantees the stability of the overall estimation error dynamics. The explicit expression of such estimators is parameterized by solving a convex optimization problem via the semi-definite programming method. A numerical simulation example is provided to verify the usefulness of the proposed methods

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    A variance-constrained approach to recursive state estimation for time-varying complex networks with missing measurements

    Get PDF
    In this paper, the recursive state estimation problem is investigated for an array of discrete timevarying coupled stochastic complex networks with missing measurements. A set of random variables satisfying certain probabilistic distributions is introduced to characterize the phenomenon of the missing measurements, where each sensor can have individual missing probability. The Taylor series expansion is employed to deal with the nonlinearities and the high-order terms of the linearization errors are estimated. The purpose of the addressed state estimation problem is to design a time-varying state estimator such that, in the presence of the missing measurements and the random disturbances, an upper bound of the estimation error covariance can be guaranteed and the explicit expression of the estimator parameters is given. By using the Riccati-like difference equations approach, the estimator parameter is characterized by the solutions to two Riccati-like difference equations. It is shown that the obtained upper bound is minimized by the designed estimator parameters and the proposed state estimation algorithm is of a recursive form suitable for online computation. Finally, an illustrative example is provided to demonstrate the feasibility and effectiveness of the developed state estimation scheme.National Natural Science Foundation of China under Grants 61329301, 61273156 61333012, 11301118 and 11271103, the Youth Science Foundation of Heilongjiang Province of China under Grant QC2015085, the China Postdoctoral Science Foundation under Grants 2015T80482 and 2014M560376, Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 1402004A, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore